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Abstract— By considering the spectral signature as a sequence,
recurrent neural networks (RNNs) have been successfully used to
learn discriminative features from hyperspectral images (HSIs)
recently. However, most of these models only input the whole
spectral bands into RNNs directly, which may not fully explore
the specific properties of HSIs. In this paper, we propose a
cascaded RNN model using gated recurrent units to explore the
redundant and complementary information of HSIs. It mainly
consists of two RNN layers. The first RNN layer is used to elim-
inate redundant information between adjacent spectral bands,
while the second RNN layer aims to learn the complementary
information from nonadjacent spectral bands. To improve the
discriminative ability of the learned features, we design two
strategies for the proposed model. Besides, considering the rich
spatial information contained in HSIs, we further extend the
proposed model to its spectral–spatial counterpart by incorpo-
rating some convolutional layers. To test the effectiveness of our
proposed models, we conduct experiments on two widely used
HSIs. The experimental results show that our proposed models
can achieve better results than the compared models.

Index Terms— Gated recurrent unit (GRU), hyperspectral
image (HSI) classification, recurrent neural network (RNN),
spectral feature, spectral–spatial feature.

I. INTRODUCTION

W ITH the development of imaging technology, current

hyperspectral sensors can fully portray the surface of

the earth using hundreds of continuous and narrow spectral

bands, ranging from the visible spectrum to the short-wave

infrared spectrum. The generated hyperspectral image (HSI) is

often considered as a 3-D cube. The first two are spatial dimen-

sions, which record the locations of each object. The third
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one is spectral dimension, which captures the spectral sig-

nature (reflective or emissive properties) of each material in

different bands along the electromagnetic spectrum [1]. Using

such rich information, HSIs have been widely applied to

various applications, such as land cover/land use classification,

precision agriculture, and change detection. For these applica-

tions, one basic but important procedure is HSI classification,

whose goal is to assign candidate class labels to each pixel.

In order to acquire accurate classification results, numer-

ous methods have been proposed. For example, one can

directly consider the rich spectral signature as features and

feed them into advanced classifiers, such as support vector

machine (SVM) [2], random forest [3], and extreme learning

machine [4]. However, due to the dense spectral sampling

of HSIs, there may exist some redundant information among

adjacent spectral bands. This easily leads to the so-called

curse of dimensionality (the Hughes effect) which causes

a sudden drop in classification accuracy when there is no

balance between the high number of spectral channels and

a limited number of training samples. Therefore, a large

number of works were proposed to mine discriminative fea-

tures from the high-dimensional spectral signature [5]. Popular

models include principle component analysis, linear discrim-

inant analysis (LDA) [6]–[8], and graph embedding [9]–[11].

Besides, representation-based models have also been employed

to HSI classification in recent years. In [12] and [13], sparse

representation was proposed to learn discriminative features

from HSIs. Similarly, collaborative representation was also

widely explored [14], [15]. In these models, an input spectral

signature is usually represented by a linear combination of

atoms from a dictionary, and the classification result can be

derived from the reconstructed residual without needing to

train extra classifiers, which often costs much time.

Although the aforementioned models have demonstrated

their effectiveness in the field of HSI classification, there

still exist some drawbacks to address. For the traditional

feature extraction models, we need to predefine a mining

criterion (e.g., maximizing the between-class scatter matrix

in LDA), which heavily depends on the domain knowledge

and experience of experts. For the representation-based mod-

els, their goal is to reconstruct the input signal, leading to

suboptimal representation for classification. In addition, all of

them can be considered as shallow-layer models, which limit

their potentials to learn high-level semantic features. Recently,

deep learning [16], [17], a very hot research topic in machine
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learning, has shown its huge superiority in most fields of

computer vision [18]–[21] and natural language processing

[22], [23]. The goal of deep learning is to learn nonlinear, high-

level semantic features from data in a hierarchical manner.

Due to the effects of multipath scattering and the hetero-

geneity of subpixel constituents, HSI often lies in a non-

linear and complex feature space. Deep learning can be

naturally adopted to deal with this issue [24], [25]. In the

past few years, many deep learning models were success-

fully applied to HSI classification. For example, in [26]–[28],

the autoencoder model has been used to learn deep features

from high-dimensional spectral signature directly. Similar to

autoencoder, deep belief network was also explored to extract

spectral features [29]–[31]. However, both of them belong

to fully connected networks, which contain large numbers

of parameters to train. Different from them, convolutional

neural networks (CNNs) have local connection and weight

sharing properties, thus largely reducing the number of training

parameters [32]–[34]. Hu et al. [35] proposed to use 1-D

CNN to learn and represent the spectral information. This

model is comprised of an input layer, a convolutional layer,

a pooling layer, a fully connected layer, and an output layer.

The whole model is trained in an end-to-end manner, thus

achieving satisfying results for HSI classification.

Besides spectral information, HSIs also have rich spatial

information. How to combine them together has been an active

research topic in the field of HSI classification [36], [37]. One

potential method is to extend the spectral classification model

into its spectral–spatial counterpart. For instance, in [38]–[40],

a 3-D CNN was employed to spectral–spatial classification of

HSIs. However, due to the simultaneous convolution operators

in both spectral domain and spatial domain, the computational

complexity is dramatically increased. In addition, the number

of trainable parameters in 3-D CNNs is also a problem.

In order to perform 3-D convolution, the dimensionality of

the input and the dimensionality of the kernel (filter) should

be equal. This heavily increases the number of parameters.

Another candidate method for spectral–spatial classification is

the one based on two branch networks. One branch is for

spectral classification and the other one for spatial classifica-

tion. In [41]–[43], 1-D CNN or autoencoder was used to learn

spectral features and 2-D CNN was designed to learn spatial

features. These two features are then integrated together via

feature-level fusion or decision-level fusion. For 2-D CNNs,

only a few principal components were extracted and used as

inputs, thus reducing the computational consuming compared

to 3-D CNNs.

Most of the existing models can be considered as vector-

based methodologies. Recently, a few works attempted to

regard HSIs as sequential data, so recurrent neural net-

works (RNNs) were naturally used to learn features. Wu

and Prasad et.al proposed using RNN to extract spectral

features from HSIs. In [45] and [46], a variant of RNN using

long short-term memory (LSTM) units was designed to learn

spectral–spatial features from HSIs. In [47], another variant

of RNN using gated recurrent units (GRUs) was employed.

Compared to the widely explored CNN models, RNNs have

many superiorities. For example, the key component of CNNs

is the convolutional operator. Due to the kernel size limitations

of it, 1-D CNNs can only learn the local spectral dependency,

while easily ignoring the effects of nonadjacent spectral bands.

Different from them, RNNs, especially using GRU or LSTM,

often input spectral bands one by one via recurrent operators,

thus capturing the relationship from the whole spectral bands.

Besides, RNNs often have smaller numbers of parameters to

train than CNNs, so they will be more efficient in the training

and inferring phases.

Benefiting from its powerful learning ability from sequential

data, current RNN-related models often simply input the whole

spectral bands to networks, which may not fully explore

the redundant and complementary properties of HSIs. The

redundant information between adjacent spectral bands will

increase the computational burden of RNNs without improving

the classification results. Sometimes such redundancy may

reduce the classification accuracy since it increases within-

class variances and decreases between-class variances in the

feature space. Besides, it may also increase the difficulties in

learning complementary information. To address these issues,

we propose a cascaded RNN model using GRUs in this paper.

This model mainly consists of two RNN layers. The first

RNN layer focuses on reducing the redundant information of

adjacent spectral bands. These reduced informations are then

fed into the second RNN layer to learn their complementary

features. Besides, in order to improve the discriminative ability

of the learned features, we design two strategies for the pro-

posed model. Finally, we also extend the proposed model to its

spectral–spatial version by incorporating some convolutional

layers. The major contributions of this paper are summarized

as follows.
1) We propose a cascaded RNN model with GRUs for HSI

classification. Compared to the existing RNN-related

models, our model can sufficiently consider the redun-

dant and complementary information of HSIs via two

RNN layers. The first one is to reduce redundancy and

the second one is to learn complementarity. These two

layers are integrated together to generate an end-to-end

trainable model.

2) In order to learn more discriminative features, we design

two strategies to construct connections between the first

RNN layer and the output layer. The first strategy is

the weighted fusion of features from two layers, and

the second one is the weighted combination of different

loss functions from two layers. Their weights can be

adaptively learned from data itself.

3) To capture the spectral and spatial features simulta-

neously, we further extend the proposed model to its

spectral–spatial counterpart. A few convolutional layers

are integrated into the proposed model to learn spatial

features from each band, and these features are then

combined together via recurrent operators.

The rest of this paper is organized as follows. Section II

describes the details of the proposed models, including a

brief introduction of RNN, and the structure of the proposed

model as well as its modifications. The descriptions of data

sets and experimental results are given in Section III. Finally,

Section IV concludes this paper.
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Fig. 1. Flowchart of the proposed model.

II. METHODOLOGY

As shown in Fig. 1, the proposed cascaded RNN model

mainly consists of four steps. For a given pixel, we first

divide it into different spectral groups. Then, for each group,

we consider the spectral bands in it as a sequence, which is

fed into an RNN layer to learn features. After that the learned

features from each group are again regraded as a sequence

and fed into another RNN layer to learn their complementary

information. Finally, the output of the second RNN layer is

connected to a softmax layer to derive the classification result.

A. Review of RNN

RNN has widely been used for sequential data analysis,

such as speech recognition and machine translation [23], [48].

Assume that we have a sequence data x = (x1, x2, . . . , xT ),

where xt , t ∈ {1, 2, . . . , T } generally represents the infor-

mation at the tth time step. When applying RNN to HSI

classification, xt will correspond to the spectral value at the

t th band. For RNN, the output of hidden layer at time t is

ht = φ(Whi xt + Whhht−1 + bh) (1)

where φ is a nonlinear activation function such as logistic

sigmoid or hyperbolic tangent functions, bh is a bias vector,

ht−1 is the output of hidden layer at the previous time, and

Whi and Whh denote weight matrices from the current input

layer to hidden layer and the previous hidden layer to current

hidden layer, respectively. From (1), we can observe that via a

recurrent connection, the contextual relationships in the time

domain can be constructed. Ideally, hT can capture most of

the time information for the sequence data.

For classification tasks, hT is often fed into an output layer,

and the probability that the sequence belongs to i th class can

be derived by using a softmax function. These processes can

be formulated as

OT = WohhT + bo

P(ỹ = i |θ, b) =
eθ i OT +bi

∑C
j=1 eθ j OT +b j

(2)

where bo is a bias vector, Woh is the weight matrix from

hidden layer to output layer, θ and b are parameters of softmax

function, and C is the number of classes to discriminate. All

of these weight parameters in (1) and (2) can be trained using

the following loss function:

L = −
1

N

N
∑

i=1

[yi log(ỹi ) + (1 − yi )log(1 − ỹi )] (3)

where N is the number of training samples and yi and ỹi

are the true label and the predicted label of the i th training

sample, respectively. This function can be optimized using a

backpropagation through time (BPTT) algorithm.

B. Cascaded RNNs

HSIs can be described as a 3-D matrix X ∈ R
m×n×k , where

m, n, and k represent the width, height, and number of spectral

bands, respectively. For a given pixel x ∈ R
k , we can consider

it as a sequence whose length is k, so RNN can be naturally

employed to learn spectral features. However, HSIs often

contain hundreds of bands, making x a very long sequence.

Such long-term sequence increases the training difficulty since

the gradients tend to either vanish or explode [49]. To address

this issue, one popularly used method is to design a more

sophisticated activation function by using gating units such as

the LSTM unit and GRU [50]. Compared to LSTM unit, GRU

has a fewer number of parameters [49], which may be more

suitable for HSI classification because it usually has a limited

number of training samples. Therefore, we select GRU as the

basic unit of RNN in this paper.

The core components of GRU are two gating units that

control the flow of information inside the unit. Instead of

using (1), the activation of the hidden layer for band t is

now formulated as

ht = (1 − ut )ht−1 + ut h̃t (4)

where ut is the update gate, which can be derived by

ut = σ(wu xt + vuht−1) (5)

where σ is a sigmoid function, wu is a weight value, and vu

is a weight vector. Similarly, h̃t can be computed by

h̃t = tanh(wxt + V(rt ⊙ ht−1)) (6)
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where ⊙ denotes an element-wise multiplication and rt is the

reset gate, which can be derived by

rt = σ(wr xt + Vr ht−1). (7)

Due to the dense spectral sampling of hyperspectral sen-

sors, adjacent bands in HSIs have some redundancy, while

nonadjacent bands have some complementarity. In order to

take account of such information comprehensively, we propose

a cascaded RNN model. Specifically, we divide the spectral

sequence x into l subsequences z = (z1, z2, . . . , zl), each

of which consists of adjacent spectral bands. Besides the

last subsequence zl , the length of the other subsequences

is d = floor(k/ l), which denotes the nearest integers less

than or equal to k/ l. Thus, for the i th subsequence zi , i ∈

{1, 2, . . . , l}, it is comprised of the following bands:

zi =

{

(x(i−1)×d+1, . . . , xi×d ), if i �= l,

(x(i−1)×d+1, . . . , xk), otherwise.
(8)

Then, we feed all the subsequences into the first-layer

RNNs, respectively. These RNNs have the same structure and

share parameters, thus reducing the number of parameters to

train. In the subsequence zi , each band has an output from

GRU. We use the output of the last band as the final feature

representation for zi , which can be denoted as F
(1)
i ∈ R

H1 ,

where H1 is the size of the hidden layer in the first-layer RNN.

After that we can combine F
(1)
i , i ∈ {1, 2, . . . , l} together to

generate another sequence F = (F
(1)
1 , F

(1)
2 , . . . , F

(1)
l ) whose

length is l. This sequence is fed into the second-layer RNN

to learn their complementary information. Similar to the first-

layer RNNs, we also use the output of GRU at the last time l

as the learned feature F(2). To get a classification result of x,

we need to input F(2) into an output layer whose size equals

to the number of candidate classes C . Both of these two-layer

RNNs have many weight parameters. We choose (3) as a

loss function and use the BPTT algorithm to optimize them

simultaneously.

C. Improvement for Cascaded RNNs

As described in Section II-B, the second-layer RNN is

directly connected to the output layer, so it may be optimized

better than the first-layer RNNs. However, the performance

of the first-layer RNNs will have effects on the second-layer

RNN. In order to improve the discriminative ability of F(2),

an intuitive method is to construct relations between the first-

layer RNNs and the output layer. Here, we propose two

strategies to achieve this goal. The first strategy is based

on the feature-level connection shown in Fig. 2. Instead of

feeding the output of the second-layer RNN into the output

layer only, we attempt to feed all the output features from the

first- and the second-layer RNNs in a weighted concatenation

manner. Specifically, the input of the output layer is computed

as follows:

F̃ =
[

w
(1)
1 F

(1)
1 , w

(1)
2 F

(1)
2 , . . . , w

(1)
l F

(1)
l , w(2)F(2)

]

(9)

where w
(1)
i ∈ R

1andi ∈ {1, 2, . . . , l} are fusion weights for

the first-layer RNNs and w(2) ∈ R
1 is the fusion weight for

Fig. 2. First improvement strategy.

Fig. 3. Second improvement strategy.

the second-layer RNN. These weights can be integrated into

the whole network and their optimal values are automatically

learned from data. The same as the original two-layer RNN

model, we also use (3) to construct the loss function and use

the BPTT algorithm to optimize it.

Different from the first improvement strategy, our second

strategy is based on the output-level connection. As shown

in Fig. 3, we feed the features extracted by the first-layer RNNs

into output layers, respectively, so that they can learn more dis-

criminative features. Combining these features together using

the second-layer RNN will result in a better F(2). In particular,

for F
(1)
i , i ∈ {1, 2, . . . , l}, we can input it into an output

layer and construct a loss function L
(1)
i , i ∈ {1, 2, . . . , l}.

Meanwhile, we also input F(2) into an output layer and

construct another loss function L(2). After that a weighted

summation method can be used to combine them together,

which can be formulated as

L̃ =
1

l

l
∑

i=1

w
(1)
i L

(1)
i + w(2)L(2) (10)

where w
(1)
i ∈ R

1 and w(2) ∈ R
1 are fusion weights and L

(1)
i

and L(2) are derived from (3). The final loss function L̃ can

be optimized by using the BPTT algorithm. In the prediction

phase, we can delete the output layers of the first-layer RNNs
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Fig. 4. Flowchart of spectral–spatial cascaded RNN model.

and use the output from the second-layer RNN as the final

classification result.

D. Spectral–Spatial Cascaded RNNs

Due to the effects of atmosphere, instrument noises, and

natural spectrum variations, materials from the same class

may have very different spectral responses, while those from

different classes may have similar spectral responses. If we

only use the spectral information, the resulting classification

maps will have many outliers, which is known as the “salt

and pepper” phenomenon. As a 3-D cube, HSIs also have rich

spatial information, which can be used as a complement to

address this issue. Among numerous deep learning models,

CNNs have demonstrated their superiority in spatial feature

extraction. In [38], a typical 2-D CNN is designed to extract

spatial features from HSIs. The input of this model is the first

principle component of HSIs.

Inspired from the 2-D CNN model, we extend the cascaded

RNN model to its spectral–spatial version by adding some

convolutional layers. Fig. 4 shows the flowchart of the pro-

posed spectral–spatial cascaded RNN model. For a given pixel

x ∈ R
k , we select a small cube x̂ ∈ R

ω×ω×k centered at

it. Then, we split this cube into k matrices x̂i ∈ R
ω×ω, i ∈

{1, 2, . . . , k} across the spectral domain. For each x̂i , we feed

it into several convolutional layers to learn spatial features.

The same as [38], we also use three convolutional layers, and

the first two layers are followed by pooling layers. The input

size ω×ω is 27×27. The sizes of the three convolutional filters

are 4 ×4 ×32, 5×5×64, and 4 ×4 ×128, respectively. After

these convolutional operators, each x̂i will generate a 128-D

spatial feature si . Similar to the cascaded RNN model, we can

also consider s = (s1, s2, . . . , sk) as a sequence whose length

is k. This sequence is divided into l subsequences, and they

are subsequently fed into the first-layer RNNs, respectively,

to reduce redundancy inside each subsequence. The outputs

from the first-layer RNNs are combined again to generate

another sequence, which are fed into the second-layer RNN

to learn complementary information.

Compared to the cascaded RNN model, the spectral–spatial

cascaded RNN model is deeper and more difficult to train.

Therefore, we propose a transfer learning method to train it.

Fig. 5. Visualization of the Indian Pines data. (a) False-color image.
(b) Training data map. (c) Test data map.

Specifically, we first pretrain the convolutional layers using

all of x̂i , i ∈ {1, 2, . . . , k}. We replace two-layer RNNs by an

output layer whose size is the number of classes C . Besides,

we assume that the label of x̂i equals to the label of its

corresponding pixel x. Then, we will have N × k samples.

These samples are used to train convolutional layers. After

that the weights of these convolutional layers are fixed and

the N training samples are used again to train the two-layer

RNNs. Finally, the whole network is fine-tuned based on the

learned parameters.

III. EXPERIMENTS

A. Data Description

Our experiments are conducted on two HSIs, which are

widely used to evaluate classification algorithms.

1) Indian Pines Data: The first data set was acquired by the

AVIRIS sensor over the Indian Pine test site in northwestern

Indiana, USA, on June 12, 1992. The original data set contains

224 spectral bands. We utilize 200 of them after removing

four bands containing zero values and 20 noisy bands affected

by water absorption. The spatial size of the image is 145 ×

145 pixels and the spatial resolution is 20 m. The number of

training and test pixels are reported in Table I. Fig. 5 shows

the false-color image, as well as training and test maps of this

data set.

2) Pavia University Scene Data: The second data set was

acquired by the ROSIS sensor during a flight campaign over

Pavia, northern Italy, on July 8, 2002. The original image

was recorded with 115 spectral channels ranging from 0.43

to 0.86 µm. After removing noisy bands, 103 bands are used.
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TABLE I

NUMBERS OF TRAINING AND TEST PIXELS USED IN

THE INDIAN PINES DATA SET

TABLE II

NUMBERS OF TRAINING AND TEST PIXELS USED IN

THE PAVIA UNIVERSITY DATA SET

Fig. 6. Visualization of the Pavia University data. (a) False-color image.
(b) Training data map. (c) Test data map.

The image size is 610 × 340 pixels with a spatial resolution

of 1.3 m. There are nine classes of land covers with more than

1000 labeled pixels for each class. The number of pixels for

training and test are listed in Table II. Their corresponding

distribution maps are demonstrated in Fig. 6.

B. Experimental Setup

In order to highlight the effectiveness of our proposed mod-

els, we compare them with SVM, 1-D CNN (1-D-CNN), 2-D

CNN (2-D-CNN), and the original RNN using GRU (RNN).

For simplicity, the cascaded RNN model using GRUs is

abbreviated as CasRNN; the two improvement methods of

CasRNN based on feature-level and output-level connections

are abbreviated as CasRNN-F and CasRNN-O, respectively,

the spectral–spatial CasRNN is abbreviated as SSCasRNN.

Some of their explanations are summarized as follows.

1) SVM: The input of SVM is the original spectrum

signature. We choose Gaussian kernel as its kernel

function. The penalty parameter and the spread of

the Gaussian kernel are selected from a candidate set

{10−3, 10−2, . . . , 103} using a fivefold cross-validation

method.

2) 1-D-CNN: The structure of 1-D-CNN is the same as that

in [35]. It contains an input layer, a convolutional layer

with 20 kernels whose size is 11 × 1, a max-pooling

layer whose kernel size is 3 ×1, a fully connected layer

with 100 hidden nodes, and an output layer.

3) 2-D-CNN: The structure of 2-D-CNN is the same as that

in [38], which consists of three convolutional layers and

two max-pooling layers. Please refer to [38, Table IX]

for the design details of it.

4) RNN: GRU is used as the basic unit of RNN. The

number of hidden nodes is chosen from a candidate set

{24, 25, . . . , 210} via a fivefold cross-validation method.

The deep learning models are constructed with a PyTorch

framework. To optimize them, we use a mini-batch stochastic

gradient descent algorithm. The batch size, the learning rate,

and the number of training epochs are set to 64, 0.001, and

300, respectively. For SVM, we use a libsvm package in a

MATLAB framework. All of the experiments are implemented

on a personal computer with an Intel core i7-4790, 3.60 GHz

processor, 32 GB RAM, and a GTX TITAN X graphic card.

The classification performance of each model is evaluated

by the overall accuracy (OA), the average accuracy (AA), the

per-class accuracy, and the Kappa coefficient. OA defines the

ratio between the number of correctly classified pixels to

the total number of pixels in the test set, AA refers to the

average of accuracies in all classes, and Kappa is the percent-

age of agreement corrected by the number of agreements that

would be expected purely by chance.

C. Parameter Analysis

There exist three important hyperparameters in the proposed

models. They are subsequence numbers l, as well as the

size of hidden layers in the first-layer RNN and the second-

layer RNN. To test the effects of them on the classification

performance, we first fix l and select the size of hidden

layers from a candidate set {16, 32, 64, 128, 256, 384}. Then,

we fix the size of hidden layers and choose l from another

set {2, 4, 6, . . . , 16, 18, 20}. Since the same hyperparameter

values are used for CasRNN and its two improvements (i.e.,

CasRNN-F and CasRNN-O), we only demonstrate the per-

formance of CasRNN here, shown in Fig. 7. In this 3-D

diagram, the first two axes (named hidden1 and hidden2),

respectively, correspond to the number of hidden nodes in the

first-layer RNN and the second-layer RNN, while the third axis

represents the classification accuracy OA. From this figure,

we can observe that when hidden1 ≥ 32 and hidden2 ≥ 128,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HANG et al.: CASCADED RNNS FOR HSI CLASSIFICATION 7

Fig. 7. Performance of the CasRNN model with different sizes of hidden
layers on (Left) Indian Pines data and (Right) Pavia University data.

Fig. 8. Performance of the SSCasRNN model with different sizes of hidden
layers on (Left) Indian Pines data and (Right) Pavia University data.

CasRNN can achieve better OA than the other values on the

Indian Pines data. The best OA appears when hidden1 = 128

and hidden2 = 256. For the Pavia University data, OA changes

a little larger than the Indian Pines data, but we can still

find the best value when hidden1 = 256 and hidden2 = 16.

Similarly, Fig. 8 shows OA values achieved by SSCasRNN

using different hidden sizes. We can see the optimal parameter

values are hidden1 = 128, hidden2 = 256 for the Indian

Pines data, and hidden1 = 256, hidden2 = 256 for the Pavia

University data, respectively.

Figs. 9 and 10 evaluate the effects of l on classifying the

Indian Pines and the Pavia University data sets, respectively.

In Figs. 9 and 10, different colors represent different models.

They are CasRNN, CasRNN-F, CasRNN-O, and SSCasRNN.

As l increases, OAs achieved by these models tend to increase

first and then decrease. Given the same l, SSCasRNN signifi-

cantly outperforms the other three models. For the Indian Pines

data, the maximal OAs of four models appear at the same l,

so their optimal l values are set as 10. Different from the

Indian Pines data, four models have different optimal l values

on the Pavia University data. As shown in Fig. 10, the optimal

l value is 4 for SSCasRNN, and 8 for the other three models.

D. Performance Comparison

In this section, we will report quantitative and qualitative

results of our proposed models and their comparisons with

the other state-of-the-art models. Table III reports the detailed

classification results of different models on the Indian Pines

data, including OA, AA, Kappa, and class specific accuracy.

The bold fonts in each row denote the best results. Several con-

clusions can be observed from Table III. First, if we directly

input the whole spectral bands into RNN, its OA, AA, and

Kappa values are 69.82%, 75.42%, and 65.87%, respectively,

which are all lower than those achieved by SVM and 1-D-CNN

models. This indicates that RNN cannot fully explore the

Fig. 9. Performance of different models on the Indian Pines data with
different subsequence numbers l.

Fig. 10. Performance of different models on the Pavia University data with
different subsequence numbers l.

long-term spectral sequence of HSIs. On the contrary, consid-

ering the redundant and complementary properties of spectral

signature, our proposed model CasRNN can improve the

performance of RNN by 4 percents, thus outperforming SVM

and 1-D-CNN. Second, compared to CasRNN, CasRNN-F,

and CasRNN-O can obtain better results, which validates the

effectiveness of the two improvement strategies. In terms of

each class accuracy, CasRNN-F almost increases all of them in

comparison with CasRNN, so it might be more powerful than

CasRNN-O on the Indian Pines data. Third, compared to spec-

tral classification models, 2-D-CNN significantly improves

the classification results by about 10 percents. It means that

the consideration of spatial information is very important

on the Indian Pines data, because there are many large and

homogeneous objects shown in Fig. 5(c). By incorporating the

spatial information into CasRNN model, our proposed model

SSCasRNN can further increase the performance to above

90 percents. Besides, it can obtain highest accuracies in 15 dif-

ferent classes, which sufficiently certifies the effectiveness of

SSCasRNN.

In addition to the quantitative results, we also visualize

classification results of different models shown in Fig. 11.

Different colors in Fig. 11 correspond to different classes.

Compared to the groundtruth map in Fig. 5(c), spectral

classification models (i.e., SVM, 1-D-CNN, RNN, CasRNN,

CasRNN-F, and CasRNN-O) have many outliers in the clas-

sification map due to the spectral variability of materials.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE III

CLASSIFICATION RESULTS (%) OF DIFFERENT MODELS ON THE INDIAN PINES DATA

Fig. 11. Classification maps of the Indian Pines data using different models. (a) SVM. (b) 1-D-CNN. (c) RNN. (d) CasRNN. (e) CasRNN-F. (f) CasRNN-O.
(g) 2-D-CNN. (h) SSCasRNN.

This phenomenon can be alleviated by 2-D-CNN, because

it makes use of the spatial contextual information instead of

the spectral information. For homogeneous regions, especially

large objects, 2-D-CNN performs very well. However, it will

easily result in an over-smoothing problem, especially for

small objects, as demonstrated in Fig. 11(g). Different from

2-D-CNN and spectral models, SSCasRNN takes advantage

of spectral and spatial information simultaneously. As shown

in Fig. 11 (h), it has significantly fewer outliers than spectral

models, and retains more boundary details of objects than

2-D-CNN.

Table IV and Fig. 12 are the classification results of different

models on the Pavia University data. Similar conclusions can

be observed from them. For spectral models, CasRNN is better
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TABLE IV

CLASSIFICATION RESULTS (%) OF DIFFERENT MODELS ON THE PAVIA UNIVERSITY DATA

Fig. 12. Classification maps of the Pavia University data using different models. (a) SVM. (b) 1-D-CNN. (c) RNN. (d) CasRNN. (e) CasRNN-F.
(f) CasRNN-O. (g) 2-D-CNN. (h) SSCasRNN.

than RNN, while CasRNN-F and CasRNN-O are superior to

CasRNN. All of these models have the “salt and pepper”

phenomenon in their classification maps. Compared to the best

spectral model, 2-D-CNN can improve OA and Kappa by more

than 5 percents. In addition, it generates fewer outliers and

leads to a more homogeneous classification map. Nevertheless,

without using the spectral information, its performance is not

very high, and the classification map is easily to be over-

smoothed. Combining the spectral and spatial information

together, our proposed model SSCasRNN can alleviate these

issues. It improves OA from 86.18% to 90.30%, and generates

more details in the classification map. However, in comparison

with the Indian Pines data, the classification results achieved

by SSCasRNN are still not very high. One possible reason is

that there exist many small objects in the Pavia University data,

which increases the difficulty in exploring spatial features.

IV. CONCLUSION

In this paper, we proposed a cascaded RNN model for

HSI classification. Compared to the original RNN model, our
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proposed model can fully explore the redundant and comple-

mentary information of the high-dimensional spectral signa-

ture. Based on it, we designed two improvement strategies

by constructing connections between the first-layer RNN and

the output layer, thus generating more discriminative spectral

features. In addition, considering the importance of spatial

information, we further extended the proposed model into its

spectral–spatial version to learn spectral and spatial features

simultaneously. To test the effectiveness of the proposed mod-

els, we compared them with several state-of-the-art models on

two widely used HSIs. The experimental results demonstrate

that the cascaded RNN model can obtain higher performance

than RNN, and its modifications can further improve the

performance. Besides, we also thoroughly evaluated the effects

of different hyperparameters on the classification performance

of the proposed models, including the hidden sizes and the

number of subsequences. In the future, more experiments will

be conducted to validate the effectiveness of our proposed

models. In addition, more powerful spectral–spatial models

will be explored. Since the sizes and shapes of different objects

vary, using the patches or cubes with same sizes as inputs

easily leads to the loss of spatial information.
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