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Abstract—Infrared images have a wide range of military
and civilian applications including night vision, surveillance and
robotics. However, high-resolution infrared detectors are difficult
to fabricate and their manufacturing cost is expensive. In this
work, we present a cascaded architecture of deep neural networks
with multiple receptive fields to increase the spatial resolution
of infrared images by a large scale factor (×8). Instead of
reconstructing a high-resolution image from its low-resolution
version using a single complex deep network, the key idea of
our approach is to set up a mid-point (scale ×2) between scale
×1 and ×8 such that lost information can be divided into two
components. Lost information within each component contains
similar patterns thus can be more accurately recovered even using
a simpler deep network. In our proposed cascaded architecture,
two consecutive deep networks with different receptive fields
are jointly trained through a multi-scale loss function. The
first network with a large receptive field is applied to recover
large-scale structure information, while the second one uses
a relatively smaller receptive field to reconstruct small-scale
image details. Our proposed method is systematically evaluated
using realistic infrared images. Compared with state-of-the-
art Super-Resolution methods, our proposed cascaded approach
achieves improved reconstruction accuracy using significantly less
parameters.

Index Terms—infrared imaging, super-resolution, cascaded
architecture, deep networks, receptive fields.

I. INTRODUCTION

INFRARED imaging technology provides valuable thermal

information to facilitate a wide range of important appli-

cations including thermal analysis, video surveillance, medi-

cal diagnosis, and remote sensing. To achieve high-accuracy

thermal measurement, infrared detectors are encapsulated in

individual vacuum packages which is a time-consuming and

expensive process [1]. As the consequence, infrared sensors

are significantly more expensive than visible ones of similar

resolution. Given low-resolution (LR) infrared images, we

focus on developing effective algorithms to restore thermal

details which are essential to enable reliable target detection
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(a) Ground Truth (b) Zoom-in view/PSNR

(c) TEN/32.58dB (d) SRCNN/35.08dB

(e) VDSR/35.65dB (f) CDN MRF/36.45dB

Fig. 1. Comparative results of a number of deep-learning-based SR methods
including TEN [2], SRCNN [3], VDSR [4] and our proposed CDN MRF
method. It is observed that CDN MRF method more accurately restores
original image information without causing undesirable artifacts. Compared
with state-of-the-art SR method (VDSR), our proposed CDN MRF achieves
higher Peak Signal-to-Noise Ratio (PSNR) value using significantly less
parameters.

and recognition tasks but only available in high-resolution

(HR) infrared images.

Single image based super-resolution (SR) is a promising

technique to increase the spatial resolution of optical sensors

[5]–[8]. Given a LR image, SR aims at reconstructing a higher

resolution image through solving an ill-posed inverse problem

[9], [10]. Due to the great performances achieved by deep

learning based methods for many computer vision applica-

tions such as image classification, target detection, and object

recognition, researchers start to design deep neural networks

(DNNs) for learning the mapping relationship between LR
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Fig. 2. Our proposed cascaded architecture of deep networks. ILR is the LR input (upscaled to the size of HR output via bi-cubic interpolation), ISR

M
is

the SR result of the first network, and ISR

M+N
denotes the final output. Conv(k, n, p) indicates that the convolution uses n kernels of size k × k on the

images/feature maps with padding p. Given a LR input, M convolutional layers and one skip connection are firstly applied to recover structure information
and then another N convolutional layers and one skip connection are used to restore fine details. These two networks are jointly trained as an ensemble by
minimizing the combination of multiple loss terms (loss1 and loss2).

and HR images [3], [11]–[16]. Although many successful

SR methods have been proposed to increase resolution of

visible images, the development of a DNN-based SR method

working well for infrared images still remains an untackled

problem. The major challenge is twofold. First, visible and

infrared images present very different visual characteristics

and it is not clear what is the optimal strategy to migrate

a deep-learning-based SR method from visible spectrum to

infrared one. Applying a SR model, which is trained in

visible domain, to process infrared images cannot achieve

satisfactory reconstruction results [2]. Second, existing deep-

learning-based solutions [2]–[4], [12], [14] only demonstrate

good reconstruction results for small scale factor SR (×2 or

×4) which might not be sufficient for LR infrared images (e.g.,

80× 60). Typically, SR performance drops significantly when

the scale factor increases since the original information in HR

image has little or no evidence in its LR version [17].

In this paper, we present a cascaded architecture of deep

networks with multiple receptive fields (CDN MRF) to ad-

dress the problem of single infrared image SR with a large

scale factor (×8). It is observed that thermal information lost

from scale factor ×1 to ×2 (fine details) is different from

those lost from scale ×2 to ×8 (major structures). With this

finding, we propose a two-level cascaded architecture of deep

networks, as illustrated in Fig. 2, to gradually recover image

information from scale ×8 to ×2 first and from scale ×2
to ×1 then. Instead of recovering all information lost from

scale ×1 to ×8 using a single complex deep network, our

approach set up a mid-point (scale ×2) between scale ×1
and ×8 to divide lost information into two components. Lost

information within each component has similar patterns thus

can be more accurately recovered even using a simpler deep

network. In addition, a multiple receptive fields strategy is

adopted to deal with lost information of different scales. The

first network uses a large receptive field to recover large-

scale structure information from scale ×8 to ×2, while the

second one considers information from a relatively smaller

receptive field to reconstruct small-scale image details from

scale ×2 to ×1. This strategy leads to further reduction of

the complexity of our networks and higher SR reconstruction

accuracy. Our experiments demonstrate that the proposed

cascaded deep networks, using a significantly smaller number

of parameters (1/10), can still achieve better performance com-

pared with state-of-the-art deep-learning-based SR methods

(VDSR). Some comparative results are shown in Fig. 1. The

contributions of our work are two-fold.

• First, we build up a HR infrared image dataset (in total we

captured 120 images of 640×480 pixels) covering a wide

range of scenarios (e.g., vehicle, machine, pedestrian and

building), and further present a DNN model to learn map-

ping relationship between LR and HR infrared images. To

the best of our knowledge, this is the first attempt to make

use of infrared data to solve its SR problem instead of

using a model trained in visible spectral domain [2].

• Second, a cascaded architecture of deep networks with

multiple receptive fields is proposed to achieve large

scale factor (×8) infrared SR. The first network with

a large receptive filed recovers most of the structure

information and the second one uses relatively smaller

receptive field to restore image fine details. Compared

with the state-of-the-art deep-learning-based methods, our

proposed CDN MRF approach can achieve better SR

accuracy with significantly less model parameters.

The remainder of the paper is organized as follows. We

start by reviewing some existing classic and learning-based

SR works in Sec. II. The details of our cascaded architecture

CDN MRF are presented in Sec. III. Extensive experimental

results are presented in Sec. IV, and Sec. V concludes this

paper.
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II. RELATED WORK

Single image based SR is an under-determined inverse prob-

lem due to the fact that one LR image can correspond to mul-

tiple HR images. Classic machine learning methods such as

neighbor embedding (NE) [18], [19], anchored neighborhood

regression (ANR) [7] and sparse coding (SCSR) [8], [20], [21]

attempt to constrain the solution space with prior information.

In [18], SR is performed via a neighbor embedding algorithm

with the assumption that the low-dimensional non-linear man-

ifolds in LR and HR feature space have a similar local geom-

etry. With enough samples, patches in the HR feature domain

can be recovered as a weighted average of local neighbors

using the weights calculated in the LR feature domain. To

improve computational efficiency, Timofte et al. [7] utilized

a number of linear regressors to anchor the neighborhood

embedding of a LR patch to the nearest atom in the dictionary

and to pre-compute the corresponding embedding matrix. Then

the same authors proposed an improved variant of ANR which

is built on the features and anchored regressors from ANR

but uses the full training material [22] and summarized seven

ways to improve SR performance [23]. Yang et al. [8], [20]

assumed that LR patches share the same sparse representation

with corresponding HR counterparts. After learning the LR

and HR dictionaries, the sparse coefficients solved with the LR

dictionary are then passed to corresponding HR dictionary for

reconstructing HR patches. Several methods [9], [24] exploited

the self-similarity prior that patches in a natural image tend to

recur within and across scales of the same image. According

to the fractal nature, an internal LR-HR patch dataset is

built using the scale-space pyramid of the input image itself.

However, the internal dictionary obtained from the dataset is

not sufficient to handle large textural appearance variations.

To overcome this drawback, SelfExSR method proposed by

Huang et al. [5] expands the internal patch search space by

allowing geometric variations. Although self-similarity based

approaches do not require an training process, they involve

time-consuming internal patch searching processes.

In recent years, deep learning has been successfully applied

in various computer vision tasks (e.g., object classification

[25], pedestrian detection [26], and image de-nosing [27])

and achieves breakthrough improvements. Many researchers

attempt to solve the SR problem through the training of DNN

models [3], [4]. An effective convolutional neutral network

model (SRCNN) is proposed to learn the mapping relationship

between LR and HR visible images [3]. With a three-layer

lightweight structure, SRCNN still outperforms other learning-

based methods (e.g., neighbor embedding (NE) [18], [19],

Anchored Neighborhood Regression (ANR) [7] and sparse

coding (SCSR) [8], [28]). It is noted that SRCNN directly

learns the mapping relationship between LR/HR pairs and

its training process takes a long time to converge. The same

authors also developed a fast version (FSRCNN) to accelerate

SRCNN [13] which achieves a real-time speed. VDSR [4]

proposed a highly accurate SR method based on a very deep

convolutional network (20 layers). VDSR firstly reconstructs

the residual information and then adds it back to the LR image

to generate the final SR output which is proven effective in

achieve high SR accuracy. Using a large number of param-

eters, VDSR outperforms the other SR methods by a large

margin. However, VDSR contains a large number of model

parameters which are difficult to train and impractical for real-

time implementation. Many state-of-the-art SR methods are

reviewed and their performances are systematically evaluated

in [29]. Choi et al. present the first deep learning based SR

method for infrared images in which a SR model trained using

visible spectral data is applied to enhance the spatial resolution

of infrared images [2]. However the achieved improvement

is quite limited even compared with the traditional bi-cubic

interpolation method. Moreover, it is noticed most existing

SR methods are designed for small scale factors (e.g., ×2 and

×4) [3], [15] which is not sufficient to process LR infrared

images. It is common to capture LR images using 80 × 60
infrared detectors, thus it is desirable to develop a SR method

with large scale factor (×8) which can convert LR images to

640× 480 VGA resolution.

Previously, cascading strategy has been effectively applied

to boost SR performance [15], [23], [30]. However, multiple

stacked networks require to train/deploy more model param-

eters. Since information to restore within each network has

similar patterns, it is possible to significantly reduce the num-

ber of network parameters without sacrificing SR accuracy. In

addition, a multiple receptive fields strategy is adopted to deal

with lost information of different scales. The first network uses

a large receptive field to recover structure information from

scale ×8 to ×2, while the second one considers information

from a relatively smaller receptive field to reconstruct small-

scale image details from scale ×2 to ×1. This strategy leads to

further reduction of the complexity of our cascaded networks.

As a result, our proposed CDN MRF approach can achieve

higher SR accuracy with significantly less model parameters.

III. APPROACH

In this paper we present a cascaded architecture of deep net-

works with multiple receptive fields (CDN MRF) to address

the challenging problem of large scale factor (×8) infrared

image SR. For this purpose, we build up an infrared image

dataset which consists of 120 HR images of 640 × 480
resolution. 100 images are utilized to train our cascaded deep

networks and another 20 images are used for SR performance

evaluation. More details of our captured infrared dataset are

provided in Sec. IV-A.

A. Network architecture

In Fig. 3, we show a HR infrared image, its ×2, ×4 and ×8
scale LR versions, and the residual images between different

scales (×1 → ×2, ×2 → ×4, ×4 → ×8 and ×2 → ×8). It

is observed that the ×2 LR image is visually similar to the

original image. Structure information is still well preserved

in ×2 LR image and only some insignificant fine details are

removed. The underlying reason for this phenomenon is that

infrared images contains limited amount of fine details [31].

With the increase of the scale factor, structure information

starts to disappear from scale ×2 to ×4 and is further reduced
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(a)Original image (b)Scale ×2 (c)Scale ×4 (d)Scale ×8

(e)Difference ×1 → ×2 (f)Difference ×2 → ×4 (g)Difference ×4 → ×8 (h)Difference ×2 → ×8

Fig. 3. Down-sampling images with different scale factors and information lost between different scales. Note all down-sampling images are resized through
bi-cubic interpolation (using the image resize function - imresize() provided in Matlab) to its original size and normalized to 0-1 value range for visualization.

from scale ×4 to ×8. As illustrated in Fig. 3, thermal infor-

mation lost from scale ×2 to ×4 (Fig. 3 (f)) and from scale

×4 to ×8 (Fig. 3 (g)) both consist of major image structures,

which are significantly different from fine details lost from

scale factor ×1 to ×2 (Fig. 3 (e)). In addition, we calculate

the histogram of the residual images between different scales

(×1 → ×2, ×2 → ×4, ×4 → ×8 and ×1 → ×8), and

the comparative results on 100 training images are shown in

Fig.4. It is observed that the residual images ×2 → ×4 and

×4 → ×8 have very similar data distributions and both contain

a certain number of large value components (corresponding to

high-variance structure edges). In comparison, the difference

between ×1 and ×2 images is insignificant and the residual

image ×1 → ×2 mostly consists of small value components

(corresponding to low-variance image details).

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Pixel Values

0

0.5

1

1.5

2

2.5

3

3.5

4

P
ix

el
 C

ou
nt

s

×106

×1→×2
×2→×4
×4→×8
×1→×8

0.02 0.03 0.04 0.05
0

5

10
×104

Fig. 4. The histograms of the residual images ×1 → ×2, ×2 → ×4,
×4 → ×8 and ×1 → ×8 calculated on 100 training images.

With this interesting observation, we argue that performance

of large scale factor SR can be substantially improved by

applying the divide-and-conquer philosophy. Instead of di-

rectly learning the mapping relationship between LR (scale

×8) and HR (scale ×1) images which is difficult to achieve

high reconstruction accuracy and requires a complex deep

network, a mid-point (scale ×2) is set up between scale ×1
and ×8 to divided lost information into two components of

different characteristics. Accordingly we deploy two different

deep network models to recover major structures (×2 → ×8)

and fine details (×1 → ×2) respectively. Since similar patterns

exist within each component, they can be more accurately

restored even using two simpler deep networks. We system-

atically evaluate the effectiveness of the proposed cascaded

architecture (×8 → ×2 → ×1) in Sec. III-C.

Inspired by the popular VGG-net [25] and Residual net [32],

we use two deep networks and cascade them as an ensemble

to gradually reconstruct HR image ISR from a LR image

ILR. Our cascaded architecture is illustrated in Fig. 2. Given

a LR input, we firstly upscale it to the size of HR image

through bi-cubic interpolation for deep network training [12].

To avoid confusion, we still call it a “low-resolution” image,

although it has the same size of the HR image. For low-

contrast infrared images, the differences between LR and HR

images is insignificant and only a small numbers of pixels

have non-zero differences. Therefore, computing the residual

images is a more efficient way to depict their differences, and

can lead to much faster convergence with higher accuracy [4].

The first deep network consists of M convolutional layers

and one skip connection. The first deep network take LR image

(scale ×8) ILR
×8 as input and predict its scale ×2 version as

ISR
1 = max(0, w1 ∗ I

LR
×8 + b1), (1)

ISR
n = max(0, wn ∗ ISR

n−1 + bn), n ∈ {2, 3...M − 1}, (2)

ISR
M = (wM ∗ ISR

M−1 + bM ) + ILR
×8 , (3)
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where wn and bn represent the filtering weights and biases

respectively, ∗ denotes the convolution operation. We ap-

ply Rectified Linear Unit (ReLU) activation function (i.e.,

max(0,x)) [33] on the results of the convolutions. We use the

first network to learn a mapping from LR image ILR
×8 (scale

×8) to a scale ×2 intermediate image. In this step, major

image structures are recovered as shown in Fig. 5 (a).

Consecutively, we deploy another deep network to learn a

mapping function from ISR
M to the original image IHR. The

second network consists of N layers and one skip connection.

It takes the computed image ISR
M (output from the first deep

network) as the input and computes ISR
M+N as

ISR
n = max(0, wn ∗ ISR

n−1 + bn), n ∈ {M + 1...M +N − 1},
(4)

ISR
M+N = (wM+N ∗ ISR

M+N−1 + bM+N ) + ISR
M , (5)

The restored ISR
M+N should be as similar as possible to

the ground truth image IHR. Different from the first deep

network, the second model attempts to recover some image

fine details as shown in Fig. 5 (b). Please note these two deep

networks are not identical and have different receptive fields.

We will discuss possible techniques to optimize cascaded deep

networks in Sec. III-C.

(a) Res1 (b) Res2

Fig. 5. Learned residual images of our proposed cascaded deep networks.
(a) The first residual image contains rich structure information and (b) The
second residual image consists of some texture details. Both of the images
are normalized to 0-1 value range for better visualization.

B. Network Training

To train our cascaded deep networks, we need a large

number of infrared image patches of low- (scale ×8), middle-

(scale ×2) and high-resolutions (original image). We randomly

crop a large number of image patches from HR infrared images

and then apply some standard data augmentation methods

(e.g., rotation and flip) to expand the training dataset. For each

HR image patch IHR, we perform down-sampling by a factor

of 2 and 8 to get its LR version ILR
×2 and ILR

×8 and then upscale

them to the size of HR image through bi-cubic interpolation.

Low-contrast infrared images usually contain limited

amount of textures [31]. As a result, many cropped image

patches cover a homogeneous region and contain pixels of

similar gray values as shown in Selection A in Fig. 6. If

the training dataset contains lots of such sample images, the

deep network will be tuned to learn mapping relationships

between these homogeneous regions instead of recovering lost

high-frequency signals. As a simple yet effective solution,

we compute the standard variation of pixels within an image

patch to decide whether this patches is suitable for training.

A threshold θ is set to selection patches with high intensity

variations. Only image patches from Section B in Fig. 6

will be used for deep network training. We evaluate the

effectiveness of this strategy using two different deep networks

including SRCNN [3] and VDSR [4]. As shown in Tab. I, this

verification strategy is an effective technique to generate valid

training patches and leads to SR performance boost for both

models.

HR image A B

Fig. 6. A HR infrared image is cropped into a number of small patches.
Selection A: image patches contain pixels of similar intensity values. Selection
B: image patches contain image edges and textures. We only consider patches
from selection B to train our deep networks.

TABLE I
THE SR RESULTS WITH AND WITHOUT TRAINING IMAGE PATCH

SELECTION. THE PSNR AND SSIM VALUES ARE CALCULATED ON OUR

TESTING DATASET WHICH CONTAINS 20 INFRARED IMAGES.

SRCNN [3] VDSR [4]
w/o with w/o with

PSNR (dB) 35.22 35.32 35.51 35.65
SSIM 0.9154 0.9157 0.9186 0.9198

Given training images ILR
×8 , ILR

×2 and IHR, weights w1:M+N

and the biases b1:M+N are computed by jointly minimizing the

weighted sum of two loss functions loss1 and loss2 as

arg min
wn,bn

= αloss1 + βloss2, (6)

loss1 =
1

2

a∑

i

b∑

j

||ISR
M (i, j)− ILR

×2 (i, j)||
2
2, (7)

loss2 =
1

2

a∑

i

b∑

j

||ISR
M+N (i, j)− IHR(i, j)||22, (8)

where a and b denote image width and height respectively, M
and N denote the Mth and Nth convolutional layer, ISR

M is

the SR result of the first network, ISR
M+N is the final output,

(i, j) denotes the image coordinates, and α and β are the

weights of the first and second loss function, respectively. It is

noted that label ILR
×2 is down-sampled from IHR by a factor

of 2 and then upscaled to the size of IHR through bicubic

interpolation to perform pixel-wise operation. Different with
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previous works [2]–[4], our cascaded deep networks contain

two training labels (IHR and ILR
×2 ) and two loss functions

(loss1 and loss2). Due to the splitting operation, loss1 is the

structure loss function and loss2 is the texture loss function.

During the training process, we back-propagate loss1 from

Mth layer to the first layer to adjust the weights and biases

for recovering structure information in the first deep network.

Similarly, we back-propagate loss2 from (M + N)th to

(M+1)th layer to learn the weights and biases for recovering

texture information in the second deep network. To realizing

the isolation operation, we set ‘propagate down’ to false in

the (M + 1)th layer on Caffe [34].

Training is carried out using “Adam” optimizer [35] with a

mini-patch of 64 sub-images. We train our model using Caffe1

[34], a deep learning framework developed by Jia Yangqing et

al. and implement this model through MatConvNet2 package

[36]. The weights w1:M+N are initialized using the method

described in [37] and the biases n1:M+N are initialized using

a constant (zero). The learning rate for weights is set to

10−4 and decreased by a factor 10 every 40 epochs and the

training is regularized by weight-decay (L2 penalty multiplied

by 0.0001). We empirically train our model by 80 epochs.

C. Network optimization

VDSR [4] is a very deep convolutional network (20 layers)

for high-accuracy image SR. Increasing the depth of network

enables better ability to model complicated image patterns

and leads to performance gain of SR. VDSR deep network

consists of 20 layers and each convolutional layer contains

64 filters. The size of filter is set to 3 × 3 to make the deep

network thin as suggested by Simonyan et al. [25]. As the

baseline, two standard VDSR deep networks are cascaded

to restore major structures (×2 → ×8) and fine details

(×1 → ×2) individually. Here we use M(n) + N(n) to

depict the configuration of the cascaded deep networks. The

baseline model can be indicated by 20(64) + 20(64), where

M = N = 20 denotes the number of convolutional layers

and n = 64 denotes the width3 of a convolutional layer.

Cascading strategy can been effectively applied to boost SR

performance [15], [23], [30]. However, such practice will

double the number of parameters. Moreover, the computational

cost and the chance to fall into local minimum both increase.

In this section, we firstly evaluate the effectiveness of the

proposed cascaded architecture (×8 → ×2 → ×1) and

then present a number of techniques to optimize the baseline

cascaded deep networks (20(64) + 20(64)). As a result, the

proposed CDN MRF approach achieves higher SR accuracy

using less model parameters.

We compare our proposed cascaded architecture (×8 →
×2 → ×1) with four other alternatives including (1) without

network cascading (×8 → ×1), (2) three cascaded networks

with two mid-points at scale 2 and 4 (×8 → ×4 → ×2 →
×1), (3) two cascaded networks with a mid-point at scale

4 (×8 → ×4 → ×1), and (4) two cascaded networks with

1http://caffe.berkeleyvision.org/
2http://www.vlfeat.org/matconvnet/
3We use width to term the number of filters in a layer, following [12].

TABLE II
THE SR RESULTS WITH DIFFERENT CASCADED ARCHITECTURES. THE

PSNR AND SSIM VALUES ARE CALCULATED ON OUR TESTING DATASET

WHICH CONTAINS 20 INFRARED IMAGES.

Different Architectures PSNR (dB) SSIM

×8 → ×1 35.65 0.9198
×8 → ×4 → ×2 → ×1 35.87 0.9214

×8 → ×4 → ×1 35.91 0.9223
×8 → ×3 → ×1 35.93 0.9220
×8 → ×2 → ×1 35.96 0.9224

TABLE III
THE COMPARATIVE RESULTS USING DIFFERENT WIDTH CONFIGURATIONS.

Methods PSNR(dB) Number of Parameters

20(64) 35.65 664704
20(64)+20(64) 35.96 1329408
20(32)+20(32) 35.97 332928

20(16)+20(16) 35.72 83520

a mid-point at odd scale 3 (×8 → ×3 → ×1). In each

cascaded network, we make use of a standard VDSR model for

fair comparison. SR results of different cascaded architectures

are shown in Tab. II. It is noted that employing a cascaded

architecture can always achieve SR performance gain as the

mapping function from scale ×8 to original scale ×1 is

difficult to learn through a single deep network. Although the

cascaded architecture of three networks (×8 → ×4 → ×2 →
×1) contains the largest number of parameters, it does not

produce the best SR performance since the complex model

becomes difficult to train and over-fitting is likely to happen.

It is worth mentioning that scale ×2 provides a better middle

point than scale ×3 or ×4 to separate the lost information to

structural edges and fine details, and our proposed architecture

(×8 → ×2 → ×1) achieves the highest PSNR (Peak Signal-

to-Noise Ratio) and SSIM (Structure SIMilarity) [38].

A feasible solution to reduce the number of network pa-

rameters is to decrease the width parameter n. We set up

experiments to investigate how width n influence the SR

performance. To compare with VDSR (n = 64), we set

our network width to two different values: (1) n = 32; (2)

n = 16. The testing dataset contains 20 infrared images

captured by a commercial long-wave4 infrared camera. The

comparative SR results are illustrated in Tab. III. Compared

with VDSR (20(64)), the simplified cascaded deep networks

(20(16)+20(16)) still achieve better SR results (higher average

PSNR and SSIM) using only 1/8 parameters. This is mainly

because a single deep network (VDSR) needs more param-

eters to describe the mapping function working well for the

reconstruction of both fine details and structural edges. In con-

trast, our cascaded architecture uses two models to separately

recover high-frequency signals with similar patterns. As the

result, lots of parameters can be reduced by using two simpler

deep networks. The performance will be further boosted with

a wider width (n = 32). When further expanding the width

(n = 64), we do not observe performance improvement while

the number of parameters significantly increases, so we set

4Note that wavelengths of long-wave infrared ranges from 8 to 14um.
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TABLE IV
THE COMPARATIVE RESULTS USING DIFFERENT LAYER CONFIGURATIONS.

Methods PSNR(dB) Number of Parameters

20(64) 35.65 664704
20(32)+20(32) 35.97 332928
15(32)+20(32) 35.35 286848
10(32)+20(32) 34.85 240768
20(32)+15(32) 35.98 286848
20(32)+10(32) 36.02 240768

20(32)+5(32) 35.94 194688

Fig. 7. 20 selected training infrared images (from training dataset) covering
a wide range of scenarios.

n = 32 in our implementation and the architecture of our

cascaded deep networks is simplified to 20(32) + 20(32).

The number of convolutional layers (M or N ) determines

how many neighboring pixels (i.e., receptive fields) are con-

sidered to recover the lost information. In our cascaded deep

networks, a mid-point (scale ×2) is set up between scale ×1
and ×8 to divided lost information into large-scale structures

(×2 → ×8) and small-scale details (×1 → ×2). Accordingly,

a multiple receptive fields strategy is adopted to deal with

lost information of different scales. The first network uses

a large receptive field to recover structural information from

scale ×8 to ×2, while the second one consider information

from a relatively smaller receptive field to reconstruct image

details from scale ×2 to ×1. A number of different layer

configurations are considered and their comparative results are

shown in Tab. IV. It is observed that SR results drop when

we reduce the number of layers (M ) in the first deep network

which is used to restore lost information from scale ×2 to

scale ×8. The experimental results demonstrate that more

neighborhood information considered through a large receptive

field is essential to restore large-scale structural information. It

is also worth mentioning that decreasing the number of layers

in the second deep network (N = 15 or N = 10), which

is used for fine detail restoration, leads to not only reduction

Fig. 8. 20 testing infrared images covering a wide range of scenarios. From
left to right, top to bottom: testing 1 to testing 20.

of parameters but also improvement on SR accuracy. Since

receptive field is the minimum unit for restoration, irrelevant

information within a large receptive field will provide false

training samples for the second deep network and decrease

SR accuracy. When further decreasing the number of layers

(N = 5), the performance will drop significantly. In this

case, the receptive field is too small to provide sufficient

neighborhood information for SR. Based on above analysis,

we set M = 20, N = 10 and the architecture of our proposed

CDN MRF is represented as 20(32) + 10(32).

IV. EXPERIMENTS

In this section, we compare our CDN MRF with several

state-of-the-art SR methods using realistic infrared images.

The same training and testing dataset are used for fair compar-

ison. Firstly, datasets for training and testing are introduced,

and then we outline our implementation details. The compar-

ative results are also illustrated in this section.

A. Datasets

The performances of deep learning methods depend heavily

on the training data. For fair comparison, the same training

and testing dataset are used for our evaluation. We use a

commercial uncooled long ware infrared camera to capture

100 HR infrared images (640 × 480 resolution) to form the

training dataset and another 20 images as the testing dataset.

In the training phase, we set the size of training patches to

41 × 41 and data augmentation (flip and rotation) is used

to avoid over-fitting and further improve accuracy. In total

165120 valid (pass the training patch selection described in

Sec. III-B) sample sub-images are cropped from the original

640× 480 images with a stride of 29. Fig. 7 and Fig. 8 show

some sample images from our training and testing datasets.

It is observed that our captured images cover a wide range
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Ground Truth

PSNR/SSIM

Bicubic x8

28.99/0.8510

SCSR-512 [8]

29.67/0.8539

SCSR-1024 [8]

29.74/0.8556

SelfExSR [5]

30.15/0.8710

CDN MRF

30.66/0.8864

Fig. 9. SR results of Testing 19 using some classic methods (SCSR-512, SCSR-1024, SelfExSR) and our method. The first row exhibits the ground truth and
some processing results. The second row are the zoom-in views of the highlighted regions. The SCSR methods generate blurry SR results and the SelfExSR
method causes undesired artifacts that distort the original shape of electrical cable.

Ground Truth

PSNR/SSIM

Bicubic x8

30.44/0.8751

TEN [2]

31.37/0.8866

SRCNN [3]

33.32/0.9086

VDSR [4]

33.92/0.9217

CDN MRF

34.61/0.9287

Fig. 10. Original image and comparative SR processing results of Testing 10. The first row shows processing results using different methods. The second
and third rows visualize the highlighted regions in the first row. It is observed that the edges in the red highlighted region restored by our SR method appear
much sharper. As well, our method suppresses the artifacts as shown in the green highlighted region. PSNR value of our method is significantly higher than
the second best performing SR method VDSR (> 0.69dB).

of contents (e.g., vehicle, machine, pedestrian and building)

and the training and testing datasets are significantly different

from each other. These infrared images will be made publicly

available in the future.

B. Implementation details

In our implementation, we use a cascaded network of a total

depth of 30. Training is carried out by optimizing the objective

function using “Adam” optimizer with a mini-patch of 64 sub-

images. Weight decay and threshold θ are set to 0.0001 and

0.0005 respectively. We utilize the method described in [37]

for weights initialization and the biases are initialized to zeros.

The model is trained for 80 epochs. The learning rate for

weights is set to 10−4 and decreased by a factor of 10 every

40 epochs. For each layer, we set (k, n, p) to (3, 32, 1) except

the 20th and 30th layers where we set (k, n, p) to (3, 1, 1)
to reconstruct the output image. The weights of the two loss

functions are set to the same value: α = β = 1. We train our

models on a single GPU of NVIDIA TITAN X.
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Ground Truth

PSNR/SSIM

Bicubic x8

34.45/0.8951

TEN [2]

35.30/0.8998

SRCNN [3]

36.67/0.9107

VDSR [4]

36.81/0.9128

CDN MRF

37.25/0.9171

Fig. 11. Some comparative SR results of Testing 5. Cable contours are well restored by our method while they are either blurred or distorted in SR results
of other methods.

Ground Truth

PSNR/SSIM

Bicubic x8

35.10/0.8991

TEN [2]

35.63/0.9019

SRCNN [3]

36.65/0.9087

VDSR [4]

36.92/0.9108

CDN MRF

37.33/0.9139

Fig. 12. SR results of Testing 19 using TEN, SRCNN, VDSR and our method. Please zoom in to check details highlighted in red rectangles.

C. Comparisons with state-of-the-art SR methods

We perform quantitative and qualitative experiments to com-

pare our proposed method with state-of-the-art SR approaches

including classic methods (e.g., SCSR [8] and SelfExSR [5])

and deep-learning-based methods (e.g., SRCNN [3], VDSR

[4] and TEN [2]). The source codes of SCSR5, SelfExSR6

and SRCNN7 methods are provided by their authors. For

SCSR method, two dictionaries of size 512 and 1024 are

trained respectively. The implementation of VDSR model

is also publicly available8. We re-implement TEN method

which consists of the 4-layer CNNs on Caffe and apply the

same parameter setting described in the paper [2]. This re-

implementation achieves very similar SR results reported in

the original paper. All of these methods are trained using the

same dataset described in Sec. IV-A to ensure fair comparison.

First of all, we show comparative results of a number

of classic methods including SCSR [8] and SelfExSR [5]

in Fig. 9. SCSR-512 and SCSR-1024 denote SCSR model

with dictionary size of 512 and 1024, respectively. It is

observed that both SCSR-512 and SCSR-1024 methods output

blurry SR results. SelfExSR method causes undesired artifacts

that distort the original shape of objects. Another limitation

5http://www.ifp.illinois.edu/ jyang29/ScSR.htm
6SelfExSR: https://sites.google.com/site/jbhuang0604/publications/struct sr
7SRCNN: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
8https://github.com/huangzehao/caffe-vdsr

of SelfExSR is that it will fail to recover the fine details

when the input image does not contain obvious planes and

similar texture patterns [5]. A noticeable disadvantage of these

classic methods is they are time-consuming and not suitable

for real-time applications. Time comparisons are provided in

Sec. IV-D.

Then, comparative results of some deep-learning-based

methods are illustrated in Fig. 10. Overall our SR method

based on cascaded deep networks can achieve better image

restoration results. It is observed that contour edges in red

highlighted region processed by our SR method are much

sharper and clearer than results of other methods. As well, our

method can effectively suppress undesired artifacts as shown in

the green highlighted region. With such improvement, small

objects (e.g., finger tip) can be easily identified in our SR

result. More SR results can be found in Fig. 11 and Fig. 12.

We quantitatively evaluate SR performances of our

CDN MRF method and state-of-the-art methods (SCSR [8],

SelfExSR [5], TEN [2], SRCNN [12], VDSR [4]). We make

use of PSNR and SSIM as our evaluation metrics and the

comparative results are shown in Tab. V. When calculat-

ing the metrics, we ignore certain amount of borderpixels

according to the work presented in [39]. On average, our

method outperforms other state-of-the-art SR methods by large

margins (VDSR: > 0.37dB, SRCNN: > 0.7dB, SelfExSR:

> 0.85dB, SCSR-1024: > 1.78dB, SCSR-512: > 1.84dB,



1051-8215 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2018.2864777, IEEE

Transactions on Circuits and Systems for Video Technology

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, X X

TEN: > 1.87dB). Moreover, the performance of our method

is very stable and it achieves the best SR results and produces

the highest PSNR values for all 20 testing images.

Another advantage of our proposed CDN MRF architecture

is that it can achieve better SR accuracy with significantly

less parameters. As illustrated in Tab. VI and Fig. 13, using

significantly less parameters (1/10), our 20(16) + 10(16)
model still achieves more accurate SR result compared with

the VDSR method (20(16) + 10(16): 35.71 dB vs. VDSR:

35.65 dB ). If we further decrease the parameters (width = 12),

our lightweight 20(12)+10(12) model with 34128 parameters

achieves an averaged PSNR value of 35.60dB which is better

than the performances of SRCNN (57184 parameters and

35.32 dB PSNR) and TEN (63840 parameters and 34.15 dB
PSNR).

104 105 106 107

Number of parameters

35.3

35.4

35.5

35.6

35.7

35.8

35.9

36

36.1

P
S

N
R

(d
B

)

VDSR

20(64)+20(64)

20(32)+10(32)

20(24)+10(24)

20(16)+10(16)

20(12)+10(12)

20(32)+20(32)

SRCNN(9-5-5)

Fig. 13. Graph of PSNR vs. Number of Parameters. Our method 20(32) +
10(32) achieves the highest PSNR value. TEN is not included in this
comparison since it cannot produce comparable PSNR values.

D. Time comparison

The training and testing times of our CDN MRF method

and SCSR [8], SelfExSR [5], TEN [2], SRCNN [12], VDSR

[4] methods are systematically evaluated. The SelfExSR

method does not require a training process based on external

datasets, so its training time is negligible. The training process

of SCSR takes ∼4 hours to converge on a CPU. The rest

deep-learning-based methods are trained on a single GPU of

NVIDIA TITAN X. The lightweight SRCNN and TEN meth-

ods directly learn the mapping relationship between LR/HR

pairs and their training process takes a long time (several days)

to converge. VDSR embeds residual learning and gradient clip-

ping strategies to significantly reduce the training process to

∼5 hours. In comparison, the training times of our CDN MRF

models (20(32)+10(32) and 20(16)+10(16)) are ∼3.5 hours

and ∼2 hours, respectively.

Although the training process of deep-learning-based meth-

ods is time-consuming, the trained model can be efficiently

deployed during the testing phase which is critical for practical

applications. In addition, deep-learning-based methods do not

need to fine tune the hyper-parameters to achieve good perfor-

mance. For fair comparison, above mentioned SR methods are

conducted to process a 640× 480 resolution image in Matlab

R2015b without GPU or parallel implementation on a PC with

an Inter Core i7-6820HK CPU (2.7GHz) and 16 GB memory.

Each SR method is executed for 100 times and the averaged

testing time is provided in Fig. 14.

100101102

slow                    Running Time (second)                    fast

34

34.5

35

35.5

36

36.5

P
S

N
R

(d
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)

SCSR-512

SCSR-1024

SelfExSR

TEN

SRCNN

VDSR

20(32)+10(32)

20(16)+10(16)

20(12)+10(12)

Fig. 14. Graph of PSNR vs. running time. All SR methods are conducted
in Matlab R2015b without GPU or parallel implementation on a PC with an
Inter Core i7-6820HK CPU (2.7GHz) and 16 GB memory.

It is noted that classic SCSR and SelfExSR methods require

∼100 seconds to restore HR outputs since the optimization

of sparse representation and internal patch searching are ex-

tremely time-consuming. In comparison, our 20(32)+ 10(32)
produce a significantly higher PSNR value using less testing

time compared with VDSR method. It is worth mentioning

that our 20(12)+10(12) model achieves faster speed than the

lightweight SRCNN (3 layers) and TEN (4 layers) methods,

and its SR results are comparable with ones of VDSR.

V. CONCLUSION

Infrared images have a wide range of military and civilian

applications including night vision, surveillance and robotics.

However, due to hardware limitation, existing thermal cam-

eras can only produce LR infrared images. In our proposed

CDN MRF, residual information could be divided into two

components: major structures and fine details. Our method

contains two consecutive networks to gradually recover the

high-frequency information. The first network restores most

of the structure information and the second one tries to

recover image fine details. Our experiments demonstrate that

the proposed cascaded architecture of deep networks, with a

significantly smaller number of parameters (1/10), can still

achieves better performance compared with state-of-the-art

deep-learning-based SR methods (VDSR).

In the future, we plan to further optimize the number of

parameters for real-time implementation without compromis-

ing SR accuracy. Another feasible solution to reduce com-

putational cost is take the down-sampled LR image without

bi-cubic interpolation as input. Also, applicability of this
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TABLE V
THE PSNR (dB) AND SSIM VALUES OF OUR CDN MRF METHOD AND STATE-OF-THE-ART SR METHODS. IT IS OBSERVED THAT OUR CDN MRF

METHOD ACHIEVES THE BEST SR PERFORMANCES FOR ALL 20 TESTING IMAGES. NOTE BLOD FONT AND UNDERLINE INDICATE THE BEST AND THE

SECOND BEST SR RESULTS, RESPECTIVELY.

PSNR(dB)/SSIM Bi-cubic ×8 SCSR-1024 [8] SelfExSR [5] TEN [2] SRCNN [3] VDSR [4] CDN MRF

Testing 1 31.36 / 0.8413 31.85 / 0.8426 32.09 / 0.8435 31.82 / 0.8442 32.24 / 0.8478 32.31 / 0.8499 32.58 / 0.8524

Testing 2 32.95 / 0.8947 34.09 / 0.8980 35.71 / 0.9101 34.04 / 0.9016 35.95 / 0.9119 36.44 / 0.9173 36.82 / 0.9205

Testing 3 31.55 / 0.9122 32.90 / 0.9150 34.28 / 0.9231 32.58 / 0.9199 35.08 / 0.9265 35.65 / 0.9326 36.45 / 0.9366

Testing 4 30.71 / 0.8890 31.75 / 0.8919 33.87 / 0.9128 31.74 / 0.8980 33.86 / 0.9151 34.44 / 0.9225 35.21 / 0.9268

Testing 5 34.45 / 0.8951 35.43 / 0.8986 36.46 / 0.9037 35.30 / 0.8998 36.67 / 0.9107 36.81 / 0.9128 37.25 / 0.9171

Testing 6 36.87 / 0.9276 37.32 / 0.9277 37.30 / 0.9248 37.30 / 0.9290 37.90 / 0.9318 38.08 / 0.9329 38.22 / 0.9336

Testing 7 28.99 / 0.8510 29.74 / 0.8556 30.15 / 0.8710 29.69 / 0.8614 30.37 / 0.8749 30.47 / 0.8800 30.66 / 0.8864
Testing 8 30.86 / 0.8797 31.78 / 0.8827 32.80 / 0.8929 31.80 / 0.8886 33.19 / 0.8993 33.52 / 0.9056 33.88 / 0.9111

Testing 9 30.85 / 0.8783 31.81 / 0.8798 33.13 / 0.8936 31.78 / 0.8855 33.41 / 0.8946 33.75 / 0.9016 34.30 / 0.9062

Testing 10 30.44 / 0.8751 31.45 / 0.8789 34.56 / 0.9273 31.37 / 0.8866 33.32 / 0.9086 33.92 / 0.9217 34.61 / 0.9287

Testing 11 37.86 / 0.9250 38.45 / 0.8253 38.39 / 0.9247 38.46 / 0.9267 39.19 / 0.9290 39.38 / 0.9303 39.60 / 0.9314

Testing 12 35.12 / 0.9685 35.88 / 0.9690 37.50 / 0.9763 35.77 / 0.9700 36.83 / 0.9752 37.27 / 0.9771 37.55 / 0.9788

Testing 13 34.20 / 0.8796 34.68 / 0.8822 34.33 / 0.8721 34.52 / 0.8819 34.88 / 0.8859 35.04 / 0.8878 35.27 / 0.8903

Testing 14 34.30 / 0.9380 34.89 / 0.9381 35.14 / 0.9427 34.79 / 0.9400 35.44 / 0.9438 35.74 / 0.9469 36.10 / 0.9495

Testing 15 33.07 / 0.8947 33.82 / 0.8974 34.00 / 0.9005 33.74 / 0.8989 34.58 / 0.9049 34.73 / 0.9081 34.91 / 0.9106

Testing 16 35.14 / 0.9027 35.61 / 0.9028 35.77 / 0.9010 35.59 / 0.9040 36.29 / 0.9067 36.50 / 0.9087 36.66 / 0.9094

Testing 17 31.90 / 0.9055 32.55 / 0.9063 33.45 / 0.9104 32.46 / 0.9088 33.18 / 0.9125 33.47 / 0.9156 33.76 / 0.9195

Testing 18 36.86 / 0.9721 38.28 / 0.9719 40.16 / 0.9750 38.02 / 0.9743 39.46 / 0.9747 40.36 / 0.9792 40.80 / 0.9807

Testing 19 35.10 / 0.8991 35.71 / 0.9012 36.47 / 0.9029 35.63 / 0.9019 36.65 / 0.9087 36.92 / 0.9108 37.33 / 0.9139
Testing 20 36.10 / 0.9476 36.77 / 0.9478 37.80 / 0.9450 36.70 / 0.9488 37.94 / 0.9520 38.24 / 0.9541 38.37 / 0.9559

Average 33.43 / 0.9038 34.24 / 0.9056 35.17 / 0.9128 34.15 / 0.9085 35.32 / 0.9157 35.65 / 0.9198 36.02 / 0.9230

TABLE VI
THE COMPARATIVE SR RESULTS OF BI-CUBIC INTERPOLATION, VDSR, AND OUR PROPOSED CASCADED DEEP NETWORKS USING DIFFERENT WIDTHS.

IN OUR CDN MRF METHOD, M = 20 AND N = 10. OUR CDN MRF CAN BE INDICATED AS 20(n) + 10(n).

Methods Bi-cubic VDSR [4] SRCNN [3] TEN [2] 20(32) + 10(32) 20(24) + 10(24) 20(16) + 10(16) 20(12) + 10(12)

# Parameters – 664704 57184 63840 240768 135648 60480 34128
PSNR (dB) 33.43 35.65 35.32 34.15 36.02 35.90 35.71 35.60

Improvement – 2.22 1.89 0.72 2.59 2.47 2.28 2.17
SSIM 0.9038 0.9198 0.9157 0.9085 0.9230 0.9221 0.9207 0.9196

Improvement – 0.0160 0.0119 0.0047 0.0192 0.0183 0.0169 0.0158
Performance 8 4 6 7 1 2 3 5

cascaded architecture for other spectral images will be in-

vestigated in the future. Moreover, we plan to implement

the proposed method in our hardware device to improve the

quality of infrared images for other high-level computer vi-

sion applications such as video stabilization, stereo matching,

image stitching, target detection and tracking.
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