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Figure 1. Deblurred result on a real challenging video. Our algorithm is motivated by the success of variational model-based methods. It

explores sharpness pixels from adjacent frames by a temporal sharpness prior (see (f)) and restores sharp videos by a cascaded inference

process. As our analysis shows, enforcing the temporal sharpness prior in a deep convolutional neural network (CNN) and learning the

deep CNN by a cascaded inference manner can make the deep CNN more compact and thus generate better-deblurred results than both the

CNN-based methods [27, 32] and variational model-based method [12].

Abstract

We present a simple and effective deep convolutional

neural network (CNN) model for video deblurring. The pro-

posed algorithm mainly consists of optical flow estimation

from intermediate latent frames and latent frame restoration

steps. It first develops a deep CNN model to estimate optical

flow from intermediate latent frames and then restores the

latent frames based on the estimated optical flow. To better

explore the temporal information from videos, we develop a

temporal sharpness prior to constrain the deep CNN model

to help the latent frame restoration. We develop an effective

cascaded training approach and jointly train the proposed

CNN model in an end-to-end manner. We show that explor-

ing the domain knowledge of video deblurring is able to

make the deep CNN model more compact and efficient. Ex-

tensive experimental results show that the proposed algo-

rithm performs favorably against state-of-the-art methods

on the benchmark datasets as well as real-world videos.

1. Introduction

Video deblurring, as a fundamental problem in the vision

and graphics communities, aims to estimate latent frames

from a blurred sequence. As more videos are taken us-

ing hand-held and onboard video capturing devices, this

problem has received active research efforts within the last

decade. The blur in videos is usually caused by camera

shake, object motion, and depth variation. Recovering la-
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tent frames is highly ill-posed as only the blurred videos are

given.

To recover the latent frames from a blurred sequence,

conventional methods usually make assumptions on mo-

tion blur and latent frames [12, 2, 4, 11, 5, 29]. Among

these methods, the motion blur is usually modeled as op-

tical flow [12, 2, 5, 29]. The key success of these meth-

ods is to jointly estimate the optical flow and latent frames

under the constraints by some hand-crafted priors. These

algorithms are physically inspired and generate promising

results. However, the assumptions on motion blur and la-

tent frames usually lead to complex energy functions which

are difficult to solve.

The deep convolutional neural network (CNN), as one

of the most promising approach, has been developed to

solve video deblurring. Motivated by the success of deep

CNNs in single image deblurring, Su et al. [24] concatenate

consecutive frames and develop a deep CNN based on an

encoder-decoder architecture to directly estimate the latent

frames. Kim et al. [13] develop a deep recurrent network to

recurrently restore latent frames by the concatenating multi-

frame features. To better capture the temporal information,

Zhang et al. [31] develop spatial-temporal 3D convolution-

s to help latent frame restoration. These methods perform

well when the motion blur is not significant and displace-

ment among input frames is small. However, they are less

effective for the frames containing significant blur and large

displacement as they do not consider the alignment among

input frames [6].
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To remedy this problem, several methods estimate the

alignment among consecutive input frames explicitly [14,

3, 27] or implicitly [32] to restore latent frames using end-

to-end trainable deep CNNs. For example, the alignment

methods [10] and [19] have been extended to handle video

deblurring by [14] and [32]. The methods by [3, 27] ex-

plicitly adopt the optical flow or deformable convolution to

estimate the alignment among consecutive input frames to

help video deblurring. These algorithms show that using

better alignment strategies is able to improve the perfor-

mance of video deblurring. Nevertheless, the main success

of these algorithms is due to the use of large-capacity mod-

els. These models cannot be generalized well on real cases.

We note there exist lots of prior knowledge in variational

model-based approaches and have been effective in video

deblurring. A natural question is that can we use the do-

main knowledge in variational model-based approaches to

make deep CNN models more compact so that they can im-

prove the accuracy of video deblurring?

To solve this problem, we propose a simple and com-

pact CNN model for video deblurring. Different from the

variational model-based methods that warp the consecutive

frames to generate blurred frames based on the estimated

optical flow, our algorithm warps the adjacent frames in-

to the reference frame so that the consecutive frames align

well and thus generating a clearer intermediate latent frame.

As the generated intermediate latent frame may contain arti-

facts and blur effect, we further develop a deep CNN model

based on an encoder-decoder architecture to remove arti-

facts and blur. To better explore the properties of consecu-

tive frames, we develop a temporal sharpness prior to con-

strain the deep CNN models. However, as our algorithm es-

timates optical flow from intermediate latent frames as the

motion blur information, it requires a feedback loop. To ef-

fectively train the proposed algorithm, we develop a cascad-

ed training approach and jointly train the proposed model in

an end-to-end manner. Extensive experiments show that the

proposed algorithm is able to generate favorable results a-

gainst state-of-the-art methods as shown in Figure 1.

The main contributions are summarized as follows:

• We propose a simple and compact deep CNN model

that simultaneously estimates the optical flow and la-

tent frames for video deblurring.

• To better explore the properties of consecutive frames,

we develop a temporal sharpness prior to constrain

deep CNN models.

• We quantitatively and qualitatively evaluate the pro-

posed algorithm on benchmark datasets and real-world

videos and show that it performs favorably against

state-of-the-art methods in terms of accuracy and mod-

el size.

2. Related Work

Hand-crafted prior-based methods. Early video or multi-

frame deblurring methods [4, 18] usually assume that there

exist sharp contents and interpolate them to help the restora-

tion of latent frames. The main success of these methods is

due to the use of sharp contents from adjacent frames. How-

ever, these methods are less effective for the blur caused by

moving objects and usually generate smooth results due to

the interpolation.

To overcome this problem, several algorithms [5, 11,

12, 16] formulate the video deblurring by a variational ap-

proach. These algorithms first formulate motion blur as op-

tical flow and develop kind of priors to constrain the laten-

t frames and optical flow for video deblurring. Dai and

Wu [5] analyze the relations of motion blur and optical

flow and alternatively estimate the transparency map, fore-

ground, and background of latent frames. As this method

relies on the accuracy of transparency maps, it is further

extended by [11], where deblurring process is achieved by

alternatively estimating optical flow and latent frames. Kim

et al. [12] approximate the motion blur using bidirectional

optical flows based on [11]. To deal with more complex mo-

tion blur, Gong et al. [7] develop CNNs to estimate optical

flow and use the conventional deconvolution algorithm [33]

to restore latent frames. In [29], Wulff and Black develop a

novel layered model of scenes in motion and restore latent

frames layer by layer. These algorithms are based on the

physics models, which are able to remove blur and generate

decent results. However, the priors imposed on motion blur

and latent frames usually lead to complex energy functions

which are difficult to solve.

Deep learning based-methods. Due to the success of C-

NNs based on encoder and decoder architectures in image

restoration [23, 17], this kind of network has been widely

used in multi-frame [1] or video deblurring [24]. Instead

of using 2D convolution, Zhang et al. [31] employ spatial-

temporal 3D convolutions to help latent frame restoration.

As demonstrated by [6], these methods can be improved us-

ing optical flow for alignment. To better use spatial and

temporal information, Kim et al. [14] develop an optical

flow estimation step for alignment and aggregate informa-

tion across the neighboring frames to restore latent ones.

Wieschollek et al. [28] recurrently use the features from the

previous frame in multiple scales based on a recurrent net-

work. In [13], Kim et al. develop a spatial-temporal recur-

rent network with a dynamic temporal blending layer for

latent frame restoration. Zhou et al. extend the kernel pre-

diction network [19] to improve frame alignment. In [27],

Wang et al., develop pyramid, cascading, and deformable

convolution to achieve better alignment performance. The

latent frames are restored by a deep CNN model with tem-

poral and spatial attention strategies. By training the net-

works in an end-to-end manner, these aforementioned meth-
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ods generate promising deblurred results.

We note that the main success of these algorithms on

video deblurring is due to the use of large-capacity models.

Their generalization ability on real applications is limited

as shown in Figure 1. Different from these methods, we

explore the simple and well-established principles to make

the CNN model more compact instead of enlarging network

model capacity for video deblurring.

3. Motivation

To better motivate our work, we first revisit the conven-

tional variational model-based methods.

For the blur process in videos, the i-th blurred image is

usually modeled as:

Bi =
1

2τ

∫ τ

t=0

Ht
i→i+1(Ii) +H

t
i→i−1(Ii)dt, (1)

where Ii denotes the i-th clear image; τ denotes the rela-

tive exposure time (which also means the camera duty cy-

cle); Ht
i→i+1 and Ht

i→i−1 denote the warping function-

s which warp the frame Ii into Ii+1 and Ii−1. If we de-

note the bidirectional optical flow at frame i as ui→i+1 and

ui→i−1,Ht
i→i+1(Ii) andHt

i→i−1(Ii) can be represented as

Ii(x+ tui→i+1) and Ii(x+ tui→i−1).
Based on the blur model (1), the deblurring process can

be achieved by minimizing:

L(u, I) =
∑

i

ρI(W(Ii),Bi) + ϕ(Ii) (2)

+
∑

i

∑

j

ρu (Ii, Ii+j(x+ ui→i+j)) + φ(ui→i+j),

where ρI(W(Ii),Bi) denotes the data term w.r.t. W(Ii)
and Bi; W(Ii) denotes the integration term in (1);

ρu (Ii(x), Ii+j(x+ ui→i+j)) denotes the data term w.r.t.

Ii(x) and Ii+j(x + ui→i+j); ϕ(Ii) and φ(ui→i+j) denote

the constraints on latent image Ii and optical flow ui→i+j .

In the optimization process, most conventional methods

(e.g., [12]) estimate the latent image and optical flow by

iteratively minimizing:

∑

i

ρI(W(Ii),Bi) + ϕ(Ii), (3)

and
∑

i

∑

j

ρu (Ii, Ii+j(x+ ui→i+j)) + φ(ui→i+j). (4)

We note that alternatively minimizing (3) and (4) is able to

remove blur. However, the deblurring performance mainly

depends on the choice of constraints w.r.t. latent image Ii
and optical flow ui→i+j , and it is not trivial to determine

proper constraints. In addition, the commonly used con-

straints usually lead to highly non-convex objective func-

tions which are difficult to solve.

We further note that most deep CNN-based methods di-

rectly estimate the sharp videos from blurred input and gen-

erate promising results. However, they estimate the warping

functions from blurred inputs instead of latent frames and

do not explore the domain knowledge of video deblurring,

which are less effective for the videos with significant blur

effect.

To overcome these problems, we develop an effective al-

gorithm which makes full use of the well-established prin-

ciples in the variational model-based methods and explores

the domain knowledge to make deep CNNs more compact

for video deblurring.

4. Proposed Algorithm

The proposed algorithm contains the optical flow estima-

tion module, latent image restoration module, and the tem-

poral sharpness prior. The optical flow estimation module

provides motion information for the latent frame restora-

tion, while the latent frame restoration module further facil-

itates the optical flow estimation so that it makes the esti-

mated flow more accurate. The temporal sharpness prior is

able to explore the sharpness pixels from adjacent frames so

that it can facilitate better frame restoration. All the mod-

ules are jointly trained in a unified framework by an end-

to-end manner. In the following, we explain the main ideas

for each component in details. For simplicity, we use three

adjacent frames to illustrate the main ideas of the proposed

algorithm.

4.1. Optical flow estimation

The optical flow estimation module is used to estimate

optical flow between input adjacent frames, where the esti-

mated optical flow provides the motion information for the

image restoration (3). As demonstrated in [25], the opti-

cal flow estimation (4) can be efficiently solved by a deep

neural network. We use the PWC-Net [25] as the optical

flow estimation algorithm. Given any two intermediate la-

tent frames Ii and Ii+1, we compute optical flow by:

ui→i+1 = Nf (Ii; Ii+1), (5)

where Nf denotes the optical flow estimation network

which takes two images as the input. For any other two

frames, the network Nf shares the same network parame-

ters.

4.2. Latent frame restoration

With the estimated optical flow, we can use variation-

al model (3) to restore latent frames according to existing

methods, e.g., [12]. However, solving (3) involves large

computation of W(Ii) and needs to define the prior on la-

tent frame Ii, which makes the restoration more complex.

We note that the effect ofW(Ii) (i.e., the blur process (1))
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is to generate a blurred frame so that it is closed to the ob-

served input frame Bi as much as possible. The discretiza-

tion of (1) can be written as [4]:

W(Ii) =
1

1 + 2τ

τ
∑

d=1

(

Ht
i→i+1(Ii) +H

t
i→i−1(Ii) + Ii(x)

)

.

(6)

According to the estimated optical flow ui→i+1 and

ui→i−1, if we set τ to be 1, W(Ii) can be approximated

by:

W(Ii) =
1

3
(Ii(x+ ui→i+1) + Ii(x+ ui→i−1) + Ii(x)) .

(7)

Instead of generating a blurred frame, we want to generate

clear one according to the estimated optical flow ui−1→i,

and ui+1→i so that Ii+1(x+ui+1→i) and Ii−1(x+ui−1→i)
can be aligned with Ii(x) well. Thus, we can use the fol-

lowing formula to update latent frame Ii:

Ii ←
1

3
(Ii+1(x+ ui+1→i) + Ii−1(x+ ui−1→i) + Ii(x)) .

(8)

However, directly using (8) will lead to the results con-

tains significant artifacts due to the misalignment from

Ii+1(x + ui+1→i) and Ii−1(x + ui−1→i). To avoid this

problem and generate high-quality latent frame Ii, we use

Ii+1(x + ui+1→i) and Ii−1(x + ui−1→i) as the guidance

frames and develop a deep CNN model to restore latent

frame Ii by:

Ii ← Nl(C(Ii+1(x+ui+1→i); Ii(x); Ii−1(x+ui−1→i))),
(9)

where C(·) denotes the concatenation operation and Nl de-

notes the restoration network. Similar to [25], we use the

bilinear interpolation to compute the warped frames.

For the deep CNN modelNl, we use an encoder-decoder

architecture based on [26]. However, we do not use the

ConvLSTM module in Nl. Other network architectures are

the same as [26].

4.3. Temporal sharpness prior

As demonstrated in [4], the blur in the video is irregu-

lar, and thus there exist some pixels that are not blurred.

Following the conventional method [4], we explore these

sharpness pixels to help video deblurring.

According to the warped frames Ii+1(x + ui+1→i) and

Ii−1(x+ui−1→i), if the pixel x in Ii(x) is a sharp one, the

pixel values of Ii+1(x + ui+1→i) and Ii−1(x + ui−1→i)
should be close to that of Ii(x). Thus, we define this crite-

rion as:

Si(x) = exp



−
1

2

∑

j&j 6=0

D(Ii+j(x+ ui+j→i); Ii(x))



 ,

(10)

where D(Ii+j(x+ui+j→i); Ii(x)) is defined as ‖Ii+j(x+
ui+j→i) − Ii(x)‖

2. Based on (10), if the value of Si(x) is

close to 1, the pixel x is likely to be clear. Thus, we can

use Si(x) to help the deep neural network to distinguish

whether the pixel is clear or not so that it can help the latent

frame restoration. To increase the robustness of Si(x), we

define D(Ii+j(x+ ui+j→i); Ii(x)) as

D(Ii+j(x+ui+j→i); Ii(x)) = (11)
∑

y∈ω(x)

‖Ii+j(y + ui+j→i)− Ii(y)‖
2
,

where ω(x) denotes an image patch centered at pixel x.

With the temporal sharpness prior Si(x), we modify the la-

tent frame restoration (9) by

Ii ← Nl(C(CIi ;Si(x))), (12)

where CIi = C(Ii+1(x + ui+1→i); Ii(x); Ii−1(x +
ui−1→i)). We will show that using Si(x) is able to help

latent frame restoration.

4.4. Inference

As the proposed algorithm contains intermediate the op-

tical flow estimation, latent frame estimation, and temporal

sharpness computation, we train the proposed algorithm in

a cascaded manner.

Let Θt = {Ot,Lt} denote the model parameters of op-

tical flow estimation and latent frame restoration networks

at stage (iteration) t. We learn the stage-dependent mod-

el parameters Θt from N training video sequences, where

each video sequence contains {Bn
i , I

n
gt,i}

M
i=1 training sam-

ples. Given 2j + 1 blurred frames, the parameter Θt is

learned by minimizing the cost function:

J (Θt) =

N
∑

n=1

M
∑

i=1

‖FΘt
(Bn

i−j ; ...;B
n
i ; ...;B

n
i+j)− Ingt,i‖1,

(13)

where FΘt
denotes the whole network for video deblur-

ring, which takes 2j + 1 blurred frames as the input.

That is, the intermediate latent frame at t-stage is Iti =
FΘt

(Bn
i−j ; ...;B

n
i ; ...;B

n
i+j).

Algorithm 1 summarizes the main steps of the cascaded

training approach, where T denotes the number of stages.

5. Experimental Results

In this section, we evaluate the proposed algorithm us-

ing publicly available benchmark datasets and compare it to

state-of-the-art methods.

5.1. Parameter settings and training data

For fair comparisons with state-of-the-art methods, we

use the video deblurring dataset by Su et al. [24] for train-

ing and evaluation, where 61 videos are used for training
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Algorithm 1 Proposed cascaded training algorithm.

Input: Training video sequences {Bn
i , I

n
gt,i}

M
i=1; n =

1, ..., N .

Initialize Ini ← Bn
i .

for t = 1→ T do

for Any three frames Ini−1, Ini , and Ini+1 do

Estimating optical flow ui−1→i, ui+1→i according

to (5).

Computing Si(x) according to (10).

Latent frame restoration according to (12).

end for

Estimating model parameters Θt by minimizing (13).

Updating Ini according to (12) with the estimated pa-

rameter Θt.

end for

Output: Model parameters {Θt}
T
t=1.

and the remaining 10 videos for the test. We use the similar

data augmentation method to [32] to generate training data.

The size of each image patch is 256 × 256 pixels. We ini-

tialize the latent frame restoration network according to [8]

and train it from scratch. For the PWC-Net, we use the pre-

trained model [25] to initialize it. In the training process, we

use the ADAM optimizer [15] with parameters β1 = 0.9,

β2 = 0.999, and ǫ = 10−8. The minibatch size is set to

be 8. The learning rates forNl and PWC-Net are initialized

to be 10−4 and 10−6 and decrease to half after every 200

epochs. We empirically set T = 2 as a trade-off between

accuracy and speed. At each stage, we use 3 frames to gen-

erate one deblurred image. Thus, the proposed algorithm

needs 5 frames when T = 2. To better make the network

compact, the network at each stage shares the same model

parameters. Similar to [30], we further use the hard exam-

ple mining strategy to preserve sharp edges. We implement

our algorithm based on the PyTorch. More experimental re-

sults are included in the supplemental material. The training

code and test model are available at the authors’ website.

5.2. Comparisons with the state of the art

To evaluate the performance of the proposed algorithm,

we compare it against state-of-the-art algorithms including

the variational model-based method [12] and deep CNNs-

based methods [24, 7, 27, 13, 14, 32, 26]. To evaluate the

quality of each restored image on synthetic datasets, we use

the PSNR and SSIM as the evaluation metrics.

Table 1 shows the quantitative results on the benchmark

dataset by Su et al. [24], where the proposed algorithm

performs favorably against the state-of-the-art methods in

terms of PSNR and SSIM.

Figure 2 shows some deblurred results from the test

dataset [24]. The variational model-based method [12] does

not recover the structures well and generates the results

with significant blur residual. The method [26] develops

end-to-end-trainable deep CNN models to deblur dynam-

ic scenes. However, the deblurred images contain signifi-

cant blur residual as the temporal information is not used.

The video deblurring algorithm [24] directly concatenates

consecutive frames as the input of an end-to-end trainable

deep CNN model. However, the structures of the deblurred

image are not sharp (Figure 2(e)). We note that the ED-

VR method [27] develops a pyramid, cascading, and de-

formable alignment module and uses a PreDeblur module

for video deblurring. However, this method is less effec-

tive when the PreDeblur does not remove blur from input

frames. The results in Figure 2(f) show that the structures

of the images by the EDVR method are not recovered well.

In contrast, the proposed method recovers finer image de-

tails and structures than the state-of-the-art algorithms.

We further evaluate the proposed method on the GOPRO

dataset by Nah et al. [20] following the protocols of state-of-

the-art methods [13, 21]. Table 2 shows that the proposed

algorithm generates the deblurred videos with higher PSNR

and SSIM values.

Figure 3 shows some deblurred results from [20]. We

note that state-of-the-art methods do not generate sharp im-

ages and remove the non-uniform blur well. In contrast, the

proposed algorithm restores much clearer images, where the

license numbers are recognizable.

Real examples. We further evaluate our algorithm on the

real video deblurring dataset by Cho et al. [4]. Figure 4

shows that the state-of-the-art methods [22, 4, 12, 32, 27,

24] do not restore the sharp frames well. Our algorithm gen-

erates much clearer frames with better detailed structures.

For example, the man and the boundaries of the buildings

are much clearer (Figure 4(h)).

6. Analysis and Discussions

We have shown that the proposed algorithm performs fa-

vorably against state-of-the-art methods. To better under-

stand the proposed algorithm, we perform further analysis

and discuss its limitations.

6.1. Effectiveness of the cascaded training

The proposed cascaded training algorithm ensures that

the proposed method estimates optical flow from intermedi-

ate latent frames and updates the intermediate latent frames

iteratively. One may wonder whether the cascaded training

algorithm helps video deblurring. To answer this question,

we compare the method without using cascaded training al-

gorithm (i.e., w/o CT in Table 3), where we set stage num-

ber T to be 1 in Algorithm 1 for fair comparisons.

Table 3 shows the quantitative evaluations on the bench-

mark dataset by Su et al. [24]. We note that the method

without using cascaded training algorithm estimates the op-

tical flow from blurred inputs using PWC-Net, where this

strategy is widely for image alignment in video deblur-
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Table 1. Quantitative evaluations on the video deblurring dataset [24] in terms of PSNR and SSIM. All the comparison results are generated

using the publicly available code. All the restored frames instead of randomly selected 30 frames from each test set [24] are used for

evaluations.

Methods Kim and Lee [12] Gong et al. [7] Tao et al. [26] Su et al. [24] Kim et al. [13] EDVR [27] STFAN [32] Ours

PSNRs 26.94 28.27 29.98 30.01 29.95 28.51 31.15 32.13

SSIMs 0.8158 0.8463 0.8842 0.8877 0.8692 0.8637 0.9049 0.9268

(a) Blurred frame (b) GT (c) Kim and Lee [12] (d) Tao et al. [26]

(e) Su et al. [24] (f) EDVR [27] (g) STFAN [32] (h) Ours

Figure 2. Deblurred results on the test dataset [24]. The deblurred results in (c)-(g) still contain significant blur effects. The proposed

algorithm generates much clearer frames.

(a) Blurred frame (b) GT (c) Kim and Lee [12] (d) Tao et al. [26]

(e) Su et al. [24] (f) EDVR [27] (g) STFAN [32] (h) Ours

Figure 3. Deblurred results on the test dataset [20]. The proposed method generates much better deblurred images, where the license

numbers are recognizable.

ring [6]. However, this method does not generate high-

quality deblurred results (Figure 5(b)) as optical flow is re-

lated to the latent frames information instead of blurred ones

during the exposure time. In contrast, the proposed algorith-

m generates the results with higher PSNR and SSIM values.

We further compare the deblurred results generated by
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Table 2. Quantitative evaluations on the video deblurring dataset [20] in terms of PSNR and SSIM. ∗ denotes the reported results from [21].

Methods Tao et al. [26] Su et al. [24] Wieschollek et al. [28]∗ Kim et al. [13]∗ Nah et al. [21]∗ EDVR [27] STFAN [32] Ours

PSNRs 30.29 27.31 25.19 26.82 29.97 26.83 28.59 31.67

SSIMs 0.9014 0.8255 0.7794 0.8245 0.8947 0.8426 0.8608 0.9279

(a) Blurred frame (b) Pan et al. [22] (c) Cho et al. [4] (d) Kim and Lee [12]

(e) Su et al. [24] (f) EDVR [27] (g) STFAN [32] (h) Ours

Figure 4. Deblurred results on a real video from [4]. The proposed algorithm recovers a high-quality image with clearer details.

Table 3. Effectiveness of the cascaded training algorithm for video

deblurring, where “CT” is the abbreviation of cascaded training.

Methods w/o CT Stage 1 Stage 2 Stage 3

PSNRs 31.33 31.59 32.13 32.20

SSIMs 0.9125 0.9161 0.9268 0.9272

(a) Blurred frame (b) w/o CT (c) Stage 1

(d) Stage 2 (e) Stage 3 (f) GT

Figure 5. Effectiveness of the cascaded training algorithm for

video deblurring. (b) denotes the deblurred result by the proposed

method without using cascaded training. (c)-(e) denote the results

from stage 1, 2, and 3, respectively.

different stages in Table 3 and Figure 5. We note that using

more stages generates better deblurred images. However,

the improved performance is not significant. Thus, we use

two stages as a trade-off between accuracy and speed.

We further note that directly estimating optical flow from

(a) Blurred frame (b) w/o CT (c) Ours

(d) w/o CT (e) Stage 1 (f) Stage 2

Figure 6. Effect of optical flow on video deblurring. The optical

flow by the proposed method contains sharp boundaries well (see

(f)), which facilitates the latent frame restoration.

blurred inputs will increase ambiguity at frame boundaries

for video deblurring. Figure 6(d) demonstrates that the

boundaries of the estimated optical flow are blurry, which

accordingly affects the important boundaries restoration

(Figure 6(b)). In contrast, the optical flow by the proposed

method contains sharp boundaries well (Figure 6(f)), which

facilitates the latent frame restoration (Figure 6(c)).

6.2. Effectiveness of the temporal sharpness prior

We develop a temporal sharpness prior to better explore

the properties of consecutive frames so that it makes the

deep CNN models more compact. To demonstrate the effec-

tiveness of this prior, we disable this prior in the proposed

method and retrain the algorithm without using the temporal

sharpness prior with the same settings for fair comparisons.
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Table 4. Effectiveness of the temporal sharpness prior on video

deblurring.

Methods w/o temporal sharpness prior Ours

PSNRs 34.48 34.63

SSIMs 0.9126 0.9268

(a) (b) (c) (d)

Figure 7. Effectiveness of the temporal sharpness prior. (a) Blurred

input. (b) Visualizations of the intermediate temporal sharpness

prior. (c)-(d) denote the results without and with the temporal

sharpness prior, respectively.

Table 5. Effect of the optical flow estimation module.

Methods w/o optical flow w/ FlowNet 2.0 w/ PWC-Net

PSNRs 31.19 32.06 32.13

SSIMs 0.9055 0.9254 0.9268

We evaluate the temporal sharpness prior on 4 videos with

significant blur effects from the test dataset [24]. Table 4

and Figure 7 show both quantitative and qualitative evalu-

ations. We note that the temporal sharpness prior is able

to distinguish the sharpness pixels and blurred pixels from

adjacent frames so that it can help the deep CNN model

for better frame restoration. Figure 7(b) shows the visual-

izations of the temporal sharpness prior, where the blurred

pixels can be better detected. The comparisons in Table 4

demonstrate that using the temporal sharpness prior is able

to improve the accuracy of video deblurring. Figure 7 fur-

ther shows that using the temporal sharpness prior is able to

generate the frames with clearer structures.

6.3. Effect of optical flow

As several algorithms either directly concatenate consec-

utive frames [24] or estimate filter kernels [32] instead of

using optical flow for video deblurring, one may wonder

whether optical flow helps video deblurring. To answer this

question, we remove the optical flow estimation module and

compare with the method that directly concatenates consec-

utive frames as the input of the restoration network Nl
1.

Table 5 shows that using optical flow is able to improve the

performance of video deblurring.

In addition, we further evaluate the optical flow estima-

1The proposed method without using optical flow reduces to the net-

work Nl which takes the concatenation of consecutive frames as the input.

Table 6. Comparisons of model sizes against state-of-the-art meth-

ods and baselines. “TSP” is the abbreviation of temporal sharpness

prior.

Methods Su et al. [24] EDVR [27] w/o CT w/o TSP Ours

Model size 15.30M 23.60M 16.19M 16.19M 16.19M

Table 7. Evaluations on the blurred videos, where the blur exists in

each position of each frame. The temporal sharpness prior is less

effective when it fails to identify the clear pixels.

Methods w/o temporal sharpness prior Ours

PSNRs 31.31 31.33

SSIMs 0.9238 0.9239

tion module using FlowNet 2.0 [9]. Table 5 shows that the

proposed method is robust to optical flow modules.

6.4. Model size

As stated in Section 1, we aim to improve the accuracy

of video deblurring while do not increase the model capac-

ity using domain knowledge of video deblurring. Table 6

shows that the proposed algorithm has a relatively smaller

model size against state-of-the-art methods. Compared to

the baseline models, the proposed model does not increase

any model size while generating much better results.

6.5. Limitations

Although the temporal sharpness prior is effective for

videos with significant blur, it is less effective when the blur

exists in each position of all frames. In such cases, the tem-

poral sharpness prior is less likely to distinguish whether

the pixel is clearer or not. Table 7 shows the deblurred re-

sults on 3 videos from the test dataset [24], where each po-

sition in a frame contains blur effect. We note that using the

temporal sharpness prior does not improve the deblurring

performance significantly.

7. Concluding Remarks

We have proposed a simple and effective deep CNN

model for video deblurring. The proposed CNN explores

the simple and well-established principles used in the varia-

tional model-based methods and mainly consists of optical

flow estimation from intermediate latent frames and latent

frame restoration. We have developed a temporal sharpness

prior to help the latent image restoration and an effective

cascaded training approach to train the proposed CNN mod-

el. By training in an end-to-end manner, we have shown that

the proposed CNN model is more compact and efficient and

performs favorably against state-of-the-art methods on both

benchmark datasets and real-world videos.

Acknowledgments. This work has been supported in

part by the National Natural Science Foundation of

China (Nos. 61922043, 61872421, 61732007), the

Natural Science Foundation of Jiangsu Province (No.

BK20180471), and National Key R&D Program of China

(No. 2018AAA0102002).

3050



References
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