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Abstract: This paper focuses on the flying inverted pendulum problem, i.e balancing a pendulum on
a flying vehicle. After analyzing the system dynamic, a three loop cascade control strategy based on
active disturbance rejection control (ADRC) is proposed. Not only the pendulum balancing, but also the
trajectory tracking of the vehicle can be realized successfully even when strong disturbances exist. The
simulation results from a 3D mechanical systems simulation platform including a comparison to a LQR
controller are given to verify the control performance and robustness of the proposed strategy. Finally,
the practical flying experiments are achieved in our lab.
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1. Introduction

The inverted pendulum is a classical nonlinear control problem and is a common benchmark to
evaluate advanced control techniques. Recently, it has extended to many different scenarios, such as
an inverted pendulum on a cart, multi-degrees pendulum and Furuta pendulum 1. The dynamics of
pendulum systems is related to two-wheels robots, rocket guidance, etc 2. It has been investigated
for several decades. Many researchers regard it as a benchmark for advanced control strategies, e.g.
PID control 3, neural networks 4 and controlled Lagrangians 5.
With the recent advancement of MEMS (micro electro mechanical sensors) and energy stor-

age devices, Micro Aerial Vehicles (MAVs) have demonstrated a great potential, and been widely
used in many civil and military applications, e.g. wildfire monitoring, aerial filming, and pollution
assessment due to their easy construction and ability to take-off and land vertically (VTOL) 6.
Meanwhile, these small flying machines, especially quadrotors have populated in the research insti-
tutes worldwide because of their simple steering principle and low cost 7, such as the Autonomous
Systems Lab at Swiss Federal Institute of Technology 8 and the General Robotics, Automation,
Sensing and Perception (GRASP) Laboratory at University of Pennsylvania 9.
Recently, the flying inverted pendulum has attracted much attention worldwide. It is a nonlin-

ear, under-actuated, coupled system with 8 Degrees of freedom (DOFs), i.e. a 6-DOF quadrotor
and a 2-DOF inverted pendulum. ETH Flying Lab has first investigated this problem 10. After the
nominal pendulum equilibrium is realized, linear state feedback controllers are designed to sta-
bilize the whole system. Reinforcement learning was adopted to improve system performance by
decomposing the task into two subtasks 11, i.e. initial balancing and balanced hover. In addition, a
global stabilizing controller for inverted pendulum derived from controlled Lagrangians is used to
command the desired angels with another parallel quadrotor position controller together 12.
However, linear state feedback design is based on a linearization model of the equilibrium. This
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is only valid in a small dynamics range and vulnerable to external disturbances. Meanwhile, the
parameters of two independent controllers for pendulum and quadrotor are difficult to adjust and
need many trials. Although reinforcement learning could be deployed in the controller design by
dividing the task into two subtasks, the designed controllers actually can not control the pendulum
and quadrotor positions together. The final quadrotor position may be dozens of meters away
from the starting point 11. Other nonlinear control theory such as controlled lagrangian method
for a single inverted spherical pendulum shows very explicit in mathematical proof, however, the
controller form would be too complicated to be deployed practically. The research of classic inverted
pendulum problem may provide some ideas, but unable to be deployed directly.
The flying pendulum problem has an unstable equilibrium, i.e. the upwards vertical position of

the pendulum. Its internal and external disturbances are ubiquitous and difficult to be described in
mathematical methods. Other factors such as communication delay and aerodynamics may degrade
the control quality in practical systems 13. Recently, many researchers analyzed practical complex
systems in terms of anti-disturbance view and proposed two kinds of disturbance estimation tech-
niques 14. One is the disturbance observer technique, which is originally proposed by Ohnishi et
al. 15, and has been widely applied to different systems, e.g., missile systems 16, humanoid joint 17,
precise motion control systems 18. and so on. Another one is Active Disturbance Rejection Control
(ADRC), which lumps the internal uncertain dynamic and the external disturbances as a system
state and on-line estimate them by an extended state observer (ESO), then compensates for them
in control input signals. An ESO can estimate both the system states and the lumped disturbances.
Meanwhile, ADRC design does not require an accurate mathematical model and is relatively simple
to be realized in practical systems. It has been widely deployed in diverse examples of systems with
promising results 19.
In 20, a linear high order observer-based linear controller for the Furuta pendulum is designed

on the basis of a flat tangent linearization model. A two loop linear ADRC controller is designed
to solve the classic inverted pendulum on a cart problem 21. From the results of their works,
ADRC shows great potential to solve underactuated nonlinear systems control problems. Therefore,
inspired by all the previous work in this subject, a three-loop cascade ADRC architecture for the
flying pendulum system is proposed to control the quadrotor track its reference trajectory while
the pendulum can always maintain its position.
The inner loop is a high bandwidth attitude controller on the quadrotor, which tracks desired

attitude angles using feedback from gyroscopes. The quadrotor has a fast tracking response to the
desired commands since it has very low rotational inertia and powerful brushless motors. Then,
on the basis of the fast inner loop, we design an ADRC controller for the pendulum position using
tangent angles as pseudo control inputs.
To design the outer loop controller for quadrotor horizontal position, time scale control concept

22is adopted since the position control of the inverted pendulum has to be guaranteed first and thus
the position states of quadrotor has to be slower. An ADRC controller using the pendulum position
as control inputs is used here and with small parameters to meet the time-scale separation principle.
Another independent controller using total thrust as control input is designed to control the altitude
of the quadrotor. From simulation, we find system performance is sensitive to the gain coefficient of
control input, thus we introduce an adaptive gain parameter after analyzing the system. Through
this multi-level design, each sub-loop is a negative feedback controller, which is different from the
common LQR and PID controllers, i.e the vehicle loop is a positive feedback controller. This change
can utilize the natural connection between all sub-loops and can improve security in practical
experiments. The robustness of the system is validated by adding disturbances during path tracking.
In addition, many communications are involved in this system such as TCP/IP connection from
Vicon system to PC and wireless Zigbee connection from PC to the quadrotor. Time delay is
an important issue here and may affect the system stability. Inspired by Lupashin’s work 8, we
proposed a compensation algorithm based on a tracking differentiator to generate the estimations
of the feedbacks and velocities. It is simple and effective in practical system.
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The remainder of this paper is organized as follows. Section 2 presents the dynamics models for
the quadrotor-pendulum system used in this research. In Section 3, a cascade ADRC controller
is designed for quadrotor trajectory tracking and balancing inverted pendulum. Simulation on
Matlab SimMechanics platform 23 and practical flight tests are carried out in Section 4 to show the
feasibility and effectiveness of the proposed control strategy. Finally, a brief conclusion and future
work are given in Section 5.

2. System Dynamics

A Hummingbird quadrotor made by Ascending Technology is used in this research 24. Fig.1 shows
two right-handed coordinate systems used in describing the MAV pose. The world frame, W, is
defined by axes XW ,YW and ZW with ZW axis pointing upward. The body frame, B, coincides
with the center of mass and is defined by the axes XB,YB and ZB. XB is always aligned with
the preferred forward direction and ZB perpendicular to the plane of four rotors. In the following
analysis, we assume that the body-fixed frame B is attached to the center of mass of the quadrotor
and the pendulum is rigidly attached to the center as well.

2.1. Quadrotor-Pendulum Model

As shown in Fig.2, the position vector of quadrotor is denoted by p = [x y z]T in the world frame
and the pendulum position is described by r and s, which represent the translational position of the
pendulum mass center relative to the supporting point, i.e., r along the XW -axis and s along the
YW -axis. The relative height ζ can be calculated by

√
L2 − r2 − s2 where L is the length from the

bottom to the mass center of the pendulum and its position can be given by pp = [x+r y+s z+ζ]T .
Since the pendulum has no moment of inertia about its z-axis, the rotation kinetic energy can be
given by 1

6mpL
2ΩT

p,xyΩp,xy.

Figure 1. Fixed body and world coordinate systems.

x
y

√

 mp  

Figure 2. Inverted pendulum on top of a quadrotor.

From the rigid body kinematics, we can derive Ωp,xy = pr × ṗr/L
2 where pr = [r s ζ]T . The

total kinetic energy Tp and the potential energy Vp of the pendulum are

Tp =
1

2
mp((ẋ+ ṙ)2 + (ẏ + ṡ)2 + (ż − rṙ + sṡ

ζ
)2) +

1

6
mpL

2ΩT
p,xyΩp,xy (1)
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Vp = mpg(z + ζ) (2)

To derive the pendulum dynamics, applying Lagrangian mechanics as below

d

dt
(
∂Lp

∂(ṙ, ṡ)
)− ∂Lp

∂(r, s)
= 0 (3)

where Lp = Tp − Vp. Then we obtain

r̈ = −3

4
(

ζ2

L2 − s2
)ẍ+

3rζ(g + z̈)

4(L2 − s2)
+
r3(ṡ2 + ss̈)− 2r2sṙṡ+ r(−L2ss̈+ s3s̈+ s2ṙ2 − L2ṙ2 − L2ṡ2)

(L2 − s2)ζ2

(4)

s̈ = −3

4
(

ζ2

L2 − r2
)ÿ +

3sζ(g + z̈)

4(L2 − r2)
+
s3(ṙ2 + rr̈)− 2s2rṡṙ + s(−L2rr̈ + r3r̈ + r2ṡ2 − L2ṡ2 − L2ṙ2)

(L2 − r2)ζ2

(5)
From the dynamic equations, [ẍ ÿ z̈]T can be regarded as control input to the system. However,
for Z-axis, we have to adopt an independent controller to keep the height of the quadrotor at a
desired value. And considering the gain coefficient of z̈ is much smaller than that of ẍ and ÿ, it can
be regarded as a disturbance in the pendulum system when the height is changing. So the system
dynamics of the pendulum can be written in the following form

[r̈ s̈]T = B[ẍ ÿ]T + fz(r, s)z̈ + fn(r, s, ṙ, ṡ) (6)

where fz and fn are the second term and third term of right hand in (4) and (5) respectively, and

B =

[

−3
4(

ζ2

L2
−s2

) 0

−3
4(

ζ2

L2
−r2

) 0

]

(7)

2.2. Quadrotor Dynamics

It is reasonable to assume that the dynamics of the quadrotor is not affected by the movements of
the pendulum since the mass and the inertia of the pendulum are one magnitude less than that
of the quadrotor. The quadrotor is described by six degrees of freedom: the translation position in
the world frame and the vehicle attitude parametered by XY Z-Euler angles (roll-φ,pitch-θ,yaw-
ψ). Using The Newton’s second law, translational equations of the MAV motion can be derived as
below 25.

mp̈ =





0
0

−mg



+R





0
0
T



 (8)

where m, g denote the total mass and the gravitational constant respectively, R is the transforma-
tion matrix between W and B and T is the total thrust produced by propellers.
The attitude is not directly controllable, but it is related to the angular velocity of the quadrotor

in the body frame and the angular acceleration is determined by three torques generated by four
propellers

Ṙ = RΩ̂ (9)
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JΩ̇ = −Ω× JΩ+ τ. (10)

where J denote the inertia matrix w.r.t the frame B, p is the position vector w.r.t the frame W.
The control input τ = [τ1 τ2 τ3]

T represent the torques produced by propellers. Ω = [wx, wy, wz]
T

denotes the angular velocity vector w.r.t the frame B. The notation Ω̂ denotes the skew-symmetric
matrix of Ω.
Based on these dynamic equations, we have done a high-bandwidth controller to track the desired

euler angle values to generate torques commands. In order to transfer these commands to motor
speeds, a brief motor model is introduced here. As seen in Fig.1, motor 1 is the motor on the +XB

arm and the other three motors are allocated to +YB, −XB, −YB arms, respectively. For a typical
multi-rotor flying vehicle, each rotor produces a thrust force Fi in its ZB-axis and a torque Mi

around its ZB-axis. A basic relationship between them and trotation speed ni is Fi = kfn
2
i ,Mi =

kmn
2
i . Then, we can write the general relationship in matrix form for a quad-rotor used in this

paper.









τ1
τ2
τ3
T









=









0 lkf 0 −lkf
−lkf 0 lkf 0
km −km km −km
kf kf kf kf

















n21
n22
n23
n24









(11)

where l denotes the distance from rotor to the center of quadrotor, and the unit of motor speed
is revolutions per minute (rpm). The parameters kf and km can be regarded as constants and be
determined from static thrust tests. Hence, we can achieve the required motor speeds by inverse
operation of (11). The attitude control loop and the calculation of the motor speed run on the
Asctec Autopilot board equipped on the quadrotor at 1KHz.

3. Controller Design

The quadrotor-pendulum control system is integrated by three loops, i.e. the onboard attitude
loop based on gyroscope feedbacks, the pendulum balancing loop and the quadrotor position loop.
Since the system is highly underactuated and the vertical position of the pendulum is a unstable
equilibrium, a cascaded control strategy is adopted, i.e. the mid loop is the pendulum control and
the quadrotor position loop is the outer loop. Desired attitude angles and thrust would be their
control inputs which are tracked by onboard inner loop.

3.1. Inverted Pendulum Loop

The target of the mid loop is to control the pendulum position (r, s) falling within a very small
region. From (8), we can derive

ẍ =(sinψ sinφ+ cosψ sin θ cosφ)T/m

ÿ =(− cosψ sinφ+ sinψ sin θ cosφ)T/m

z̈ =(cos θ cosφ)T/m− g

(12)

Substitute (12) into (6) and take the attitude angles as control inputs

r̈ = −3

4
(1− r2

L2 − s2
)g tan θ + fr (13)

5
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s̈ =
3

4 cos θ
(1− s2

L2 − r2
)g tanφ+ fs (14)

where we assume the yaw angle can always keep nearly 0 and fr, fs represent the dynamics produced
by z̈, s, r, parameter uncertainties and external disturbances.
An ADRC controller is adopted here in order to handle complex disturbance compensation.

Take the r-tan θ loop as example to show the controller details. The linear ESO (extended state
observer) with the following discrete form is employed to estimate system states [r ṙ fr]

T including
the extended state fr.































er = zr1 − r̂

br = −3
4(1− r2

L2
−s2

)g

zr1 = zr1 + h(zr2 − βr1er)

zr2 = zr2 + h(zr3 − βr2er + br tan θ)

zr3 = zr3 + h(−βr3er)

(15)

where r̂ denotes the measurement value of r, er denotes the tracking error of the observer, zri(i =
1, 2, 3) are the outputs of the ESO and denote the estimates of states r, ṙ and total disturbances fr
respectively, h is the sampling time and βri(i = 1, 2, 3) are observer gains to be tuned. Generally,
the larger the observer gain is, the faster response and better performance will be. However, a large
gain will increase noise sensitivity. According to 26, we can find a proper parameter, in compromise
between the suppression performance and the noise tolerance in practical system tuning.
Through the ESO, observations on position, velocity and unknown lumped disturbances are

achieved. Hence, the state error feedback control law is designed as follows

ur = (krp(rd − zr1)− krd(zr2)− zr3)/br (16)

where ur = tan θ, krp, krd are the controller gains and rd is the reference command from outer loop.
The controller and observer of the s− tanφ loop can be derived in the same way.































es = zs1 − ŝ

bs =
3

4 cos θ (1− s2

L2
−r2

)g

zs1 = zs1 + h(zs2 − βs1es)

zs2 = zs2 + h(zs3 − βs2es + bs tanφ)

zs3 = zs3 + h(−βs3es)

(17)

us = (ksp(sd − zs1)− ksd(zs2)− zs3)/bs (18)

All the variables have the same definitions with that in (15) and (16). The desired angle commands
of the onboard attitude loop can be achieved by antitangent calculation.

θd = arctanur, φd = arctanus (19)

3.2. Quadrotor Position Loop

In order to make the pendulum not fall down when the quadrotor is tracking a reference trajectory,
a fast response speed of the pendulum loop has to be guaranteed and the quadrotor position loop
has to be relatively slow. We will assume the variables r, s are at steady state due to this time

6
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scale separation. The MAV reference trajectories are generated with sufficient smoothness and
bounded time derivatives pd = [xd(t), yd(t), zd(t)]

T . The altitude of the quadrotor is controlled by
an independent ADRC controller which can make z̈ always small all the time. Therefore, the outer
loop controller is actually x− r and y − s loops. From (13)-(16) and denote external disturbances
and unmodelled dynamics as ξ, we can derive

{

ẍ = bxr + fx

ÿ = bys+ fy
(20)

where bx, by are the estimated control input gains and fx, fy stand for the whole nonlinear dynamics
and disturbances























bx = −g
ζ

by = −g
ζ

fx = −4(r3(ṡ2+ss̈)−2r2sṙṡ+r(−L2ss̈+s3s̈+s2ṙ2−L2ṙ2−L2ṡ2))
3ζ4 + ξx

fy = −4(s3(ṙ2+sr̈)−2s2rṡṙ+s(−L2rr̈+r3r̈+r2ṡ2−L2ṡ2−L2ṙ2))
3ζ4 + ξy.

(21)

The design of the outer ADRC controller is similar to the pendulum loop, hence the details are
omitted and the results are showed as follows.































ex = zx1 − x̂

zx1 = zx1 + h(zx2 − βx1ex)

zx2 = zx2 + h(zx3 − βx2ex + bxrd)

zx3 = zx3 + h(−βx3ex)
rd = (kxp(xd − zx1) + kxd(ẋd − zx2)− zx3)/bx

(22)































ey = zy1 − ŷ

zy1 = zy1 + h(zy2 − βy1ey)

zy2 = zy2 + h(zy3 − βy2ey + bysd)

zy3 = zy3 + h(−βy3ey)
sd = (kyp(yd − zy1) + kyd(ẏd − zy2)− zy3)/by

(23)

Note the controller parameters in the outer loop have to be much smaller than that in the inner
r, s loop to implement the two-time scale control.

3.3. Time Delay Compensation

In our practical system, a commercial motion capture system VICON is deployed to measure the
position of the quadrotor and the pendulum. A commercial computer running the position and
pendulum control loops will acquire these data through TCP/IP protocol and send commands to
the onboard controller via wireless Zigbee modules. The system latency will be introduced mainly
by the communications. If the pendulum has made a big displacement during the time delay, the
vehicle has to generate a very large acceleration to save the pendulum. However, the maximal
acceleration has a limit, i.e around 13.1m/s2 on Hummingbird, and our VICON area has a limit
range as well. Therefore, a short delay may result in the pendulum falling down from the quadrotor
since the quadrotor can not generate the needed acceleration or will fly out of the area which is
not covered by VICON.

7
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In this paper, a TD (tracking differentiator) is introduced to compensate for the time delay on the
basis of ESO. The TD input is the raw measurement y and the outputs are filtered measurements
ỹ and estimated differentiations ˜̇y. The specific tracking differentiator system is shown as below











fh = fhan(ỹ − y, ˜̇y, r0, h0)

ỹ = ỹ + h˜̇y
˜̇y = ˜̇y + hfh.

(24)

Where fhan(x1, x2, r0, h0) is a special nonlinear function with the following form which can track
the signal differential fast.







































d = r0h0, d0 = h0d, y = x1 + h0x2

a0 =
√

d2 + 8r0|y|

a =

{

x2 +
a0−d
2 sign(y), |y| > d0

x2 +
y
h0

, |y| ≤ d0

fhan = −
{

r0sign(a), |a| > d

r0
a
d
, |a| ≤ d

(25)

where r0 and h0 are positive parameters to be designed to determine the tracking speed and the
filtering performance, respectively. According to the TD output signals, we can adopt a conventional
algorithm to predict the latency-compensated measurements ŷ.

ŷ = ỹ + τ̂ ˜̇y (26)

where τ̂ is the estimation of the practical latency. ŷ is the input of ESO instead of directly mea-
surement y and the latency-free control is generated with compensated signals. The whole time
delay is 30ms∼50ms from practical test results. We choose τ̂ = 40ms in our controller design.

4. Experimental Tests

4.1. Simulation Results

To make simulations as accurate as possible, a multibody simulation environment for 3D mechanical
systems called SimMechianics is used instead of numerical equations calculations. The multibody
system can be modelled using blocks representing bodies, joints, constraints, and force elements,
and then SimMechanics formulates and solves the equations of motion for the complete mechanical
system. Models from CAD systems, including mass, inertia, joint, constraint, and 3D geometry,
can be imported into SimMechanics and an assemble file with practical data from quadrotor and
pendulum drawn by Solidworks is used in this paper.
Additionally, an automatically generated 3D animation can visualize the system dynamics as

shown in Fig.1. The inner onboard attitude loop consists of three individual PD controller which
showed fast response and good robustness with well tuned parameters. These controller details
are omitted here since there are many papers and works existed 24,27. The altitude controller is
an independent ADRC controller similar to the mid quadrotor x − y position loop to command
the thrust. The inner loop and the other higher level loops, i.e quadrotor position and pendulum
position, are running at 1k Hz and 50Hz respectively, which are the same settings as our practical
system.
Firstly, the simulation of set point tracking while balancing the pendulum is conducted. The

quadrotor takes off and hovers in the beginning (0 − 5s), then a move command is send to the

8
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Figure 3. Pendulum relative position output.
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Figure 4. Quadrotor position output.
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Figure 5. Roll angle command and output.

system at t = 5s, an 5N force disturbance with 0.01s duration is given to the pendulum at t = 20s
to validate its robustness finally. To show the advantage of the proposed method, the results of a
LQR controller are depicted here to compare the system performance.
LQR (linear quadratic regulator) is an efficient methods to solve kinds of inverted pendulum

problem. It has been used on classical pendulum on a cart case 28 and as well as the flying
pendulum 10. To design the LQR controller for the pendulum on a quadrotor system, a dynamic
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linearization has to be done first. Using system state [r ṙ s ṡ x ẋ y ẏ]T and dynamic equations can
be written in the following form by linearizing near the equilibrium point.



















r̈ = 3g
4Lr − 3

4g tan θ

s̈ = 3g
4Ls+

3
4g tanφ

ẍ = g tan θ

ÿ = −g tanφ

(27)

Regard [tan θ − tanφ] as control input, then the LQR controller can be achieved with a proper
selection of matrix Q and R. After many trials, Q = diag([10; 0; 10; 0; 1; 0; 1; 0]) and R = diag([1; 1])
is selected and feedback matrix K can be derived. It can show excellent performance on the linear
model, however the performance always decrease much on the nonlinear system and we have to
tune the feedback gains many times for a good performance.
The simulation outputs are shown in Fig.3 to Fig.6, the left panels of figures are from the proposed

controller and the right panels are from the LQR controller. On the other hand, LQR actually
consists of two parallel controllers and the gains for the vehicle loop are positive sometimes,i.e.
[1 1.9588] in this case. It means the vehicle position loop is a positive feedback control which is
the same when using PID controller 3. The positive loop will make the parameters tuning more
complicated and may lose control of the vehicle when using in practical experiments. LQR needs
system state information to build the feedback loop, however the velocities of the vehicle and the
pendulum can not be measured directly. Therefore, some extra sensors or observer design is needed
as well. But in the proposed control strategy, it is perfectly solved by the ESO design.
Another big difference is the weight of the pendulum state has to be much greater than that of

the quadrotor position state in Q matrix design. It is very hard to find a balance between all system
states and have a good performance on quadrotor position control especially in trajectory tracking
applications. From Fig.3 and Fig.4, we can see although the pendulum is moving in a smaller range
under the LQR controller, the quadrotor position tracking performance is much worse which takes
nearly 10s to arrive at the set point. This problem can also be solved in the proposed controller
since the on-line estimation of the disturbance can cover the work of the Integral part in a PID
controller and ESO of two loops will make the control input balance between them. Thus both
stable hovering and path tracking can be realized.
On the other hand, the proposed cascaded controller behaves more robust than the LQR, which

has smaller reaction time to the disturbance and recovers faster, i.e, 10% vs 40% in displacement
and 5s vs 10s in recover time. From the desired angles of two controllers generated in Fig.5 and
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Figure 7. Disturbance estimation results of system.
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Figure 8. Comparison of calculated unmodelled dynamic and estimated disturbance output.

Fig.6, we can also find the system behavior is more aggressive under the proposed method.
The disturbance estimation outputs are shown in Fig.7, we can see the observer responses rapidly

when the external force exerts. Take the pendulum r position loop for example to show the efficiency
clearly, the unmodeled dynamics fr is calculated with the description in 4. The comparison between
it and the estimated disturbance is shown in Fig.8. From the figure, we can find the observer
compensate for the internal dynamic well. We can see the estimation curve does not always coincides
with the calculated dynamic curve. It is because that although we have try our best to build an
accurate mathematical for the system, there are still some other factors may affect the system, for
example the yaw angle can not always stay at 0 and the quadrotor is actually not a mass point. All
the factors will have a influence which can be descriped by this Simmechanics simulation platform
and be estimated by the observer. So we can see the estimated output is always a little larger than
we calculated especially during the adjusting process.
Secondly, a circular trajectory tracking of the quadrotor is conducted. The reference trajectory

is a circle with 1 meter radius and the center is the origin. The external disturbance is the same
as the previous simulation which was exerted at 20s. From the results in Fig.9 and Fig.10, we
can see the trajectory tracking of the quadrotor while balancing the pendulum can be fulfilled by
the proposed controller even when disturbances exist. The attitude angles are shown in Fig.11.
From the results, we can find we did not need to calculate the proper trajectory for the pendulum,
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Figure 9. Reference trajectory tracking outputs of quadrotor.
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however the cascade controller can find it itself, i.e. a small circle.

4.2. Real Experimental Results

4.2.1. Real Experiment Setup

The proposed control method was implemented in Arena Lab at our university with movement
tracking system Vicon. The vehicle is a Hummingbird quadrotor from Ascending Technologies
with a spherical universal joint attached to the top. A 0.7m long carbon fiber tube with only 13.5g
weight is used as the inverted pendulum. The joint base is approximately 7cm above the quadrotor
geometrical centre and is 0.39m away from the pendulum mass centre. Fig.12 shows the whole flying
pendulum system architecture. The information exchange between the onboard attitude controller
and the higher level control algorithms is a pair of wireless Zigbee modules at a frequency of 50Hz.
The Vicon system is running at 100Hz and communicates with our conventional desktop via a
gigabit ethernet. Fig.13 shows the quadrotor is hovering while balancing the inverted pendulum.

4.2.2. Experiments and Analysis

Balancing and hovering case is tested in the first. The quadrotor is hovering without balancing
control in the beginning and will switch to the cascaded controller when the relative position (r, s)

12
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Figure 12. Overview of the practical flying pendulum system.

Figure 13. An inverted pendulum on a hovering quadrotor.

is smaller than 3 centimeters. The output results are shown in Fig.14 and Fig.15. The cascaded
controller is switched on at approximately t = 5s. The pendulum and quadrotor position converge
to zero at approximately t = 13s. After the system is in stable status, external disturbances are
given twice by knocking the pendulum using a stick. From the figures, the two knocks can be found
at t ≈ 60s and t ≈ 75s respectively and the system recovered to the stable state quickly.
Then a reference trajectory is given to the vehicle for path tracking task while balancing the

pendulum. The system is switched to the cascaded controller at approximately t = 7.1s, starts
hovering at [0 0 800]T , then goes to a setpoint [1000 0 800]T at t = 65.4s, begins to move circles at
t = 78.8s and back to the origin in the end. The quadrotor position output is shown in Fig.16 and
Fig.17 depicts the pendulum dynamic in this flight. Additionally, the effect of proposed time-delay
compensation algorithm can be tested using same controller but without the compensation to do
the same trajectory tracking mission. We find this method works well from outputs comparison
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Figure 15. Pendulum relative position in practical hovering.
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Figure 16. Quadrotor position in practical trajectory tracking.

shown in Fig.18.

5. Conclusion

In this paper, a cascaded ADRC controller has been proposed for the control problem of a flying
inverted pendulum. After the analysis of system dynamics, a cascaded controller with three loops is
designed: the inner loop is onboard for attitude control, both the middle loop and the outer loop are
in an off-board computer for pendulum position control and vehicle position control respectively.
Since the inverted pendulum is very sensitive to the attitude change, a two-time-scale control
scheme is deployed: time-varying linear feedback in the fastest inner loop, the desired attitude
generation in the middle loop and the slowest trajectory tracking in the outer loop.
Since we find b influence its performance a lot, a changing input gain (b) design from the dynamic

equations is adopted instead of a constant gain to make the observer work more efficient. From the
performance comparison with a LQR controller, it is clear that the proposed control method can
effectively utilize system dynamics and make a better balance between two control objects. There-
fore, the trajectory tracking is easily realized and works well under strong disturbances without
extra tuning.
Simulation experiments were conducted by using the Matlab Simmechanics platform and an

accurate quadrotor CAD file, which offered a 3D animation interface for the easy visualization of
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tracking.
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the system dynamics. Then, the proposed control strategy was implemented on a real quadrotor
in our robotics lab successfully. To handle time-delay introduced by communications, a compensa-
tion algorithm based on tracking differentiator is added between output measurement and states
observer to predict the realtime output. The practical flight results show that the controller has
fast response and excellent robustness in face of external disturbances.
It is worth noting that this cascaded controller can be easily expanded to other under-actuated

robotics systems such as aircrafts and stand-up robots since actually it does not depend on an
accurate model of the system. Both the simulation results and the practical flights can be watched
clearly in the videos. Our future research work includes smooth trajectories generating as well as
some formation control of the multiple quadrotors.
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