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Abstract

We present a fast and accurate algorithm for comput-

ing the 2D pose of objects in images called cascaded pose

regression (CPR). CPR progressively refines a loosely spec-

ified initial guess, where each refinement is carried out by a

different regressor. Each regressor performs simple image

measurements that are dependent on the output of the pre-

vious regressors; the entire system is automatically learned

from human annotated training examples. CPR is not re-

stricted to rigid transformations: ‘pose’ is any parameter-

ized variation of the object’s appearance such as the de-

grees of freedom of deformable and articulated objects. We

compare CPR against both standard regression techniques

and human performance (computed from redundant human

annotations). Experiments on three diverse datasets (mice,

faces, fish) suggest CPR is fast (2-3ms per pose estimate),

accurate (approaching human performance), and easy to

train from small amounts of labeled data.

1. Introduction

Detection and localization are among the most useful func-

tions of vision. Detection consists of giving a one-bit an-

swer to the question “Is object/category x in the image?”.

Localization is a more subtle problem: in its simplest and

most popular form [11], it consists of identifying the small-

est rectangular region of the image that contains the object

in question. This is perfectly sufficient for categories whose

main geometric degrees of freedom in the image are transla-

tion and scale, such as frontal faces and pedestrians. More

generally, one wishes to recover pose, that is a number of

parameters that influence the image of the object. Most

commonly pose refers to geometric transformations of rigid

objects [23] including the configuration of articulated ob-

jects, for example the limbs of a human body [26, 14] or

vehicle layout [21]. More broadly, pose is any set of sys-

tematic and parameterizable changes in the appearance of

the object [5]. There are two distinct reasons for comput-

ing the pose of an object: (1) due to object variability, the

only way to perform detection is to compute and factor out

Figure 1. Object pose (green wire frame) is computed by cascaded

pose regression (CPR) starting from a coarse initial guess (orange

wire frame). The parameterization of pose is arbitrary and need

only be consistent across training examples. CPR is implemented

as a sequence of regressors progressively refining the estimate of

the pose θ. At each step t = 1 . . . T in the cascade, a regressor

Rt computes a new pose estimate θt from the image and from the

previous regressor’s estimate θt−1. Left: Initial guess θ0; Right:

final estimate θT . Each row shows a test case culled from three

different data sets. The same CPR code was trained to compute the

pose of different objects/categories from a relatively small sample

of hand-annotated training examples.

pose explicitly, (2) pose is the desired output of the vision

module. In this work we are interested in the latter: we

wish to estimate the pose of an object given its rough initial

location, for example as provided by a tracker.

The predominant approach for object localization in po-

sition and scale is to use a ‘sliding window’, i.e., repeating a

binary classification task, “Is object x at location y?”, for a

fine-grained sampling of the pose parameters. Although this

generates a large number of tests, sliding window methods

can be made more efficient through cascades [28], distance

transforms [13], branch-and-bound search [20] and coarse

to fine approaches [15]. Such methods can can be extended

to more complex notions of pose by repeatedly answering

queries of the form “Is object x at location y with pose θ?”,

one for each partition of the pose θ. For example, for face

detection it is common to train a separate classifier for dif-

ferent levels of out of plane rotation [28]. Of course this

leads to a combinatorial explosion of tasks, and although

efficient search strategies can help [16], ultimately such ap-
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proaches may not scale to more complex notions of pose.

In this work, given a rough estimate of the object lo-

cation, we directly answer the question “What is the pose

θ of object x?”, recovering the pose without performing a

potentially expensive and branching search. In principle,

standard regression techniques do exactly this [17, 10]. Al-

though for certain taks in computer vision regression has

been successful [30, 1], its applicability to more general

pose estimation remains unclear. As in boosted regression

[17, 10, 30], we propose to learn a fixed linear sequence

(cascade) of weak regressors (random ferns in our case).

The key difference from previous iterative regression ap-

proaches is the use of pose-indexed features [16]: features

whose output depends on both the image data and the cur-

rent estimate of pose. By assuming certain weak invariance

properties of the pose-indexed features, we derive a princi-

pled algorithm for pose estimation we call cascaded pose re-

gression (CPR). We prove CPR converges at an exponential

rate under a much weaker notion of weak learnability than

is typically required for boosted regression. Accurate mod-

els can be learned with surprisingly small amounts of data

(O(100) labeled training examples). CPR is fast (2-3ms per

pose estimate), accurate (approaching human performance),

and easily trained on diverse object categories.

Our main contributions are: (1) A fast cascaded pose

regression algorithm that produces accurate pose estimates

on a wide variety of object categories, described in detail

in Sec. 2. (2) Using redundantly annotated data we evalu-

ate the performance of human annotators and define a per-

ceptual distance function to compare pose annotations, de-

scribed in Sec. 3. (3) A comprehensive experimental evalu-

ation of the algorithm and promising results on a number of

datasets in Sec. 4. We begin with related work below.

1.1. Related Work

The use of features that change as scene or object infor-

mation is gathered has a long history in computer vision.

Dickmanns and Graefe [9] proposed a real-time control

scheme that computed features sparsely at locations likely

to contain useful information for a dynamic vision system.

Goncalves et al. [18] computed 3D arm pose iteratively,

refining 2D image features with each improved pose esti-

mate; more recently, Ramanan [26] used similar ideas in a

multi-stage pose estimation procedure. Fleuret and Geman

[16] coined the term ‘pose-indexed features’ to refer to fea-

tures defined relative to a given pose; in this work we adopt

the same terminology. However, unlike [16] we use pose-

indexed features for regression as opposed to classification,

allowing us to perform pose estimation directly.

Early work in pose estimation includes snakes [19], tem-

plate matching [29], and active appearance models [8]. Al-

though extensions similar in spirit to CPR that use learning

to drive the optimization have been proposed [27], typically

these methods require manually defined energy functions

that measure goodness of fit. Another relevant approach is

structured output prediction [4], which provides a princi-

pled formulation for learning to answer “Is object x at loca-

tion y with pose θ?”. However, as with standard classifica-

tion efficient search/inference techniques are still required

[20, 4]. Many modern detection approaches involve de-

composing objects into component parts, detecting the parts

separately and then combining them by means of a flexible

parts model [7, 12, 5]. Such approaches, although effec-

tive at detecting articulated objects, have not been shown

to return accurate pose estimates. In recent work, Ali et

al. [2] used pose-indexed features to perform detection of

articulated objects, integrating such features directly into a

boosted cascade, and Özuysal et al. [25] used pose estima-

tion prior to detection, conditioning their classifier on the

pose estimate. Both approaches present new and interesting

directions for integrating pose into detection; however, in

this work we focus on the pose estimation problem itself.

2. Cascaded Pose Regression

In order to clearly discuss object pose and appearance, we

assume there exists some unknown image formation model

G : O × Θ → I that takes an object appearance o ∈ O
and pose θ ∈ Θ, and generates an image I ∈ I. We never

have explicit access to G or o; however, they are necessary

for the derivations that follow. For example, we can write

Iθ1 = G(o, θ1) and Iθ2 = G(o, θ2) to denote two images

of the same object o in two configurations θ1 and θ2. We

assume that G(o1, θ1) = G(o2, θ2) iff o1 = o2 and θ1 = θ2,

otherwise uniquely estimating pose may not be possible.

We require that Θ along with the operation ◦ form a

group. Given two poses θ1, θ2, we write θ = θ1 ◦ θ2 to

denote a novel pose formed by combining θ1 and θ2, θ to

denote the inverse of θ, and e to denote the identity ele-

ment. To measure relative error between two poses, we re-

quire a function d : Θ × Θ → R where d(θ1, θ2) can de-

pend only on the relative pose θ1 ◦ θ2, or equivalently that

d(θδ ◦ θ1, θδ ◦ θ2) = d(θ1, θ2) for all θ1, θ2, θδ ∈ Θ.

2.1. PoseIndexed Features and Weak Invariance

As mentioned, throughout this work we rely on pose-

indexed features. A pose-indexed features is simply a func-

tion of the form h : Θ × I → R. We say h is weakly

invariant if ∀θ, θδ ∈ Θ the following holds:

h(θ,G(o, e)) = h(θδ ◦ θ,G(o, θδ)), (1)

or equivalently, h is weakly invariant if ∀θ1, θ2, θδ ∈ Θ:

h(θ1, G(o, θ2)) = h(θδ ◦ θ1, G(o, θδ ◦ θ2)). (2)

It is easy to show that (2) holds if and only if (1) holds.

Another way of stating the above is that h(θ1, G(o, θ2)) de-
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Figure 2. Pose-indexed features. Left: Mice described by a 1-part pose

model. Right: 3-part pose model of zebra fish. The yellow crosses repre-

sent the coordinate system defined by the current estimate of the pose of

the object (which does not have to be centered on the object). The col-

ored arrows show control points defined relative to the pose coordinates.

The weakly pose-invariant features used in this paper were defined as the

difference in pixel values at two control points relative to the pose.

pends only on the object o and the relative pose θ1 ◦ θ2 be-

tween the input pose θ1 and true pose θ2. In other words, h
is weakly invariant if its output is constant given a consistent

(not necessarily correct) estimate of the pose. Composing

weakly invariant featurs using standard operations results in

a features that are themselves weakly invariant.

Note that invariance as defined above is a much weaker

requirement than general pose invariance, which could be

stated as follows: h(G(o, θ)) = h(G(o, θδ ◦ θ)). De-

signing invariant function that satisfy the latter definition is

exceedingly difficult, while our definition requires invari-

ance only when given a consistent estimate of the pose.

It is also worth comparing (2) to the ‘stationarity assump-

tion’ introduced in [16]. Using the notation defined here,

a non-probabilistic form of the stationarity assumption can

be written as h(θ1, G(o, θ1)) = h(θ2, G(o, θ2)). In other

words it states h(θ,G(o, θ)) is constant regardless of the

value of θ. Observe that (2) is a very natural, albeit stronger,

generalization of the stationarity assumption.

Our weak invariance assumption justifies the derivations

that follow and allows us to prove strong convergence rates

for the resulting algorithm. Under ideal conditions, we can

prove (2) holds; however, as in [16], we observe that in

practice (2) will frequently be violated. Nevertheless, as

we shall demonstrate, the algorithm derived using the weak

invariance assumption is very effective in practice.

Pose-Indexed Control Point Features In all our exper-

iments we use the extremely simple and fast to compute

control point features [22, 24]. In our implementation, each

control point feature is computed as the difference of two

image pixels at predefined image locations. More specif-

Input: Image I , initial pose θ0

1: for t = 1 to T do

2: x = ht(θt−1, I) // compute features

3: θδ = Rt(x) // evaluate regressor

4: θt = θt−1 ◦ θδ // update θt

5: end for

6: Output θT

Figure 3. Evaluation of Cascaded Pose Regression.

ically, each feature hp1,p2
is defined by two image loca-

tions p1 and p2 and is evaluated by computing hp1,p2
(I) =

I(p1) − I(p2), where I(p) denotes the grayscale value of

image I at location p.

Aside from their speed and surprising effectiveness in

real applications [24], the advantage of the above features

is they are straightforward to index by pose. For example,

suppose object pose is specified by a translation, rotation,

scale and aspect ratio (or some subset of these parameters).

For each pose θ, we can define an associated 3×3 homogra-

phy matrix Hθ, express p in homogeneous coordinates, and

define hp1,p2
(θ, I) = I(Hθp1) − I(Hθp2). We can easily

extend this approach to articulated objects where each part

has a rotation, scale and aspect ratio by associating a sepa-

rate homography matrix with each part. See Figure 2.

In the appendix (available on the project website) we

show that h(θ, I) defined in the manner above is weakly in-

variant under certain assumptions. In general, however, de-

signing weakly invariant pose-indexed features can be quite

challenging and requires careful consideration when apply-

ing our proposed framework to novel problems.

2.2. Cascaded Pose Regression

We now describe the evaluation and training procedures for

a cascaded pose regressor R = (R1, . . . , RT ), shown in

Figures 3 and 4, respectively. We will train a cascaded re-

gressor R = (R1, . . . , RT ), such that, given an input pose

θ0, R(θ0, I) is evaluated by computing:

θt = θt−1 ◦Rt(ht(θt−1, I)), (3)

from t = 1 . . . T and finally outputting θT (see Figure 3).

Each component regressor Rt is trained to attempt to min-

imize the difference between the true pose and the pose

computed by the previous components using (pose-indexed)

features ht. Our goal is to optimize the following loss:

L =

N∑

i=1

d(θTi , θi). (4)

We begin by computing θ0 = argminθ
∑

i d(θ, θi), and set

θ0i = θ0 for each i. θ0 is the single pose estimate that gives

the lowest training error without relying on any component

regressors. We now describe the procedure for training Rt
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Input: Data (Ii, θi) for i = 1 . . . N
1: θ0 = argminθ

∑
i
d(θ, θi)

2: θ0
i
= θ0 for i = 1 . . . N

3: for t = 1 to T do

4: xi = ht(θt−1, Ii)

5: θ̃i = θ
t−1

i ◦ θi
6: Rt = argminR

∑
i
d(R(xi), θ̃i)

7: θt
i
= θt−1

i
◦Rt(xi)

8: ǫt =
∑

i
d(θt

i
, θi)/

∑
i
d(θt−1

i
, θi)

9: If ǫt ≥ 1 stop

10: end for

11: Output R = (R1, . . . , RT )

Figure 4. Training for Cascaded Pose Regression.

given R1, . . . , Rt−1. In each phase t, we begin training by

randomly generating the pose-indexed features ht and com-

puting xi = ht(θt−1

i , Ii) for each training example Ii with

the previous pose estimate θt−1

i . Our goal is to learn a re-

gressor Rt such that θti = θt−1

i ◦Rt(xi) minimizes the loss

in (4). After some manipulation, we can write this as:

Rt = argmin
R

∑

i

d(R(xi), θ̃i), (5)

where θ̃i = θ
t−1

i ◦ θi. We can solve for Rt using stan-

dard regression techniques, moreover, since Rt needs to

only slightly reduce the error, we can train separate single-

variate regressors for each coordinate of θ̃ and simply keep

the best one. In this work we rely on random regression

ferns, described below.

After training Rt, we apply (3) to compute θti for use in

the next phase of training. If the regressor Rt was unable to

reduce the error training stops. Let:

ǫt =
∑

i

d(θti , θi)/
∑

i

d(θt−1

i , θi). (6)

If ǫt ≥ 1 training stops, otherwise we can continue training

for T phases or until the error drops below a certain target

value. The full training procedure is given in Figure 4.

Random Fern Regressors Encouraged by the success of

random ferns for classification [24] and random forests for

regression [6], we train a random fern regressor at each

stage in the cascade. A fern regressor takes an input vec-

tor xi ∈ R
F and produces an output yi ∈ R. It is created by

randomly picking S elements from the F -dimensonal fea-

ture vector with replacement, and then sampling S thresh-

olds randomly. The jth element of xi is compared to the

jth threshold to create a binary signature of length S. Thus,

each xi ends up in one of 2S bins. The y prediction for a

bin is the mean of the yi’s of the training examples that fall

into the bin. At each stage in the cascade, the best fern in

terms of training error is picked from a pool of R randomly

generated ferns.

Pose Clustering Depending on the initialization of the

pose before applying CPR, the algorithm sometimes fails

to estimate the correct pose. However, more often than not,

just re-running CPR with a different initial pose yields a

reasonable estimate. Thus, we used a simple “pose cluster-

ing” heuristic to improve the performance of the algorithm.

For each image, CPR was run K times with different ran-

dom initial poses. Then, after all K runs, the pose in the

highest density region of pose-space was picked as the fi-

nal prediction of the algorithm. We used a simple Parzen

window approach with a Gaussian kernel of width 1 (using

noramlized distances described in Section 3) to estimate the

density at each pose as compared to the other K − 1 poses.

Convergence Rate We prove that our iterative scheme

will converge under fairly weak assumptions, and further-

more, show that the rate of convergence is exponential in

the weak errors of the component regressors. The proof is

similar in spirit to the proofs for convergence of boosted

regressors [17, 10], but requires a weaker notion of weak

learnability. Here we highlight the main findings (see ap-

pendix on project webpage for full proof).

Let h represent a set of standard (not pose-indexed) fea-

tures. We define the relative error of a regressor R on a data

set (Ii, θi) as ǫ =
∑

i d(R(h(Ii)), θi)/
∑

i d(θ, θi), for the

θ which minimizes the denominator. Thus, if R performs

better then returning the single uniform prediction θ, ǫ < 1.

Fairly straightforward convergence proofs for both CPR and

boosted regression [17] require that we have access to a

weak learner, that, given a data set (Ii, θi) can output a re-

gressor with relative error ǫ ≤ β for some β < 1. Under

these conditions, the rate of convergence for both CPR and

boosted regression is given by ǫT ≤ βT .

The primary difference between the convergence rates

of CPR and boosting regression lies in the strength of the

weak learnability assumption. Let Ii = G(oi, θ
′

i) for some

unknown oi. In CPR, we need access to a weak learner

that can output a regressor with ǫ ≤ β on a training set

(Ii, θi) only if θi = θ′i. For boosted regression, we need

access to a weak learner that can output a regressor with

ǫ ≤ β on arbitrary training sets (Ii, θi) where θi need not

equal θ′i. Thus, although both CPR and boosted regression

converge exponentially at some rate βT as long as the weak

learnability assumption is satisfied, in practice the base of

the exponent β is much lower for CPR.

2.3. Data Augmentation

Utilizing pose indexed features, we can artificially simulate

a large amount of data from the N training samples by sim-

ply using different initial estimates for the pose. This allows

us to avoid the combinatorial explosion of data that would

be required if we needed to observe every object in every

pose. Suppose we are given training samples (Ii, θi) for
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i = 1 . . . N and wish to simulate additional data. Recall

that each image Ii is generated using G(oi, θi) where oi is

the unknown object appearance. Using the training data, we

can estimate the distribution D of the poses θi (or use their

empirical distribution); we would like to use D to augment

our training set by sampling θj ∼ D and generating new

training images Iij = G(oi, θj). Although we do not have

access to either G or oi, we can actually achieve an identi-

cal effect by taking advantage of our pose-indexed features

being weakly invariant. We formalize this below.

When training with the un-augmented data we optimize

the following loss: L(R) =
∑N

i=1
d(R(h(θ, Ii)), θi) where

θ is the initial pose. Suppose we could explicitly generate

additional images using G by sampling θj ∼ D and gen-

erating novel images Iij = G(oi, θj). In effect, we could

optimize

L(R) =
∑

i

ED

[
d(R(h(θ,G(oi, θj))), θj)

]
, (7)

where ED denotes expectation over D. Of course, in

practice we do not have access to G. However, we can

achieve an identical effect without needing to explicitly

compute G. Below we prove that θj ◦ R(θ,G(o, θj)) =
θi ◦ R(θ′, G(o, θi)), where θ′ = θi ◦ θj ◦ θ. Plugging into

(7) and re-arranging gives:

L(R) =
∑

i

ED

[
d(R(h(θi ◦ θj ◦ θ, Ii)), θi)

]
. (8)

In other words, training R with the original Ii but with an

initial pose estimate θ′ = θi ◦ θj ◦ θ is exactly equivalent

to training with explicitly generated novel images Iij . In

practice, we approximate the loss in (8) by sampling a finite

set of initial poses for each training example.

To complete the above derivation, we prove that

∀θ1, θ2, θ
0

1
, θ0

2
, if θ1◦θ

0

1
= θ2◦θ

0

2
, then the following holds:

θ1 ◦R(h(θ0
1
, G(o, θ1))) = θ2 ◦R(h(θ0

2
, G(o, θ2))) (9)

We prove by induction that θ1 ◦ θt
1
= θ2 ◦ θt

2
for every t,

where θt
1

and θt
2

are defined as in (3). The base case (t = 0)
is true by definition. We now show that if the above holds
for t− 1 > 0, it also holds for t. Proof:

θ1 ◦ θt1 = θ1 ◦ θt−1

1
◦Rt(h(θt−1

1
, G(o, θ1))) (10)

= θ1 ◦ θt−1

1
◦Rt(h(θ1 ◦ θt−1

1
, G(o, e))) (11)

θ2 ◦ θt2 = θ2 ◦ θt−1

2
◦Rt(h(θt−1

2
, G(o, θ2))) (12)

= θ2 ◦ θt−1

2
◦Rt(h(θ2 ◦ θt−1

2
, G(o, e))) (13)

Therefore, if θ1 ◦ θ
t−1

1
= θ2 ◦ θ

t−1

2
then θ1 ◦ θ

t
1
= θ2 ◦ θ

t
2
,

thus completing the proof.

3. Human Annotations and Ground Truth

We obtained three pose-labeled datasets: Mice, Fish and

Faces. The Mice dataset consisted of 3000 black mice la-

beled in top-view images (with 1-3 mice per image). Pose
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Figure 5. Pose labels provided by human annotators. Top-left: An-

notations for the Mice and Fish datasets provided by different an-

notators (color denotes annotator). Top-right: Parameterization of

the poses. The mouse pose is an ellipse at location (x, y) with

orientation φ, scale s1 and aspect ratio s1/s2. The fish pose is a

3-part model where the body (middle) part is centered at location

(x, y) with orientation φb, and the tail and head parts have angles

φt and φh respectively w.r.t. to the body part. The scale s is the

length of the parts. Bottom: Distributions of differences in human-

provided pose labels for the location and orientation of the mice

(three annotators: S1, S2, D), and the tail and head angles for the

fish (two annotators). The estimated mean and standard deviation

of each distribution is denoted by µ and σ respectively.

was specified by the location, orientation, scale, and aspect

ratio of an ellipse fitted around each mouse, see Fig. 5 (top).

The Fish dataset consisted of 38 top-view images of zebra-

fish swimming in an aquarium, with 5 fish per image. With

reflection, this gives a total of 380 examples. The pose of

each fish was annotated by fitting a 3-part model specified

by the location, orientation and scale of a central body part,

and the angles of the tail and head with respect to the body,

see Fig. 5 (middle). For the Faces dataset we used Caltech

10,000 Web Faces [3], where each face was labeled by four

points (eyes, mouth, nose). We used the first three coordi-

nates (the nose was somewhat inconsistent) to define a pose

with the same parameterization as an ellipse.

In addition to training and evaluating CPR, we used

redundantly annotated images for measuring human per-

formance and defining a perceptually meaningful distance

measure between poses. Three annotators provided redun-

dant labels for 750 mice, and two annotators provided la-

bels for all the fish, see Fig. 5 (top) for some examples. To

quantify annotator consistency, for each pose parameter we

computed the distributions of pose-parameter differences,

as shown in Fig. 5 (bottom). Observe that the annotations

are consistent and unbiased (µ ≈ 0) and the differences in

individual pose parameters are normally distributed. The

latter motivates the use of the standard deviation as normal-

ization in a perceptually meaningful distance measure.

In order to weigh errors in estimating the differ-
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Figure 6. Performance vs. the number of phases T in the regres-

sion cascade. Overall median error plotted in black; error of in-

dividual pose parameters plotted in color. Mice: Initially only

the translation parameters are refined, next CPR begins predicting

orientation, finally after ∼128 iterations CPR also begins refin-

ing scale and aspect ratio. Fish: Due to the elongated 3-part pose

model, CPR determines the orientation of the model before con-

centrating on the position, scale and part angles. No overfitting is

observed with increasing T .
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Figure 7. Effect of data augmentation (Sec. 2.3). Each curve

shows the effect of augmenting N actual training examples to dif-

ferent sizes N∗ ≥ N . Mice: Performance is reasonable with just

N ≥ 125 training examples augmented to N∗ = 4000 total exam-

ples (and maximized as soon as N ≥ 250). Fish: Performance is

maximized when N ≥ 64 training examples are used (again aug-

mented to N∗ = 4000 total examples); in fact, since the training

images were mirrored, this corresponds to 32 actual annotations.

Thus, although the total amount of augmented data CPR requires is

massive, the amount of actual annotated data needed is very small.

ent pose parameters equally against each other, we de-

fine the distance between two poses as d(θ1, θ2) =√
1

D

∑D
i=1

1

σ2

i

(
θi
1
− θi

2

)2
, where D is the number of pose

parameters. Here σ2

i denotes the variance of the differences

between annotations of the ith pose parameter, estimated

from the difference distributions shown in Fig. 5. These

weights were used both for evaluation and for training CPR.

The above normalization assumes that the pose parameters

are uncorrelated. The expected squared distance between

two human annotators is 1. We defined a pose estimate with

a distance from the ground truth greater than 2.5 to be a fail-

ure, as we observed that with 99% probability two human

annotations of the same object were within a normalized

distance of 2.5.

4. Experiments

We performed experiments on the three datasets described

above: Mice, Faces and Fish. We divided the Mice and

Faces datasets into training, validation and test sets of 1000

images each. We divided the Fish dataset into a training set
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Figure 8. Performance as a function of the uncertainty in the ini-

tial position r of a (simulated) detector (see text for details). Left:

Mean error as a function or r increases gradually, except for the

faces where more textured backgrounds likely make pose estima-

tion more challenging with larger offsets. Right: The failure rate

increases smoothly but rapidly as detector uncertainty increases.

of 250 images and a test set of 130 images (but no valida-

tion set). In addition, we applied an 8 × 8 median filter to

the fish images to remove salt and pepper noise from the

background. All reported experiments were averaged over

25 trials, each performed with a different random seed.

We measured the error of a single annotation using the

perceptual distances defined in Section 3. If the error is

above 2.5 we define the pose estimate to be a failure. We

report overall error in terms of the percent failure rate and

the mean-error of the remaining examples. Alternatively,

we report median-error when we wish to describe perfor-

mance using a single curve.

The main parameters of CPR are the amount of train-

ing data N , the total amount of data after data augmen-

tation N∗, the number of phases in the cascade T , the

fern depth S, the number of ferns R and features F gen-

erated at each stage of training, and the number of restarts

K. Using the Mice and Faces validation sets we found

(N∗ = 4000, T = 512, S = 5, R = 64, F = 64,K = 16)
to be a good tradeoff between performance and speed on

both datasets. All subsequent experiments, on all datasets,

used the above parameter settings unless otherwise noted.

Cascade depth: The influence of the number of phases

T on the error is shown in Fig. 6. The algorithm con-

verges after 512 stages for all datasets, including the faces

(not shown), and does not overfit. The lack of overfitting is

in stark contrast to standard boosted regression algorithms

which tend to strongly overfit and require careful tuning of

a “learning rate” parameter [17].

Data-augmentation: Fig. 7 shows the advantage of the

data augmentation scheme described in Section 2.3. With

only 250 training examples it is possible to match the per-

formance achieved using all 1000 training examples on the

Mice dataset. On the Fish dataset the benefit of data aug-

mentation was even more striking: just 32 pose labels were

sufficient to achieve human performance.

Translational uncertainty: We expect a detec-

tor/tracker to provide a center position estimate x to CPR.

We assume the detector always returns an estimate x that is

within a maximum distance rw of the true object position

x∗, i.e., ||x − x∗||2 ≤ rw, where w denotes object width
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Human−1:      µ=0.94 f= 1.2%

Human−2:      µ=0.83 f= 0.7%

Boosted−Reg:  µ=1.82 f=95.8%

Rand−16−Best: µ=1.91 f=84.1%

CPR−1:        µ=1.13 f=39.6%

CPR−16−Clust: µ=1.08 f=23.7%

CPR−16−Best:  µ=0.85 f= 5.1%
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Figure 9. Mice dataset: Human agreement on this dataset is high,

with a mean error µ < 1 and a failure rate f ≈ 1%. Boosted-Reg

fails on almost all test examples. Choosing the best of 16 random

poses (Rand-16-Best) results in performance slightly better than

Boosted-Reg, but much worse than CPR. The distribution of er-

rors of CPR-1 is bimodal with 39.6% failures; however, the mean

(excluding failures) is µ = 1.13, which is not far off from hu-

man performance. Running CPR with clustering (CPR-16-Clust)

reduces failures substantially. Having an oracle pick the best of

16 pose predictions (CPR-16-Best) removes most remaining fail-

ures, a property that can be exploited in tracking systems where

dynamic information is available. The images in the bottom row

show examples of pose estimates (green ellipse) from CPR-16-

Clust at different distances from the ground truth (blue ellipse).

We observed that many of the failure cases were caused by orien-

tation errors of 180◦, as in the right-most image.

measured at the root part and r defines the uncertainty of

the detector. We simulate such a detector by sampling ini-

tial estimates xi uniformly from a circular region of radius

rw centered on x∗

i for each example i. Results are shown

in Fig. 8. Mean performance (excluding failures) degrades

gradually as the uncertainty r increases; however, the fail-

ure rate increases more quickly. Throughout all experiments

we use a simulated detector with r = .5 as we expect most

detection systems to return a position estimate that is within

half an object width of the true object position.

Performance: Results on the fish, mice and faces are

shown in Figures 9–11. We plot the full distribution of er-

rors, and list both the mean errors µ (excluding the failures)

and the failure rates f . For each dataset, we compare the

following approaches:

Human: human versus human performance.

Boosted-Reg: boosted regression [17] using same features as CPR.

Rand-16-Best: oracle selects the best of 16 random poses.

CPR-1: CPR with a single (K = 1) starting pose.

CPR-16-Clust: CPR with 16 starting poses followed by clustering.

CPR-16-Best: CPR with 16 starting poses, oracle selects best.

CPR-16-Clust is the basic approach described in this pa-

per while CPR-16-Best shows performance when an outside

source of information is available to select the best of 16

poses computed by CPR (e.g., temporal consistency infor-

mation). Overall, the performance of CPR-16-Clust is close
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Human−1:      µ=0.73 f= 0.5%

Boosted−Reg:  µ=N/A  f= 100%

Rand−16−Best: µ=1.64 f=18.0%

CPR−1:        µ=0.60 f=26.6%

CPR−16−Clust: µ=0.54 f= 7.8%

CPR−16−Best:  µ=0.38 f= 0.8%

normalized distance

Figure 10. Fish dataset: Results are qualitatively similar to the

mice data (see Fig. 9). Failures are again primarily 180◦ orienta-

tion errors (which can be removed by clustering or by incorporat-

ing dynamic information). Interestingly, except for the few fail-

ure cases, CPR outperforms the human annotator that redundantly

labeled the same data after being given identical labeling instruc-

tions. Neither set of annotations looks sloppy, rather there appar-

ently must be some slight bias between the annotators, whereas

the algorithm learns to mimic the first annotator quite closely.

to that of human annotators, except for a 5%-25% failure

rate depending on the dataset. However, many failure cases

in the Mice and Fish datasets are due to orientation errors

of 180◦, a problem that can be alleviated by dynamic con-

straints from a tracking system. Indeed, CPR-16-Best tends

to have a very low failure rate of 1%-5%. For comparison,

Boosted-Reg and Rand-16-Best perform very poorly.

Implementation: Using a Matlab implementation of

CPR, it takes about 3 minutes to train the entire system on

N = 1000 image/pose pairs using the default parameters.

Testing is also very fast, averaging 2-3 ms per image with

default parameters and K = 1 starting poses. We will post

all code (which is fairly small) on the project website.

5. Discussion and Conclusions

We presented a new algorithm, cascaded pose regression

(CPR), to compute the 2D pose of an object from a rough

initial estimate. The key to CPR’s success appears to be

the use of pose-indexed features whose values depends on

the current estimate of the pose. Training CPR takes only

a few minutes and computing pose a few milliseconds on

a standard machine. CPR is insensitive to exact parameter

setting; indeed, identical parameters were used for all three

datasets. Moreover, CPR can learn effective models with

very little training data (∼ 100 training samples).

Experiments carried out on three datasets (faces, mice,

fish) with different object and background statistics demon-

strated that CPR can learn diverse models of pose with a

median error comparable to that of a skilled human anno-

tator. While this is very encouraging, we will need to ex-

periment with more categories before we can claim general

applicability. The failure rate is higher than that of human
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Boosted−Reg:  µ=1.68 f=35.8%

Rand−16−Best: µ=1.57 f= 9.5%

CPR−1:        µ=0.85 f=28.1%

CPR−16−Clust: µ=0.74 f=15.5%
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Figure 11. Faces dataset: Results are qualitatively similar to the

Mice and Fish datasets (see Fig. 9 and Fig. 10 ). Since only one set

of labels was available, no human performance curves are shown

and we had to manually set the distance weights.

annotators; however, failures can be alleviated by clustering

pose estimates or through use of external information such

as temporal constraints.

Future work includes incorporating CPR into detection

or tracking systems. Our experiments suggest that a de-

tector which is able to initialize CPR within a patch about

the same size as the object is sufficient for CPR to produce

good estimates of pose. Merging CPR into a tracking by

detection system could result in a robust new approach for

tracking of articulated objects.
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