
Cascaded Refinement Network for Point Cloud Completion

Xiaogang Wang Marcelo H Ang Jr Gim Hee Lee

National University of Singapore

xiaogangw@u.nus.edu {mpeangh,gimhee.lee}@nus.edu.sg

Abstract

Point clouds are often sparse and incomplete. Exist-

ing shape completion methods are incapable of generat-

ing details of objects or learning the complex point dis-

tributions. To this end, we propose a cascaded refinement

network together with a coarse-to-fine strategy to synthe-

size the detailed object shapes. Considering the local de-

tails of partial input with the global shape information to-

gether, we can preserve the existing details in the incom-

plete point set and generate the missing parts with high fi-

delity. We also design a patch discriminator that guaran-

tees every local area has the same pattern with the ground

truth to learn the complicated point distribution. Quantita-

tive and qualitative experiments on different datasets show

that our method achieves superior results compared to ex-

isting state-of-the-art approaches on the 3D point cloud

completion task. Our source code is available at https:

//github.com/xiaogangw/cascaded-point-completion.git.

1. Introduction

Despite the significant progress on image generation and

translation [41, 16], synthesizing and generating 3D point

clouds remains as a very challenging task due to the sparse-

ness, incompleteness and irregularity of the points. More

specifically, the inabilities of learning accurate point fea-

tures and various point distributions make it difficult to ob-

tain a complete and dense object shape. In this work, we

focus on the point cloud completion [52, 36] task, which

completes missing parts of the occluded object. 3D shape

completion has wide applications such as robotic naviga-

tion [7, 26], scene understanding [17, 5] and augmented re-

ality [2, 44].

Existing methods [52, 36, 3, 6, 22, 34] have shown

promising results on shape completion for different inputs:

distance fields, meshes, voxel grids and point clouds. Voxel

representations are a direct generalization of pixels to the

3D case. However, generating 3D shape with voxel format

suffers from memory inefficiency, hence it is difficult to ob-

tain high-resolution results. Although data-driven methods

Input PCN TopNet Ours GT

Input Input OutputOutput

Figure 1. Our method can generate complete point clouds with

finer details compared to existing state-of-the-art methods.

on mesh representations [38, 12, 42] are able to generate

complicated surfaces, they are limited to the fixed vertex

connection patterns. As a result, it is difficult to change

the topology during the training process. In contrast, it is

easy to add new points for point clouds and several stud-

ies have shown promising results. The pioneer work [52]

proposes an encoder-decoder based pipeline on both the

synthetic dataset ShapeNet [4] and the real scene dataset

KITTI [9]. A following work TopNet [36] proposes a hi-

erarchical rooted tree structure decoder to generate object

shapes. Even though they have achieved impressive per-

formances on shape completion, they are both unable to

generate the detailed geometric structure of 3D objects and

produce unsatisfactory coarse object outputs. Several ap-

proaches [24, 28, 25] propose to learn 3D structures in a

function space, and they achieve impressive results for var-

ious input formats. However, these methods require post-

processing to refine the outputs.

We propose to synthesize the dense and complete objects

shapes in a cascaded refinement manner, and jointly opti-

mize the reconstruction loss and an adversarial loss end-

to-end. Our framework is designed to keep the object de-

tails in the partial inputs, and to produce realistic recon-

structions of the missing parts. Figure 1 shows an exam-

ple between our method and existing approaches [52, 36].

Although the legs of a chair are clearly present in the in-

put, existing works are incapable of keeping this structural

details in the outputs. On the contrary, our approach suc-

cessfully captures this fine-grained details. To this end, we

make a skip connection between the incomplete points and

coarse outputs. However, simple concatenation between in-

puts and our coarse outputs give rise to unevenly distributed

points. Consequently, we design an iterative refinement de-

790

coder together with a feature contraction and expansion unit

to refine the point positions. We adopt an adversarial loss

that penalizes inaccurate points from the ground truth to

learn the complex point distributions and further improve

the performance. Instead of classifying the whole object by

predicting a single confidence value like conventional gen-

erative adversarial networks (GANs) [21, 46], we design

a patch-based discriminator to explicitly force every local

patch of generated point clouds to have the same pattern

with real complete point clouds inspired by [16, 45]. We

show state-of-the-art quantitative and qualitative results on

different datasets by various experiments. Our key contri-

butions are as follows:

• We propose a novel point cloud completion network

which is able to preserve object details from partial

points and generate missing parts with fine details at

the same time;

• Our cascaded refinement strategy together with the

coarse-to-fine pipeline can refine the points positions

locally and globally;

• Experiments on different datasets show that our frame-

work achieves superior results to existing methods on

the 3D point cloud completion task.

2. Related work

In this section, we review existing works on point gener-

ation, upsampling and shape completion that are related to

our task.

3D Generation. The pioneering work PointNet [29] pro-

posed a method on point cloud analysis and inspired a

large amount of works on point cloud generation. Early

works [1, 37, 33] have proposed generative models by us-

ing GAN or variational auto-encoder (VAE) on 3D gener-

ation. Achlioptas et al. [1] proposed r-GAN for 3D point

clouds generation, in which both generator and discrimina-

tor are fully connected layers. Valsesia et al. [37] proposed

a graph neural network to synthesize object shapes. They

calculated the adjacency matrix by the feature vectors from

each vertex in each graph convolution layer. Despite their

superior results, the calculation of the adjacency matrix re-

quires quadratic computation complexity and consumes a

lot of memory. The above methods successfully synthe-

size object shapes from noise. However, simple GANs or

VAE can only generate small scale (1024 or 2048) point

sets due to the complex point distribution and the notori-

ously difficult training of GANs. Although improved meth-

ods [47, 33, 48] show superior performance on synthesiz-

ing 3D objects, they are limited to synthesizing the general

shapes of objects and are not suitable for shape completion.

3D Upsampling. Similar to point cloud completion, sev-

eral works [51, 50, 49, 21, 45] aim at generating dense and

uniform point clouds given sparse and non-uniform point

sets. PU-Net [51] adopted the PointNet++ [30] as a back-

bone to extract point features and expand feature dimen-

sions by a series of convolutions. Following PU-Net, EC-

Net [50] generated sharp edges by penalizing the distance

between points and edge labels. While they show excit-

ing results, both methods are limited to upsampling point

clouds by a small ratio (e.g. 4×). To alleviate this prob-

lem, Yifan et al. [49] introduced a hierarchical point feature

extraction and multi-stage generation network and achieved

16× upsampling, but the training process consumes more

computation memory. More importantly, they are all lim-

ited to upsampling the sparse points and are not applicable

for completion tasks.

3D Completion. 3D shape completion plays an important

role in robotics and perception, and has obtained significant

development in recent years. Existing methods have shown

impressive performance on various formats: voxel grids,

meshes and point clouds. Inspired by 2D CNN operations,

earlier works [6, 14, 35, 20] focus on the voxel and distance

fields formats generation with 3D convolution. Several

approaches [6, 35] have proposed a 3D encoder-decoder

based network for shape completion and shown promising

performance. However, voxel-based methods consume a

large amount of memory and are unable to generate high-

resolution outputs. To increase the resolution, several works

[39, 40] have proposed to use the octree structure to gradu-

ally voxelize specific areas. However, due to the quantiza-

tion effect of the voxelization operation, recent works grad-

ually discard the voxel format and focus on the mesh recon-

struction. Existing mesh representations [12, 38] are based

on deforming a template mesh to a target mesh and hence

not flexible to any typologies. In comparison to voxels and

meshes, point clouds are easy to add new points during the

training procedure. Yuan et al. [52] proposed the pioneering

work PCN on point cloud completion, which was a simple

encoder-decoder network to reconstruct dense and complete

point set from an incomplete point cloud. They adopted the

folding mechanism [48] to generate high resolution outputs

(16,384). TopNet [36] proposed a hierarchical tree-structure

network to generate point cloud without assuming any spe-

cific topology for the input point set. However, both PCN

and TopNet are unable to synthesize the fine-grained details

of 3D objects.

3. Our Method

3.1. Overview

Our objective is to produce complete and high-resolution

3D objects from corrupted and low resolution point clouds.

Specifically, given the sparse incomplete point sets P =

791

Input points

MLPs + Maxpool

N X 3 N X C
Per-point features

Fully
connected

Nc X 3
Coarse output

Coarse ReconstructionFeature Extraction

Mirror + FPS

Lifting
Module

Dense Reconstruction

Dense outputIntermediate output
(u X N) X 3

Refinement

2Nc X 3

Figure 2. An illustration of our generator network. The generator includes three sub-networks: feature extraction, coarse reconstruction

and dense reconstruction. The feature extractor consists of two MLPs and max-pooling layers. The coarse reconstruction comprises several

fully-connected layers. The dense reconstruction is a cascaded refinement sub-network with a lifting module in each step. We generate

dense and complete point clouds given partial and sparse inputs. µ is the upsampling factor.

{pi}
N
i=1

of N points, we aim to generate a dense and com-

plete point set Q = {qi}
u×N
i=1

of u × N points, where u is

the upsampling scalar. We expect our method to fulfill three

requirements: (1) preserve the fine details of the input point

cloud P, (2) inpaint the missing parts with detailed geomet-

ric structures, and (3) generate evenly distributed points on

object surfaces.

Our point cloud completion architecture is shown in Fig-

ure 2. Traditional GANs [11, 1, 37] map a noise distribution

z to the data space, we extend the general GAN framework

by modelling the generator G (Section 3.2) as a feature ex-

traction encoder and a conditional coarse-to-fine decoder.

The discriminator D (Section 3.5) aims to distinguish be-

tween the generated fake output and the ground truth.

3.2. Generator

Our generator G consists of three components: (1) fea-

ture extraction h, (2) coarse reconstruction g1 and (3) dense

reconstruction g2.

Feature Extraction. Same with PCN [52], we use two

stacked PointNet feature extraction architecture with max-

pooling operation to extract the global point features f .

Specifically, the feature extractor h can be modelled by the

composition of two functions expressed as:

f = h(P | wh), h = h1 ◦ h2, (1)

where wh denotes the parameters of h1 and h2, h1 and h2

represent the two extraction sub-networks, respectively.

Coarse Reconstruction. g1 consists of several fully-

connected layers, which maps the latent embedding f to

the coarse point cloud. We denote the size of Pcoarse as

Nc × 3. From Figure 2, we can observe that the coarse

output roughly capture the complete object shape but loses

fine details, which we aim to recover in the second stage.

Dense Reconstruction. Our second stage g2 is a con-

ditional iterative refinement sub-network. The synthesis

begins at generating low resolution points (2048×3), and

points with higher resolutions are then progressively re-

fined. Following TopNet [36], our outputs have four res-

olutions: N = {2048, 4096, 8192, 16, 384}, for which the

numbers of iterations are 1, 2, 3 and 4, respectively. Param-

eters are shared among each iteration.

Existing methods [52, 36, 33] exploit either folding

based operations or tree structure to generate dense and

complete objects. Although they have achieved impressive

qualitative results, the fine details of the objects are often

lost. As can be seen in Figure 1, both PCN [52] and Top-

Net [36] fail to generate the details of 3D objects (e.g. the

legs of the chair). The reason is that the latent embedding

f is obtained by the last max-pooling layer of the encoder,

and it only represents the rough global shape, hence it is dif-

ficult to recover the detailed object structures. We propose

to preserve the object shape details in the partial inputs and

exploit the global shape information from Pcoarse at the same

time. Inspired by the skip-connection from U-Net [31], we

concatenate the partial inputs with the global shape Pcoarse

to synthesize the dense points. However, direct concatena-

tion resulted in a poor visual quality because of the seri-

ous uneven distributed points. To alleviate this problem, we

propose to dynamically subsample Nc × 3 points from the

partial inputs P before concatenating with the coarse out-

put Pcoarse. We denote the combined point sets as PS with

the size of 2Nc × 3, which are fed into the lifting module

(Section 3.3) to obtain a higher resolution points Pi. We use

the efficient farthest point sampling (FPS) algorithm [30]

to subsample points. We also design a feature contraction-

expansion unit (Section 3.3) to refine the point positions

gradually. We progressively refine the point positions and

upsample the point size by a factor of two by the lifting

module. For the subsequent iterates, the input for the lifting

module is the intermediate output Pi from last step.

792

N′ X 3

tile

N2 X C2

Shared MLPs
and reshape

MLPs
reshape

N1 X C3

2D grids contraction-expansion unitconcatenation

MLPs

N1 X 3

MLPs

N1 X C1

MLPs
reshape

element-wise addition

N1 X 3

fc fefS

mean shape and global features

Figure 3. The architecture of the lifting module. The input is N ′×
3, and we upsample it by a factor of 2 to obtain the output of N1×
3. The feature contraction and expansion unit predicts residual

point features instead of final results.

3.3. Lifting Module

We design a lifting module to upsample the point size by

a factor of two, and concurrently refine the point positions

by the feature contraction and expansion unit. To upsam-

ple the point set PS , we first tile the points PS two times

to obtain a new point set P′

S . Then we sample a unique

2D grid vector and append it after each point coordinates

to increase the variations among the duplicated points [48].

We also utilize the mean shape prior fm (Section 3.4) in

our iterative refinement [18] to alleviate the domain gap of

point features between the incomplete and complete point

clouds. We concatenate the point P′

S , mean shape vectors

fm, global feature f and the sampled 2D grids to obtain a

new feature fs. We aim to predict per-vertex displacements

{dx, dy, dz} for each point P′

S given the point feature fs.

Feature Contraction-expansion Unit. Inspired by the

hourglass network [27], we consolidate the local and global

information by a bottom-up and top-down fashion to re-

fine points positions and make them evenly distributed on

object surfaces. However, it is not straightforward to sub-

sample and upsample features between different scales for

point clouds. Although some operations are introduced in

PointNet++ [30] and graph convolution [53], they consume

a large amount of memory and computation time, especially

for high-resolution points. Consequently, we use shared

multilayer perceptrons (MLPs) [51] to make feature con-

traction and expansion. Specifically, we assume the dimen-

sion of fs to be N1 × C1, and sizes of outputs features

fc and fe are N2 × C2 and N1 × C3, respectively. The

two operations are represented as fc = RS(CC(fS)) and

fe = RS(CE(fc)), where RS(.) is a reshaping operation.

CC(·) and CE(·) are MLPs for contraction and expansion,

respectively. Our lifting module predicts point feature resid-

uals rather than the final output since deep neural networks

are better at predicting residuals [38]. Our lifting module is

shown in Figure 3.

Overall, in one-step refinement, the output point set Pi is

N X 3

... MLPs MLPs MLPs MLPs

Ns X 1

Hierarchical Feature IntegrationPatch Selection Value Regression

Figure 4. The discriminator architecture sub-network. It includes

the patch selection, hierarchical feature integration and confidence

value regression.

represented as:

Pi = F (P′

S) + P′

S , (2)

where F (.) predicts per-vertex offsets by the lifting module

for the input point P′

S .

3.4. Shape Priors

For each object class, we take mean values of latent em-

beddings from all the instances within that category as our

mean shape vectors. The calculation is represented as:

f i
m =

1

N i

i=Ni

∑

i=1

fi, (3)

where N i is the total number of objects from category i.
The latent embeddings are obtained by a pre-trained Point-

Net auto-encoder1 on eight object categories following [18].

Following 3DN [42], we mirror the partial input with re-

spect to the xy-plane as we assume the reflection symmetry

plane (xy-plane) of objects to be known since many man-

made models show global reflection symmetry. Then we

subsample Nc points from the mirrored points to obtain the

point set PC . Note that not all training objects are symmet-

ric, and 40 of 1200 testing data are asymmetric. Our mirror

operation can be seen as an initialization for the missing

points and reasonable point positions are generated by the

whole optimization.

3.5. Discriminator

To generate various realistic dense and complete point

clouds, we adopt the adversarial training and jointly opti-

mize the reconstruction loss and the adversarial loss end-

to-end. Instead of only considering the global shape by

regressing one single confidence value as conventional

GANs [21], we design a patch discriminator to further guar-

antee that every local area is realistic. We employ the hier-

archical point set feature learning in PointNet++ [30] with

different radii to consider multi-scale local patches. Specifi-

cally, we first uniformly sample Ns point seeds by FPS, and

then set three radii {0.1, 0.2, 0.4} around the seeds to ex-

tract a set of local patch. Finally, we obtain Ns scores from

1https://github.com/charlesq34/pointnet-autoencoder

793

the discriminator instead of calculating one single value for

binary classification. Our discriminator consists of patch

selection, hierarchical feature integration and value regres-

sion. The discriminator sub-network is shown in Figure 4.

3.6. Optimization

Our training loss comprises two components, a recon-

struction loss to encourage the completed point cloud to be

the same as the ground truth, and an adversarial loss to pe-

nalize the unrealistic outputs.

Reconstruction Loss. We adopt the Chamfer Distance

(CD) [8] as our reconstruction loss, i.e.,

CD(X,Y) = LX,Y + LY,X, where

LX,Y =
1

|X|

∑

x∈X

min
y∈Y

||x− y||2, and

LY,X =
1

|Y|

∑

y∈Y

min
x∈X

||x− y||2,

(4)

which calculates the average closest point distance between

two point clouds X and Y. There are two variants for CD

which we denote as CD-P and CD-T. Specifically, CD-P =
(
√

LX,Y +
√

LY,X)/2 and CD-T = LX,Y +LY,X. We show

different results with these two variants, and we adopt CD-P

in all our experiments during training. Hence, our recon-

struction loss can be expressed as:

Lrec = CD(Pcoarse,Q) + λfCD(Pfine,Q), (5)

where Pcoarse and Pfine correspond to the coarse output and

fine output, respectively, and λf is the weight for the recon-

struction loss of Pfine.

Adversarial Loss. We adopt the stable and efficient ob-

jective function of LS-GAN [23] for our adversarial losses.

Specifically, the adversarial losses for the generator and dis-

criminator are:

LGAN(G) =
1

2
[D(x̃)− 1]2, (6)

LGAN(D) =
1

2
[D(x̃)2 + (D(x)− 1)2], (7)

where x̃ and x are the generated fake result and the target

ground truth, respectively.

Overall Loss. Our overall loss function is the weighted sum

of the reconstruction loss and the adversarial losses:

L = λLGAN + βLrec, (8)

where λ and β are the weights for GAN loss and the recon-

struction loss, respectively. During training, G and D are

optimized alternatively.

4. Experiments

4.1. Evaluation Metrics

We compare our method with several existing methods

3D-EPN [6], PCN [52] and TopNet [36]. We use two eval-

uation metrics to evaluate results quantitatively. The first

metric is the Chamfer Distance (CD) following [52, 36].

More specifically, we use CD-P for experiments in Sec-

tion 4.4 and use CD-T in the remaining experiments for

fair comparison. The other metric is Fréchet Point Cloud

Distance (FPD) adopted from [33]. FPD calculates the 2-

Wasserstein distance between the real and fake Gaussian

measures in the feature spaces of the point sets:

FPD(X,Y) = ‖mX − mY‖
2

2
+ Tr(ΣX +ΣY − 2(ΣXΣY)

1

2),

(9)

where m and Σ represent the mean vector and covariance

matrix of the points, respectively. Tr(A) is the sum of the

diagonal elements from matrix A. More evaluation details

are shown in supplementary material.

4.2. Datasets

For a fair comparison, we evaluate our method on the

datasets of PCN [52] and TopNet [36]. Partial inputs are

obtained by back-projecting 2.5D depth images into 3D.

30,974 objects from eight categories are selected: airplane,

cabinet, car, chair, lamp, sofa, table and vessel. We also

create our smaller training dataset to measure the general-

ization ability on fewer training data. We only render the

partial scans with one random virtual view instead of eight

random views like PCN, hence the number of our training

data is one eighth of PCN, but we keep the testing data the

same with PCN. The resolutions of the partial and complete

point clouds are 2048 in our created dataset following Top-

Net [36]. We use our testing data for evaluation when train-

ing on the dataset of TopNet.

4.3. Implementation Details

All our models are trained using the Adam [19]

optimizer. We adopt the two time-scale update rule

(TTUR) [15] and set learning rates for the generator and dis-

criminator as 0.0001 and 0.00005, respectively. The learn-

ing rates are decayed by 0.7 after around every 40 epochs,

and clipped by 10−6. λ and β are set to 1 and 200, respec-

tively. λf increases from 0.01 to 1 within the first 50,000 it-

erations. Ns in discriminator is 256. The size Nc of coarse

output is 512. We train one single network for all eight cat-

egories of data.

4.4. Point Completion on the Dataset of PCN

Quantitative and qualitative results are shown in Table 1

and Figure 6. Point resolutions for the output and the

794

Input PCN TopNet Ours GT
5，10，30，45，60，65，70，75，80，100，115，120，135，145，195，210,245,370,395,400,625,
650,690,855, 935,1020,1045,1165,1195

2048 16384 2048 16384 2048 163842048 2048

y

x

Figure 5. Qualitative comparison on our created ShapeNet dataset. The resolution for both partial and ground truth are 2048. We show the

generated results of size 2048 and 16,384 from different methods.

ground truth are 16,384. The quantitative results in Ta-

ble 1 show that we obtain the best performance on all cat-

egories of objects compared to other methods. We obtain

11.74% relative improvement on the average value com-

pared to the second best method PCN. The results indi-

cate that we achieve better performance with more accurate

global shape and finer local structures. From Figure 6 we

can observe that PCN and TopNet fail to recover the fine

details such as legs of a chair and aircraft tails, while our

method successfully generates such structures.

4.5. Point Completion on the Dataset of TopNet

In this experiment, we train our model on the training

data from TopNet2 and then test on our created testing data.

Since we observe that object scales of the training data

are larger than scales of the testing data, we adopt ran-

dom scaling augmentation technique [36] during training

for all methods and the scale values are uniformly sampled

between [1/1.5, 1]. We can see that we achieve better quan-

titative results for all resolutions in Table 2.

2https://github.com/lynetcha/completion3d

795

Methods
Mean Chamfer Distance per point (10−3)

Avg Airplane Cabinet Car Chair Lamp Sofa Table Vessel

3D-EPN[6] 20.147 13.161 21.803 20.306 18.813 25.746 21.089 21.716 18.543

PCN-FC[52] 9.799 5.698 11.023 8.775 10.969 11.131 11.756 9.320 9.720

PCN[52] 9.636 5.502 10.625 8.696 10.998 11.339 11.676 8.590 9.665

TopNet [36] 9.890 6.235 11.628 9.833 11.498 9.366 12.347 9.362 8.851

Ours 8.505 4.794 9.968 8.311 9.492 8.940 10.685 7.805 8.045

Table 1. Quantitative comparison for point cloud completion on eight categories objects of ShapeNet.

Input PCN TopNet GTGTOurs

Figure 6. Qualitative comparison on the dataset of PCN. Point res-

olutions for the output and ground truth are 16,384.

Methods
Resolution

2048 4096 8192 16384

PCN [52] 9.36 8.17 7.28 6.28

TopNet [36] 10.23 8.85 7.47 6.64

Ours 7.61 6.57 5.72 5.21

Table 2. Quantitative comparison on the training data of TopNet.

4.6. Point Completion on Our Training Data

In this section, we show the results on our smaller train-

ing data. Quantitative and qualitative results are shown in

Table 3 and Figure 5, respectively. As shown in Table 3, our

method outperforms both PCN and TopNet on all resolu-

tions. The relative improvements of our method compared

to PCN are 16.08%, 12.97%, 15.36% and 15.56% for all

resolutions on our smaller training data. The improvements

on our smaller training data verify the robustness and gen-

erality of our method. We also generate 2048, 4096, 8192

and 16,384 resolution objects by training one single model

on 16,384 points, and compare the results with that obtained

from independent training of PCN and TopNet. We still

achieve lower CD errors, which verifies the accuracy of our

method.

We get three conclusions from the qualitative results in

Figure 5: (1) Our method is able to generate the details not

only included in the partial scan, but also for the missing

parts, on both high and low resolutions. For example, the

Resolution
Methods

PCN [52] TopNet [36] Ours∗ Ours

2048 9.02 9.88 8.03 7.57

4096 7.71 8.52 6.78 6.71

8192 6.90 7.56 5.98 5.84

16,384 6.17 6.60 5.21 5.21

Table 3. Quantitative results on our smaller training data. We take

CD (10−4) as evaluation . Ours∗ represents the results obtained

by using the single model trained on the 16,384 resolution output.

lampshade (Row 1), the empennage of the car (Row 2), and

the engines of the airplane (Row 3). While both PCN and

TopNet miss the detailed structure and only obtain the gen-

eral object shapes. (2) Our generated points are more evenly

distributed. From the results of desk and chandelier (Row 4

and 5), we can see more points are located on the top sur-

face of the desk and in the top left corner of the chandelier

from PCN, while ours are evenly distributed on the object

surface. (3) Although we mirror the partial input with re-

spect to the xy-plane, our method does not memorize the

mirrored points. As the results shown in the last row of Fig-

ure 5, our generated object is not symmetric with respect

to xy-plane. This verifies that mirroring operation provides

a initialization for the missing points, and accurate point

deformations are estimated by our whole network. More

results are shown in our supplementary material.

4.7. Robustness to Occlusion

To further test the robustness of the models, we manually

occlude the partial inputs from testing dataset by p percent

of points following PCN [52], and p ranges from 20% to

70% with a step of 10%. The quantitative results are shown

in Table 4. Our method achieves the best performance, al-

though the error increases gradually as more regions are oc-

cluded. This shows that our method is more robust to noise

data. More qualitative results are shown in our supplemen-

tary material.

4.8. Point Completion for Classification

Following [32], we also measure the completion quality

by calculating the classification accuracy on the synthesized

complete point clouds. Specifically, we train one classifica-

tion model by PointNet [29]. The upper bound (UP) is cal-

796

culated on the complete points from the testing data and the

lower bound (LP) is calculated on the partial points from the

testing data. The remaining values are obtained by evaluat-

ing the classification model on the generated outputs from

different methods. The quantitative results are shown in Ta-

ble 5. Clearly, the complete outputs provide higher accuracy

because of the defects in the partial data. Our generated re-

sults improve the accuracy by 1.59% compared to PCN and

TopNet, which demonstrates that our outputs are more real-

istic and our results preserve more accurate semantic infor-

mation.

Methods
Occlusion ratios

20% 30% 40% 50% 60% 70%

PCN [52] 7.69 8.84 10.63 13.30 17.20 23.60

TopNet [36] 8.46 9.57 11.30 13.60 17.60 23.20

Ours 5.52 6.72 8.46 11.36 15.26 21.27

Table 4. Quantitative comparison for occluded point clouds under

different occlusion rates. The evaluation metric is mean CD per

point (10−4).

Methods LB UB PCN [52] TopNet [36] Ours

Acc. (%) 70.50 97.33 92.58 92.58 94.17

Table 5. Comparison of classification results among different

methods. The upper bound (UB) represents the result tested on

the complete points (ground truth) of the testing data. The lower

bound (LB) represents the result tested on the partial points of the

testing data. The remaining results are obtained by the synthesized

objects.

4.9. Ablation Study

We evaluate different components in our network, in-

cluding the adversarial training, mean shape, contraction-

expansion unit, mirror operation and different Chamfer Dis-

tance calculations during training. We denote our method

without discriminator as the baseline (BS). We use CD-P as

the evaluation metric and the quantitative comparison are

shown in Table 6. All experiments are done on the 2048

resolution points. We can see that our full pipeline performs

the best. Removing any component decreases the perfor-

mance, which verifies that each component contributes.

Training loss
Methods

w/o MS w/o CE w/o Mir BS w/ Dis

CD-P∗ 7.78 7.83 7.67 7.67 7.61

CD-P♦ 7.80 7.73 7.71 7.68 7.57

CD-T∗ 7.93 7.90 7.76 7.75 7.68

CD-T♦ 8.00 8.01 7.95 7.75 7.62

Table 6. Quantitative comparisons for the ablation study. Dis rep-

resents the discriminator, MS represents the mean shape features,

CE represents the contraction-expansion unit, Mir represents the

mirror operation for partial points. ∗ and ♦ represent the TopNet

training data and our training data, respectively.

chair

airplane

chair table

sofa table

chair

airplane

Figure 7. Shape interpolation results for chair and airplane.

4.10. Shape Arithmetic for Feature Learning

Following previous GAN methods [46, 10, 41, 13, 43],

we show shape transformation by interpolating latent vec-

tors from the encoder. Qualitative results are shown in Fig-

ure 7. The smooth transitions indicate that our learned fea-

tures preserve critical geometric information. The synthe-

sized reasonable object shapes verify the effectiveness of

our cascaded refinement strategy.

4.11. Model Size Comparison

We evaluate the model size in Table 7 from two aspects

for the resolution of 16,384 points: the number of param-

eters and the size of the trained models. We can see that

our model has fewer parameters and smaller size compared

to PCN and TopNet, since we share the parameters in each

cascaded refinement step.

Methods PCN [52] TopNet [36] Ours

#Paras 6.85M 9.96M 5.14M

Size of Model 82.30M 79.80M 61.90M

Table 7. Quantitative comparisons for model size.

5. Conclusion

In this work, we propose a novel point completion net-

work to generate complete points given the partial inputs.

The generator is a cascaded refinement network, which ex-

ploits the existing details of the partial input points and syn-

thesize the missing parts with high quality. We design a

patch discriminator that leverages on adversarial training to

learn the accurate point distribution and penalize the gener-

ated objects from infidelity to the ground truth. We evaluate

our proposed method on the completion datasets. Various

experiments show that our method achieves state-of-the-art

performances.

Acknowledgments. This research was supported in part

by the Singapore Ministry of Education (MOE) Tier 1

grant R-252-000-A65-114, National University of Singa-

pore Scholarship Funds and the National Research Foun-

dation, Prime Ministers Office, Singapore, under its CRE-

ATE programme, Singapore-MIT Alliance for Research

and Technology (SMART) Future Urban Mobility (FM)

IRG.

797

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3D point clouds. In Proceedings of the 35th In-

ternational Conference on Machine Learning. PMLR, 2018.

[2] Andrew C Boud, David J Haniff, Chris Baber, and SJ Steiner.

Virtual reality and augmented reality as a training tool for

assembly tasks. In 1999 IEEE International Conference on

Information Visualization (Cat. No. PR00210), pages 32–36.

IEEE, 1999.

[3] Andrew Brock, Theodore Lim, James M Ritchie, and

Nick Weston. Generative and discriminative voxel mod-

eling with convolutional neural networks. arXiv preprint

arXiv:1608.04236, 2016.

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[5] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,

Jürgen Sturm, and Matthias Nießner. Scancomplete: Large-

scale scene completion and semantic segmentation for 3d

scans. In Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2018.

[6] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.

Shape completion using 3d-encoder-predictor cnns and

shape synthesis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5868–

5877, 2017.

[7] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-

slam: Large-scale direct monocular slam. In European con-

ference on computer vision, pages 834–849. Springer, 2014.

[8] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 605–613, 2017.

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231–1237,

2013.

[10] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-

hinav Gupta. Learning a predictable and generative vector

representation for objects. In European Conference on Com-

puter Vision, pages 484–499. Springer, 2016.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[12] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. Atlasnet: A papier-

m\ˆ ach\’e approach to learning 3d surface generation.

arXiv preprint arXiv:1802.05384, 2018.

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Advances in Neural Information Pro-

cessing Systems, pages 5767–5777, 2017.

[14] Xiaoguang Han, Zhen Li, Haibin Huang, Evangelos

Kalogerakis, and Yizhou Yu. High-resolution shape com-

pletion using deep neural networks for global structure and

local geometry inference. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 85–93,

2017.

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in Neural Information Processing Sys-

tems, pages 6626–6637, 2017.

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017.

[17] Hou Ji, Angela Dai, and Matthias Nießner. 3d-sis: 3d seman-

tic instance segmentation of rgb-d scans. In Proc. Computer

Vision and Pattern Recognition (CVPR), IEEE, 2019.

[18] Angjoo Kanazawa, Michael J Black, David W Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7122–7131, 2018.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[20] Truc Le and Ye Duan. Pointgrid: A deep network for 3d

shape understanding. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 9204–

9214, 2018.

[21] Ruihui Li, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-gan: a point cloud upsampling adver-

sarial network. arXiv preprint arXiv:1907.10844, 2019.

[22] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh

Makadia. Deformable shape completion with graph convolu-

tional autoencoders. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1886–

1895, 2018.

[23] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen

Wang, and Stephen Paul Smolley. Least squares generative

adversarial networks. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 2794–2802,

2017.

[24] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4460–4470, 2019.

[25] Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack,

Mahsa Baktashmotlagh, and Anders Eriksson. Deep level

sets: Implicit surface representations for 3d shape inference.

arXiv preprint arXiv:1901.06802, 2019.

[26] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D

Tardos. Orb-slam: a versatile and accurate monocular slam

system. IEEE transactions on robotics, 31(5):1147–1163,

2015.

798

[27] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In European con-

ference on computer vision, pages 483–499. Springer, 2016.

[28] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 165–174, 2019.

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017.

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems, pages 5099–5108, 2017.

[31] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015.

[32] Muhammad Sarmad, Hyunjoo Jenny Lee, and Young Min

Kim. Rl-gan-net: A reinforcement learning agent controlled

gan network for real-time point cloud shape completion. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5898–5907, 2019.

[33] Dong Wook Shu, Sung Woo Park, and Junseok Kwon.

3d point cloud generative adversarial network based

on tree structured graph convolutions. arXiv preprint

arXiv:1905.06292, 2019.

[34] Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ra-

mani. Surfnet: Generating 3d shape surfaces using deep

residual networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6040–6049,

2017.

[35] David Stutz and Andreas Geiger. Learning 3d shape com-

pletion from laser scan data with weak supervision. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1955–1964, 2018.

[36] Lyne P Tchapmi, Vineet Kosaraju, S. Hamid Rezatofighi, Ian

Reid, and Silvio Savarese. Topnet: Structural point cloud

decoder. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019.

[37] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learn-

ing localized generative models for 3d point clouds via graph

convolution. 2018.

[38] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh

models from single rgb images. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 52–67,

2018.

[39] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3d shape analysis. ACM Transactions on

Graphics (TOG), 36(4):72, 2017.

[40] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.

Adaptive o-cnn: a patch-based deep representation of 3d

shapes. In SIGGRAPH Asia 2018 Technical Papers, page

217. ACM, 2018.

[41] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018.

[42] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich

Neumann. 3dn: 3d deformation network. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1038–1046, 2019.

[43] Weiyue Wang, Qiangui Huang, Suya You, Chao Yang, and

Ulrich Neumann. Shape inpainting using 3d generative ad-

versarial network and recurrent convolutional networks. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 2298–2306, 2017.

[44] Anthony Webster, Steven Feiner, Blair MacIntyre, William

Massie, and Theodore Krueger. Augmented reality in ar-

chitectural construction, inspection and renovation. In Proc.

ASCE Third Congress on Computing in Civil Engineering,

volume 1, page 996, 1996.

[45] Huikai Wu, Junge Zhang, and Kaiqi Huang. Point cloud

super resolution with adversarial residual graph networks.

arXiv preprint arXiv:1908.02111, 2019.

[46] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and

Josh Tenenbaum. Learning a probabilistic latent space of

object shapes via 3d generative-adversarial modeling. In Ad-

vances in neural information processing systems, pages 82–

90, 2016.

[47] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu,

Serge Belongie, and Bharath Hariharan. Pointflow: 3d point

cloud generation with continuous normalizing flows. arXiv

preprint arXiv:1906.12320, 2019.

[48] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 206–215, 2018.

[49] Wang Yifan, Shihao Wu, Hui Huang, Daniel Cohen-Or, and

Olga Sorkine-Hornung. Patch-based progressive 3d point set

upsampling. In The IEEE Conference on Computer Vision

and Pattern Recognition, June 2019.

[50] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Ec-net: an edge-aware point set consoli-

dation network. In Proceedings of the European Conference

on Computer Vision, pages 386–402, 2018.

[51] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-net: Point cloud upsampling network.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2790–2799, 2018.

[52] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and

Martial Hebert. Pcn: Point completion network. In 2018 In-

ternational Conference on 3D Vision, pages 728–737. IEEE,

2018.

[53] Ziwei Liu Sanjay E. Sarma Michael M. Bronstein Justin

M. Solomon Yue Wang, Yongbin Sun. Dynamic graph

cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018.

799

