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Abstract 

Cascaded codes are long codes that a r e  constructed by successively encoding a 
se r i e s  of relatively short constituent codes. The purpose of cascading is to facilitate 
decoding by dividing the composite decoding process into a sequence of relatively 
simple steps,  each of which corresponds to the decoding of one of the constituent 
codes. 

In this report cascading techniques in which the constituent codes are t r ee  codes 
are studied. We determine the efficiency attainable with cascading, and bound the 
attainable e r r o r  probability in terms of the composite decoding complexity. Our major 
results in these areas a r e  the following. 

1. A 2-stage cascaded t r ee  code can be formulated to yield an e r r o r  exponent 
that equals 1/2 of the single-stage e r r o r  exponent at all rates below capacity. 

2. If N is the composite decoding complexity p e r  decoded symbol for a cascaded 
t r ee  code in which maximum-likelihood decoding is applied to each constituent code, 
it is possible to find, in the limit of asymptotically large N, a code for  which the 

decoding e r r o r  probability becomes arbitrari ly close to ( l / N )  (C/R) 

It is possible to use sequential decoding on the outer stage of a cascaded t r ee  
code and yet communicate at a composite rate exceeding R provided that the comp’ 
alphabet s izes  of the constituent codes a r e  suitably restricted. 

We also show how to apply the Viterbi decoding algorithm to an unterminated t r ee  
code, and describe the burst characteristics of decoding e r r o r s  made by a Viterbi 
decoder. Finally, we present techniques for  efficiently realizing a useful class of 
synchronous int e r leavers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. 
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I. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.1 COMMUNICATION IN THE PRESENCE OF NOISE 

Were it not for noise and distortion, there would be no difficulty in accurately trans- 

mitting messages from one point to another. 

the signal representing a message could amplify the signal with a noiseless amplifier to 

obtain an exact copy of the transmitted signal. 

by noise and distortion that engenders the need for information theory and associated 

signal- proces sing techniques. 

The recipient of an attenuated version of 

It is therefore the corruption of signals 

Until the late 1940's  communication engineers believed that this corruption limited 

the accuracy with which transmitted messages could be reproduced by the receiver. They 

thought that no amount of signal processing could increase the reliability of message 

reproduction beyond a level that depended on parameters  like the signal-to-noise ratio. 

publication of hitherto aston- 

ishing discoveries. 

to transmit discrete selections over corruptive channels with arbitrari ly high reliability, 

provided only that the rate at which information is conveyed is kept below a value called 

channel capacity which depends on the corruptive properties of the channel. 

elaborate, however, on the realization of practical signal-processing techniques, nor 

on the amount of reliability attainable with a given amount of signal processing. Indeed 

these a r e  very difficult questions that have occupied the efforts of communication theo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

rists for the last zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo decades, and which a r e  still largely unsolved. Gallager has pre-  

sented a summary of many contemporary results. 

Modern communication theory began with Shannon's'' 

He demonstrated that with enough signal processing it is possible 

He did not 

1 .2  COMMUNICATION OVER DISCRETE MEMORYLESS CHANNELS 

It is difficult to be precise without considering a specific model for the communica- 

tion process. One of the simplest models that represents a reasonably large class of 

noisy physical communication channels is the discrete memoryless channel (DMC), 

which has a finite input alphabet of K symbols, a finite output alphabet of J symbols, 

and is characterized by a time-invariant set of channel transition probabilities 

{pjk= Pr (output= jl input= k)}, where k belongs to the input alphabet, and j to the output 

alphabet. The effects of noise and distortion a r e  reflected in the values of the channel 

transition probabilities. 

Suppose that a block of N channel symbols is used to represent one of M messages. 

The parameter 

called the information rate, represents the rate at which information is going into 

the channel. Let the transmitted sequence corresponding to the mth message be 

1 



xm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Xlm’ XZm’ . . . , x Nm), l G m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG M, and le t  the corresponding received sequence be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the output alphabet. Now consider the ensemble of KMN communication systems that a r e  

possible by distinguishable assignments of the {xi,>, where the {xim} a r e  selected inde- 

pendently f rom a probability distribution Q(k). Gallager4’3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas shown that if  a maximum- 

likelihood decoder is used fo r  each communication system, the probability of decoding 

e r r o r  averaged over the ensemble of communication systems satisfies 

- ym - - (ylm, yZm, . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa .  , yNm), where the {x. ) belong to the input alphabet, and the {y. } to 
im im 

- -  
= Pe < exp -NE(R), 

’e, m 

where 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

The quantity E(R) is called the block code exponent for the channel. 

that for a DMC, the E(R) curve looks somewhat like the curve shown in Fig. 1, and has 

the following properties: There is a rate C called channel capacity for which E(R) > 0 

for all R, 0 G R < C. 

for which the E(R) curve of a DMC has a straight-line portion with slope -1 for all R, 

0 < R < Rcrit. 

Gallager has shown - - r. 

There is another rate R called the critical rate, 0 G Rcrit G C, crit  - 

The intercept of the straight-line portion of the E(R) curve with the rate 

E 

R 

Fig. 1. Block-code and tree- code exponents. 

R .  crit Rcanp C 

axis is called the computational cutoff -- rate R comp’ It is evident that Rcomp is numeri- 

cally equal to E(O), and also that Rcrit < Rcomp G C. The ra tes  Rcrit, Rcomp, and C 

all have various engineering significance with respect to communication over the DMC; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 



some of these properties will  be brought out l a t e r  in appropriate sections of this report. 

Each distinguishable assignment of the {x. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA} to represent the messages is called a 

- code, and it represents  a particular mapping of the M possible messages into the code 

words x Equation 2 asse r t s  the existence of at least one code for which 

the probability of decoding e r r o r  decreases  exponentially with the block length N. 

Shannon, Gallager, and Berlekamp have recently demonstrated that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor equally probable 

messages, there is an exponent EL(R) such that for all KMN possible codes 

im  

x2, 
. . . , xM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1’ - 
5 

where o(N)  - 0 as N - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. Furthermore,  

< R <  C. 
Rcrit 

The preceding discussion suggests that block coding should be an efficient technique 

for  achieving reliable communication over a DMC at all r a t e s  below channel capacity. 

This conclusion follows from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  and ( 5 ) ,  which a s se r t  the existence of block codes for 

which the probability of decoding e r r o r  decreases  exponentially, but no faster,  with the 

block length. Unfortunately, any known decoding technique equivalent to maximum- 

likelihood decoding of an a rb i t ra ry  block code requires a decoding effort that grows expo- 

nentially with the block length. 

only algebraically with the decoding complexity, thereby substantially reducing the 

attractiveness of using block coding with maximum-likelihood decoding. Some computa- 

tionally efficient techniques for decoding particular block codes of particular s t ructures  

have been discovered, however. Many of these techniques a r e  treated in books by 

Peterson and by Berlekamp. 

Thus the probability of decoding e r r o r  tends to decrease 

6 7 

Block codes a r e  a subclass of a more general class of codes known as t r e e  codes. 

The structure and properties of t r ee  codes a r e  treated extensively in Section 11. In gen- 

eral ,  a t r ee  encoder supplies b channel symbols to the channel for each t source sym- 

bol that it receives f rom the source. One of the parameters  that characterizes a t r ee  

code is its constraint length v,  which can roughly be interpreted as meaning that each 

set  of b channel symbols supplied to the channel depends on, in some sense, only the 

last v t  source symbols supplied by the message source. 

nel symbols (that is ,  vb) of a t r e e  code is analogous to the block length of a block code. 

There a r e  ensembles of t r ee  codes for which the probability of decoding e r r o r  per source 

symbol is bounded: 

The constraint length in chan- 

- 
Pe < exp -vb[e(R)- o(vb)], ( 7 )  

where e(R) is the t r ee  code exponent for the channel, and e(R) > 0 for all R, 0 < R < C .  

Moreover, e( R) is substantially greater  than E(R), especially at rates approaching chan- 

nel capacity. The comparison of e(R) and E(R) is shown in Fig. 1. In Section I1 it 

is shown that 

- 

3 



and e(R) then declines to zero approximately linearly with increasing rate for R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 
co mp 

R C. 

There a r e  at least two good reasons for studying encoding and decoding techniques 

for t r ee  codes. One reason is that the t r ee  code exponent is substantially grea te r  than 

the block code exponent at  ra tes  approaching channel capacity, which suggests that t r ee  

codes may be much more efficient than block codes in providing reliable communication 

over a DMC. The second reason is the existence of sequential decoding, which is a 

simple but powerful decoding technique that is applicable to all t r ee  codes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

INNER 
ENCODER 

DATA 
OUTER 

S O U R T  

1 . 3  CASCADING OF CODES 

INNER 
DECODER 

CHANNEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

Since the code exponents E(R) and e(R) may be small  at ra tes  approaching channel 

capacity, (2)  and (7) suggest that the constraint length of an efficient code may have to 

be large in order  to drive the probability of decoding e r r o r  below some acceptable level. 

Meanwhile the decoding complexity grows - often very rapidly - with the constraint 

length. The coding problem is to find good, long codes that can be easily decoded. 

One effective general approach to the coding problem is cascading. This technique 

is illustrated in Fig. 2 for  a code with two stages of cascading. 

cading is quite simple: A code with a long constraint length is constructed by cascading 

The basic idea of cas- 

, / , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

COMPOSITE ENCODER COMPOSITE DECODER 

Fig. 2. Two-stage code cascading. 

the outputs of two or  more constituent encoders, each of which generate a code with a 

relatively short constraint length. There a r e  several  techniques for  cascading block 

codes in which the composite constraint length is equal to the product of the constraint 

lengths of the constituent codes. Some of these techniques require symbol interleaving 

between successive stages of coding, in which case the encoders and decoders shown 

in Fig. 2 a r e  assumed to contain the appropriate interleaving and unscrambling devices. 

The decoding of cascaded codes is accomplished by successively decoding the constitu- 

ent codes, stage by stage. Thus the composite decoding complexity is equal to the sum 

of the decoding complexities of the constituent codes. 

technique whenever it can yield a substantial reduction in the decoding complexity 

required to attain a given decoding e r r o r  probability at a given information rate. 

Two classes  of cascaded block codes that have been extensively studied a r e  Elias’s 

product codes and Forney’s9’ l o  concatenated codes. 

Cascading is an effective encoding 

8 

These coding techniques wil l  be 

4 



9 reviewed in Section V. Forney showed, however, that it is possible to construct long 

block codes involving many stages of coding fo r  which the decoding complexity is pro- 

portional to N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, while the probability of decoding e r r o r  can be made nearly exponential 

in N: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

Pe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC exp -K(R)N (1-A) 
(9) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is a nonzero, positive quantity that can be made arbitrari ly small. Thus in 

the limit of high decoding complexity and low probability of e r r o r ,  cascading of block 

codes achieves a probability of e r r o r  that decreases  nearly exponentially with decoding 

complexity. 

Forney zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9y l o  also investigated the properties of concatenated block codes which con- 

sisted in exactly two stages of coding. 

stage cascaded block code with composite length N and composite rate R such that the 

probability of decoding e r r o r  is exponentially bounded : 

He showed that it is possible to construct a two- 

Pe < exp -NEC(R), 

where EC(R) is the cascaded e r r o r  exponent, and 

E(R) 2EC(R)  > 0, 0 S R <  C. (1 1) 

He defined the efficiency of two-stage cascading as the ratio of E ( R )  to E(R). 

reciprocal of the efficiency indicates roughly how much longer a cascaded code should 

be to yield the same probability of decoding e r r o r  as a single-stage code satisfying (2). 

F o r  one specific example he found that the efficiency w a s  monotonically decreasing with 

rate, w a s  0. 5 at R = 0,  and approximately 0. 02 at R = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.9C. 

the cascading of block codes appears to produce a substantial reduction in the coding 

performance when compared with an efficient single- stage code. 

The 
C 

At high rates,  therefore, 

Since t r ee  codes a r e  markedly superior in performance to block codes at high rates,  

and since c-ascading is an effective, though perhaps inefficient, technique for constructing 

long block codes, it is natural to wonder whether cascading could usefully be applied to 

t r ee  codes, and whether the cascading of t r ee  codes would be superior in some ways to 

the cascading of block codes. Some 

methods for constructing and decoding cascaded t r ee  codes a r e  presented, with emphasis 

on techniques that appear to require a minimal amount of implementational complexity. 

The efficiency of cascading t r e e  codes is also studied, and is found to be greatly superior 

to the efficiency obtained in the cascading of block codes. 

We investigate such questions in this report. 

1.4  OUTLINE OF THE REPORT 

To study cascaded t r ee  codes, a large amount of introductory mater ia l  is required. 

In Section I1 the reader is introduced to the concept, mathematical structure, and e r r o r -  

correcting capabilities of t r ee  codes. Although little of this material is original, the 

5 



author believes that its presentation in this report wil l  provide the reader  with a much 

quicker and deeper understanding of t r ee  codes than could be obtained by reading most 

of the readily available l i terature on the subject. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII two methods of decoding 

t r ee  codes a r e  considered which appear attractive for decoding the constituent codes of 

a cascaded t r ee  code. Some of this material, particularly that concerning the Viterbi 

decoding algorithm, is new. The new results include efficient application of the algo- 

rithm to high-rate systematic convolutional codes, application of the algorithm to 

unterminated t ree  codes, a study of the asymptotic distribution of the delay required for 

unique maximum-likelihood decoding of an unterminated t r e e  code, and an analysis of 

the expected character of decoding e r r o r  patterns. In Section IV the results of a com- 

puter simulation of Viterbi algorithm decoding of short-constraint-length random t r ee  

codes a r e  presented. The principal results a r e  observations concerning the decoding 

lag distribution, evaluation of the e r r o r  probability as a function of the decoding lag, and 

a study of the burst characteristics of decoding e r r o r s  as a function of rate and con- 

straint length. Section V contains the results that wi l l  probably be of most interest. 

Several methods for constructing cascaded t r ee  codes a r e  considered, including tech- 

niques analogous to product coding and concatenation for  block codes. 

coding-theorem efficiency of two-stage cascading of t r ee  codes is then investigated, and 

for concatenationlike codes is shown to be greatly superior to that obtained in the 

cascading of block codes, especially at  ra tes  approaching capacity. Next, we derive an 

asymptotic bound on the attainable e r r o r  probability expressed as a function of the com- 

posite decoder complexity for  cascaded t r ee  codes in which maximum-likelihood decoding 

is applied at each stage of decoding. Section V concludes with an examination of the 

question of which decoding techniques appear to be practical for decoding the constituent 

codes. 

ment in performance with modest decoding complexity. 

it is possible to use sequential decoding on the outermost stage and still operate at a 

composite rate exceeding R 

synchronous interleavers that a r e  required to construct some of the classes  of cascaded 

t r ee  codes described in Section V. 

The asymptotic 

The emphasis is on finding decoding techniques that provide reasonable improve- 

We show conditions for which 

Section VI deals with the efficient realization of the 
comp' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 



11. PROPERTIES O F  TREE CODES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 STRUCTURE 

One should clearly understand the mathematical and geometric structure of t r ee  

codes before attempting to study their other properties. This section, which is based 

largely on Forney's work, l 1  furnishes an introduction to  the structure of t r e e  codes. 

Tree codes a r e  named fo r  the geometric structure usually associated with the 

encoding process. 

priate geometric representation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that it would be natural to call these codes "trellis 

codes." It is unlikely that this renaming will ever occur, however, since the te rm "tree 

codes 

For  many t r ee  codes a trellislike structure might be a more appro- 

has become firmly established in the literature of coding. 

Tree codes a r e  most naturally applied to  an unending sequence of symbols to be 

encoded. F o r  this reason, it is assumed that the data source supplies an indefinitely 

long ordered sequence of source letters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , s - ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs o ,  sl, . . . , where each source letter 

comes from an alphabet of size q. The most common example is the binary source, for  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(10) 12 

(01) 20 
(10) 00 

1 (oo) 21 ;:" 
(01) 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(00) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.  Example of the encoding process 
for a t r ee  code. 

which q = 2. 

In a tree encoder the source sequence is 

partitioned into subblocks containing t con- 

tiguous source letters each. Each subblock, 

containing the t source letters contiguous 

to  the source letters in the adjacent sub- 

blocks, is called a source branch, and is 

encoded into a channel symbol branch com- 

prising a sequence of b channel symbols, 

where the channel symbols come from an 

alphabet of size qc. 

of a t r ee  encoding process for which q = t = 

b = 2 and q = 3. For the tree code shown, 

the data sequence . . . , 1, 0, 1, 0, . . . would 

be encoded into the channel sequence 

. . . , 0, 0, 1, 2, . . . , and the data sequence 

. . . , 0, 1, 1, 1, . . . would be encoded into 

the channel sequence . . . , 1, 2, 2, 2, . . . . 
The t r ee  structure of the encoding process 

is evident in Fig. 3. A branch of channel 

symbols is supplied to the channel whenever 

a source branch is received from the source. 

The rate of a t r ee  code in nats p e r  channel 

symbol is thus 

Figure 3 is an example 

C 

(12) 
t 
b 

r = - In q. 

7 



One of the most important characterist ics of a t r e e  code is its encoding constraint 

length v. 

only the v t 1 source branches received immediately before the transmission of the 

branch. The units of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv are thus source branches, a convention that differs some- 

what from the definitions used by other authors. 

code and the block length of a block code are measures of the encoding memories of their  

respective classes of codes, and both exhibit s imilar  general effects with respect to  

encoding and decoding complexity and to  attainable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAerror probability. 

Precisely, the channel symbols assigned to any branch are determined by 

Both the constraint length of a tree 

Whenever a tree code has a finite constraint length, there is a rather natural geo- 

metric representation of the encoding process that is more trellislike than treelike. 

(Subsequent discussion throughout this report  is restricted to t r ee  codes with finite con- 

straint length.) This representation is easily developed through the concepts of merging 

and of the state of the encoder. 

The concept of the state of the encoder was first defined by Omura. “After a channel 

branch has been specified, the next branch will be determined by only the last  v source 

branches already received plus the next source branch that will be provided by the 

source. Accordingly, the state of the encoder can be defined by the v source branches 

received immediately before the time at which the most recent channel branch was spec- 

ified. It is evident that there are qvt possible encoder states and that q different out- 

comes can occur for  the next channel branch when the encoder is in a particular state, 

depending on the next t let ters received from the data source. 

t 

Now consider any two semi-infinite sequences of source symbols S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2 supplied 
1 

By the definition of constraint after the encoder is in some prespecified initial state. 

length, if the elements of S1 and S 

contiguous source branches, then the channel symbols selected by the encoder will 

be identical until the next branch in which S1 and S, differ. SI and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, a r e  said to 

be merged at all branches for which the last  v t 1 branches of S1 and S2 are iden- 

tical, and S1 and S, a r e  unmerged at all other branches. Augmenting these defini- 

tions, we define a merged - span (with respect to  SI and S2) as a set of contiguous 

branches that are all merged, and an unmerged span as a se t  of contiguous branches 

that are all unmerged. Corresponding to  S1 and S,, therefore, there is a sequence 

of merged spans alternating with unmerged spans. Each span is nonempty and is 

disjoint f rom all other spans. The length of a span can be arbitrary,  but by defini- 

tion an unmerged span must contain at least  v branches. 

a r e  identical over a sequence of Y t 1 or more zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

- 

The concepts of merging and of encoder state are illustrated in Fig. 4, which 

is a trellislike representation of a t r e e  code for  which q = 2, t = 1, and v = 3. The 

lightly drawn lines represent the possible branches originating from each encoder 

state. At each stage of penetration into the trell is  there a r e  q ( v t l ) t  branches, which 

correspond to  all of the independent combinations of source letters that a r e  possible 

within the constraint length of the code. Going to  and emerging from each state are 

q branches, corresponding to all of the possible combinations of t source symbols 
t 
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occurring in the last  source branch and the next source branch, respectively. The 

se t  of states having branches going to a particular state a r e  the predecessor states 

for that state, and the set of states that are immediately reached by the branches 
t emerging from a state are the successor states for that state. 

predecessor states and q successor states.  Observe that there are qt states that 

share  the same se t  of predecessor states,  and furthermore that these a r e  the only 

states that can be reached immediately from these q predecessor states. One can 

therefore partition the qvt states into subsets in two ways: one partition contains 

the q (v-l)t  predecessor sets, and the other partition contains the q (v-l)t successor 

sets. These partitions are generally different. 

Each state has q 
t 

t 

The se t  of branches corresponding to  a particular sequence of source symbols 

is called a path. The heavily drawn lines in Fig. 4 are the paths corresponding to 

the source sequences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . O O O l l O l l O l . .  . and . . . O O O l O l l l O l . .  . . These paths clearly 

show the merging property: The sequences a r e  merged a t  the initial and final branches 

shown in the figure, and a r e  unmerged elsewhere. 

unmerged span is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv branches longer than the length of the span in which the source 

sequences differ. 

- 

Observe that the length of the 

Figure 4 emphasizes the fact that only a finite number of branch specifications 

a r e  possible at each stage of penetration into the coding trell is ,  because of the prop- 

er ty  that the constraint length is finite. This point is not s o  easily recognized from 

the treelike representation shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, where one might be tempted to infer 

that the number of branch specifications at any stage of penetration into the code 

t r ee  grows exponentially with the depth of penetration. 

The merging concept is a useful tool for understanding the occurrence of decoding 

e r r o r s  in a maximum-likelihood decoder for memoryless channels. Let S1 be the 

sequence of symbols supplied by the data source, and suppose that S2 is identical 

to S1, except for a single unmerged span of finite length. 

to S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2 would then look somewhat like the heavily drawn lines shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

Furthermore, suppose that the decoder decides that the portion of S2 included in the 

unmerged span is more probable than the corresponding portion of S Then a 

decoding e r r o r  will  certainly occur, since the entire sequence S2 is more probable 

than S1. 

able than S2 over the entire sequence, and which may be the sequence that is actually 

decoded. The intersection of the span in which S and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 2  are unmerged with the 

spans in which S1 and S3 are unmerged will be nonempty, however, since otherwise 

the sequence S4, which is identical to S2 over the span in which S1 and S2 a r e  

unmerged and identical to  S3 elsewhere, is more probable than S 3 ,  thereby contra- 

dicting the hypothesis that S3 is the choice of a maximum-likelihood decoder. 

The relationship between merging and maximum-likelihood decoding is used effec- 

tively in the Viterbi algorithm for decoding t r ee  codes. This subject will treated 

extensively in Section 111. 

The paths corresponding 

1 

1’ 

Of course, there may exist a third sequence, S 3 ,  that is even more prob- 

1 
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It is trivial to observe that t r ee  codes include block codes as a subclass. The 

simplest example of a class of block codes derived from t r ee  codes is the subclass 

of t r ee  codes for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. The most common subclass of these block codes is 

the binary codes for  which q = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = 2, N = b is the block length, and the normalized 

rate is t /N bits pe r  channel symbol. 

class,  they must be at least as good as block codes in general. 

C 

Since t r ee  codes include block codes as a sub- 

A much more interesting way of constructing a block code from a t r ee  code is 

to  form a terminated t r ee  code. After every se t  of K source branches has been sup- 

plied by the source, the encoder inserts a resynchronizing sequence of v fixed, 

dummy source branches (frequently all "zeros") which is also known to the decoder. 

After the last  dummy source branch, and every (Ktu)th branch thereafter, the decoder 

known unambiguously the state of the encoder. 

of K t u branches form independent blocks. The t r ee  code is said to  be terminated 

after the (KtuIth channel branch, and thus in this way a terminated tree code is 

made into a block code. The length of the resulting block code is therefore N = 

b(Ktv), representing qtK possible code words, s o  that the block code rate is 

Consequently, the successive sequences 

R = -  Kt In q = X r  
(Ktv)b 

nats per  channel symbol. Forney" calls the parameter 

K 
K t u '  

X = -  

the synchronization ra te  loss. 

Wozencraft and Reiffen13 used terminated t r ee  codes as a practical means of 

retaining o r  re-establishing synchronization during the decoding process, while Forney 

used them analytically to determine bounds on the t r e e  code e r r o r  exponent in terms of 

the more easily derived block code e r r o r  exponent. 

11 

2 . 2  CLASSIFICATION 

Several classes of t r e e  codes will be defined here. Each of these classes is use- 

ful because it is either analytically tractable o r  relatively simple to implement in 

practice. The classifications are based on the properties of the encoding process. 

2.2.1 Random Tree Codes 

A random tree code is an ensemble of t r ee  codes in which the b channel sym- 

bols assigned to each branch are chosen at random independently of each other and 

a r e  also chosen independently of the channel symbols assigned to  all of the other 

distinct branches in the trell is  representation of the code. The channel symbols a r e  

selected according to a probability distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbJ, where pk is the probability of 

choosing channel symbol k, k =  1, 2, . .  . ,  qc. For  any specific code in this class,  

11 



the channel symbols assigned to a given branch (in time) corresponding to two dif- 

ferent source sequences a r e  either identical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor totally independent, depending on 

whether the two sequences are merged at that branch. 

It would be absurd to contemplate building an encoder and decoder fo r  a randomly 

selected t r ee  code, since the equipment complexity would be prohibitive. The useful- 

ness of random t r ee  codes is that they are amenable to relatively simple analysis. 

We shall exploit that property in section 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. 

2.2 .  2 Convolutional Codes 

Convolutional codes (sometimes called "recurrent codes ' I )  constitute the class  of 

linear t r ee  codes, and these codes a r e  the coding class  usually associated with t r ee  

codes. Let the source symbols and the channel symbols be elements of the finite 

field of q elements, GF(q). 

the source sequence S1, and X2 is the channel sequence corresponding to  S2, then for 

a convolutional code the channel sequence X1 t cX2 will be generated when the source 

sequence is S The fact that convolutional 

codes are l inear makes their  implementation relatively simple. 

We introduce the following notation: Let the t source symbols in the ith branch 

be designated sij, j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, 2, . . . , t ,  and let the b channel symbols in the ith branch 

be designated x k = 1, 2,  . . . , b.. Then for  a convolutional encoder, the {xlk) can 

be expressed in t e rms  of the {s..} as follows: 

If X1 is the channel symbol sequence corresponding to 

t cS2, where c is any element of GF(q). 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ik' 

1J 

The elements {g. 

xik made by the source symbol s ( ~ - ~ ) ~ .  

(i)} are elements of GF(q), nd they indicate the contribution to 

The running variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 in (15) indicates the 
JkQ 

sou= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SYMBOLS 

CHANNEL 

SYMBOLS 
- 

Fig. 5. Generalized realization of a convolutional encoder. 
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delay in branches since s ( ~ - ~ ) ~  was received; since the constraint length of the code 

is v, g. (i) is identically zero except for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ s v. In t e rms  of i and 8, (15) 

assumes the form of a convolution, which accounts for the t e r m  "convolutional 

code." Figure 5 shows a circuit for realizing (15). This device, adapted from 

gall age^-,^ comprises two commutators, t (vt1)-stage shift registers,  (vt1)bt GF(q) 

JkQ 

multipliers, and b GF(q) adders. 

however, 

In general, the multipliers {g. (i)} a re  
JkQ 

gjkQ(i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= gjkQ' 
all i, j ,  k, Q 

the code is said to be a time-invariant convc 

functions of the branch number i. If, 

(16) 

utional code; ot-ierwise, if (16) is not 

satisfied, the code is a time-variant convolutional code. 

The systematic codes a r e  an important subclass of convolutional codes, for which -- 

g. (i) = 0, a l l l s j # k < t ,  O s Q s v .  
JkQ 

Equations 17 merely state that the f i rs t  t symbols in each channel branch a r e  iden- 

tical to the corresponding source branch symbols. Both time-invariant and time- 

variant convolutional codes can be systematic. 

is that they can be decoded trivially in the absence of channel e r r o r s .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA useful feature of systematic codes 

The representation (15) suggests that convolutional codes can be defined in te rms  

of a generator matrix in the same way that linear block codes can be described. Let 

the source sequence S be represented by the semi-infinite column vector 

and let the channel sequence X be represented by the semi-infinite column vector 

XT = X l l  X12 . . . X l b  XZ1 XZ2 . . . XZb x31 . . . . 

Let Gi be a two-dimensional semi-infinite matrix whose elements a r e  all identically zero 

except for the submatrix GI consisting in rows [(i-b)+l] to ib inclusive and columns 

[ ( i - v - l ) t t l ]  to it inclusive. The nonzero t e rms  of Gi form the (vt1)t X b a r r a y  

13 



Define G to be the matrix sum of the {Gi), subject to  the additional condition that 

(The condition is equivalent to the assumption that the 
gmn 
encoder is in the all-zero state before the f i r s t  source branch is supplied by the data 

source.) Then it follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 f o r  m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor n G 0. 

X = GS, (21) 

where G is a two-dimensional semi-infinite matrix that defines the convolutional code 

specified by (1 5). 

sentation given by Wyner and Ash.14 In this representation, a convolutional code is 

defined in t e r m s  of a two-dimensional semi-infinite parity-check matrix H such that 

for every possible channel sequence X 

An alternative description for a convolutional code is the parity-check matrix repre- 

HX = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 2 )  

The parity-check matrix representation is the dual of the generator matrix repre-  
15 

sentation, and for a time-invariant convolutional code with a unique inverse Forney 

has shown that it is always possible to find a parity-check matrix H corresponding 

to a given generator matrix G, or vice versa.  This is generally a difficult prob- 

lem, however, except in the case of systematic convolutional codes. In that case,  

Wyner16 has shown that the a r r a y  (20 )  has the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(23 )  

where 0 is the t X t zero matrix, It is the t X t identity matrix, and the {Gil}, i = 

0, 1, . . . , v a r e  t X (b-t) matrices whose elements define the systematic convolu- 

tional code. Define Hsi as the two-dimensional infinite matrix whose elements a r e  

all identically zero, except for the submatrix H;i consisting in rows [(i- l)(b-t)t l]  to 

i(b-t) inclusive and columns [(i-v-l)btl] to ib inclusive, and whose nonzero t e rms  form 

the (vt1)b X (b-t) a r r a y  

t 

where O,b-t is the (b-t) X (b-t) zero matrix, and Ib-t is the (b-t) X (b-t) identity 

matrix. Let Hs be the matrix sum of the {Hsi), again subject to the condition that 

Then for the convolutional code defined by (23)  and 
hmn 
the two-dimensional semi-infinite matrix H defined by (24), it follows that 

= 0 for  m d 0 o r  n G 0. 

S 

HsX = 0,  (25) 

s o  that Hs is the parity-check matrix corresponding to the systematic convolutional 

code whose generator matrix elements are given by (23) .  

14 



Let the sequence of symbols detected by the receiver be represented by the 

semi-infinite column vector Y whose entries {yiJ a r e  elements of GF(q): 

Furthermore, suppose that the received sequence can be accurately modeled as the 

sum of the transmitted sequence and an additive sequence of the channel-introduced 

e r r o r s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, where the e r r o r s  a r e  statistically independent of the transmitted sequence : 

Y = X t E ,  (27)  

where 

l b  e21 e22 * ' *  e2b e31 ".  ' = e l l  e12 . . . e 

and the { e d  a r e  elements of GF(q). As with block codes, the syndrome Sy  corre-  

sponding to the received sequence Y is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S y  = HY = H ( X t E )  = HX t HE = HE, ( 2 9 )  

by using (22) .  

duced 'by the channel. 

tive channels is to determine which member of the class of e r r o r  sequences defined 

by the syndrome was most likely to have occurred, and to subtract it from the 

received sequence to yield the most probable transmitted sequence. 

Two important classes of convolutional codes are those for  which the normalized 

rate is either l /n  o r  (n-l)/n, where n is an integer. Here, these classes are simply 

called low-rate codes and high-rate codes, respectively. 

Thus the syndrome defines the class of e r r o r  sequences that was intro- 

One way to realize a maximum-likelihood decoder for addi- 

--- --- 

2. 3 CAPABILITIES 

We shall conclude with a demonstration that some classes of t r ee  codes are mark- 

edly superior to block codes in their  ability to correct e r r o r s ,  for  a given ra te  

and coding constraint length. The purpose here  is to provide motivation rather than 

rigor. By confining the derivation to  a very simple example with limited applica- 

bility, we hope to  establish the credibility of similar,  more general results obtained 

by others, and to convince the reader that there is a performance advantage to  be 

gained by using certain classes of t r ee  codes. The development here is again based 

on Forney's work. 
11 

Recall from ( 2 )  that for  random block codes of length N and rate R used on a 

DMC the average probability that a code word is erroneously decoded after maximum- 

likelihood decoding is upper-bounded by 

15 



where E(R) is the block code exponent. 

probability distribution (pk} of assigning channel input symbols is suitably chosen, 

and when all symbols in all code words are chosen from that distribution with sta- 

tistical independence. This condition is then reduced slightly to require only pair- 

wise independence: that is, (30) applies whenever the symbols in any code word are 

chosen independently of the symbols assigned to any other code word. 

Gallager3’ shows that (30) applies when the 

A reasonable comparison of block codes and t r ee  codes is a comparison of their  

error-correcting performance pe r  channel symbol as a function of the encoding con- 

straint lengths. Since (30) is an upper bound on the block e r r o r  probability, it is 

also an obvious upper bound on the symbol e r r o r  probability for a block~code. On 

the other hand, (5)  asse r t s  that the block e r r o r  probability for any code is lower- 

bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HE) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> exp -NIEL(R)+ol(N)], (31) 

where ol(N) is a t e r m  that goes to zero with increasing N, and EL(R) is essentially 

equal (exactly equal for Rcrit R 

the symbol e r r o r  probability for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs C) to E(R). Thus an obvious lower bound on 

block code is 

> - 1 exp -NIEL(R)+ol(N)] 
PSB N 

r 
= exp -N EL(R) +ol(N) + $ lnN] 1 
= exp -N[EL(R)+02(N)] (32) 

and thus, asymptotically, the symbol e r r o r  probability for  a random block code is 

equal to exp -NE(R) for Rcrit s R 

Now it can be shown that the class of terminated random t r e e  codes is greatly 

superior to block codes in t e rms  of symbol e r r o r  probability as a function of encoding 

constraint length. 

C. 

It is helpful at first to understand explicitly the geometrical interpretation of a 

decoding e r r o r  in a terminated random tree code. For such a code, the encoder 

state is pre-specified every K t v branches, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that all of the paths through the 

coding lattice converge every K t v branches. Define the correct path as the path 

in the coding lattice that corresponds to the symbols supplied by the data source. 

Lf a decoding e r r o r  occurs in the maximum-likelihood decoding of a terminated tree 

code, then some other path in the coding lattice must be more probable than the 

correct path. 

the correct path at least once for a terminated t r ee  code. On the other hand, i f  

there is no path that diverges from and later remerges with the correct  path that 

is more probable than the correct path, then there will be no decoding e r r o r  for 

a maximum- likelihood receiver. 

In particular, the incorrect path must diverge and then remerge with 
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The e r r o r  probability for a terminated random t r ee  code is therefore the proba- 

bility that no path that diverges from and later remerges with the correct path is 

more probable than the correct  path. 

Consider now the set of all paths that diverge from the correct  path at branch i 

and remerge with the correct  path after branch i', 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC i K, i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ v G i' G K + v. Let M.. 
11' 

be the number of such paths that are distinct. For all of these paths the last zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v source branches are identical, so  there are only i' - i - v + 1 source branches in 

which the symbols may differ. Thus 

t ( i ' - i -v+l  ) 
Mii' 4 (33) 

Conversely, this set  of paths includes all of those paths corresponding to source 

sequences that differ from the actual sequence at the ( i ' - v f h  branch and at the 

( i+ jv) th  branches, 

0 c j < l?], 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"LxJ" means "the greatest integer contained in x. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'I Thus 

and consequently, using (33), we obtain 

t (it -i-v [ 1 +o( v)]+ 1 ) 
Mii' = 9 

(34) 

For random t r ee  codes, each of the code words corresponding to a divergent 

path wil l  be independent of the correct word over the span from branch i through 

branch i'. Since the code words are pairwise independent of the correct word, the 

union bounding techniques used by Gallager3'4 apply, so  that the set of diverging 

code words may be regarded as being equivalent to a random block code with M.. 

code words and length N = (i'-i+l)b. The block code ra te  is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11' 

In Miil (i'-i+l-v)t In q 
R=- = = pr ,  

( i '-i+l )b N 

where the t r e e  code ra te  r was given by (12), and 

V 

i ' - i + l '  
p.= 1 - (37) 

s o  that 0 G p G 1. Thus the probability of decoding incorrectly over exactly the 

span from branch i through branch i' is bounded by 
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Pii1(€) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< exp -NE(R) 

= exp - - vb E b r )  
1 - P  

= exp -vbe(r,p),  

where the tree code exponent e ( r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) is defined as 

E(w-1 
e ( r ,  t-4 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF .  

Next, define the random t r e e  code exponent e ( r )  by 

e ( r )  = Inf e ( r ,  p). (40 1 
p:O<p<l 

Figure 6 provides a graphical construction of e ( r ,  p) from E(R),  and also compares e( r )  

-= Rcomp* 
and E(R). F o r  r -. e(r ,  p) is minimized at p =  0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that e ( r )  = E(O), 0 r -. 

< Rcomp' 

(39) 

Fig. 6 .  Construction of e ( r )  from E(R). 

< r < C, e( r )  is the E-axis intercept of the line from r on the R-axis 
For Rcomp 
that is tangent to the E(R) curve. 

to E(R) increases without bound at rates approaching channel capacity. 

Thus e ( r )  > E(R), 0 < r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and the ratio of e ( r )  to 

Using (40) in (38), therefore, we have 

Pii,(€) < exp -vbe(r). (41 I 

For the terminated random t r ee  code the union bound yields 

K Ktv 

18 



Asymptotically, therefore, ‘if K does not increase exponentially with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv [for example, 

by maintaining a fixed synchronization rate loss zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( M)], then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(E) < exp -vb[e(r)-o(v)], (43) 

and e( r )  represents the e r r o r  exponent for the class of terminated random t r e e  

codes. 

The derivation leading to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 4 3 )  applies strictly to a specific c lass  of t r ee  codes with 

rather  limited practical applicability. It does, however, lend credibility to s imilar  

results obtained by others. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn a similar derivation, Viterbi” shows that (43) applies 

to the class of terminated randomly time-variant convolutional codes. Interestingly, 

nobody has yet shown that (43) applies to  any class of time-invariant convolutional codes; 

the best e r r o r  exponent that has been obtained for  any of these codes is the block coding 

exponent E(R).  

the properties of sequential decoding to show that (43) applies to the class of unterminated 

randomly time-variant convolutional codes, where P ( E )  is then interpreted as the proba- 

bility that a given branch is decoded incorrectly. 

Yudkin18 and Gallager3 use a much more elaborate argument based on 

- 

The implications of (43) and Fig. 6 are that, with respect to constraint length, some 

classes of t r e e  codes are greatly superior to block codes in their ability to  correct 

e r r o r s .  For a given decoding e r r o r  probability per  symbol, a t r ee  code, whether t e r -  

minated or not, requires a much shorter  encoding constraint length than that required 

for  a block code. The encoding structure inherent in t r ee  codes evidently provides a 

much more effective use of the stored symbols than that which is obtained in a block 

encoder. Terminated t r ee  codes using relatively short  constraint lengths can be used 

to  form essentially optimum, much longer block codes. We shall later observe that 

for those block codes that can be realized as terminated t r ee  codes, the t r ee  code reali- 

zation also yields a substantial reduction in decoding complexity, s o  that t r ee  codes 

attain a performance advantage in decoding as well as in reducing e r r o r  probability. 
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111. TREE-CODE DECODING TECHNIQUES 

FOR MEMORYLESS CHANNELS 

Although it is relatively easy to find codes that a r e  capable, with maximum-likelihood 

decoding, of achieving the coding theorem results given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 )  o r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), these codes have 

not been widely used because the decoding algorithms equivalent to maximum-likelihood 

decoding for  these codes require a computational effort that grows exponentially with 

the constraint length of the codes. This decoding problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas discouraged the wide- 

spread application of coding in operational systems. 

One useful but hitherto suboptimum approach to the decoding problem has been to 

find classes  of block codes that have a high degree of mathematical structure which can 

be successfully exploited to construct easily implemented efficient decoding algorithms. 

A summary of many of these algebraic coding techniques has been given in books by 

Peterson and B e r l e k a m ~ . ~  Unfortunately, none of the known classes  of easily decoded 

algebraic codes contains members that satisfy (2 )  for a rb i t ra ry  rates and arbitrari ly 

large block lengths. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 

The block-code cascading techniques introduced in section 1.3  furnish a second, par-  

tially successful, approach to the block- code decoding problem. 

the property that for a nonzero rate, the decoding-error probability can be made arbi- 

t ra r i ly  small  with modest decoding complexity, except for the required symbol storage. 

None of these techniques quite achieves the coding theorem performance specified by 

(2 ) ,  however. 

of block-code decoding techniques of modest complexity that achieves arbi t rary reliabil- 

ity at ra tes  close to capacity. 

Several interesting techniques have been presented for decoding t r ee  codes. Of those 

techniques that a r e  applicable to memoryless channels, three of the most widely studied 
19  a r e  sequential decoding, which w a s  introduced by Wozencraft and Reiffen, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 3  Massey's 

threshold decoding, and Viterbi' s1 recent decoding algorithm. Furthermore,  there 

a r e  several  useful burst-error-correcting tree-code decoding algorithms, some of which 

a r e  discussed by gall age^-.^ Of the three memoryless- channel decoding techniques listed 

above, both sequential decoding and the Viterbi decoding algorithm can be applied to any 

t ree  code, and both a r e  capable of attaining the coding theorem performance given by 

(7). For sequential decoding, however, decoding failures, caused by buffer overflows, 

dominate the behavior of the decoder, and their probability decreases  only as a finite 

power of the buffer size. On the other hand, the decoding effort for the Viterbi algo- 

rithm grows exponentially with the constraint length. Threshold decoding algorithms 

can be easily implemented, and they do not suffer f rom the computational problems that 

characterize the two other decoding methods. 

limited class of t r ee  codes, however, and it is believed that this class contains no mem- 

be r s  that satisfy (7) for a rb i t ra ry  ra tes  and arbitrari ly large constraint lengths. 

These techniques have 

Cascading is operationally attractive because it is the only known class 

Threshold decoding applies only to a 

Our purpose is to determine to what extent cascading techniques can usefully be 
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applied to the construction and decoding of t r ee  codes. 

used to decode the constituent codes of a cascaded t r ee  code must be carefully chosen in 

order  not to render cascading impractical. 

techniques that a r e  reasonable for decoding the constituent codes. 

In that context, the techniques 

We shall now examine the properties of those 

3 .1  SEQUENTIAL DECODING 

Sequential decoding has been the most extensively studied technique for decoding t r ee  

codes, to the point where many communication engineers automatically disregard the 

possibility of using alternative decoding methods, a conclusion that is understandable 

although perhaps unwise. 

It is readily applicable to all classes of t r ee  codes; at ra tes  below Rcomp the average 

amount of computation required to decode a branch is small, and its error-correct ing 

capability in the absence of computational failure approaches the bound (7)  specified by 

the coding theorem. On the other hand, the amount of computation required to decode 

a branch is a random variable c whose frequency of occurrence is upper- and lower- 

bounded by a finite power of c at all rates. 

overflow occurs with a probability that decreases  only as a finite power of the buffer 

size. 

propagat ion. 

Sequential decoding does indeed have some attractive features: 

Thus the decoding failure known as a buffer 

A buffer overflow is also likely to produce a decoding e r r o r  with substantial e r r o r  

3. 1. 1 Basic Description 

The basic principles upon which sequential decoding is based a r e  quite simple. 

sequential decoder decodes a t r ee  code by making tentative hypotheses on successive 

branches and by changing these hypotheses when subsequent choices indicate an ear l ie r  

incorrect hypothesis. The implementation of a decoder is predicated on two assump- 

tions: (i) the decoder can maintain a replica of the encoder; and (ii) with high proba- 

bility it can detect an incorrect hypothesis shortly after the incorrect hypothesis has 

been made. The following simple example, taken from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgall age^-,^ illustrates the gen- 

e ra l  application of these ideas in a sequential decoder. 

A 

Example 1. 

The f i rs t  four branches of the conventional treelike representation of the code, corre-  

sponding to Fig. 3, a r e  shown in Fig. 8. 

Suppose that the sequence 1100.. . is supplied by the data source, so that the sequence 

11 1 101 001 000 . . . , shown by the heavy line in Fig. 8, is transmitted. We consider two 

cases. 

Consider the convolutional code generated by the device shown in Fig. 7. 

Case I: No Incorrect Hmotheses 
~~ ~ 

Let the received sequence be 101 101 001 000 . . . . On the basis of the first received 

branch, the decoder will  tentatively hypothesize that 11 1 was the first transmitted 

branch. 

differ in one symbol. Continuing, the decoder will  hypothesize successively branches 10 1, 

At this point the received sequence and the hypothesized transmitted sequence 
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Fig. 7. Encoder for Examples 1 and 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
101 

1 

110 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Fig. 8. Treelike representation for the 
encoder of Fig. 7. 

001, and 000, so that after the fourth 

branch the received sequence and the 

hypothe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ized transmitted sequence st ill 

differ in only one symbol. The agreement 

between the two sequences beyond the 

f i rs t  branch tends to confirm the validity 

of the initial hypothesis. Decoding is 

simplified because in hypothesizing the 

kth branch the decoder must choose 

between only two alternatives instead of 

2 alternatives. 
k 

Case 11: An Initial Incorrect Hypothesis 

Suppose instead the received sequence 

is 010 101 001 000 . . . . This t ime the 

decoder wil l  tentatively hypothesize 000 

to be the first transmitted branch. Again 

the received sequence and the hypothe- 

sized transmitted sequence differ in only 

one symbol at this point. Continuing, the 

decoder wi l l  hypothesize successively 

branches 111, 101, and 001. In this 

example, therefore, the two sequences 

differ in k .  symbols after k branches, 

k = 1,2,  3 , 4 .  Once the decoder has made 

an incorrect hypothesis, i ts  subsequent 

choices w i l l  be between branches that 

a r e  entirely unrelated to the actual 

transmitted sequence. The decoder soon recognizes this situation by observing that the 

disagreement between the received sequence and the hypothesized transmitted sequence 

grows rapidly with the number of tentatively hypothesized branches. Therefore it must 

backtrack and make alternative hypotheses in an effort to find a hypothesized transmitted 

sequence that eventually agrees  closely with the received sequence. 

cessive branches, and the mechanism by which it recognizes that it has somewhere made 

an incorrect hypothesis. 

of the procedure to be followed by the decoder once it has detected an incorrect hypo- 

thesis. Indeed, the specification and analysis of sequential decoding algorithms is a 

difficult and complicated problem that has  been subjected to  considerable research  in 

recent years. It is beyond the scope of this report to reproduce the details of this 

research  here,  especially since this subject is ably treated by gall age^-,^ but it is 

Example 1 illustrates the manner in which a sequential decoder hypothesizes suc- 

Unfortunately, it gives no indication of the specific mechanics 
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appropriate to outline here  the highlights of this field of research. 

3. 1. 2 Error  Probability and Computational Failure 

The most extensively studied sequential decoding procedure has been the Fano algo- 

rithm, which is a set  of rules directing the decoder to hypothesize a subsequent branch, 

an alternative branch from the current node, o r  to backtrack, based on the value of a 

running metr ic  such a s  accumulated Hamming distance that is monotonically related to 

the likelihood of the hypothesized transmitted sequence. Using a modification of the Fano 

algorithm as a model for sequential decoding, Gallager3 shows that in the absence of 

computational failure, the decoding e r r o r  probability per  symbol for unterminated ran- 

domly time-variant convolutional codes is bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), which is the coding theorem 

result for t r ee  codes. 

Unfortunately, all sequential decoding algorithms have a property that limits their 

applicability in practical communication systems. This property, which w a s  studied by 

Savage, 2o Jacobs and Berlekamp, and Jelenik," is concerned with the peak amount 

of computation required to decode any branch. The computational effort to decode a 

branch is a random variable that depends on the number of incorrect hypotheses that 

a r e  made by the decoder while the branch is within the decoder's memory, and this in 

turn depends on the channel e r r o r  sequence. Jelenik2' has shown that for any p > 0, 

the pth moment of the computational distribution is bounded by a constant if  

where 

and Eo(p, Q) is given by (4). On the other hand, Jacobs and Berlekamp'' show that the 

pth mQment is unbounded if the sense of the inequality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) is reversed. [The behavior 

of the p th  moment when (44) is satisfied with equality is still unresolved.] In particular, 

(44) states the well-known result that the average amount of computation required to 

decode a branch is bounded for r < Rcomp. 

capacity, the distribution of decoding computation is Paretian: 

These results establish that, for  ra tes  below 

P(C0>L) = L--P('), 

where 

(47) 
1 

P 
p ( r )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp : r = - Eo(p) ,  

and thus p ( r )  > 0 for 0 < r < C. 

Suppose a sequential decoder has a buffer that can s tore  L branches of received 

Then any particular branch must be irrevocably decoded before the next symbols. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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L branches a r e  received, for  otherwise a new branch wil l  be received that cannot be 

stored, and the decoder will  lose sufficient information to continue decoding. This event, 

calamitous to decoding, is called a buffer overflow. Equation 46 indicates that the prob- 

ability of a buffer overflow decreases only as a finite power of the buffer size L, while 

( 7 )  indicates that the decoding-error probability decreases  exponentially with the con- 

straint length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv. Thus in the limit of small  probability of a decoding failure, the buffer 

overflow event dominates the erroneous decoding behavior unless the buffer size grows 

exponentially with the constraint length. 

tial decoding algorithms. 

This characteristic is common to all sequen- 

A buffer overflow is especially objectionable because it causes the decoder to lose 

track of the rekeived sequence. 

nized quickly, 

long as  it is unsynchronized. Although t r ee  codes and sequential decoding algorithms 

do not generally have properties to assist  in resynchronization, there a r e  several  

practical methods that have been used to help re-establish synchronization. F o r  a 

code with a unique inverse (cf. sec. 3. 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ ) ,  a simple non error-correcting decoder 

can be built to form a reasonable estimate of the correct path. Alternatively, 

the code can be terminated every few thousand branches, as described in section 2. 1. 

Finally, a feedback channel can sometimes be used to enable the receiver  to request 

the t ransmit ter  to repeat its transmission, starting at  a mutually known branch in 

the sequence. 

An alternative sequential decoding algorithm has been described by JelenikZ3 and 

independently by Zigangirov, Pinsker, and Tsybakov. 24 While it offers a higher decoding 

speed than the Fano algorithm at the expense of increased decoder memory, its attain- 

able e r r o r  probability and bounds on computational moments a r e  the same as those that 

a r e  obtained by using the Fano algorithm. 

Then it is desirable that the decoder become resynchro- 

since the decoder is likely to continue producing decoding e r r o r s  as 

3 . 2  VITERBI DECODING ALGORITHM 

The Viterbi algorithm is a probabilistic decoding procedure that may be readily 

applied to any t r ee  code. After each branch has been received, the decoder calculates 

the relative likelihood of each of the qvt possible decoder states and the maximum- 

likelihood path through the coding lattice to each possible state. These calculations a r e  

based only on the current received branch and the set  of relative likelihoods and 

maximum-likelihood paths tha t  had been calculated before the branch w a s  received. 

Strictly, of course, this sor t  of computation is probabilistically meaningful only for 

memoryless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor Markov channels. Here we assume that the channel is discrete and 

memoryless. With that assumption, the Viterbi algorithm is a general maximum- 

likelihood algorithm for  decoding codes. 

We first describe the computational procedure of the Viterbi decoding algorithm, 

and then we investigate some of its more important properties. 
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3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 1 Computational Procedure 

The Viterbi algorithm for decoding t ree  codes was first  formulated by Viterbi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 7  and 

w a s  la ter  studied by Forney" and by 0mura. l '  Each of these authors described an 

algorithm s imi la r  to the one presented here, but in which a resynchronizing sequence 

w a s  periodically inserted into the channel sequence in order  to assist the decoder. The 

formulation described here is stated directly in t e rms  of unterminated t r ee  codes, 

however, and it indicates clearly when and how much the decoder may decode at any 

given branch without sacrificing any pertinent information. 

The computational procedure described is based on minimum-distance decoding, and 

is a maximum-likelihood algorithm only for those channels in which the maximum- 

likelihood path throughout the coding lattice to any possible encoder state is also the 

path that accumulates the minimum Hamming distance with respect to the received 

sequence. Such channels a r e  said to be matched to the Hamming metric. Under the 

assumption of equally likely code sequences for all possible E, an example of a 

class of channels that a r e  matched to the Hamming metric is the q-ary symmetric chan- 

nels, including the binary symmetric channel, with q-ary input and output alphabets 

whose transition probabilities a r e  given by 

i =  j (484  

P 
i #  j. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q -  1 '  

For these channels the conditional probability of any transmitted sequence ?i of L sym- 

bols, given the corresponding received sequence is given by 

where d is the Hamming distance between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy .  
sequences %, p(XIY) is a monotonically decreasing function of d, provided (I-p) > 
p/(q-1), so that the q-ary symmetric channels a r e  indeed matched to the Hamming 

metric. 

Since p(x)  is the same for  all code -- 

The reason for considering only a minimum-distance decoding algorithm i s  that it 

is relatively simple both to describe and to implement. 

more general algorithm that is maximum-likelihood for any DMC, but this generalized 

algorithm is much more cumbersome than the minimum-distance algorithm, and the 

It is possible to describe a 
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- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAadded complexity would tend to obscure rather than clarify the basic computational pro- 

cedure. 

For minimum-distance decoding, it is easy to describe the iterative process by 

which a Viterbi decoder calculates the maximum-likelihood path throughout the coding 

lattice to each of the qvt possible encoder states. Before the ith branch is received, 

le t  d(i-l)j be the accumulated Hamming distance along the maximum-likelihood, 

minimum-distance path through the coding lattice to state j, and let p be the 

We now show how to calculate d . .  and pij in t e rms  of the ith branch yi and the {d } 1J (i-l)j 
and the (p ) 

(i-l)j * 

Let x... ,  be the se t  of symbols 

specified by the encoder during the ith branch from state jl to state j ,  where jl E SP(j). 

Furthermore,  let d .  .. be the Hamming distance between x .  .. and the ith branch y.. After 

branch i is received, therefore, the Hamming distance that would be accumulated 

throughout the coding lattice to state j ,  under the assumption that state jl is the pre- 

decessor state for state j ,  is d 

path to state j after branch i is received. Define 

(i-l)j v t  
sequence of symbols along the maximum-likelihood path to  state j ,  j = 1, 2, . . . , 9 -  

Let SP(j) be the se t  of predecessor states for state j. 
1JJ 

1JJ ~ J J  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

+ d. .  . We want to  find the minimum-distance 
( i- 1 ) j ij J * 

d!. = inf [d(i-l)jl t dijjl], 
'J j 1  E sP(j) 

and let state jll E SP(j)  be any state that achieves this minimization; that is, 

t d.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. l l  = dij}. 
(i-1)jf1 ijj 

{j") = {j1I E SP(j):d 

At this point the decoder may still be unable to specify the maximum-likelihood path 

p.. with certainty. Consider the se t  of s ta tes  {jll} defined by (51). Surely {j") is non- 

empty, since some state must by definition satisfy the condition specified by (51). 

quite possible, however, that { j l l )  contains more than one state; that is, i t  frequently 

happens that after branch i is received, there a r e  two or  more distinct paths to state j 

that accumulate the same minimum Hamming distance. 

ambiguity. 

hence equally likely, the decoder may resolve the ambiguity by arbi t rar i ly  selecting a 

particular state from the {j'l}. 

11 
It is 

We call this condition a decoding 

Since under our assumptions all of these paths a r e  maximum-likelihood and 

Define 

j l l l =  inf jll. 
jl' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE {jll) 

Then jlll is unique fo r  each i and j. 

path p(i-l)jlll plus the ith branch from state jIII to state j. 

relative Hamming distances accrued on the maximum-likelihood paths to each state, and 

not the absolute distances. 

bounds, especially after decoding indefinitely many branches, we adopt the following 

Now the unique path p.. can be specified as the 
1J 

The iterative computational process used by the Viterbi algorithm only requires the 

To keep the relative accumulated distances within reasonable 
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convention. Let 

d. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= inf d!.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
13 

j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 3 )  

Obviously di zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. If di > 0, however, the decoder might 

as well reduce the Hamming distances accumulated along all of the maximum-likelihood 

paths by di, since all of the required quantities a r e  relative rather than absolute. Thus 

If di = 0, there  is no problem. 

d. .  = d!. - di, all j ,  (54) 
13 13 

s o  that by convention 

inf d:, = 0. (55) 
j -’ 

Whenever d.  > 0, the calculation (54) is called a distance subtraction. 

distance subtractions that have been encountered through the Lth branch, 

The totality of 
L 
Z di, is an 

1 

th  
i= 1 

obvious lower bound on the number of channel e r r o r s  that have occurred through the L 

branch. 

Fo r  this iterative process the number of computations per  branch is a fixed quantity 

which, unfortunately, grows exponentially with the constraint length of the code. 

The preceding formulation described only the mechanics of the iterative computa- 

tional process, but did not specify how o r  when the Viterbi algorithm actually decodes 

source symbols, especially in an unterminated t r ee  code. Now we can be precise about 

these points. Define the decoding - lag k to mean that all qvt maximum-likelihood paths 

{pi$ agree everywhere, except for the last k branches. Thus the decoding lag is a 

random variable that indicates the number of branches about which the decoder has 

uncertainty as to the unique maximum-likelihood path throughout the coding lattice. From 

the (k t  1 )th branch backward, all of the maximum-likelihood paths a r e  identical, so  that 

the decoder may uniquely and unambiguously decode the source symbols up to and 

including the (kt l ) th  branch before the current branch. [We emphasize that it is only 

the decoding that is unambiguous. 

having a decoding ambiguity, then of course there would be alternative maximum- 

likelihood paths throughout the coding lattice. The point here  is that the decoded path 

is - a maximum-likelihood path to all states notwithstanding the occurrence of decoding 

ambiguities .] 

If the decoded path passes  through one or  more states 

The statistical properties of the decoding lag a r e  directly related to the size of the 

buffer that is required by a Viterbi algorithm decoder to satisfactorily decode untermi- 

nated t r ee  codes. If the decoder can store the last L branches of symbols on the 

maximum-likelihood path to each state, then the probability that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk > L clearly bounds 

the probability of ambiguously decoding a branch if the algorithm is applied to an 

unterminated t r e e  code. This type of ambiguous decoding is thus caused by a buffer 

overflow condition. 

Viterbi algorithm decoding than for sequential decoding, however, because the Viterbi 

The consequences of a buffer overflow a r e  much l e s s  severe for 
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algorithm has a tendency to resynchronize automatically as it continues its branch-by- 

branch computations. 

The resynchronization property, together with the computational mechanics of the 

iterative calculations and the decoding procedure, a r e  illustrated by the following 

example. 

Example 2 :  Consider again the convolutional code generated by the device shown in 

Fig. 7. 

supplies the sequence 01011001010111.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. to the encoder. Then the encoder output 

sequence wil l  be 000 111 010 100 110 001 000 100 010 100 001 100 110 110 . . . . 
the received sequence is 000 111 010 100 100 001 010 100 000 100 001 100 110 100 . . . ; 
that is, there  a r e  single transmission e r r o r s  in the Sth, 7th, gth, and 14th branches. 

We illustrate the operation of a Viterbi algorithm decoder under two different assumed 

conditions. 

Suppose initially that the shift register contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO's, and the the data source 

Suppose 

Case I: The initial state of the encoder, 000, is known to the receiver. Figure 9 illus- 

t ra tes  the computational procedures followed by the Viterbi algorithm decoder in this 

case. 

under that state, subject to (55). For example, at branch 1 only two states a r e  pos- 

sible - 000 and 100. If 000 is the actual encoder state, its accumulated distance is 0 

because the received sequence exactly matches the hypothesized transmitted sequence. 

Similarly, the accumulated distance to 100 is 3. 

indicate decoding ambiguities where two distinct paths terminating at those states accu- 

mulate the same minimum relative distance. Fo r  example, the 100 state at branch 4 is 

ambiguous. 

to 100 is 111, the received sequence is 100, a distance of 2 which when added to the pre- 

vious distance of the 000 state, 4, yields a total accumulated distance of 6. Similarly, 

the transmitted branch from 100 to 001 is 100, which exactly matches the received 

sequence, and adds no Hamming distance. The total accumulated distance along the 

001-100 path is therefore just the previous distance of the 001 state, which is also 6. 

Therefore a decoding ambiguity exists at  that state. The decoder, however, arbitrari ly 

keeps only the 000-100 path in accordance with (52). 

is also indicated. Fo r  example, at branch 4 the decoding lag is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 because all maximum- 

likelihood paths to the 8 branch-4 states pass  through the initial 000-000  link. Therefore 

the decoder can then unambiguously decode the first source symbol, which is 0. Simi- 

larly, at branch 7 the decoding lag is 4, and the decoder can then decode the next two 

source symbols, 10. The decoder next decodes a 1 at  branch 8, and then wai ts  until 

branch 14 when it decodes the next 7 symbols, 1001010. 

the heavy line throughout the coding lattice. 

guities thus far,  the maximum-likelihood path decoded is in fact unique at this point. 

At each branch the relative accumulated Hamming distance to each state is shown 

States marked with a small circle 

Its predecessor states a r e  000 and 001. The transmitted branch from 000 

The decoding lag at each branch 

The decoded path is shown by 

Since it passes through no decoding ambi- 

Case 11: The initial state of the encoder is not known to the receiver. Figure 10 illus- 

tr'ates the computational procedures followed for the first 9 branches by the Viterbi 
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algorithm decoder in this case. 

assumes initially that all states a r e  equally likely, and it reflects this fact by assigning 0 

as the relative accrued distance to each state. 

ceed in the obvious, branch-by-branch manner. 

tion of relative accrued distances is identical to that for Case I, Fig. 9. There is an 

ambiguity at the 010 state, however, and application of (52)  yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 as the predecessor 

state instead of 101. Since the distribution of relative accrued distances is identical for 

both cases at branch 7, the maximum-likelihood paths beyond branch 7 will  therefore be 

identical for  the two cases. 

cide for both cases, and the decoder is able to decode the first 4 (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 )  source symbols, 

(000)0101. 

Since the initial encoder state is unknown, the decoder 

The decoding and computations then pro- 

Observe that at branch 7 the distribu- 

At branch 9 the maximum-likelihood paths to all states coin- 

From this branch on decoding will  be identical for both cases. 

Example 2 illustrates the tendency of a Viterbi algorithm decoder to find a unique 

maximum-likelihood path through the coding lattice, regardless of the assumed initial 

conditions. Whenever a 

buffer overflow occurs, that is ,  whenever k >  L, then the decoder is prone to make 

decoding e r r o r s  because it must choose between two o r  more alternative sets  of 

maximum-likelihood paths. Of course, it should be possible to specify an algorithm for 

making this choice (such as choosing the source symbol corresponding to the most prob- 
u t  

able path, o r  the source symbol that occurs most often at the beginning of all  the q 

maximum-likelihood paths) that would substantially reduce the e r r o r  probability, even 

under these circumstances. Regardless of decoding e r ro r s ,  however, an implicit initial 

distribution of accumulated relative distances appears in the current set  of accumulated 

relative distances. 

decoder wil l  eventually find a unique maximum-likelihood path through the coding lattice. 

Thus the Viterbi algorithm automatically tends to resynchronize after a decoding e r r o r  

o r  a buffer overflow, in contrast to sequential decoding. 

This property can also be interpreted in another useful way. 

Example 2 suggests that regardless of this initial distribution, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 .  2. 2 Distribution of the Decoding Lag 

The storage requirements and buffer-overflow probabilities of a Viterbi decoder 

depend on the statistical properties of the decoding lag. We shall demonstrate that for  

a wide class of applications, the asymptotic distribution of the decoding lag is exponen- 

tially bounded; that is ,  there is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp > 0 such that, for sufficiently large L, 

p(k>L) < e'pL. 

The class of applications for which (56) is satisfied includes the minimum-distance 

decoding of any time-invariant convolutional code with a unique inverse, o r  to the 

ensembles of time-variant convolutional codes o r  random t ree  codes, operating over a 

wide class of DMC's, including the reachable channels, and operating at any rate above 

o r  below capacity. 

a r e  strictly nonzero. 

defined by (48). 

[A DMC is reachable if all possible transition probabilities {p..} 

The reachable channels include the q-ary symmetric channels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 

Equation 56 applies for the indicated class of applications, even though zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 0  
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minimum-distance decoding is not necessarily maximum-likelihood decoding for an 

arbi t rary reachable channel.] 

a homogeneous Markov process with a finite number of states. Exactly one of these 

states, which represents a reduction in the decoding lag, is absorbing. We then consider 

the Lth-order transition matrix in the asymptotic case as L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 and show that the prob- 

ability that the absorbing state has not been entered after L transitions is lower-bounded 

by I-A 

The essence of the derivation establishing (56) is to model the Viterbi algorithm as 

L 
for some A such that 0 < A < 1. This  in turn establishes (56). 

Theorem 1 is used to show that the Markov process that represents  the Viterbi algo- 

ri thm has a finite number of states. 

Theorem 1 

sup d. .  Gbv. (57) u 
j 

Proof of Theorem 1: By (55)y inf d(i-v)j = 0. Let  jl be the state that achieves this 

Observe that there is a unique path with exactly v 
j 

= 0.  
(i-v ) j l  minimization; that is, d 

branches from state j '  to any state j. 

can accumulate an absolute Hamming distance no grea te r  than bv. Clearly, the mini- 

mum absolute Hamming distance accumulated to any state at branch i cannot be nega- 

tive, and the minimum-distance path to state j must be at least as good as the path from 

state j l .  This establishes (57). 

With respect to the received sequence, this path 

Let the problem of calculating the distribution of the decoding lag be restated in the 

following manner. 

states at  the ith branch, where i is arbitrary. 

likelihood paths to  the qvt states at  the (i+L)th branch, L > 0. 

decoding lag at the (i+L)th branch is l e s s  than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor equal to L is the probability that all 

of the qvt maximum-likelihood paths at the (i+L)th branch pass through a single encoder 

state at the ith branch. 

For each possible encoder state j at the (i+L)th branch, j = 1, 2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg , consider 

Consider the set  of maximum-likelihood paths to the qvt encoder 

Next consider the set  of maximum- 

The probability that the 

v t  

the 2-tuple (d(i+L)j, S(i+L)j). 

(i+L)j the maximum-likelihood path to state j at branch i+L, as defined by (54), while S 

is defined as the encoder state at  branch i through which the maximum-likelihood path 

to state j at branch i+L passes. Since d(i+L)j can assume no more than vb+l values 

can assume no more than qvt values, the 2-tuple can be specified in no 
and '(i+L) j 
more than q (vb-tl) ways. 

The Markov state of the decoding process at  branch i+L can be specified by the 

ordered set of qvt 2-tuples {(d(i+L)jyS(i+L)j))J plus the actual state of the encoder at 

branch i+L. 

The quantity d(i+L)j is the relative distance accrued on 

The number Nm of possible Markov states is thus finite and bounded: 

vt 
Nm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC qvt[qvt(vb+l)]q . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 2  
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Of course, many of the possible states included in (58) are nonexistent o r  void; for 

example, all of the states for which(55) is not satisfied a r e  not allowable under our for- 

mulation. Moreover, many states a r e  equivalent because they indicate a reduction in the 

decoding lag. These a r e  the states for  which 

j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , 3 , .  .. (59) 

These equivalent states can all be represented by a single lag-reducing state, denoted 

z. With respect to the Markov process this state is an absorbing state, since once 

it has been entered -that is, once the decoding lag has been reduced -the Markov pro- 

cess  remains in that state fo r  all subsequent branches. 

We now show that for time-invariant convolutional codes with a unique inverse, and 

for  the ensembles of time-variant convolutional codes and random t r ee  codes, there 

a r e  no other s e t s  of absorbing states in the Markov process representation, so  that all 

of the allowable Markov states except z a r e  transient. To prove this assertion, it suf- 

fices to show that it is always possible for  the process to reach state z from any allow- 

able state after a finite number of transitions. 

First consider a time-invariant convolutional code with a unique inverse. By unique 

inverse, we mean that the code is not subject to indefinite e r r o r  propagation, o r  equiva- 

lently that no input sequence containing an infinite number of nonzero symbols can pro- 

duce an output sequence containing only a finite number of nonzero symbols. 

and SainZ5 derive the conditions for which a time-invariant convolutional code has a 

unique inverse. 

f ree  decoder that uses only the last M received branches to uniquely decode the source 

sequence, where M is finite. Although this decoder is not generally a maximum- 

likelihood decoder, it has the property that will always be decoding along the correct path 

after M or  more error-free branches a r e  received. 

Massey 

For  such a code they show that it is possible to build a linear, feedback- 

Theorem 2 

For  any time-invariant convolutional code with a unique inverse (TICCUI), it is pos- 

sible to find parameters KO and K < KO such that a Viterbi decoder is decoding along the 

correct path with a decoding lag not exceeding K whenever KO o r  more consecutive 

error-free branches a r e  received. 

Some intermediate results must be established before Theorem 2 can be proved. 

Lemma 1 

For  a TICCUI, any source sequence of M+v branches that is nowhere merged with 

the all-zero sequence produces an encoder sequence whose corresponding M t v  

branches a r e  not all zeros. 

Proof: Suppose the encoder produces Mtv all-zero channel branches. Since the 

Massey-Sain decoder has a memory of M branches, it estimates zeros for the source 

symbols from the Mth through the ( M + v ) ~ ~  branches. Furthermore, all-zero branches a r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 3  



the only source branches that could have produced the last  v+l all-zero channel branches, 

since the code has a unique inverse that can be recovered by a Massey-Sain decoder. 

Thus Mtv consecutive all-zero channel branches implies that the source sequence is 

merged somewhere with the all-zero sequence, and therefore the lemma must be true. 

For notational purposes, define dsi as the relative Hamming distance and d' as the 

absolute Hamming distance accrued from branch 0 by a minimum-distance Viterbi 

decoder to state s at branch i. 

state wi l l  be designated doi and dbi. 

si 

The corresponding distances accrued to the all-zero 

Lemma 2 

Let the source sequence be the all-zero sequence. Let all branches after branch 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ 

be received without e r ro r s .  Then for a TICCUI, doi = 0 for  i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 vb(M+v). 

Proof: From (55) and (57) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS dO0 S vb. Certainly db(M+v) < dO0, since the 

branches a r e  received without e r ro r s .  Now consider d '  s (M+v )' s Z 0 .  By Lemma 1, if  the 

minimum-distance path to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs does not merge anywhere with the all-zero path, then 

dL(Mtv) 3 1. Otherwise dL(M+v) 
t rue otherwise. 

subtraction will occur so that d 

is trivially true. 

Suppose dO0 > 0, since Lemma 2 is trivially 

- 1. Alternatively, if  d' O(Mtv) = 0, Lemma 2 

Then if db(Mtv) 2 1, we s e e  that d;(M+v) B 1 for  all s, and a distance 

O(M+v) G d O O  
Applying this result no more than vb t imes establishes Lemma 2. 

Lemma 3 

Assume the same hypotheses as for Lemma 2,  

(M+v) branches, each path in a minimum-distance 

with the all-zero path. 

Proof: Certainly d' = doi = 0. Apply Lemma 
O i  

and let dO0 = 0. 

Viterbi decoder is merged somewhere 

Then after ( v b t l )  

1 v b t l  times, then no path corre- 

sponding to an unmerged sequence of (vb+l)(Mtv) branches can accumulate an absolute 

Hamming distance of l e s s  than vbf l .  Since, from (57), d <vb for  all s, Lemma 3 is 

established. 
si 

Proof of Theorem 2 :  Since the code is a convolutional code, we lose no generality 

by assuming that the source sequence is the all-zero sequence. Let all branches after 

branch 0 be received without e r ro r s .  From Lemma 2, d = 0, and there a r e  no dis- 

tance subtractions for i 3 vb(Mtv). 

state s is merged with the all-zero path at some branch I, where I 2 (vb+l)(Mtv). Then 

the minimum-distance path to s must be coincident with the all-zero path fo r  all 

branches i in the range (vbtl)(M+v) Si zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<I. If this last statement were not true, then 

either the minimum-distance path would, looking backward, diverge from the all- zero 

path at some branch i2 in the range (vb+l)(Mtv) Si2 < I  and later remerge with the all- 

zero path at some branch i 

branch i2 but not remerge for  any il 3vb(Mtv).  

fact that the code has a unique inverse, so that any suchdivergent sequence must 

O i  
Suppose that the minimum-distance path to some 

in the range vb(M+v) < il < i2 - v, or it would diverge at 
1 

The first case is prohibited by the 
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produce an output with a Hamming distance of at least one in order  not to be confused 

with the all-zero sequence. The second case is prohibited by Lemma 1 and by the fact 

that do[vb(M+v)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. By applying these considerations and Lemma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ,  we observe that 

Theorem 2 is satisfied for KO = Z(ub+l)(M+u) and K = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 KO. 

Theorem 2 states that a time-invariant convolutional code with a unique inverse wi l l  

always reach state z whenever K consecutive e r ror - f ree  branches a r e  received. This 

result implies that the ensembles of time-variant convolutional codes and random t r ee  

codes can (with perhaps an extremely small, but nonzero probability) reach state z after 

K branches, provided that the ensemble chooses the same branch specifications as for 

the time-invariant convolutional code considered above for the next KO branches, and 

that these branches a r e  received without e r ro r s .  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

0 

To simplify the derivation of ( 5 6 ) ,  it is convenient to assume that the Markov process 

is also homogeneous; that is ,  the stochastic matrix Ti that contains the Markov state 

transition probabilities from the ith branch to the (itl)th branch is independent of i. 

Certainly, the Markov state at the (it l)th branch is uniquely determined by the Markov 
th 

state at the ith branch, the ith source branch, and the channel e r r o r  sequence on the i 

branch. For a DMC the channel-error sequence is independent of i, so  that the Markov 

process is homogeneous i f  the probability assignment of source branches supplied to 

the encoder is also independent of i. One way to ensure this source independence is to 

add a pseudo-random sequence to the source output, and la te r  to subtract this sequence 

from the output of the decoder. 

Thus for the class of applications described after ( 5 6 ) ,  the operation of the Viterbi 

decoding algorithm can be modeled a s  a homogeneous Markov process with exactly one 

absorbing state that represents a reduction in the decoding lag. 

matrix of one-step transition probabilities characterizing the Markov process, and le t  

T be the matrix of transition probabilities after L branches. Since the process is 

homogeneous, 

Let T be the finite 

L 

T L = T  L . 

Furthermore T 

T = E  

can be partitioned: 

1 

where A is, the (n-1) X (n-1) matrix whose elements represent the one-step transition 

probabilities among the transient states, B is the 1 X (n-1) matrix whose elements a r e  

the one-step transition probabilities f rom the transient states to the absorbing state, and 

the 0 and 1 reflect the fact that z is an absorbing state. It follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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L 
Accordingly, we investigate the behavior of A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. We shall require some results from 

26 
the Perron - F rob enius the o r  e m. 

Perron- Frobenius Theorem: (Condensation) 

Suppose A is an irreducible square matrix with real, non-negative elements. Then 

A has a real  positive eigenvalue zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX with the following properties : 

(i) i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa is any other eigenvalue of A, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
la1 g X I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 6 3 )  

(ii) X1 increases when any element of A increases. 

(iii) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.hl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 max (t ajk).  

J 

These results a r e  accepted without proof here. 

the maximum row sum of A. 

From property (iii), X I  is bounded by 

Since A is derived from a stochastic matrix, 

X1 G I .  (65) 

Furthermore,  A has some row whose row sum is strictly less  than 1, since B is assumed 

to have at least one nonzero element. Applying property (ii),  we observe that A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit 1 

because if X I  = 1, an element in the row whose row sum is strictly l e s s  than 1 could 

be increased so that X i  > 1, which would finally contradict property (iii). By using prop-- 

erty (i), the following lemma is established. 

1 

Lemma 4 

Let A be the matrix of transition probabilities among the transient states of any 

Markov process having se t s  of absorbing states. If X is any eigenvalue of A, then 

1x1 < 1. (66) 

Next, observe that the matrix A can be expressed in its Jordan canonical form; that 

is, if A is an n X n matrix, there exists a nonsingular n X n matrix Q such that 

A '=  Q 

J (1,) 
k2 

0 

... 

... 

. . .  

where the {Jk71(hi)) a r e  the k. X k. matrices of the form 
1 1  

36 



and 

A 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

0 A 1 

0 0 A 

0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

k l t k , t  . . .  t k m = n .  

The {Ai} a r e  eigenvalues of A, 

0 . .. 0 

0 . . .  0 

1 . . .  0 

0 ... A 

(69) 

not necessarily distinct, and to every distinct eigenvalue 

of A there corresponds at least one J ( A . )  in (67). Thus 
k; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

A L =  Q 

L 

1 
‘k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 .. . 

0 JL (A,) . .  . 
k2 

0 

0 

0 

L 
where the hQth te rm of Jk ( A )  is 

.(L) = ( Qrh) AL-Q-h 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG Q  - h GL. 
Ik(hQ) 

Q-l, 

(71) 

Now suppose that A is the matrix of transition probabilities among the transient states 

of a homogeneous Markov process with a single absorbing state, as in (61). Let AA be 

any eigenvalue of A, and define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

From Lem.ma 4, A < 1, so that 

a 
A = +  ( 1 t A  ) < 1. 

By choosing 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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it can be seen that, for sufficiently large L, 

s o  that 

where a(L) is the hQth element of AL. Thus, in (62), 
h l  

where b!L) is the jth element of BL in (62), 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS j S n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, provided L is sufficiently large. 

This establishes the following theorem. 
J 

Theorem 3 

Consider any homogeneous Markov process with a single absorbing state. For  suf- 

ficiently large L there exists a positive number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX < 1 such that the probability that the 
L 

process is not in the absorbing state after L transitions is l e s s  than A . 
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 establishes (56) for the class  of applications described after the state- 

ment of (56). Not only does (56) apply to individual time-invariant convolutional codes 

with a unique inverse, but it can also be interpreted to  apply to individual codes that 

belong to the ensembles of time-variant convolutional codes or random t r ee  codes in 

which the generator connections o r  branch specifications a r e  selected randomly at each 

branch. While (56) does not apply to all possible codes that can be picked from these 

ensembles, it can be interpreted to  mean that the probability of selecting an individual 

code for which the decoding lag does not converge is an exponentially decreasing 

function of the number of branches that have been selected. 

Although the preceding derivation establishes the validity of (56), it gives little 

insight into a reasonable estimate of the magnitudes of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and p. It would 

appear to be exceedingly difficult to derive analytical expressions for these parameters 

as functions of the constraint length. and the rate. Furthermore (56) is only an asymp- 

totic expression that does not purport to be valid for  small  values of L. To help one 

get a feeling for the properties of the decoding-lag distribution, especially a t  small  and 

intermediate lags, a ra ther  limited computer simulation w a s  obtained for the decoding 

lag experienced at various rates  and constraint lengths by a random t r e e  code. The 

results of this simulation wi l l  be reported in section 4. 1. 

3. 2. 3 Character of E r r o r  Patterns 

Another feature of the Viterbi decoding algorithm is that for t r ee  codes with large 

constraint lengths, decoding e r r o r s  occur in bursts whose lengths tend to  cluster about 
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some characteristic value. 

by Forney. 

Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 8  is an upper bound over the ensemble of random t ree  codes on the prob- 

ability of a decoding error within an unmerged span of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv/( 1-p), where p is defined 

by (37). 

We shall examine that property, and extend s imilar  work 
11 

For  large v the bound approaches an equality: 

Pp(e) - exp -vb[e(r, t*)-O(v)], (78) 

where e ( r ,  p) is defined by (39), and O(v) goes to zero for  large v. 

produces an e r r o r  sequence of length 

Such a decoding e r r o r  

which is equally likely to be any of the unmerged sequences of that length. 

codes with large constraint lengths, we would expect to observe decoding-error bursts  

of length L 

Thus, for 

occurring with a probability proportional to P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E ) .  
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

Define po as the p for which e ( r )  = e( r ,  p) in (40). Since e ( r )  is the minimum value 

of e ( r ,  p), we would expect to observe e r r o r  bursts  of characteristic length L 

frequently in the decoding output. Furthermore,  the fact that P ( E )  varies  exponentially 

with e ( r ,  p) indicates that e r r o r  bursts of length L a r e  going to occur negligibly often 

compared with bursts  of characteristic length L 

different. 

most 
PO 

F 

P 
whenever p and po a r e  substantially 

PO 

Define any e r r o r  burst of length L to be r a r e  i f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I* 

for  some arb i t ra ry  A K  1 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-In A B = -  

b y  

(80) 

For large v ,  (80) is equivalent to 

Consider f i rs t  the case r > Rcomp. The quantity f (p)  can be expanded in a Taylor 

s e r i e s  about IJ. : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
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Since r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> Rcomp, f l (po )  is identically zero from the definition of po. 

higher order  t e rms  in (84) can be neglected, then for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ( 8 1 )  becomes 

If third-order and 

The range of p that does not satisfy (85) is proportional to 

range of e r r o r  burst lengths that a r e  not r a r e  is proportional to vl/'. Thus for  large v 

most e r r o r  bursts  have lengths near the characteristic length L , although the absolute 

range increases, in the same way that the sum of a large number N of independent 

random variables clusters closely about N t ime the mean, although the dispersion is 

so  that by (79) the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PO 

proportional to N 1 /2 . 
For  r € Rcompy decoding e r r o r s  tend to occur in short  bursts  whose distribution 

of lengths is independent of the constraint length. 

f (p )  can be given explicitly: 

In this case, po = 0, f(po) = E(O), and 

Thus ( 8 1 )  becomes 

p c  2 -, 
1 - p  v 

where 

F o r  sufficiently large v ,  p < 1/2, so that then 

is the range of p f o r  which e r r o r  bursts  a r e  ra re .  Consequently, the range of p for 

which e r r o r  bursts a r e  not r a r e  is proportional to v", and thus by (79)  the range of 

e r r o r  burst lengths that a r e  not r a r e  is independent of v. 

F o r ' t r e e  codes with large constraint lengths, we would expect for r > R 
comp 

that decoding e r r o r s  would occur in burs t s  whose lengths cluster around a mean 

value that is proportional to v ,  while for r < Rcomp decoding e r r o r s  occur in bursts  

whose length distribution is essentially independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv .  

predict the burst-length distribution for t r ee  codes with short constraint lengths. A 

very limited computer simulation of decoding-error statist ics (reported in sec. 4. 2 )  

tends to suggest the validity of the expected behavior of burs t -e r ror  patterns. 

It is somewhat harder  to 
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3. 2.4 Decoding Complexity for Systematic Convolutional Codes 

For the iterative computational procedure described in section 3. 2. 1, the number 

of calculations pe r  branch grows exponentially with both the constraint length v and the 

number of symbols per source branch t. This happens because q accumulated relative 

Hamming distances must be computed and compared to determine the minimum-distance 

path to each of the qvt states at each branch. 

tion 3.2.  1 the decoding complexity is proportional to q 

t 

Thus for the algorithm described in sec- 
( v t  1 )t 

It is bad enough that the decoding complexity grows exponentially in v .  Since it usu- 
15-220 calcula- 

ally becomes difficult to build computers that can perform more than 2 

tions per  branch in r ea l  time, a Viterbi decoder is essentially restricted to using binary 

codes with constraint lengths not exceeding f rom 15 to 20. 

the allowable constraint length must be reduced accordingly. For example, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4, it 

appears impractical to build a decoder whose constraint length exceeds 7-10. This 

restriction on allowable constraint length severely l imits the practical usefulness of 

these codes. 

If larger  alphabets a r e  used, 

If the decoding algorithm described in section 3.2.1 is used, the fact that the decoding 

complexity also grows exponentially in t permits the use of only low-rate codes, for 

which t = 1, in practical systems. If codes in which t > 1 a r e  used, the permissible 

constraint length must be reduced to the point where it is likely to render the code inef- 

fective for error-correction purposes. 

It is possible to modify the algorithm described in section 3. 2. 1 somewhat in order 

to achieve a substantial reduction in decoding complexity for high-rate systematic con- 

volutional codes. 

depends on the last v t  source symbols plus the current t source symbols. 

and (17), we have 

For high-rate codes, b = t + 1, and only the bth channel system 

Using (15) 

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s  k =  1, 2, . . . ,  t 
ik ik' 

v t  

A circuit for  realizing (90) is shown in Fig. 11. 

and some multipliers and adders. 

It comprises a v-stage shift register 

Since the contents of the shift register contain all of the information required to 

characterize the system at each branch, the state of the encoder can be defined by the 

contents of the shift register. Thus the encoder is defined by qv possible states instead 

of qvt. At this point, a decoding algorithm exactly like the Viterbi algorithm described 

in section 3.2. 1 can be defined on only these g" states. At each branch, each state has 

q possible successor states, so that the total number of distance calculations required 

a t  each branch is qv+t, which is significantly l e s s  than qvt. 

algorithm, the decoder calculates the maximum-likelihood, minimum-distance path to 

each state, and it decodes all but the last k branches when the qv maximum-likelihood 

t 

Like the conventional Viterbi 
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paths a r e  all identical except for the last k branches. 

There a r e  some minor differences between this high-rate decoding algorithm and 

the conventional algorithm, however. In some cases,  some of the possible states do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 

+ .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v 

;f! 
m 

'i 

X. -e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i Xib 

Fig. 11. High-rate systematic convolutional code encoder. 

not exist. An example occurs when gjbv(itv) = 0 for all j = 1, 2 ,  . . . , t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that all of 

the possible states except those for which the first shift register stage contains a zero 

a r e  nonexistent. Second, the se t s  of predecessor states and successor states may 

change from branch to branch for a time-variant systematic convolutional code. This 

property is illustrated by the rate 2/3 systematic binary convolutional encoder shown 

in Fig. 12. 

effect, and suppose that at the next branch the connection indicated by the dotted line is 

added. Table 1 indicates the encoder output branch and the final state as a function of 

the initial state and the source branch for  the cases in which the dotted line is uncon- 

nected and then connected. When the line is unconnected, the predecessor states for 

the 00 state a r e  the 00 state and the 01 state, while all four states a r e  predecessor 

states for  the 00 state when the line is connected. 

rithms is that the path from a state t o  a given successor state may correspond to two 

or  more distinct source branches. 

the unconnected case wherein, for example, the path from the 00 state to the 00 state 

may correspond to either a 00 o r  a 01 fo r  the source branch. This situation can lead 

to rather complicated decoding ambiguities which can be resolved by arbitrarily 

choosing paths o r  sequences as in (52). 

is unconnected so that the predecessor states for the 00 state a r e  the 00 state and the 

Suppose that at one branch the connections shown by the solid lines a r e  in 

A third difference between the algo- 

This is again illustrated by Fig. 12 and Table 1 for 

For example, suppose the dotted line in Fig. 1 2  
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Fig. 12. Rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 / 3  binary systematic convolu- 
tional encoder. 

Table 1. Outputs and state transitions for  encoder of Figure 12. 

Final State 
Initial 
State zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

00 

01 

10 

11  

Source 
Branch 

00 
01 
10 
11 

00 
01 
10 
11 

00 
01 
10 
11 

00 
01 
10 
11 

output 
Branch 

000 
01 1 
100 
111 

001 
010 
101 
110 

000 
01 1 
100 
111 

00 1 
010 
101 
110 

Unconnected 

00 
00 
11 
11 

00 
00 
11 
11 

01 
01 
10 
10 

01 
01 
10 
10 

C onne ct e d 

00 
10 
11 
01 

00 
10 
11 
01 

01 
11 
10 
00 

01 
11 
10 
00 
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01 state, suppose the accumulated relative distance to the 00 state is 2 and to the 01 state 

is 1, and suppose the branch 11 1 is received. Let u s  calculate the minimum-distance 

path to the 00 state after receiving the branch. From the 00 state the decoder adds a 

distance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 if the 00 source branch is assumed and adds a distance of 1 if the 01 source 

branch is assumed, so that it chooses the 01 source branch for a total accumulated dis- 

tance of 3 along the O O - O O  path. From the 01 state the decoder adds a distance of 2 if 

either the 00 o r  the 01 source branch is assumed, so  that by (52) it arbitrari ly selects 

the 00 source branch for a total accumulated distance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 along the 01-00 path. But now 

a decoding ambiguity exists between the O O - O O  path and the 01-00 path, since they both 

lead to total accumulated distances of 3 to the 00 state. By applying (52), again the 

decoder arbitrari ly selects the 01 source branch along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOO-OO path as its final, unique 

decision, thereby yielding the minimum-distance path to the 00 state. 

The Viterbi decoders for low-rate arbi t rary t r ee  codes and high-rate systematic 

convolutional codes have the same expression for  decoding complexity per branch, 

namely q' ft. For the general case of systematic convolutional codes, l e t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = inf (t, b-t). (91) 

vp+t . Then a Viterbi decoder can be built with a decoding complexity per branch of q 

The decoding complexity is therefore greatest  for medium-rate codes. This situation is 

similar  to the decoding complexity observed for block codes, where some high-rate 

codes such a s  the single-parity-check codes o r  the Hamming codes can be easily 

decoded, some low-rate codes such as the repetition codes o r  the MacDonald codes can 

be easily decoded, but where it is usually very difficult to decode large classes  of 

efficient medium- rate codes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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IV. SIMULATION OF THE VITERBI DECODING ALGORITHM 

We have presented a reasonably comprehensive analytical treatment of the Viterbi 

algorithm for decoding t r ee  codes. 

finite constraint length, and it is also a maximum-likelihood decoding technique for a 

large, practical class of channels. Thus the Viterbi algorithm can be applied to any 

ltgoodlt t r ee  code to  yield a decoding e r r o r  probability bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(?), the coding theorem 

bound for t r ee  codes. 

The algorithm is applicable to any t r ee  code with a 

Although section 3. 2 contains new and interesting results concerning the Viterbi algo- 

rithm for decoding t r ee  codes, the analysis is weak in some important practical 

aspects. We have shown that the asymptotic distribution of the decoding lag is exponen- 

tially bounded. This is interesting, of course, and it may give an indication of the 

form of the tail of the decoding-lag distribution. Nothing in that analysis, however, pro- 

vided a suggestion of the magnitudes of the relevant parameters,  nor did the analysis 

t rea t  the form of the decoding-lag distribution near the median of the distribution, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or show how the decoding-lag distribution varies as a function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,  R, and C. We have 

explored the character of decoding-error patterns to be expected in the limiting case 

of codes with large constraint lengths. As we observed, however, it is usually not prac- 

tical to  apply the Viterbi decoding algorithm to  t r ee  codes whose constraint lengths 

exceed 15-20 branches. It is doubtful to  what extent the analysis in section 3.2.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

applies to  short ,  practical t r e e  codes, or what decoding e r r o r  probability is attain- 

able beyond the bound (?)  for these codes, Finally, no suggestion has been made any- 

where that the decoding e r r o r  probability of a particular symbol may be related to the 

decoding lag of that symbol at the time it is decoded. It would certainly be interesting 

to  determine whether such a relationship exists. 

We shall attempt to  provide some insight into these questionable areas  by analyzing 

experimental data obtained from a computer simulation of the Viterbi decoding algorithm 

applied to random t r ee  codes with short constraint lengths. Several topical areas will 

be explored: (i) we shall examine the gross characteristics of the form of the dis- 

tribution of the decoding lag as a function of v ,  R, and c; (ii) we shall tabulate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 
the average length of a burst of e r r o r s ,  as a function of v ,  R, and C, and then relate 

our observations to the analysis presented in section 3. 2 .  3;  (iii) we shall show that 

the probability of erroneously decoding a particular symbol appears to  depend strongly 

on the decoding lag of the symbol at the time it is decoded; (iv) we shall show that’ 

the decoding e r r o r  probability is approximately 5 times as small as the coding-theorem 

bound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 ) ;  and (v) we shall indicate how our results may be extrapolated to  codes 

whose constraint lengths a r e  longer than those of the codes used in the simulation. 

rate (normalized rate 1 /n) random binary t r ee  codes with arbi t rary constraint lengths 

not exceeding 10 branches, in order  to simulate the transmission of these codes over a 

binary symmetric channel with an arbi t rary e r r o r  probability p, and to decode the 

A Digital Equipment Corporation PDP- 1 computer was programmed to generate low- 
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Table 2. Viterbi algorithm simulation data runs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J- 

Run No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV Rate R P R/C Sample Sizer 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1 3  
14 
15  
1 6  
17 
18 
19 
20 
2 1  
2 2  
23 
24 
25 
26 
27 
28 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43  
44  
45 

5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 
5 
5 
8 

10 
5 
8 

5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 

10 
5 
8 

10 

i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
0 
0 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
0 
0 
0 
0 . 109 . 109 . 230 . 306 . 306 . 306 . 175 

. 1 7 5  . 175 

. 3 4 1  . 341 

. 3 4 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. 2 0 0  . 2.00 

. z o o  

. 3 5 5  

. 3 5 5  

. 3 5 5  

. 2 1 4  

. 2 1 4  

. 2 1 4  . 174 

. 1 7 4  

. 174 

. I 1 0  

. I 1 0  

. I 1 0  

. 5  

. 5  

. 5  

. 5  

. 5  

. 5  

. 5  

. 5  

. 5  

1 /4 
1 /4 
1 /4 
1/3 
1/3 
1/3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1/2 
1/2 
1/2 
1/2 
1/2 
1 / 2  

1/2 
1/2 
1/2  
3/4 
3/4 
3/4 
3/4 
3/4 
3/4 
9/10 
9/10 
9/10 
9/10 
9/10 
9/10 

10 ,400  
10 ,400  

5 , 7 4 0  
9 , 9 8 0  
9 , 9 8 0  
4 , 9 9 0  

20,700 
10 ,400  

5 ,170  
20,700 
46 ,000  
20,700 
20,700 
30,200 
15 ,000  

100 ,000  
18 ,900  
10 ,000  
10 ,300  
11,500 
10, 300 
20,900 
20 ,000  
15, 600 
56 ,800  

9, 600 
5 , 2 0 0  

10 ,400  
10 ,300  

5 , 1 7 0  
9 ,960  
9 , 9 4 0  
4 ,990  

10 ,300  
10, 300 

5 , 1 2 0  
10, 300 
1 0 , 2 0 0  

5 ,120  
10,400 
9 ,940  
5 ,030  

10,400 
10 ,300  

5 ,140  

* 
In source symbols. 
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resulting channel sequence according to  the Viterbi algorithm specified in section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.  2. 1. 

The program computed the probability distribution of the decoding lag, the gross channel 

and decoding e r r o r  ra tes  (i. e . ,  fraction of erroneous symbols to total symbols), the dis- 

tribution of e r r o r  burst lengths, and the distribution of error-free intervals between 

bursts. Quite arbitrari ly,  but reasonably in t e rms  of the computational procedure 

specified in section 3.2. 1, we defined an e r r o r  burst to  be any segment of the decoded 

source sequence with the following properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: The sequence begins and ends with 

decoding e r r o r s ;  it contains no error-free subsequences of v o r  more consecutive sym- 

bols; and it is immediately preceded and followed by e r ro r - f r ee  intervals of at least 

v consecutive symbols. 

lation program. 

Table 2 lists the data runs that w e r e  obtained from this simu- 

For  simplicity, it was assumed in the computer program that the all-zero source 

sequence was  supplied to  the encoder, and that the all-zero source sequence produced 

the all-zero channel sequence. To generate a random t r ee  code, it was further assumed 

that each of the b symbols assigned to  each of the qvsl - 1 encoder branches not merged 

with the source sequence at each source branch were chosen independently from a dis- 

tribution p(0) = p(1) = 1/2. 

Corresponding to each source branch, the computer generated data simulating the 

Hamming distance between the received branch and each of the qVtl possible encoder 

branches. The distance between the received branch and the transmitted branch of b 

accounted for channel e r ro r s .  This distance was  simulated by choosing b symbols from 

the distribution p(1) = p, p(0) = 1 -p, and by totaling all of the "1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs" that were selected. 

To generate a binary symbol from that distribution, the computer used a random-number 

generator to provide a 13-bit random number, then determined whether this random 

number exceeded 2 p, and if not, assigned "1" to the resulting binary symbol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
" 0 ' s "  

13 

The distance between the received branch and each of the qvfl  - 1 remaining pos- 

sible encoder branches was simulated by generating an 18-bit number from the random- 

number generator, and by counting the number of "1's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt in a particular set  of b binary 

digits in that random number. This computational procedure i s ,  of course, perfectly 

valid for the simulation of a Viterbi algorithm decoder acting on a random t r ee  code 

applied to a binary symmetric channel, even though it does not correspond to the way 

in which an actual decoder would work. 

The random-number generator produced a periodic pseudo- random sequence of 

18-bit numbers. Its period was 109610, a number whose prime factors are 2 ,  5, 97, 

and 113. 

Hamming distances between the received branch and each of the q 

branches, it is evident that the generator was  used qvtl t b - 1 times per source branch. 

By elementary calculation, one can observe that the random-number generator pro- 

gressed through many periods for each of the data runs listed in Table 2. Nevertheless, 

the set  of qvtl distances simulated for  a source branch was different, if not statistically 

independent, f rom all other such se t s ,  provided that the random-number generator was 

From the description of the manner in which the computer simulated the 

possible encoder 
v t l  
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in a distinct state as it began to simulate distances for each source branch. 

simulation program would have produced a periodic sequence of N(v, b) distinct sets of 

distances, where N(v, b) is equal to 109610 divided by the greatest common divisor of 

ZVs1 t b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 and 109610. None of the data runs listed in Table 2 had a sample size 

exceeding N(v, b). While each set of distances generated by the program was dif- 

ferent, so  that it is reasonable to expect that the data that was simulated provided a good 

approximation to actual decoder behavior, it is possible that the repeating sequence 

produced by the random-number generator accounted for some of the anomalies that 

will be described later.  

the received branch and each of the qvtl possible encoder branches corresponding 

to a source branch, it then applied the Viterbi decoding algorithm specified in sec- 

tion 3.2. 1. Explicitly, the choice (52) was always used to resolve decoding ambiguities, 

s o  that the simulation program always resolved decoding ambiguities in favor of the all- 

zero sequence. Thus the simulation output tended to be slightly optimistic with respect 

to decoding e r r o r  probability, and it may have tended to  shorten the decoding lag. It 

would have been more accurate to have used a random choice rather  than (52) to  resolve 

decoding ambiguities in the simulation program. We suspect, however, that the inac- 

curacies introduced by always using (52) had a negligible effect on the gross charac- 

terist ics of the decoding statistics obtained from the simulation. 

Thus the 

Once the program had generated the data simulating the Hamming distances between 

For  the most par t ,  data runs 1-15 and 28-45 were used to obtain estimates of the 

distribution of the decoding lag, while data runs 10-36 were used to study the charac- 

terist ics of decoding-error patterns. All of the data, however, were used to some 

extent in both parts of the simulation program. 

4.1 DISTRIBUTION OF THE DECODING LAG 

In order  to get an initial idea of the distribution of the decoding lag k, we f i r s t  simu- 

lated a Viterbi decoder for  rate 1/4, 1/3, and 1/2 codes with constraint lengths of 

5, 8, and 10 branches for three extreme cases: the e r ro r - f r ee  channel; the channel 

for which the rate is equal to channel capacity; and the completely random, zero- 

information channel. These three cases are represented, respectively, by data runs 

1-9, 28-36, and 37-45. When the distributions of the decoding lag fo r  the e r ro r - f r ee  

cases were plotted, we found that these distributions depended on both the rate and the 

constraint length, with short  lags being most probable for  short ,  lower ra te  codes, as 

might be expected. For  the other two cases, however, we found that the decoding lag 

distributions depended on the constraint length, but that they were essentially inde- 

pendent of the rate. 

tribution of the decoding lag appeared to  depend on only two parameters,  the constraint 

length v, and tfie ratio R/C of ra te  to channel capacity, 

These observations led zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus to hypothesize a ra ther  unexpected phenomenon: The dis- 

To tes t  this hypothesis further, we took several  longer data runs for  random tree 
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codes with constraint lengths of 5 branches, at rates 1/2, 1/4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/9, and 1/18, and for  

which p was chosen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the ratio R/C = 1/2. These data were obtained from data 

runs 7, 10, 12, and 13, respectively, The results were remarkable: as shown in 

Fig. 13, the distributions of the decoding lag nearly coincided for all four data runs, 

(3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 
8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 4 5 
DECODING LAG k 

Fig. 13. Perturbatiqns in the distributions of the decoding 
lags, v = 5, R/C = . 5. 

even though the rates were spread over a range of an order  of magnitude. Certainly, 

there were some differences in the four distributions, but these were minor compared 

with the changes that were observed when either v or  R/C was varied slightly. 

The same qualitative effects were observed in comparing the decoding-lag dis- 

tributions obtained from runs 8, 11, and 14, which were simulations of applying the 

Viterbi decoding algorithm to random t ree  codes with constraint lengths of 8 branches, 

at rates 1/2, 1/4, and 1/18, and for which p was chosen s o  that R/C = 1/2. 

this phenomenon was noted in the comparison of all subsequent sets of data runs in 

which the ra te  could vary, but in which v and R/C were fixed. Thus we concluded 

that, as a first-order approximation, the hypothesis was valid, and therefore the dis- 

tribution of the decoding lag tended to  depend primarily on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv and the ratio R/C. 

Indeed, 

In Figs. 14-16 we have plotted the distribution of the normalized decoding lag 

k / v  for codes of constraint length 5, 8, and 10, respectively. In each figure the nor- 

malized decoding-lag distribution is shown for  R/C = 1/2, 1, and infinity. In accord- 

ance with the preceding discussion, each distribution that is shown is obtained by 

combining the data f rom all data runs for a given v and R/C. For  example, the 

R/C = 1/2 curve in Fig. 14 represents the combined data from data runs 7,  10, 

12, and 13. 
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NORMALIZED DECODING LAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk/v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 14. Distributions of normalized 
decoding lags, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 5. 

Fig. 15. 

NORMALIZED DECODING LAG k/v 

Distributions of normalized decoding lags, v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 .  

Fig. 16. Distributions of normalized decoding lags, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 10. 
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The distributions shown in Figs. 14-16 have several  interesting features. As would 

be expected, the probability of short decoding lags decreased when either R/C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor v 

increased. The most interesting observations were quantitative: the logarithm of the 

median of the distribution of the normalized decoding lag was approximately propor- 

tional to v t 1 and to R/C whenever R/C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 1, and the logarithm of the median of the 

R/C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco distribution was approximately 1. 5 of the logarithm of the median of the 

R/C = 1 distribution for a given v. Thus 

V 

5 

8 

10  

* 
Table 3 lists experimentally determined values of k 

including additional data not shown in Figs. 14-16. 

as a function of v and R/C, 

9 
Table 3. k as a function of I, and R/C. 

R/C 

. 25 .33  .50 .75 . 9 0  1. 00 

.159 . 161 . 154 . 160 . 158 .157 

. 180 . 185 . 150 . 150 .153 .153 

.173 . 165 . 138 . 135 . 140 . 152 

( k / v )  be the distribution function of the normalized decoding lag cor- 
R/C, v 

responding to v and R/C. 

f o r  the data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruns in which R/C = . 25, . 33, . 50, . 75, .90, and 1. 00,  we found that, as 

a rough approximation, 

Let F 

When we plotted the distributions of the decoding lags 

'I: 
( k / v )  < .9.' This approximation was especially 

R/C, v 
whenever 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ G 1 a n d .  1 < F 

good near the medians of the distributions, where F ( k / v )  = . 5. 
R/C, v 

4.2 ANALYSIS OF DECODING ERRORS 

Table 4 lists additional properties not given in Table 2 which further characterize 

the e r r o r  patterns of data runs 10-36. In Table 4, the symbols v, R, p, and R/C a r e  

as defined previously, p '  is the average decoding e r r o r  probability, p is the coding 

theorem e r r o r  probability bound given by (7), E and are the average number of 

e r r o r s  in a burst and the average burst e r r o r  length, respectively, and NB is the 

total number of e r r o r  bursts occurring in the data run. 

B 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Decoding e r r o r  statistics for data runs 10-36. 

- - 
NB 

N L 
P R/C P' PB 

Run No. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 

10 

11 

12 

13 

14 

15 

1 6  

17  

18 

19 

20 

21  

22 

23 

24  

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

5 

8 

5 

5 

8 

10  

5 

8 

1 0  

5 

8 

10 

5 

8 

10  

5 

8 

1 0  

5 

8 

10 

5 

8 

10  

5 

8 

10  

1 /4 

1 /4 

1/9 

1/18 

1/18 

1/18 

1/4 

1 /4 

1 /4 

1/18 

1/18 

1/18 

1 /4 

114 

1/4 

1/18 

1/18 

1/18 

1/4 

1/4 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/4 

1/3 

1/3 

1/3 

1/2 

1/2 

1/2 

. 109 

109 

, 2 3 0  

. 306 

. 306 

. 306 

* 175 

0 175 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 175 

. 3 4 1  

. 341 

. 3 4 1  

. z o o  
* 200 

. z o o  

.355  

355 

,355 

e 214 

214 

. 2 1 4  

. 174 

. 1 7 4  

. 174 

* 110 

0 110 

0 110 

. 5 0  

m 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D 50 

. 5 0  

. 5 0  

. 5 0  

. 7 5  

. 7 5  

D 75 

.75 

. 7 5  

. 7 5  

. 9 0  

. 9 0  

. 9 0  

. 9 0  

90 

e 90 

1.00 

1.00 

1.00 

1. 00 

1. 00 

1. 00 

1. 00 

1. 00 

1.00 

. 0017 .015 

.00002 * 0012 

.0045 

a 0072 

e 0017 

. 0048 

. 036 

* 020 

. 016 

e 045 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 033 

e 014 

a 073 

. 071 

. 068 

. 091 

. 093 

. 078 

. 096 

. 123 

. 116 

109 

e 096 

. 093 

085 

. 109 

. 101 

. 0 2 4  

.025 

0027 

. 0 0 0 6  

. 2 5 4  

. 110 

. 0 6 3  

. 3 1 0  

.153 

096 

. 6 4  

. 4 9  

.41 

. 69 

. 5 5  

. 4 7  

1.0 

1.0 

1.0 

1. 0 

1. 0 

1. 0 

1. 0 

1. 0 

1. 0 

2.40 

1 

2. 27 

1. 9 6  

3. 33 

3. 42 

3. 9 4  

6. 85 

7. 8 0  

3. 30 

6. 77 

7; 44 

4. 78 

10. 0 

12.7 

4. 32 

9. 15 

11.1 

5. 33 

13.8 

21.8 

5. 95 

11.0 

14. 9 

5. 13  

13. 4 

20. 0 

3. 14 

1 

2. 95 

2. 39 

5.00 

5.34 

6. 03 

11. 6 

14. 5 

4. 9 6  

10. 8 

13. 2 

7. 60 

18. 0 

23. 2 

6.43 

16. 4 

20. 2 

8. 64 

26. 0 

33.9 

10. 0 

21.1 

26. 8 

8. 75 

25. 9 

36. 2 

15 

1 

41 

76 

15 

21  

9 44 

5 4  

20 

135 

56 

19 

320 

143 

8 4  

1193 

95 

37 

187 

92 

32 

18 3 

86  

31 

164 

8 4  

26 

Several of the data runs summarized in Table 4 have questionable validity o r  use- 

fulness. In data run 11, only one source symbol was decoded erroneously from a 

sample of' more than 50,000.  Not only is p'  much smaller  than pB for this data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
run, but also the single decoding e r r o r  gives no indication of the properties of the 

burst e r r o r  statistics. In data run 15, the average decoding e r r o r  probability p '  is 

much larger  than the coding theorem bound pB. 

tion is an accurate portrayal of the behavior that would be expected operationally in this 

case. Perhaps these anomalies could be resolved by taking much more data, and per- 

haps, as we have indicated, they are partly caused by the relatively small  period of the 

It is questionable whether the simula- 
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random-number generator that was used in the simulation program. 

part, however, the data obtained from the simulation agreed reasonably well with 

the analytical results.  

For  the most 

4. 2. 1 Burst-Error  Statistics 

Table 5 compares the average burst length obtained from the simulation with 

described in section 3. 2. 3 fo r  data runs 10-36. the characteristic burst length L 

A comparison is also made of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo, obtained by approximating the e(R) curve by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO 

Rcomp' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 '  
e(R) = { (C-R) 

Rcomp 

* 
and pot obtained by applying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17 to (79) :  

( 9 4 4  

By using the approximation (941, it turns out that po = R/C. 

results given in section 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  3. For  codes with constraint lengths of 8 o r  more, the 

data from runs 14 and 15 indicated that for ra tes  below Rcomp decoding e r r o r s  

tend to occur in bursts whose lengths a r e  essentially independent of v, while the 

remaining data showed that for rates above Rcomp the average burst length is pro- 

portional to v. These results did not c a r r y  over to the v = 5 codes, thereby sug- 

gesting that the analytical results of section 3. 2. 3 become invalid for codes whose 

constraint lengths are somewhat l e s s  than 8. 

To a large extent the simulation data agreed qualitatively with the analytical 

There was also an area quantitative disagreement: for codes with constraint * 
lengths of 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor more, po was approximately equal to .76 bo. Thus was much 

shorter  than the characteristic length described previously. 

Finally, the data showed that for  fixed v and R/C, decreases with decreasing 

rate. This suggests a difference between the approximation (94) and the true char- 

acter of e(R),  and it therefore indicates that the approximation p = R/C is slightly 

inaccurate. In particular, the simulation data suggest that p increases with 

decreasing R o r  increasing channel e r r o r  probability for a fixed R/C, in agreement 

with our intuition. 

0 

0 

4 . 2 . 2  Error Probability as a Function of the Decoding Lag 

A limited number of data runs included printouts that enabled the calculation 

of e r r o r  probability as a function of the decoding lag. For these data runs, 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAError burst lengths. 

1 0  

11 

1 2  

13  

14 

15 

16  

17  

18 

19 

20 

21  

22 

23 

2 4  

25 

26 

27 

28 

29 

30 

3 1  

32 

33 

34  

35 

36 

. 5 0  

. 5 0  

* 50 

. 5 0  

. 5 0  

. 5 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 75 

. 7 5  

. 7 5  

.75  

.75  

. 7 5  

. 9 0  

. 9 0  

. 9 0  

. 9 0  

. 9 0  

. 9 0  

1. 00 

1. 00 

1. 00 

1. 00 

1. 00 

1. 00 

1. 00 

1.00 

1. 00 

. 3 9  

- 
. 3 7  

. 32 

. 38 

.35 

. 5 3  

.59  

. 5 9  

. 5 0  

.58  

. 5 7  

. 60 

. 69 

e 70 

a 56 

. 67 

. 6 7  

.63  

. 72 

e 77 

. 67 

. 7 3  

. 7 3  

. 6 4  

e 76 

. 78 

§ 

§ 

§ 

§ 

§ 

§ 

15 

24  

30 

15 

24  

30  

45 

72  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 0  

45 

72  

9 0  

00 

00 

00 

Dc) 

00 

00 

00 

00 

00 

3. 14 

1. 0 

2.95 

2. 39 

5.00 

5. 34  

6. 03 

11. 6 

14. 5 

4, 96 

10, 8 

13. 2 

7. 60 

18. 0 

23. 2 

6. 43 

16. 4 

20. 2 

8. 64 

26. 0 

33.9 

10.0 

21.1 

26.8 

8.75 

25. 9 

36. 2 

Rcomp for R/C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG . 50. 
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Table 6 l ists  the decoding e r r o r  probabilities of symbols as a function of their  decoding 

lag at the time they were decoded. 

The results shown in Table 6 are dramatic. A comparison of the data indicates that 

the probability of erroneously decoding a symbol, given the decoding lag of the symbol 

at the time it was decoded, was approximately the same for all five data runs, even 

though the rates  and the ratios R/C varied considerably. 

Table 6 lists the e r r o r  probabilities obtained by combining the data from all five data 

runs. 

The "composite" column in 

Only five data runs were available for this study, since an excessive amount of com- 

puter time would have been required to obtain the necessary printouts for  all of the 

data runs. 

less, the table listings suggest that the decoding e r r o r  probability as a function of the 

decoding lag is relatively insensitive to R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor R/C. If this hypothesis is indeed true,  

then Table 6 indicates that for a random tree code with v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 10, the decoding e r r o r  proba- 

bility is approximately when k = 30, 3 X when k = 35, 10 when k = 40, 

3 X lo-' when k = 50, 

Thus it may be unwise to draw definite conclusions from Table 6. Neverthe- 

-2 

-1 
10 when k = 60, and 3 X 10-1 when k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 100. 

Our results suggest that this phenomenon might also be applicable to  t r e e  codes 

Table 6. Error  probability as a function of the decoding 
lag for codes with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv = 10. 

Range of 
Decoding Lag 

k <  30 

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk <  35 

35 G k < 40 

40 G k < 45 

45 G k <  50 

50 G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk <  55 

55 G k <  60 

60 G B < 65 

65 G k <  70 

70 G k <  75 

75 G k <  8 0  

8 0  k <  8 5  

85 G k <  90 

90 G k <  95 

95 G k <  100 

100 G k 

Error  Probability 

Run 21 24 30 33 36 Composite 

t 

. 0026 

. 0 1 2  

.021  

. 054 

. 061 

. 098 

089 

t 

t 

t 

t 

t 

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

* 

a 00036 

e 0051 

. 013 

. 028 

a 047 

. 068 

. 078 

. 089 

. 1 4  

a 19 

. 2 0  

. 2 4  

. 2 2  

a 26 

e 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
29 

t t t 

* * * 
016 . 0075 t 

. 0 2 2  . 018 . 0023 

, 0 4 4  . 024  . 016  

.067  . 0 5 4  .056  

. 1 2  . 0 4 3  . 0 9 3  

. 1 3  .067  .097  

.15 . 075  a 14 

. 2 0  074 a 14 

26 . 1 4  . 1 7  

e 29 . 1 7  . 1 7  

. 3 4  . 1 9  . l l  

. 3 4  . 2 6  . 1 4  

. 3 5  D 32 0 20 

* 37 . 3 0  a 31 

.00010 

. 0030 

. 011 

.021  

. 0 4 0  

. 0 5 4  

. 097 

.094  

. 1 4  

. 1 7  

. 1 9  

. 2 1  

. 2 1  

. 2 4  

e 29 

. 3 1  

* 
No data or insufficient data. 

55 



with different constraint lengths. Certainly, the problem is worthy of further experi- 

mental study. If, as our data suggest, it is indeed t rue that the decoding lag and the 

decoding e r r o r  probability a r e  highly correlated, then this property may be useful to  the 

designer of a decoding system. The fact that the decoding lag supplies a measure of like- 

lihood information for  each decoded symbol might be used, for example, by treating all 

decoded symbols whose decoding lag exceeds a specified amount as erasures .  The prop- 

er ty  certainly indicates that there is a practical limit to  the decoder memory beyond 

which one gains little in t e rms  of decreasing decoding e r r o r  probability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 75 

. 9 0  

1. 00 

4.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Comparison with the Coding Theorem 

* 15 . 2 0  . 2 0  

.12 .16 .17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 10 .11 .11 

By comparing p '  with pB in Table 4, we observe that the decoding e r r o r  probability 

is less than the coding theorem bound (7) for every data run except run No. 15. Table 7 

lists the ratio of p '  to  pB observed as a function of v and R/C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B' 

Table 7. Ratio of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' t o  p 

.50 . 20  

0 
Insufficient or unreliable data .  

Table 7 indicates that p'/p, tends to increase with v and to decrease with R/C, but 

that it has a value ranging between approximately . 15 and . 2 5  for . 50 < R/C < . 90  and 

5 < v < 10. 

4. 2.4 Projections 

In Section V we shall  occasionally want to estimate the performance attainable by 

applying the Viterbi decoding algorithm to  t r e e  codes for  which v > 10 and for which 

. 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG R/C G 1.0. Using the results of sections 4. 2. 1 and 4.2. 3, we conservatively esti- 

mate a decoding e r r o r  probability 

p' = . 2 5  exp -vbe(R), v =s 20,  (96) 

and we estimate an average burst length 

where 

p0 = .76 R/C, v 3 8. 
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V. CASCADED TREE CODES 

5.1 REVIEW OF BLOCK-CODE CASCADING 

In section 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 it was indicated that cascading techniques can be used to  generate 

easily decoded codes that have a large constraint length. Cascading is effective when- 

ever,  for  a given rate and decoding e r r o r  probability, it yields a substantial reduction 

in the decoding complexity compared with a one-stage code. 

Two effective classes  of block-code cascading techniques a r e  product codes and con- 

These techniques, which have somewhat different structures and prop- catenated codes. 

ert ies,  a lso have analogs in the formulation of cascaded t r ee  codes. 

tree-code cascading techniques, therefore, it is helpful to  review the properties of these 

two classes of block-code cascading techniques. 

To understand the 

5. 1. 1 Product Codes 

El iasfs8 invention of product codes w a s  the first application of cascading t o  the con- 

struction of long block codes. The formulation of a two-stage, productlike code can be 

explained by referring t o  Fig. 2. The data source supplies symbols from an alphabet 

of size q to  the outer encoder in blocks comprising k k 

can be arranged conceptually in the kl  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX k2 a r r a y  shown in Fig. 17a. 

takes the kl  symbols f rom each row and encodes them into blocks of n1 symbols, where 

the output symbols also belong t o  the q-ary alphabet. The outer code can be arbitrary,  

although in most practical coding systems it is systematic, linear, and time-invariant. 

The k2 output blocks comprising n1 symbols each can be conceptually arranged in the 

n X k a r r a y  shown in Fig. 17b. By using an interleaver, the symbols from the 
1 2  

n X k a r r a y  a r e  read into the inner encoder by columns, The inner encoder takes 
1 2  

the k2 symbols from each column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the n X k, a r r a y  and encodes them into blocks 
1 

of n symbols, where once more the output symbols belong to an alphabet of size q. 

Again, the inner code format may be arbitrary. The output of the inner encoder can 

be represented by the n1 X n2 a r r a y  shown in Fig. 17c. The symbols from this array 

are supplied column by column t o  the channel. 

The decoding process is the reverse of encoding. Each block of n2 channel output 

symbols is decoded according t o  an algorithm appropriate to  the inner code to  produce 

an estimate of the k2 symbols that were supplied to  the inner encoder. When a block 

of nl  of these k2-symbol words is decoded, it is arranged conceptually in an n1 X k2 

a r r a y  like that shown in Fig. 17b, and an interleaver is used t o  read the symbols out by 

rows. 

priate for  the outer code, and the output of the outer decoder is the composite decoderls 

estimate of the symbols originally supplied by the data source. 

The extension of this encoding technique t o  an arbitrary number of stages is obvious. 

In all cases  the composite block length is equal to  the product of the block lengths of the 

constituent codes, while the composite normalized rate is equal to  the product of the 

symbols each. These symbols 

The outer encoder 
1 2  

2 

Each block of n of these symbols is decoded according to  an algorithm appro- 
1 
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t------"l I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(C) 

Fig. 17. Representation of product-code 
symbols. 

normalized r a t e s  of the constituent codes. 

[The normalized rate of a code is the 

fraction of output symbols that represent 

information. F o r  an (n ,k )  block code, 

the normalized rate is k/n.] On the other 

hand, the composite decoding complexity 

is approximately equal to the sum of the 

decoding complexities of the constituent 

codes, plus the complexity and additional 

storage requirements introduced by the 

interleaver . 
Elias zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 

proposed a product coding sys-  

tem that is remarkably simple. 

innermost code is a Hamming single- 

e r r o r  -correcting , double - e r r  or  -detecting 

code of length Zm, and each successive 

code is a similar Hamming code with 

twice the length of i t s  predecessor. Elias 

then showed that this coding system could 

be effectively used on a binary symmetric 

channel, provided the e r r o r  probability 

p < 2-(mt1). F o r  such a coding system 

The 

8 

with s stages, he showed that the decoding-error probability satisfies 

( 9 9 )  
m t l  2' 

W E )  < ( 2  P )  Y 

while 

m t  2 
2m-l ' 

R > 1 - -  

Although (100)  is a somewhat loose bound fo r  small  values of m,  the actual rate of this 

coding system does fall somewhat short of channel capacity. Furthermore,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(E) does 

not decrease exponentially with the composite block length. Finally, the code cannot 

correct (by this decoding method) some e r r o r  patterns whose weight is less than half 

the minimum distance of the code, although it has a substantial diffuse error-correction 

ability to correct many likely e r r o r  patterns of weight exceeding half the minimum dis- 

tance. Despite these shortcomings, this is one of the very few known practical coding 

systems capable of generating arbitrari ly long codes for  which the probability of e r r o r  

goes to  zero at a reasonable, nonzero rate. 

AbramsonZ7 has designed a cascade decoder for the cyclic product codes introduced 

In more recent work that exploits the implementational advantages of cyclic codes, 
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28 
by Burton and Weldon. 

All cascaded decoding algorithms for product codes have substantial diffuse e r r o r  

correction, as well as the inability to correct  some e r r o r  patterns whose weight is l e s s  

than half the minimum distance of the code. 

Cascaded algorithms for  decoding product codes can realize a substantial reduction 

in the decoding complexity, If maximum-likelihood decoding is used for  decoding each 

constituent code, for each ni symbols supplied to the ith decoder, its decoding algorithm 

must essentially compare qi alternatives, where qi is the alphabet size of the 

ith code, and ri is the normalized ra te  of the ith code. F o r  product codes, all constit- 

uent codes operate with the same q-ary alphabet. F o r  a product code with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs stages of 

ki n'r .  1 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= qi 

n r  
coding, the innermost decoder makes - 1 q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 s  calculations per channel symbol, the next 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

n r  
s-1 s-1 

calculations per symbol supplied to  it,  or  
1 

innermost decoder makes - 
s- 1 

n q  

r n r  

s- 1 
calculations per channel symbol, etc. Thus the total number of calcula- 

s s-1 s-1 
ii-q 

tions per channel symbol for  an s-stage product code is 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II niri s t l  

n . r .  

qi=l 

n. << s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

ll ni 1 
i= 1 

i= 1 

q 

i= 1 

where r 

culations per channel symbol required for a single -stage maximum-likelihood decoder 

with the same composite length and rate as the product code. 

e 1 in (101), and the right-hand expression in (101)  is the number of cal- 
st l  

5. 1. 2 Concatenated Codes 

Forney' s 9' l o  concatenated codes a r e  a second cascading technique for generating 

long block codes. 

structures and properties, except that the encoding and decoding processes for  both 

classes of codes involve a se r i e s  of successive, cascaded operations. 

Concatenated codes and product codes a r e  quite different in their  

In t e r m s  of Fig. 2, the construction of concatenated codes can perhaps be most 

easily understood by considering first the inner code, and then the successively cascaded 

stages of outer codes. The inner code has a block length n l  and a normalized rate kl/nl ,  

and operates on symbols f rom a channel alphabet of size q 

but in most practical systems it would usually have some mathematical structure such 

as time invariance, linearity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor being systematic. 

Each inner code word represents one of qc 

This code can be arbitrary,  
C' 

kl  
possibilities, which can be interpreted 

kl as a symbol in an alphabet of size q2 - - qc . Using this interpretation, the outer code 
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has block length n2 and a normalized rate k2/n2, but operates on the derived q2-ary 

alphabet. 

The cascading process can be extended in an obvious manner to  an indefinite number 

of stages. For a concatenated code with s stages of cascading, the source supplies sym- 

bols that are interpreted by the outer encoder as blocks of k symbols each from a qs-ary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II k. 

j=1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj-1 
alphabet, where q = qc , k = 1, i = 1, 2, . . . , s. The outermost encoder encodes 

i 0 

these symbols into blocks of n q -ary symbols. 

encoded by the next outermost encoder into blocks of ns-l qs-l -ary symbols, and the 

process is continued through the innermost encoder that encodes each q2-ary symbol 

into blocks of n q -ary symbols. Observe that, in contrast to  product coding, no inter- 

leaver is required between successive stages of coding for  concatenated codes. 

Each of these qs-ary symbols is then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s s  

1 c  

Again the decoding process is the reverse  of encoding. The innermost decoder forms 

estimates of the q2-ary symbols, the next innermost decoder uses the q2-ary symbols 

estimated by the innermost decoder to  form estimates of the q3-ary symbols, and so on 

until the outermost decoder finally estimates the k qs-ary symbols originally sup- 

plied by the source.. 
S 

A s  with product codes, the block length of a composite concatenated code, expressed 

in channel symbols, is equal to  the product of the block lengths of the constituent codes 

in their respective alphabets, while the normalized rate of the composite code is equal 

to  the product of the normalized rates  of the constituent codes. 

composite decoding complexity is approximately equal to  the sum of the decoding com- 

plexities of the constituent codes. 

catenation can substantially reduce the decoding complexity in the way that (101) implies 

that product-code cascading reduces decoding complexity, since the alphabet sizes 

differ substantially fo r  concatenated codes. 

catenation can offer a reduction in decoding complexity compared with the complexity 

required t o  decode a single-stage code of the same length as the composite code. 

of e r r o r  decreases nearly exponentially with the composite length at all ra tes  below 

capacity, while the decoding complexity is proportional to  the cube of the composite 

length, where the constant of proportionality depends on the composite rate. The coding 

system has a suitably chosen binary BCH code as the inner code, with outer Reed- 

Solomon codes whose lengths and alphabet s izes  are determined by the inner code. For 

this system the decoding-error probability decreases essentially exponentially with the 

complexity in the limit of high complexities. The efficiency of these codes - that is, 

the ratio of the effective concatenated e r r o r  exponent to  E ( R )  - is quite low, however, 

especially at ra tes  approaching capacity. 

Similarly, also, the 

This last statement does not by itself imply that con- 

It takes further work to show that con- 

F orney 9 9  l o  has demonstrated a concatenated coding system for  which the probability 

Despite their  shortcomings, cascaded block-coding techniques are an effective, prac- 

tical, and general approach to  the coding problem. 
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5 . 2  FORMULATION OF CASCADED TREE CODES 

We have outlined the structure and properties of product codes and concatenated 

codes. 

a r e  an effective approach t o  the coding problem. 

Both of these coding techniques involve only block codes, and both techniques 

In Section I1 we showed that in some ways t r e e  codes are superior to  block codes. 

It is natural to  wonder whether cascading techniques can be applied to  coding systems 

involving t r ee  codes and, if so, whether the use of t r e e  codes offers any advantage in 

performance compared with block-code cascading. 

PinskerZ9 and Stiglitz3 have studied two-stage cascaded coding systems in which 

the inner code is a block code and the outer code is a tree code. Their objective 

was t o  discover under what conditions such a coding system could be used s o  that sequen- 

tial decoding could be applied t o  the outer code while the composite rate w a s  higher than 

Rcomp 
one of their primary objectives, however, to study the efficiency and error-correcting 

capabilities of these codes, nor to  study alternative tree-code decoding techniques. In 

similar work Falconer3 proposed a two-stage coding scheme in which the inner code 

comprised N t r ee  codes operating in parallel. K of these codes were independent; 

the symbols fo r  the remaining N-K codes were specified by an (N,K) block code, which 

could be regarded as an outer code. 

sequential decoding; however, when K t r ee  codes had been decoded, the block code 

format was applied to  decode the remaining N-K t r ee  codes. The primary objective of 

this technique was to be able to use sequential decoding a t  composite channel ra tes  

exceeding Rcomp. 

in which both the inner code and the outer code in Fig. 2 a r e  t r ee  codes. 

native formulations of cascaded t r ee  codes will be given. Some of these techniques a r e  

analogous to  the product codes and the concatenated codes, and some a r e  distinctly dif- 

ferent. We shall compare the efficiency of tree-code cascading to the efficiency attain- 

able with block-code cascading. It is indicated that in this respect tree-code 

cascading is greatly superior to  block-code cascading, especially at ra tes  approaching 

channel capacity. 

using present available techniques for decoding the constituent codes. 

cascading, at present, offers at best a marginal improvement. Conditions will be pre- 

sented for  which a cascaded coding system can employ sequential decoding on the outer 

code of a two-stage system, while operating at a composite ra te  exceeding R 

the channel. 

for  the raw channel. Some of their results will be reported here. It w a s  not 

Each t r e e  code was decoded independently by using 

In the r e s t  of Section V we shall consider the properties of cascaded coding systems 

Several alter- 

Finally, we shall consider the practicality of tree-code cascading, 

Unfortunately 

for  
comp 

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 1 Productlike Codes 

Suppose that both codes in the two-stage cascading process illustrated in Fig. 2 a r e  

tree codes. Let the outer encoder be characterized by parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv l ,  t l ,  b l ,  and q, while 
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the inner encoder is characterized by parameters v t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, b2, and q,  where the v ' s  a r e  the 

constraint lengths, the t's and the b's a r e  the input and output branch lengths, respectively, 

and q is the symbol alphabet size for each code. With a suitable interleaver inserted 

between the two stages of encoding, the composite encoder configuration of an outer 

encoder, interleaver, and inner encoder generates a two-stage cascaded t r ee  code that 

is analogous to product codes. 

2'  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

Fi r s t ,  consider the amount of symbol separation that must be provided by the inter- 

leaver. Since the constraint length of a t r ee  code means that each output symbol '!depends 

on'' the last v t l  input branches supplied to  the encoder, then for a two-stage productlike 

t r ee  code each channel symbol should "depend on'' (v +I ) (v2 t1 )  data source branches. 

This dependence is ensured if a [ ( v 2 t l ) t Z ,  ( v  t l ) b  ] interleaver is inserted between the 

outer encoder and the inner encoder, [An interleaver fo r  which the symbols in every 

contiguous set  of n 

n symbols in the input sequence is called an (n n ) interleaver. In Section VI we 

discuss the efficient realization of (n 

is to reorder  the output sequence from the outer encoder in such a manner that all of 

the ( v  t l ) t  symbols appearing within the constraint span of the inner encoder "depend 

on'' distinct sets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( v  t I ) t  data source symbols. Thus the constraint length in source 
1 1  

branches of the composite code is ( v  t l ) ( v 2 t l ) t  - 1. Viewed from the data source, every 
1 2 

data symbol affects ( v l t l ) b l  output symbols f rom the outer encoder, each of which influ- 

ences a distinct se t  of (v2+1)b2 channel symbols. 

length is essentially ( v  t I ) ( v  + l ) b  b 

expect for cascaded codes. The data source symbols a r e  supplied to the outer encoder, 

which encodes them in its format at a normalized rate tl/bl. The output symbols f rom 

the outer encoder a r e  interleaved and then supplied to the inner encoder, which encodes 

them in its format at a normalized rate tz/bz. Decoding is just the reverse of encoding. 

The channel output symbols a r e  supplied to  the inner decoder, and i ts  output sequence 

is unscrambled and supplied to the outer decoder. The output of the outer decoder is 

the composite decoder's estimate of the data sequence. 

The amount of symbol separation provided by a [(v2+l)t2, (v l t l )b l ]  interleaver is 

only a minimum amount required to obtain a composite constraint length of ( v l t l )  

(v2 t l ) t2  - 1. Any (n , n  ) interleaver with n2 2 ( v z t l ) t 2  and n 2 ( v  t l ) b  wi l l  do. Some 

decoding algorithms a r e  effective only if the input e r r o r s  appear to occur randomly 

rather than in bursts. 

fore, it is necessary for the interleaver to  provide much greater symbol separation; 

that is, to  make n >> (v  t 1 ) t  if the inner decoder has a substantial probability of making 

e r r o r s  in bursts of more than ( v  t l ) t  
2 2  

The only effect of this modification on decoding complexity is to  increase the required 

symbol storage. 

1 

1 1  

symbols in the output sequence were mutually separated by at least 
2 

1 2' 1 
n ) interleavers.] The function of the interleaver 

2' 1 

2 2  

Thus the channel symbol constraint 

1 2 1 2 '  
The composite encoding and decoding procedures are what one would naturally 

2 1  1 1 1  

To use these algorithms effectively in the outer decoder, there- 

2 2 2  
symbols whenever it does make decoding e r ro r s .  

It is almost tr ivial  to  extend this coding procedure t o  the construction of multistage 
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productlike cascaded t r e e  codes. 

inserted between successive stages of encoding, the composite constraint length for an 

s-stage productlike code is 

Under the assumption that sufficient interleaving is 

while the composite constraint length in channel symbols is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n (vitl)bi. 
C 

i= 1 

The normalized rate is just the product of the normalized constituent rates: 

S 

r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII ti/bi 
i= 1 

(104) '  

Since the alphabet sizes are the same for  all of the constituent codes of a product- 

like code, we would expect that the cascade decoding of these codes would yield a sub- 

stantial decrease in the decoding complexity compared with the complexity required to  

decode a single-stage code of the composite constraint length such as that indicated in 

(101). 

Because of the continuous nature of t r ee  codes, there is no need to  provide branch 

synchronization between successive stages of coding. 

v l ,  v2, t l ,  t 2 ,  b l ,  and b may be chosen independently of each other. 

there a r e  no restrictions on the parameters nl and n of the (n  

between the outer encoder and the inner encoder, except that they be large enough to  

provide sufficient symbol separation to  achieve a composite constraint length equal to  

the product of the constituent constraint lengths. This contrasts with the analogous 

block-code formulation, where branch synchronization and much more restrictive o r  

explicit interleaving functions a r e  required to achieve the multidimensional a r r ay  struc- 

ture illustrated in Fig. 17. 

In this regard, the parameters 

Furthermore, 
2 

n ) interleaver inserted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 27 1 

5. 2. 2 Concatenationlike Codes 

Suppose now that the outer and inner codes in the two-stage cascading process a r e  
m 

t r e e  codes with parameters v l ,  t l ,  b l ,  and q , and v 2 ,  t 2 ,  b2, and q, respectively. 

It is evident that one symbol in the outer code alphabet can be transformed into m 

symbols in the inner-code alphabet, and vice versa. 

figuration shown in Fig. 18 can be used to generate a two-stage cascaded t r e e  code that 

is analogous t o  a concatenated code. 

Using that fact, the equipment con- 

m 
It is convenient to assume that the data source supplies q - a ry  symbols to the 

outer encoder. These symbols a r e  encoded by the outer encoder in its format 
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Fig. 18. Encoding for  concatenationlike t r ee  codes. 

m 
at a normalized rate tl/bl. 

interleaver that operates in the qm-ary alphabet, where 

The resulting q -ary symbols a r e  fed to an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a, (v l t l )b l ]  

and IfLxJll means "the greatest integer contained in x.11 The reordered sequence of 

q -ary symbols a r e  supplied to a q -ary-to-q-ary translator: each qm-ary symbol is 

transformed into a sequence of m q-ary symbols. 

bols is fed to  the inner encoder, which encodes these symbols in its format at a nor- 

malized rate t2/b2. 

from the outer encoder s o  that any symbols within the constraint length of the inner 

encoder that come from the transformation of distinct qm-ary symbols depend on dis- 

tinct se t s  of ( v l t l ) t l  data source symbols. 

symbol affects ( v l t l ) b l  output symbols f rom the outer encoder, and each of these 

affect a distinct set  of at least (v2 t l )b2  channel symbols. 

constraint length is at least ( v l t  l ) ( v 2 t  l)blb2. 

symbols are supplied to  the inner decoder, and the resulting sequence of decoded q-ary 

symbols is converted into a sequence of qm-ary symbols which is unscrambled and then 

supplied to  the outer decoder. 

is the composite decoderfs estimate of the data sequence. 

m m 

The resulting sequence of q-ary sym- 

The function of the interleaver is t o  reorder  the output sequence 

Viewed from the data source, each data 

Thus the channel symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A s  one would expect, decoding is just the reverse  of encoding. The channel output 

The sequence of output symbols f rom the outer decoder 

The [a, ( v  + l ) b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA] interleaver provides only the minimum amount of symbol separa- 
1 1  

tion necessary fo r  a composite channel symbol constraint length equal t o  the product of 

the constituent output symbol constraint lengths. 

e r r o r  distribution coupled with the outer code decoding method requires further symbol 

1 
separation, any (n2, n l )  interleaver with n2 sufficiently greater  than some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. and n 

sufficiently greater than some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf3 2 ( v l t l ) b l  will suffice. 

The extension of this coding procedure to  the construction of a multistage concatena- 

tionlike code is straightforward. 

channel is qm(i), where for  an s-stage concatenationlike code, 

Whenever the inner-code decoding- 

The alphabet size for  the ith stage of coding f rom the 

m ( l ) =  1 (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA06a) 
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The data source supplies 

symbols a r e  encoded and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , 3  ,..., s. (106b) 

qm(s)-ary symbols to the outermost encoder. These 

then interleaved, and a r e  then translated into blocks 

of ms-l qm(s-l)-ary symbols. The sequence of q m(s-l)-ary symbols is fed to 

the second outermost encoder, and the process continues in an obvious manner 

until the innermost decoder supplies a sequence of q-ary symbols to the chan- 

nel. Decoding is again just the reverse  of encoding. The composite normalized 

rate is again given by (104), while (103) is a lower bound on the composite con- 

straint length in channel symbols, provided there is sufficient symbol separation 

between successive stages. 

A s  with the productlike codes, it is unnecessary to  provide branch synchronization 

between successive stages of coding, except that framing synchronization must be pro- 

vided to the q m(i-l) -ary-to-qm(i)-ary symbol translators. Also the {vi}, {ti}, and {bi} 

may be chosen independently of each other, with the obvious restriction that bi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ti 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

f o r  all i. Additionally, the parameters {ny)} and {ny)} for  the interleavers between 

the ith and (if1 )th stages may be chosen arbitrari ly,  provided they a r e  sufficiently large 
10 

to furnish the required symbol separation. Finally, in contrast to Forney's 

concatenated codes, the {mi> that define the alphabet sizes of each stage may 

be chosen arbitrari ly f rom the positive integers without regard io any of the 

other sets  of parameters previously mentioned. [The use of sequential decoding 

for the outermost stage or  stages may res t r ic t  the {mi> in te rms  of the {vi>. 

This topic will  be treated in section 5. 4. 2.1 This flexibility in the choice of 

parameters differs considerably from the analogous situation with block-code con- 

cat enat ion. 

There is one final difference between block-code concatenation systems and tree- code 

concatenation systems. The encoding system for  a t r ee  code, shown in Fig. 18, uses  

an interleaver, while the corresponding block-code concatenation system does not. 

If there were no interleaver between successive stages, and if m were not propor- 

tional to v2b2, then the approximate composite constraint length in channel symbols for 

a two-stage code would be 

v C { ~ v l t ~ ~ l m ]  -t v2} b2, (107) 

s o  that the composite constraint length would grow more like the sum rather  than the 

product of the constraint lengths of the constituent codes. The interleaver ensures prod- 

uctlike growth, whenever m is not proportional to vpb2. In the block-code concatena- 

tion formulation, m is proportional to the block length of the inner code, s o  that the 

productlike growth in block length is automatically provided without the interleaver. 
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5 , Z .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Burst-Error-Correcting Outer Codes 

There is a third, reasonably obvious, formulation for a tree-code cascading sys-  

tem that has no clearly defined block-code cascading analog. 

use of the fact that decoding e r r o r s  for t r ee  codes tend to occur in bursts,  as is 

indicated in section 3. 2. 3 and is further supported by the simulation results given 

in section 4. 2. 1. 

This formulation makes 

Consider once more the two-stage coding process illustrated in Fig. 2. Let the inner 

code be a t r ee  code characterized by parameters v 2 ,  t2 ,  b2, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. Furthermore,  

assume that the statistical properties of the inner code decoding e r r o r s ,  such as burst- 

length distributions, e r ror - f ree  interval distributions, and perhaps burst-error  den- 

si t ies,  can be described and calculated in some suitable manner. Then it may be 

appropriate to use a burst-error-correcting t r ee  code as the outer code. This code 

would be chosen to match as efficiently as possible the statistics of the decoding e r r o r s  

of the inner code. Some examples of families of burst-error-correcting convolutional 

codes a r e  given by Gallager. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA___. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

Whenever this cascaded system is appropriate, it can yield improvement with 

relatively little decoding complexity. For  example, no interleavers a r e  required 

between successive stages, and the realization of the burst-error-correcting outer 

decoders is fairly simple. Like the other c lasses  of cascaded t ree  codes, the com- 

posite normalized rate is equal to the product of the normalized ra tes  of the con- 

stituent codes. 

of codes which would be sumlike, as in (107);  however, this concept makes little sense 

because the outer code is a specified, burst-error-correcting code that is matched to 

the e r r o r  statistics of the inner-code decoder. Instead it is more meaningful to eval- 

uate this coding system in t e rms  of the e r r o r  probability attainable at a given composite 

rate and composite decoding complexity. 

It would be possible to define a composite constraint length for this class 

Several techniques a r e  possible for extending this basic coding system to a multi- 

stage cascaded t ree  code. 

most code is a random-error-correcting code that produces decoding e r r o r s  in 

well-defined bursts, and is immediately followed by a burst -error-correcting t r ee  code 

that is matched to the inner-code e r r o r  statistics, then it is possible to envision at least 

three alternative possibilities for the next stage of coding: In one case, it might be pos- 

sible to effectively use a second burst-error-correcting t r ee  code that is matched to 

the decoding e r r o r s  of the innermost burst-error-correcting t r ee  code. On the other 

hand, it might be preferable to use  an interleaver and to form a productlike code with 

a third stage, o r  to make an m-to-1 symbol translation and then to use an interleaver 

to form a concatenationlike code with the third stage. Furthermore,  it is evident 

that these three choices a r e  present at each further stage of coding. 

difficult to compare any of these techniques without reference to a specific applica- 

tion, since their relative performances might vary widely. 

Given a multistage cascaded t r ee  code in which the inner- 

It is ra ther  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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5.3 EFFICIENCY OF TWO-STAGE CASCADING 

5. 3. 1 Coding Theorem Efficiency 

Suppose that the channel in the two-stage cascaded coding system shown in Fig. 2 is 

a DMC with block-code exponent E(R) and tree-code exponent e(R),  where the relation- 

ship between E(R) and e(R) is given by (39) and (40) and is illustrated in Fig. 6. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

be the composite constraint length of the cascaded code, where a is the number of chan- 

nel symbols whose selection is influenced by any given data source symbol. Fo r  example, 

i f  both codes a r e  block codes with inner-code block length N 2  and outer-code block length 

N1, then a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N N for a product code. We shall define a for the case in which the inner 

code is a t ree  code in the discussion immediately preceding Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 below. 

combination of block codes and t ree  codes in the two-stage cascaded coding system, it 

is possible to find a coding system for which 

1 2  
For any 

where o ( u )  - 0 for large 

is a block code, and 

a ,  p. = T i f  the ith code is a t ree  code, Pi = B if the ith code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

P P  
The quantity E 

to the assignment of p,  and p 

follows immediately that ETB(R) exists, and can be found from EBB(R) by using (39) 

and (40) o r  the graphical technique shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  In proving Theorem 4 below, we 

use Forneyts9 arguments to demonstrate the existence of EBT(R), and thus also, as  a 

consequence, the existence of ETT (R) . 

2(R) is called the cascading exponent for the channel corresponding 
9 Forney has demonstrated the existence of EBB(R); it 

2' 

The ratio 

is called the efficiency of cascading. 

longer the composite constraint length of a cascaded code must be than the constraint 

length of a single-stage code for the cascaded code to attain the same e r r o r  probability 

as the single-stage code. 

cascaded coding system, it is possible to attain an efficiency that is independent of the 

Its reciprocal indicates approximately how much 

Theorem 4 below asser t s  that i f  a t ree  code is used for the inner code of a two-stage 
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rate for ra tes  below channel capacity. 

codes in which blocks of 

The theorem applies only to concatenationlike 

contiguous q-ary symbols from the output of the inner decoder a r e  used to form symbols 

in a ql-ary alphabet used by the outer code, where 

m 
q l = q  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 

and the inner code is characterized by the parameters v2, t2 ,  b2, and q. 

e te r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ defined by (1 11) indicates the degree of concatenation of the cascaded code. Each 

set  of t2  q-ary symbols supplied to the input of the inner encoder influepces the selec- 

tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( v  t l ) b 2  channel symbols, so that each ql-ary symbol influences the selection of 

(+ t l )v2b2 channel symbols. If an interleaver is used between the stages of cascading, 

a s  in Fig. 18, so that each q l -a ry  symbol influences a distinct set  of (+ t l )u2b2 channel 

symbols, then it is evident that a = N l ( + t l )  v2b2 if  the outer code is a block code, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = (v l+ l )b l  (++1) v b if the outer code is a t ree  code. 

The param- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

In a two-stage concatenationlike coding system in which the inner code is a t ree  code 

characterized by the parameters v2,  t2, b,, and q,  and the alphabet size of the outer code 

is given by (1 11) and (112), for arbitrary p,, 

provided + = 1 in (111). 

Proof of Theorem 4: It suffices to specify a coding system for which 

E ~ ~ ( R )  = 1 E(R) ,  

since ETT(R) can be constructed from EBT(R) by using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(39) and (40), or  Fig. 6, and 

ETT(R) 7 1 e(R) i f  EBT(R) -0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz 1 E(R). 

The rate of the inner code is 

and its decoding e r r o r  probability per symbol is bounded by 

P(E) < ex? -v2b2[e(R2bo(v2b2)]. 
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Using a union bound, the probability that a ql-ary symbol supplied to  the outer decoder 

is erroneous is bounded: 

where o'(v2b2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 0 for  large v2b2. If the inner code is decoded according to  the Viterbi 

decoding algorithm, the discussion in section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 2 . 3  indicates that decoding e r r o r s  occur 

in bursts whose lengths cluster around some characteristic length that is proportional 

t o  v 2  for  R > R  

to  the marginal q1 -ary symbol transition probabilities: 

Thus if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is carefully chosen, (48) gives a close approximation 
2 comp' 

i = j  (1 18a) p . .  = 1 - p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
13 

(118b) 

Forney" has shown that the q -ary discrete memoryless channel whose transition prob- 

abilities a r e  given by (118) is the worst of all ql-ary DMC's, in the sense that its e r r o r  

exponent is the lowest for  a given p. Thus our results,  derived for  the channel defined 

by (118), wi l l  hold for  any ql-ary DMC. 

symbols a r e  taken from the q1 -ary alphabet. 

symbols from the output of the inner decoder, the symbols within a block can be made 

to appear statistically independent, so  that the superohannel seen by the outer decoder 

looks like a DMC, with transition probabilities given by (1 18). 

to  bound the probability that an outer code block is erroneously decoded: 

1 

Now let the outer code be a block code of length N and normalized rate p whose 
, 

By approximately interleaving the q1 -ary 

Then ( 2 )  can be used 

P(E) < exp -NE1(R1),  

where, in this case,  

and, from ( 3 ) ,  

Using (4) and (1 18), we obtain 
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When v 2  is sufficiently large,  one o r  the other of the two t e rms  in brackets in (122) 

dominates, so  that with an e r r o r  of at most In 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
XC 

where e (R)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e(R)  - o'(v2b2) from (117). 

min (1, e4(R2)/+R2}. Thus 

Equation 122 is maximized by setting p = 

E l ( R f )  = v2b2E9(p, R 2 ) ,  (124) 

where we define 

E " ( ~ ,  R 2 )  = (1-p) min {+R2, e*(R2)}. (125) 

Equations 119, 120, 124, and 125 can be combined to  form a bound fo r  P(E) that can 

be expressed in t e r m s  of the composite rate R '  seen by the q -ary symbols. 

now derive a bound for P ( ~ ) t o  be expressed in t e r m s  of the composite ra te  R that applies 

to  the q-ary channel symbols. Finally, we shall relate this last bound to  the composite 

constraint length of the code in channel symbols, which will be used to evaluate the effi- 

ciency qBT(R), and thereby complete the proof of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

We shall 
1 

Continuing along this line, therefore, we define 

where 

.?, 

is the composite ra te  that applies to the q-ary channel symbols, and E*"(p, R 2 )  is given 

by (125). Figure 19 illustrates the construction of E 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1. Curves a r e  drawn showing E>"(p,R ) as a function of R = pR for 5 fixed 

values of R2.  

Since the E-'.(p, R 2 )  curves lie below the Ei(p, R 

that R 2  Rcomp 
obtain 

'J3T.k 
( R )  from e4 (R)  whenever 

.c 

The EBT:: 2 2, 
( R )  curve is the upper envelope of all possible E ( p , R  ) curves. 

2 
4. 

) curve for R 2  < R 
comp comp' 

it is clear 

in the maximization of (126) whenever + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 1. Using (125) and (126), we 
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But (128) is just like (40) in which the unknown tree-code exponent e(R) is expressed in 

t e rms  of E(R), which is known in deriving (40). 

that E 

By comparing (128) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(40), it is clear 

(R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E(R) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0" ( v b ) whenever + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, so that 
BT?k 

2 2  

BT:: 
A s imilar  procedure can be used to construct E ( R )  when $ < 1. It is eas ie r  graph- 

ically to understand the construction of ETT*(R) instead, which is illustrated in Fig. 20. 

Defining RE(+) as the value of R 

ETT*(R) = e(R), and for R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS RE($), ETT*(R) = e[RE(+)]. 

for which e(R2) = +R2, we find that for R 3 RE(+), 

(R) .  We want a bound of 

2 

BT:: BT ( R )  to the concatenation exponent E We now relate E 

the form 

(130) 
BT 

P(E) < exp -N($t l )  v2b2[E (R)-o(v2b2)]. 

Comparing (130) with ( l 2 9 ) ,  we see  that 

By choosing + = 1, Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is proved. 

Theorem 4 shows that it is possible to find a cascading system in which the inner 

code is a t r ee  code for which the efficiency is constant at all rates below capacity. This 

contrasts sharply with Forney' s9 results, which indicate that for a two-stage cascading 

system in which the inner code is a block code, the efficiency decreases monotonically 

with rate, and becomes arbitrari ly small  at ra tes  approaching capacity. 

see,  however, the cascaded t r ee  codes that a r e  most efficient in t e rms  of the coding 

theorem a r e  sometimes quite inefficient in their ability to reduce decoding complexity. 

The results of Theorem 4 can be extended to an n-stage cascaded coding system in 

which all of the codes a r e  t r ee  codes. 

As we shall 

Let the symbols for the ( i t l ) th  innermost code 

be obtained by grouping Giviti symbols from 

Let $. = - i = l , 2  , . . . ,  n - 1 .  Theni t  

probability of the n-stage code analogous to 

1' 
1 n - 1 '  

the ith innermost code, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,  2, . . . , n - 1. 

turns  out that the composite decoding e r r o r  

( 1 29) is given by 

where the construction of ETT*(R) f rom e(R)  is shown in Fig. 20 for $ < 1. The 

71 



BT:: 
Fig. 19. Construction of E ( R )  from e(R2) .  

TT* 
Fig. 20. Construction of E ( R )  from e ( R 2 ) .  

7 2  



composite 

vibi 

( i=1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
constraint length of the n-stage code, expressed in channel symbols, is 

(++l)n-l = ( >11 vibi)[n/(n-1)ln-', so  that the n-stage cascaded tree-code 

exponent is 

n- 1 
E Tn ( R ) =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(q) ETT* 

n-1 

(133) 

Since ETT*(R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 +e(R) = n-l e(R) for all R, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG R < C ,  and < (%)" < 

l im (2)n-1 = E ,  where E is the natural logarithmic base, then the n-stage cascaded 
n-co 
tree-code efficiency is bounded by 

O S  R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< C .  1 

(n-1 ) E  
rln(R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 9  (134) 

This again contrasts sharply with Forneyf sl' results for the attainable efficiency in cas- 

cading block codes. 

5. 3. 2 Computational Efficiency 

One should not infer from the foregoing discussion that cascading is efficient in the 

sense that it greatly reduces the complexity required t o  attain a given decoding e r r o r  

probability at a given rate. The actual performance of cascading may be quite contrary 

in this respect. For a two-stage concatenationlike cascaded coding system in which both 

constituent codes are t r ee  codes, a maximum-likelihood decoder for the outer code may 

be required to compare 

v t  
N = q l 1  = e x p v  t v t + 1 n q  

0 1  1 1  2 2  

= exp v 1 2 1 2  v b b +R (135) 

alternatives per received branch to  achieve a decoding e r r o r  probability per symbol 

bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(E) < exp -v 1 2 1 2  .v b b [ETT*(R)-o(v,b,)]. 

TT* 

( R )  for + G 1 is illustrated in Fig. 20. For every branch 

From the discussion between (129) and (130), we see that E 

+ 2 1. 

( R )  = e ( R )  - o(v2b2) for  
TT9; 

The construction of E 

of b q -ary symbols supplied to  the outer decoder, the inner decoder processes +b v 
1 1  1 2  

received channel symbol branches, and thus makes 

= +blv2 exp v2bZR2 (137) 
'Zt2 

N i  = + b 1 y l  
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calculations. 

plied to the outer decoder is 

The total number of comparisons made by both decoders per branch sup- 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= No t Ni 

exp v v b b QR 
1 2 1 2  

= exp v 1 2 1 2  v b b QR[1-o(vlbl)], (138) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
so that the number of comparisons made by the outer decoder dominates for large outer 

code constraint lengths and fixed Q. 

We can express P(E) in t e rms  of the complexity N: 

We compare (139) with the following expression that relates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(E) to the complexity 

N required for a single-stage maximum-likelihood t r ee  code decoder. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S 

TT9; 
Since E ( R )  = [e(R)-o(v b ) for + > 1, (139) indicates that a concatenationlike 

cascaded t r e e  code for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 > 1 requires more complexity than a single-stage t ree  

code to  achieve a given e r r o r  probability at a given rate,  if  maximum-likelihood decoding 

2 2 1  

is used at each stage. 

observe in both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 3 9 )  and (140) that the exponents E 

tonic decregsing functions of R. 

Cascading can therefore offer an improvement only i f  4 < 1. We 
TTak 

(R)/QR and e(R) /R a r e  mono- 

In (140) we observe that for a single-stage code, 

Rcomp 

TT* 
On the other hand, since E 

(141 ) becomes 

( R )  ‘Z +RE(+) for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG R S R (+) as shown in Fig. 20, 
E 
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By choosing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ sufficiently small, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARE(+) becomes arbitrari ly close to channel capac- 

ity. 

We shall now show that essentially the same result can be obtained in a somewhat 

cleaner form for productlike cascaded t r ee  codes. Our result  wi l l  be summarized 

in Theorem 5 following the derivation for productlike codes. 

We observe that the smallest attainable value of m in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 1 1 )  is m = 1 ,  which repre-  

sents a limiting value of + for a given v 2 t Z .  

sion like (142) applies to  productlike codes, with RE(+) replaced by a quantity arbitrari ly 

close to  capacity. The composite decoding complexity corresponding to (138)  for a prod- 

uctlike cascaded t r ee  code is 

This observation suggests that an expres- 

N = N  t N .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1  

bl = exp(v t In q )  t exp(v2t2 In q )  
1 1  

= exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv t [In q - o ( v  t )I, 
1 1  1 1  

v t > > v  t 
1 1  2 2 '  (143) 

Suppose that for some E > 0, the inner code ra te  is greater  than (1-c)C. Furthermore, 

i f  ( 7 )  is used to bound the e r r o r  probability p' of the inner decoder, suppose that v t 

is sufficiently large to  make p' small  enough s o  that the RLomp = E(0')  seen by the outer 

code exceeds ( 1 - E )  In q, where RI can be obtained by substituting (138) and p' in (4) 
c omp 

and evaluating at p = 1 .  Then, by using (8) ,  the e(R1) curve seen by the outer code can 

be approximated by ( 1 -  E )  In q for all R', 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG R '  S ( 1 - E )  In q. Thus for R'  S ( 1  -E)lnq, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2  

P(E) < exp - vlb l [ (  1-E)  In q -  o(v 1 1  b )I. (144) 

Combining (143) and (144), we express P ( E )  in t e r m s  of N for a productlike cascaded 

t r ee  code: 

2 - O ( V  b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) - o ( v  b ) 1 2 2  1 1  
0 < R < C( l -E )  . 

2 

- 
L N  

Since E can be made arbitrari ly small, we establish the following theorem. 

Theorem 5 

(145) 

Consider a two-stage productlike cascaded t r ee  code in which a maximum-likelihood 

Let N be the average number of calculations decoder is used at each stage of decoding. 
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per  decoded symbol made by the composite decoder, 

to  find such a productlike code for which 

Then for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 it is possible 

0 < R < (1-6)C. 

Since 6 is arbitrary,  (146) states that we can achieve a decoding e r r o r  probability 

that is arbitrari ly close to  N -(c/R), provided N is sufficiently large. 

perhaps (1 - $) C. The constraint length of the inner code would be chosen sufficiently 

large to reduce the decoding e r r o r  probability t o  the point where the normalized Rcomp 

seen by the outer code equals 1 - $. This specifies the decoding complexity of the inner 

code, wliich may, of course, be very large. The outer code may be used at any nor- 

malized ra te  not exceeding 1 - - ' When i t s  constraint length is sufficiently large that 
2' 

the decoding complexity of the outer decoder dominates the composite decoding com- 

plexity, (146) wi l l  then be satisfied, 

Heuristically, we can achieve (146) by using an inner code whose rate,  R2, is 

Theorems 4 and 5 appear to be somewhat paradoxical. Theorem 4 indicates that 

tree-code cascading is efficient in terms of the coding theorem if  a concatenationlike 

coding system is used. 

ra tes  below capacity. 

to  achieve nonzero coding-theorem efficiency. 

two-stage concatenationlike code is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = ( + t l ) ( v , t l ) b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv b 

product code is a = ( v l t l ) b l  (v2 t l )bZ.  

decoder is upper-bounded by 

For  + = 1, the coding-theorem efficiency is exactly 1/2 at all 

It is tempting to think that a concatenationlike code is necessary 

The conlposite constraint length of a 

while that of a two-stage 

The decoding e r r o r  probability for the outer 
1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2' 

where R' is the ra te  of the outer code. 

expressed in t e rms  of the composite constraint length in channel symbols, 

If the code is productlike, E1(R') ,< In q so  that, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(E) < exp -a[E (Rf)-o(a)], (148) 

P 

where 

Thus, as v b becomes arbitrari ly large,  E (R)  becomes arbitrari ly small. This indi- 

cates that the efficiency of a productlike code cannot be lower-bounded by a nonzero 

quantity at any rate below capacity. 

can be maintained is to have E1(Rl) in (147) grow in proportion t o  v2b2, and this can be 

accomplished-through concatenation by making the outer-code alphabet comprise 

+v b k symbols (where k = t2/b2), as in ( l l l ) ,  where + and k a r e  fixed quantities. 

2 2  P 

The only way to  guarantee that a fixed efficiency 

2 2  
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On the other hand, the discussion has indicated that for concatenationlike codes, the 

asymptotic computational effort required to attain a given, extremely small  decoding- 

e r r o r  probability at a given composite ra te  is a monotonically decreasing function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+. 
The computational effort required for productlike codes is equal to the computational 

effort required for concatenationlike codes in the limiting case as + - 0. This result 

leads to  an apparent paradox: Concatenationlike codes have been shown to be efficient 

in t e rms  of the coding theorem, while there is no guarantee that productlike codes can 

attain a nonzero efficiency at any rate. On the other hand, productlike codes a r e  com- 

putationally more efficient than concatenationlike codes with fixed, nonzero +. 
We can now further elaborate this paradox. The derivation leading to  Theorem 4 

showed that the coding-theorem efficiency of a concatenationlike cascaded t r e e  code is 

exactly 1 / 2  at _. all ra tes  below capacity whenever + = 1. Furthermore,  this value of + is 

optimal, in the sense that the efficiency at some rate is l e s s  than 1 /2  for any other value 

of +. For + > 1 the efficiency is strictly l e s s  than 1 /2  at all ra tes  below capacity. For  

+ < 1 ,  the efficiency is l e s s  than 1/2  at very low rates. 
tt  

An improvement in the efficiency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ( R )  occurs, however, for + <  1 at r a t e s  exceeding 

RE(+).  

which both codes a r e  t r ee  codes is 

From Fig. 20, the e r r o r  probability for a two-stage concatenationlike code in 

P(E) < exp -vlblv2b2[e(R)-o(v2b2)-o(v 1 1  b )] 

whenever R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB RE(+) and + < 1. Thus 

In particular, q T T ( R )  becomes arbitrari ly close to 1 at ra tes  approaching capacity i f  

+ is fixed but arbitrari ly small. 

Equation 151 indicates that for a fixed +, a concatenationlike code can achieve arbi-  

t r a ry  coding-theorem efficiency as + - 0. 

that the coding-theorem efficiency for productlike codes is 

The result is suggestive of the possibility 

We shall presently disprove that possibility. 

we cannot guarantee a nonzero efficiency for productlike codes. 

an upper bound to  the efficiency attainable by a productlike code. 

derived in t e r m s  of the lower bound to tree-code e r r o r  probability presented by Viterbi. 

In particular, we shall show that the e r r o r  exponent in the lower bound for a product- 

like code grows in proportion t o  v2b2, and this wi l l  be used to  form an upper bound to 

The derivation leading to  (149) shows that 

Now we shall present 

This bound wi l l  be 
17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the efficiency that may be possible with productlike codes. Then we shall show that 

this upper bound is arbitrari ly small  as R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that (152) is not satisfied fo r  prod- 
-- 

uctlike codes. 

Viterbi’ showed that the decoding-error probability of a t r ee  code is Lower-bounded 

where eL(R) is given parametrically by 

and 

where Eo(p) is given by (45). Observe that eL(R) = e(R) for Rcomp S R R C .  

can be expressed in the form 

W e  want t o  find a lower bound for the e r r o r  probability of a productlike code that 

P(E) > exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-v b v b o(v2b2) . 
1 1 2 2  1 

This can be used to form an upper bound on the efficiency attainable with productlike 

tree-code cascading. F o r  simplicity, we consider the binary case,  noting that our results 

ca r ry  over to channels with larger  alphabets. 

Consider a two-stage productlike binary code in which both codes a r e  t r ee  codes. 

Let the rate of the inner code be R2 and let the normalized rate of the outer code be 1-p, 

so that the composite rate is 

R ’  = ( I -k )R2 .  (157) 

The e r r o r  probability from the inner decoder is bounded by 

p < exp -v b [e(R2)-o(vZb2)]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2  

Thus the E ( p )  seen by the outer code is expressed, using (45), by 
0 

A s  p becomes small  by increasing v2b2, (159) can be  approximated by 
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N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i t p )  exp {- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
Now we can express p implicitly in t e r m s  of the outer-code rate: 

Let K be defined by 

p = exp -K. 

Then (1 61 ) and (1 62) imply that 

( l + P )  
[e(R2)-o(v b )] - In - V2b2 K = -  

l + P  2 2  p In 2 '  

For large v b and fixed K, therefore, 
2 2  

Using (1 61 ), (1 62), and (1 64) in (154), we find that 

We wish to maximize (165) subject to (157), and we shall use the notation of (156) to  

define 

.& (1-p) 
e*'.(R) = SUP (In 2 )  =e(R2). 

R'=(1-p)R2 

O<t.L<l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.L 

We could construct e d R )  graphically from e(R2) in a similar manner to that which 

we used in Fig. 19 to construct E 

insight, however, into the asymptotic behavior of e"(R), especially at ra tes  approaching 

BT:X 
( R )  from e(R2). This procedure would provide little 

L 
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4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
capacity. 

R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (1-e)C. 

p < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  

It is simpler,  perhaps, to rather crudely bound e S R ) .  Let E be defined by 

In the maximization of (166), we are constrained by R < R Z  and now by 

Furthermore,  the function 

1 - P  
f(tJ.1 = 

is a monotonic increasing function of p, 0 < p < 1. Thus, clearly, 

.I. (1 - E )  
e d R )  < - -In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  eW). (168) 

.b 

A s  R - C, E - 0 ,  and the ratio of eL(Rj to e(R) in (168) becomes arbitrari ly small. 

The ef-ficiency of a productlike code can now be upper bounded: 

(1-E) In 2 R l n 2  - - 
4 2  In [l-(R/C)] 

Our crude upper bound on qTT(R)  establishes the apparent paradox: A productlike 

code cannot attain any given level of efficiency in t e r m s  of the coding theorem at r a t e s  

sufficiently ciose to  capacity, while a concatenationlike code can attain an efficiency 

given by (151) at all ra tes  exceeding RE(+), and this efficiency improves as + - 0. 

P 

5.4 PRACTICALITY OF CASCADING 

We now come to  the uncomfortable problem of assessing the practicality of tree-code 

cascading. 

efficient in t e r m s  of the coding theorem. 

can provide superior performance to  alternative decoding techniques at a decreased 

decoding complexity. 

answer to  this question, given the current level of development of single-stage tree-code 

decoding techniques. Nevertheless, we can show that there is an a rea  of application, 

mainly involving fairly noisy channels, in which the use of cascading appears to  offer 

a t  least marginal improvement. 

Certainly the results above suggest that the cascading of t r e e  codes can be 

The practical question is whether cascading 

Unfortunately, we a r e  unable to  give an unqualified affirmative 

5. 4. 1 Estimated Performance 

We shall consider first the matter of which decoding techniques are appropriate for 

decoding the constituent codes of a two-stage cascaded t r e e  code. 

an example that illustrates the marginal improvement that might be gained by using a 

cascaded t r e e  code in contrast to a single-stage code that uses sequential decoding. 

A t  f i r s t ,  we might consider utilizing either Viterbi algorithm decoding or  sequential 

dewding for  both the inner code and the outer code. 

that it is impractical to use the Viterbi algorithm for decoding the outer code. For rates 

Then we shall provide 

W e  shall presently demonstrate 
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above Rcomp, we show that i f  the coding theorem bound (7) is expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(E) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< pB, 

a Viterbi algorithm decoder requires p;' data storage regis ters  and p i1  computations 

per  received branch. For a data-quality e r r o r  probability such as pB = 10 ', the com- 

plexity pB = 10 

given decoding e r r o r  probability and a given computational and storage complexity, it 

is possible to communicate at a higher rate using sequential decoding than at the attain- 

able rate using the Viterbi decoding algorithm. 

r e m s  6 and 7. 

- 

we show that for a For  rates  below Rcomp, 
-1 6 

may w e l l  be prohibitive. 

Our results a r e  obtained from Theo- 

Theorem 6 

Suppose the Viterbi decoding algorithm described in section 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 1 is applied to a 

t r ee  code operating at a ra te  t/b > Rcomp on a binary symmetric channel. Alternatively, 

suppose the modified Viterbi decoding algorithm described in section 3. 2.4  is applied 

t o  a high-rate systematic convolutional code operating on a binary symmetric channel. 

In either case,  if  the decoding-error probability bound given by the coding theorem is 

then the decoder must contain at least p-' data-storage registers,  and it must make 
B 

at least pB calculations per received branch. 
-1 

PB' 

Proof of Theorem 6: First we consider the high-rate algorithm described in sec- 

F o r  high-rate systematic convolutional codes, B u c h e r ' ~ ~ ~  results can be tion 3. 2.4. 

manipulated to  yield 

P(E) < pB = exp -v[e(R)-o(v)]. (170) 

This contrasts with exp -vbe(R) given by (7), which is the general tree-code coding theo- 

r e m  bound for nonsystematic t r ee  codes. Let pB be expressed as 

-E 
p B = 2  . 

Since e(R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS In 2 for binary codes, comparison of (170) and (148) implies that v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 E. 

From section 3. 2.4, the number of calculations per branch is at least Z v t l ,  and the num- 

ber  of data-storage regis ters  containing maximum-likelihood path history and accumu- 

lated relative likelihoods must be a t  least 2'. Thus 

zV+1 > Z V  5 ZE = pB -1 , 

thereby proving Theorem 6 for the high-rate algorithm described in section 3.2.4.  

Now consider the Viterbi decoding algorithm described in section 3.2. 1. Whenever 

there is a p < 1 such that ' Rcornp' 

(173) 
t 

e(R) = pR = p 'i; In 2. 
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Thus 

P(E) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< pB = exp -vb[e(R)-o(v)] = exp -vt[p In 2 - o(vt)], (174) 

where 0 < p < 1 for  Rcomp < R < C. 
vt 

tions per branch, from section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. 2. 1, is at least 2 . 
The required storage and the number of calcula- 

Thus, for R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Rcomp, 

thereby proving Theorem 6 for the Viterbi decoding algorithm described in section 3.2.1. 

Theorem 6 indicates that for a maximum-likelihood decoder, it is not possible to  

achieve a coding-theorem probability of e r r o r  that exceeds the reciprocal of the decoding 

complexity for R > R while the discussion in section 5. 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 indicates that this rela- 

tionship is possible in the asymptotic limit of large complexity whenever R < Rcomp. 
comp' 

Theorem 7 

Consider using either the Viterbi decoding algorithm or  sequential decoding to  

achieve a decoding e r r o r  probability p' with a data-storage capacity of N and a number 

of calculations per received branch not exceeding N ,  where N < ( P I ) - ' .  

communicate at a higher ra te  using sequential decoding than by using the Viterbi decoding 

algorithm. 

Then one can 

Proof of Theorem 7: In this case the rate t/b achievable when using the Viterbi 

algorithm, from Theorem 6, must be l e s s  than R Let p > 1 be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso defined that 
comp' V 

t Rcomp 

b 
- =- 

PV 

Applying ( 7 )  and the results of section 3. 2. 1, we obtain a decoding-error probability 

-vt[Pv -0(vt)]  * 
bounded by. 2 , with a complexity N = ZVt. Thus, defining p v =  p - o(vt), we have 

V 

using the Viterbi decoding algorithm. 

overflow is bounded by an expression like (175). 

decoding is 

F o r  sequential decoding the probability of a buffer 

The ra te  achievable by using sequential 

where Eo( p:) is given by (45). Thus, since 
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f rom Gallager,3 R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> t/b, and Theorem 7 is proved. 

PV 

Now we must determine what sort  of decoding is appropriate for the inner code. Ce r -  

tainly, if  we wish to  communicate at a composite rate exceeding R 

code cannot be decoded by using sequential decoding. By using the Viterbi algorithm for 

decoding an inner code with a sufficiently large constraint length, it is theoretically pos- 

sible to use sequential decoding on the outer code and t o  communicate at any rate below 

channel capacity. (This subject will be treated in section 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 2.) The practical question 

is whether a reasonably short inner code can be used to  reduce the e r r o r  probability suf- 

ficiently that sequential decoding may be used effectively on the outer code. 

then the inner 
comp’ 

One application iE which cascading appears to  be somewhat effective is in increasing 

the rate at which a communication system can operate with a given, small  decoding- 

e r r o r  probability, with little increase in complexity over a one-stage coding system using 

sequential decoding. The improvement is especially noticeable for relatively noisy chan- 

nels a s ,  for example, the binary symmetric channel with an e r r o r  probability exceeding 

. 05. Example 4 illustrates this application. 

Example 4. 

ability of 10 with a storage requirement of approximately 10 symbols, at an arbitrary 

binary channel e r r o r  probability p. The first  system will be a one-stage coding system 

in which a t r ee  code is decoded by using sequential decoding, and the second system will 

be a two-stage productlike cascaded tree-code coding system in which the inner code is 

decoded according to  the Viterbi decoding algorithm and the outer code is decoded by 

using sequential decoding. 
m 

t r ee  code w a s  concatenationlike, and in which 2 

decoder. The productlike system described here  outperformed any concatenationlike 

system in which m > 1.1 The basis of comparison wi l l  be to  determine the ratio of the 

rates  attainable by the two systems, allowing a n  approximate 10% increase in storage 

for the cascaded system. 

We compare two coding systems, designed to  yield a decoding e r r o r  prob- 
-8 . 4 

[We have also considered an example in which the cascaded 

-ary symbols were supplied to the outer 

We assume that the constraint lengths of the single-stage code and of the outer code 

in the cascaded system a r e  sufficiently long that the decoding-error probability is negli- 

gible compared with the probability of a buffer overflow. 

sequential decoder failure is a buffer overflow, whose probability is given by (46). 

our example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(E) = loq8 and N = lo4, s o  that (46) implies that p = 2. We further assume 

that in the cascaded system, the interleaver causes the effective channel seen by the 

sequential to  be accurately modeled by a binary symmetric channel whose e r r o r  prob- 

ability is bounded by the approximation (96) given in section 4. 2.4. 

Thus the dominant source of 

For  

For the single- stage code, the attainable normalized ra te  using sequential decoding 

with p = 2, from (47) and (4), is 
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If the inner code of the cascaded system is characterized by the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( v ,  t ,  b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2), 

the normalized rate attainable with the cascaded system is bounded by 

where the decoding e r r o r  probability of the inner code is estimated from (96). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(E) < pB = 0. 25  exp -vbe (182) 

We can define the ra te  improvement, I, as the fractional gain in ra te  obtained by 

using the cascaded system compared with the ra te  attainable with the single-stage sys- 

tem: 

In Table 8 we have tabulated I as a function of p for the inner codes whose rates  

and constraint lengths a r e  given. 

conditions that vt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 10 and v and t a r e  integers. For  p > . lo ,  the values obtained for 

I a r e  believed to be typically good, but it is possible that they could be further increased 

by adjusting R and v slightly. Figure 21 shows the improvement factor for our example 

plotted as a function of p. 

For  p G . l o ,  I2 has been maximized, subject to  the 

Example 4 indicates that for p 3 .05, a rate improvement of typically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20% is attain- 

able for a two-stage cascaded tree-code coding system whose complexity is at least 10% 

greater than that of a single-stage sequential decoding system. It is doubtful whether 

the improvement obtained by using cascading would be worth the additional cost of its 

implementation. 

We have been unable to  discover applications using currently known t r ee  -code 

decoding techniques in which tree-code cascading offers substantially more improvement 

over the performance of a single-stage t r e e  code than was accomplished in Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. 

Further accomplishments in developing tree-code decoding techniques will be required 

before cascading can be made very practical. 

cading very effective, as is suggested in section 5. 3. 

substantial improvements for cascading would be to discover a class of t r ee  codes like 

the BCH block codes that could be easily decoded, and in which the short members at 

least  a r e  efficient in t e r m s  of the coding theorem. Better yet would be the discovery 

of efficient codes operating in higher order alphabets that could be easily decoded, like 

the Reed-Solomon block codes. Finally, cascading could be made effective at high rates  

if a modification to the basic Viterbi decoding algorithm like the one described in 

Several developments could make cas- 

One development that would offer 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Representative rate improvement for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 2. 

.) 02 

03 

. 04 

.05 

. 0 6 .  

. 07 

. 08 

. 09 

. 1 0  

e 11 

. 1 2  

. 1 3  

. 1 4  

. 1 5  

. 1 6  

. 2 0  

. 2 5  

. 3 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 /  3 

5/9 

1/2 

1/2 

5/11 

2/5 

2/5 

1/3 

1/3 

217 

2/7 

1 / 4  

1 /4 

1 /5 

1/6 

1/10 

5/14 

1/17 

5 

2 

10 

10 

2 

5 

5 

2 

10 

10 

5 

5 

10 

10 

10 

10 

10 

10 

,483  

.428 

.385 

.349 

.319 

.290  

.266  

247 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 225 

.205 

.193  

.179 

. 166 

.157  

.143  

. 104 

.0693 

.0404  

. 5 5 1  

e 486 

a 438 

.429 

.376 

. 348 

. 3 3 1  

.306  

. 280 

e 258 

.242  

. 2 2 2  

, 213 

. 1 9 4  

. 175 

. 135 

.0874  

.0529 

141 

. 135 

. 138 

.229 

. 179 

. z o o  

. 245 

.239 

. 244 

. 258 

. 228 

. 240 

. 283 

,236  

. 224 

.298 

. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA262 

. 309 

0 0.10 0.20 0.30 

CHANNEL BINARY ERROR RATE 

Fig. 21. Rate improvement for Example 4. 
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section 3. 2.4 could be found which would be applicable to  efficient nonsystematic high- 

rate convolutional codes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. 4. 2 Sequential Decoding at Rates Exceeding R 

comp 

Consider now the concatenationlike t r ee  code described in section 5. 2. 2. We shall 

show that it is possible, in the asymptotic limit as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 2  becomes very large,  to communi- 

cate at any rate below channel capacity by using a Viterbi algorithm decoder for the inner 

code and by using sequential decoding to decode the outer code, provided the ratio of m 

to  v2bZ is kept below some bound depending on R ,  C, and Rcomp. 

Stiglitzls results were derived for a two-stage code cascading system in which the inner 

code is an (n, k) block code with symbols from a q-ary alphabet. 

showed that one could not consider the decoded blocks as symbols from a qk-ary alpha- 

bet, and apply sequential decoding to  these qk-ary symbols at a composite rate exceeding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. He did, however, quote PinskerfsZ9 result that sequential decoding could be 

Rcomp 
applied at a composite ra te  exceeding R to the individual q-ary symbols obtained 

c omp 
from the decoded blocks, provided that they were made to look independent to the 

decoder. 

At first ,  it might appear that our assertion contradicts S t i g l i t z ' ~ ~ ~  results. Actually, 

F o r  that system, he 

We shall generalize Pinsker 's  results. 

Before proceeding with the derivation, we mention that the required independence 
m 

of the q 

e t e r s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and p of the ( u , p )  interleaver in Fig. 18 sufficiently large. 

orate here,  since this is a problem that is more appropriate for simulation studies than 

for an analytical solution. 

-ary symbols seen by the outer decoder can be attained by choosing the param- 

W e  shall not elab- 

Thus we assume that the derived channel seen by the outer decoder contains statisti- 
m m 

-ary symbols whose transition probabilities a r e  given by the q cally independent q 

symmetric channel transition probabilities (1  19). 

the q 

sense that i t s  e r r o r  exponent is lowest for  a given q 

we can prove our assertion for the q -ary symmetric channel, which, incidentally, is 

a reasonably accurate model in our application, then our assertion also applies to  any 

qm-ary D*MC. 

Rcomp 

-ary 

We recall  that Forney' showed that 

-ary channels, in the 
m m 

-ary symmetric channel is the worst among all possible zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq 
m 

-ary e r r o r  probability. Thus if 
m 

Let the inner code operate at a ra te  R ,  where R < R < C. The normalized 
4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT comp 

for  the Zm-ary symmetric channel seen by the outer decoder is 

where p 

value depending on R, C ,  and Rcomp, then for sufficiently large u 

any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > 0. 

6 > 0 ,  and sti l l  be able to use sequential decoding for decoding the outer code, we can 

< m exp - u  b [e(R)-o(v b )]. We shall show that i f  m/u b is kept below a 

R:omp > 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE for 

RR:omp 

m 2 2  2 2  2 2  

c 2 ' 
3 (1-6)C, for some Then, to  communicate at a composite rate R _  = 

v 

set R = ( 1 - + )  and E = 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that Rc = ( 1 -  6 + &)C > (1-6)C. This wil l  verify 
4 
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our original assertion. 

For large v 2  and m,  either Zm or  pm dominates the right-hand expression in brack- 
m 

ets  in (184). 

in (184) becomes small, and Riomp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE for  some E > 0. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 pm becomes arbitrari ly small, then the entire right-hand t e rm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.L 

The condition for  
m 

to  become arbitrari ly small is 
Pm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4, 

Thus, if  (185) is satisfied, it is possible to make RZomp approach 1 arbitrari ly closely 

by sufficiently increasing v b 

the outer stage of coding at any composite rate below capacity. 

and hence to enable the use of sequential decoding on 
2 2’ 

8.7 



VI. REALIZATION OF OPTIMUM INTERLEAVERS 

6 . 1  INTRODUCTORY CONCEPTS 

An interleaver is a device that rearranges the ordering of a sequence of symbols in 

some one-to-one, deterministic manner. Associated with any interleaver is an 

unscrambler, which is the device that res tores  the reordered sequence to its original 

ordering. 

and in communication technology. 

of cascaded codes. 

to consider using block interleavers. 

is to divide symbol sequences into blocks corresponding to a two-dimensional array,  

and to conceptually read the symbols in by rows and out by columns. 

Interleavers and unscramblers have a variety of applications in cryptography 

In sections 5.1 and 5.2 interleavers are employed in the generation of several  classes 

In the applications dealing with block codes, it is somewhat natural 

An example of such a block interleaving function 

In the applications dealing with convolutional codes, such as those given in sec- 

tion 5.2, it is more natural to consider synchronous interleavers, in which a symbol 

is read out each time a symbol is read in. 

eral class of interleavers than block interleavers, since any block interleaving func- 

tion can be realized by a synchronous interleaver. 

Synchronous interleavers are a more gen- 

Interleavers and unscramblers a r e  characterized by their  encoding delay D, which 

is the maximum delay encountered by any symbol before it is inserted into the output 

sequence, and by the storage capacities S and S which are the number of symbols 

stored by the interleaver and by the unscrambler, respectively. 
U’ 

We define the class  of (n2, n l )  interleavers to be those interleavers that reorder  

a sequence s o  that no contiguous sequence of n2 symbols in the reordered sequence con- 

tains any symbols that were separated by fewer than n1 symbols in the original ordering. 

We shall present four simple but s imilar  techniques for realizing synchronous 

(n2,nl)  interleavers. 

the combined storage capacity, S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt Su, achievable by any (n2 ,n l )  interleaver. An(n2,nl) 

interleaver is optimum if it achieves both the minimum possible encoding delay and the 

minimum possible combined storage capacity. 

relative primeness conditions, one of the techniques that will be described achieves the 

minimum possible encoding delay. 

of these interleavers that also achieve the minimum possible combined storage capac- 

ity, and therefore a r e  optimum. Our results are similar to results independently 

obtained by Forney. 

We shall derive lower bounds for the encoding delay and for 

F o r  any nl and n2 satisfying certain 

Then we shall describe reduced-storage versions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
33  

be the sequence of symbols in the output sequence, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For an 

aZ1y aZ2’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .  
Let . . . , 

. . . , z l ,  z2, . . . a r e  the positions of these symbols in the original ordering. 

(n2, n l )  interleaver, therefore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
88 
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whenever 

Ii-jI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1. 
2 

( 186b) 

Hereafter it will be useful to  recognize that the unscrambler for  an (n2, n l )  inter- 

leaver is itself an (nl ,  n2) interleaver. 

lowing arguments. Again let . . . , aZ1 '  a Z Z *  . . . be the sequence of symbols in the 

output of the interleaver, which is also the input to the unscrambler, where . . . , z l ,  

a r e  the positions of these symbols in the original ordering. Let . . . , z i ,  z i ,  . . . 

This assertion can be verified through the fol- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2' . * *  

Z 

be the positions of these symbols in the output of the unscrambler. Since the 

unscrambler res tores  the sequence to its original ordering, 

z '  = zi t D', all i, (187) 
i 

where D' is a fixed delay introduced by the interleaving-unscrambling process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 1  86) continues to apply to  z i  and z" that i s ,  

Thus 

j' 

whenever 

But (188) implies that if  

then 

li-jl a n 2 .  

This completes the verification, since (189) defines an (nl ,  n2) interleaver. 

The encoding delay is defined as 

D = sup (j-z.), 
J 

j 

(1 88a) 

(188b) 

(1 89b) 

where j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 z .  because the interleaver is assumed to  be physically realizable. It is 

assumed that 
J 

d = inf (j-z.) = 0 ,  
J 

j 

since D could be reduced by d if d > 0. It follows that the delay introduced by the com- 

bined interleaving and unscrambling operations is also D, which can be seen i f  

z! = z.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt D. (192) 
J J  

89 



Finally, if D is the encoding delay of the unscrambler, then 
U 

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sup (z ! - j )  = D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 9 3 )  
J 

j 
U 

Thus the encoding delays of the interleaver and the unscrambler are both equal to the 

delay introduced by the over-all interleaving-unscrambling operation. 

An (n2 ,n l )  interleaver is said to be uniform if the members of every se t  of n2 con- 

tiguous symbols in the output sequence a r e  mutually separated by at least  n1 symbols 

in the input sequence, but there is no se t  of n2 t 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor more contiguous symbols in the 

output sequence in which the members a r e  mutually separated by at least n1 symbols in 

the input sequence. Clearly, an (n2, n l )  interleaver is either uniform or nonuniform: 

If it is nonuniform, then the members of some set of n2 t 1 or more contiguous symbols 

in the output sequence are mutually separated by at least nl symbols in the input 

sequence . 

6.2 FOUR BASIC INTERLEAVING TECHNIQUES 

We shall now describe four basic methods of using a commutator and a tapped shift 

register to  realize an (n2, n ) interleaver. Subsequently, we shall show that a t  each 1 
point in the (n2, n 

of these methods realizes an optimum (n n ) interleaver. 

plane satisfying a relative primeness condition a modification of one 1 

2' 1 

6.2.  1 Type I (n2 ,n l )  Interleaver 

Whenever nl and n2 t 1 a r e  relatively prime and nl > n2 + 1, the device shown in 

Fig. 22 is a nonuniform (n 

stage shift register with taps at the outermost stages and at every (nl-lIth inter- 

mediate stage, and an (n2tl)-position commutator that cyclically samples the n2 t 1 taps 

n ) interleaver. That device comprises an [n2(nl-l)+l]- 
2' 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k -  1 1 0 

STAGE NO: n2(n-.l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k - l ) ( n , - l )  n1 n - 1  1 0 
"2 TAP NO: 

OUTPUT I 

Fig. 22. Type I (n2, n l )  interleaver. 

i 

in reverse order  of their distances from the input of the shift register.  

the encoding delay of this device is n2(nl-l). 

Observe that 

9 0  



Two assertions must be verified to  prove that the device is an (n2, n l )  interleaver: 

(i) no contiguous sequence of n output symbols contains symbols that were separated 

by fewer than n l  symbols in the input sequence; and (ii) each symbol in the input 

sequence eventually appears in the output sequence. Condition (i) ensures that the 

device performs the required symbol separation, while condition (ii) is required to  show 

that the device provides a one-to-one mapping of the input sequence into the output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s equenc e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

Assertion (i): Suppose that symbols ak through aktn (n  -1) are stored in order  in shift- 
2 1  

register stages 0 through n2(nl-l) when the commutator is at position 0. The device 

proceeds as follows: Symbol a is read out, a new symbol is shifted into the shift regis- 

t e r ,  the commutator is advanced to position 1, symbol aktn is read out, and s o  on. The 
k 

1 
ordering of symbols in the output sequence i s ,  therefore, ak, a ktnl, a kt2nl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , 

ktn2nl’ a ktn2t1’ ak tn2 tn l t l ’  ‘ * ’ ak tnZt jn l t l ’  * * * ‘ 
k t j n l y  * . * ’  a 

a We must show 

that each set  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 contiguous output symbols has the required separation. 

each se t  starting with symbols ak or aktn has the required separation. Consider now the 

set  of n2 contiguous symbols in the output sequence starting with aktjn and ending with 

Certainly, 

1 

1 

2 j a ktn2 t( j -2)nl t 1 ’ 

symbols aktjn through aktn 

Each subset obviously has the required separation. The lowest index in the f i r s t  subset 

is kt jn l ,  while the highest index in the second subset is k t n i  t (j-2)n1t1. 

n2. This se t  can be divided into two subsets, one of which contains 

,and the other symbols aktn +1 through aktnZ t( j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2 )  nl t 1 * 
1 2 1  2 

Lf 

(k t jn l )  - [ktn2t(j-2)n 1 t l ]  = 2nl - n2 - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 nl ,  (194) 

or equivalently if  nl 2 n2t1,  then the entire se t  has the required separation, since 

no symbol from one subset was within n symbols of any symbol from the other sub- 

se t  in the original ordering, If nl  

required separation because the symbol with index k t n2 t (j-2)n t 1 must have been 

within nl symbols of some symbol from the f i r s t  subset in the original ordering. 

This completes the proof of Assertion (i). 

Assertion (ii): We must show that each input symbol appears somewhere in the out- 

put sequence whenever nl and n2 t 1 a r e  relatively prime. 

a t  an arbi t rary position j when the symbol a 

The symbol a. appears at tap k after (n2-k)(nl-l) shifts, and it is read out then 

if and only if the position of the commutator is also k. 

mutator after (n2-k)(nl-l) shifts is [jt(n2-k)(nl-1)] mod(n2t l )  = [j-(ktl)(nl-l)]  mod(n2t1). 

Therefore the required condition for a. to be read out at tap k is 

1 
n2, however, the entire se t  does not have the 

1 

. Let the commutator be 

is f i r s t  shifted into the shift register.  
0 

But the position of the com- 

[j-(ktl)(nl-l)-k] mod(n2t1) = [ j - (k t l )n l t l ]  mod(n2t1) = 0,  (195)  
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or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAequivalently if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

INPUT 

(knl) mod(n2t1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  (196) 

where a = ( j -n l t l )  mod(n2t1). 

If nl and n2 t 1 a r e  relatively prime, then (196) is satisfied for  one and only one 

value of k in the range 0 G k G n2, so that an arbi t rary symbol a. appears once and only 

once in the output sequence. 

the given conditions the device shown in Fig. 22 is indeed an (n2, n l )  interleaver. 

This establishes Assertion (ii) and verifies that under 

TAP NO: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“2 k- 1  1 0 

STAGE NO: n2(n1-1)  (k-1) (n,-I) nl-1 1 0 

Fig. 23. Unscrambler for the Type I (n2, n l )  interleaver. 

The device shown in Fig. 23 is a simple realization of an unscrambler for the inter- 

leaver shown in Fig. 22. By comparing Figs. 22 and 23, the reader  may verify that 

this device restores  the original ordering of the sequence of symbols. 

6 .2 .2  Type I1 (n2, n l )  Interleaver 

Recall that the unscrambling device for an (n2,nl)  interleaver is an (n n ) inter- 

Using this fact, we see that whenever n2 and n t1 a r e  relatively prime, and 
1’ 2 

leaver. 

n > n  t 1, an (n2 ,n l )  interleaver can be realized by a device comprising an[nl(n2-l)t l]-  
2 1  

stage shift register with taps at the outermost stages and a t  every (n2-l)th intermediate 

stage, and an (nl t 1  )-position commutator that cyclically inserts input symbols into the 

n l t l  taps in reverse  order  of their distances from the input of the shift register. The 

configuration for this device is shown in Fig. 23 with the parameters n1 and n2 inter- 

changed. The corresponding unscrambler can be realized by the device shown in 

Fig. 22, again with the parameters nl and n2 interchanged. 

1 

6.2. 3 Type I11 (n2, n l )  Interleaver 

2’ nl)  
Whenever n1 and n are relatively prime, the device shown in Fig. 24 is an (n 

2 
interleaver. 

the outermost stages and a t  every (n l t l I th  intermediate stage, and an n2-position 

That device consists of an [(n2-l)(nlt l) t l]-stage shift register with taps a t  
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commutator that cyclically samples the n2 taps in the same order  as their distances 

from the input of the shift register.  The encoding delay of this device is therefore 

(n2-l )(nl+l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). 

ever nl and n2 a r e  relatively prime can be given in a manner s imilar  to that given 

in section 6. 2. 1 fo r  the Type I interleaver. 

the ordering of symbols in the output sequence is . . . , aky ak-nl, a 

a k-(n2-l)nl, aktn2, aktn -n , . . . , so  that whenever nl >n2,  the device shown in Fig. 25 

is a uniform (n,, n l )  interleaver. 

the device shown in Fig. 25. 

A verification that the device shown in Fig. 25 is indeed an (nZy n l )  interleaver when- 

We shall omit doing s o  here. Observe that 

k-2nl' . . . '  

2 1  

A simple realization of an unscrambler for  the interleaver of Fig. 24 is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TAP NO: n2- 1 n2-2 k- 1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

STAGE NO: (n2- l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( n l + l )  (n2-2) ( n l + l )  (k - I )  ( " , + I )  n l + l  1 0 

n2-l -r o 
OUTPUT - 

Fig. 24. Type I11 (n2, n l )  interleaver. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I INPUT 

TAP NO: n2- 1 n2-2 k- 1 0 

STAGE NO: ( n 2 - I )  (nl+l )  (n2-2) ( n , + l )  ( k - I )  ( n , + l )  1 0 

Fig. 25. Unscrambler for the Type 111 (n2, n l )  interleaver. 

6 . 2 . 4  Type IV (n2, n l )  Interleaver 

Whenever nl and n are relatively prime, an (n2 ,n l )  interleaver can be realized by 

a device comprising an [(nl- l ) (n2t l ) t l ] -s tage shift register with taps at the outermost 
2 
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stages and at every (n2t l ) th  intermediate stage, and an nl-position commutator that 

cyclically inserts input symbols into the nl  taps in the same order  as their  distances 

from the input of the shift register. 

with the parameters nl and n2 interchanged. The corresponding unscrambler can 

be realized by the device shown in Fig. 24, with the parameters n1 and n2 inter- 

changed, 

The configuration for  this device is shown in Fig. 25 

6 . 3  OPTIMALITY O F  ENCODING DELAY 

We shall now show that one of the interleavers of Types I-IV achieves the minimum 

possible encoding delay for any (n 

primeness conditions between n and n are satisfied. We first demonstrate that when- 

ever n 

mum possible encoding delay. 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) interleaver, provided the appropriate relative 
2’ 1 

1 2 
> n2, either a Type I interleaver o r  a Type I11 interleaver achieves the mini- 1 

Theorems 8 and 9 are proved in AppendFx A. 

Theorem 8 

The encoding delay for a nonuniform In2, n l )  interleaver is at least n2(nl-l). 

Theorem 9 

The encoding delay for a uniform (n2, n l )  interleaver is at least (n2- l ) (n l t l ) .  

Theorems 8 and 9 a r e  precise statements of the facts that whenever nl > n2, Type I 

Observe that a Type I interleaver pro- 

and Type I11 interleavers achieve the minimum possible encoding delay for  nonuniform 

and uniform (n2, n l )  interleavers, respectively. 

vides the minimum possible encoding delay for any (n2, n l )  interleaver fo r  which n2 < 
nl < 2n2, and a Type I11 interleaver provides the minimum possible encoding delay for 

any (n2, nl interleaver for which n l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2n2, provided the appropriate relative primeness 

conditions on n and n are met. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 2 

We shall now demonstrate that whenever n1 < n2, either a Type I1 interleaver or  a 

Type IV interleaver achieves the minimum possible encoding delay. 

Theorem 10 

If an interleaver achieves the minimum possible encoding delay for any (n2 ,n l )  

interleaver, its unscrambler is an (n l ,  n2) interleaver that achieves the minimum pos- 

sible encoding delay for any (nly n2) interleaver. 

same encoding delay, and that the unscrambler for  an (n 

(n l ,  n2) interleaver. Suppose the theorem were not true. 

minimum-delay (n l ,  n2) interleaver would be an (n2, n l )  interleaver whose delay is less 

than that of the minimum-delay (nZy n l )  interleaver. But this is a contradiction, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso the 

theorem must be true. 

Proof of Theorem 10: Recall that an interleaver and i ts  unscrambler both have the 

2’ 
n l )  interleaver is itself an 

Then the unscrambler for the 

In conjunction with Theorems 8 and 9, Theorem 10 asse r t s  that a Type I1 interleaver 
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provides the minimum possible encoding delay for any (n2, nl interleaver for  which 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< n2 < 2nl, and a Type IV interleaver provides the minimum possible encoding delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2nl, provided the appropriate relative prime- for  any (n2,nl)  interleaver for which n2 

ness conditions on nl and n are met. 

the appropriate relative primeness conditions, one of the interleavers of Types I-IV 

achieves the minimum possible encoding delay. 

1 

Thus, for any values of nl and n2 that satisfy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

6 . 4  REDUCTION AND OPTIMALITY OF STORAGE 

Although the basic interleaving techniques achieve the minimum possible encoding 

delay for  any (n2, n l )  interleaver, they a r e  somewhat wasteful of storage. For example, 

many of the symbols stored in the later shift-register stages of the Type I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor the Type I11 

interleaver have already been read into the output sequence. This fact suggests that it 

might be possible to reduce the storage capacity of these interleavers without changing 

their  interleaving functions. 

the storage capacity of the basic interleavers, and then demonstrate that these reduced- 

storage interleavers require the minimum possible combined storage capacity for  any 

(n2, n l )  interleaver. 

of a Type I interleaver. Consider the symbols that must be stored by the interleaver 

at any given t ime. 

We shall now describe a technique for efficiently reducing 

We shall examine in some detail techniques for reducing the storage capacity 

Recall that the ordering of the input symbols in the output sequence 

is ak, a k tn l ’  a kt2nl’ * * * ’ aktn2n1’ % t n 2 t l ’  a k t n 2 t l t n l ’  . . . , for some nl 
n2. We 

now describe the symbols that must be stored in the interleaver from the time sym- 

bo1 a 

read out of tap 0 ,  

is read out until symbol aktn is read out. From the time symbol ak is 

the ordering of input symbols read out of tap j is aktjn , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1  k 

1 
a . . . ,  0 j S n2. Thus symbol aktn is the first  input 

aktjnl t n2  t 1 ’ ktjnl  +2 (n2 t 1 )’ 
1 

symbol that will be read out of tap 1. Let us list all of the input symbols received 

before symbol % 

[&J + 1 symbols, ak, aktnztl9 . . . , a ktQ(n2t1)’ fo r  all Q(n2t1) < n l ,  where llLxf” 

means “the greatest integer contained in x. ‘I All of these symbols will be read out of 

tap 0. Similarly, symbol aktZn is the f i r s t  input symbol that will be read out of tap 2. 

The input symbols that were received before symbol aktZn that must st i l l  be stored 

that must st i l l  be stored by the interleaver. These are the 
+“1 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
I 

by the interleaver are the ~ , / ( n , t l )  t 1 symbols aktn , . . . , a k tn l  tQ(n, t 1  )’ for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 
for all l (n2 t1 )  < 

t 1 of these symbols will be read out of tap 0, as we have 

Q ( n 2 t l )  < n l ,  and the L2nl/(n2t1) 1 t 1 symbols ak, . . . , a ktQ(n2t1 1’ 
2nl. The first n 

just seen, and then the remainder of these symbols will alternatively be read out 

of taps 1 and 0. This listing can be continued in an obvious manner. W e  find that 

the input symbols that were received before symbol a that must s t i l l  be 

n t 1 )  L i / ( z  J 

ktjnl  
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stored by the interleaver include k l / ( n 2 t l )  t 1  symbols to  be read out of tap j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, 

L2n1/(n2+1) $1 symbols to  be read out of tap j - 2 ,  and s o  on down to  Ljnl / (n2tq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 1  

symbols to be read out of tap 0, 1 j n The total amount of storage capacity 

required before symbol aktjn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2’ 

1 
is read out is not quite the sum of these quantities, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

may be discarded from storage after it has been read 
k t l n l  

however, since symbol a 

out. The total required storage capacity for  the interleaver is therefore 

2 n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s = 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p l / ( n 2 + 1 q .  

k= 1 

But 

2 
n 

2 
n 

The last equality follows f rom the fact that n1 and n2 t1  a r e  relatively prime. 

(197) becomes S = 

capacity from that used by the Type I interleaver. 

Therefore 
1 

n2(nl -1 )+l. This represents almost a 5070 reduction in storage 

The preceding discussion suggests an algorithm for constructing and using an inter- 

leaver with minimum storage capacity whose operation is identical to that of the Type I 

interleaver. 

to illustrate i ts  use. 

We shall first describe the algorithm and then provide a simple example 

The interleaver is an [i n2(n1 -1 It1 -stage shift regis ter  with taps at positions 0,  I ~ 

1 
2 2 1  

k 

i = l  
I n l / ( n Z f l g ,  . . . , Z Ljnl/(n2i-lg, . , . , - n (n  -11, where the shift-register stages and 

the tap positions are labeled in reverse  order  of their  distance from the input. F o r  nota- 

tional purposes, define p = n (n t 1 )  . Assume that symbols ak, aktn2+1, . . . , 
1 1 /  2 1 

a ktP(n2+1 )’ aktn ’ ak+( p t 1 ) ( n2t1 )’ a k t n  tn2 t 1 ’ . . . , are stored in order  in the shift- 

register stages. The algorithm proceeds as follows. 

1. Read out symbol a from tap 0; then shift in a new input symbol. 
k 
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2. Read out symbol aktn from tap 1; then shift in a new input symbol, but shift 
1 

only the shift-register stages from the input through tap 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. For  each j ,  0 j n2, continue the process in the obvious manner: Read out 

ak+jnl from tap j ;  then shift in a new input symbol, but shift only the shift- - 
register stages from the input through tap j .  

4. After symbol aktn has been read out and a new input symbol has been shifted 
2 1  

into the last shift-register stage, go back and keep repeating steps 1-4. 

Example 5 

This algorithm can be more easily understood by means of a simple example. Con- 

s ider  a Type I interleaver for  which nl = 7,  n = 3. 

input symbols in the output sequence is 0,  7,  14, 21, 4, 11, 18, 25, 8, 15, 22, 29, . . . . 
Now consider the operation of the interleaver shown in Fig. 26, which was designed 

It is evident that the ordering of 
2 

Fig. 26. Interleaver for Example 5. 

according to the construction procedure just described. It is a 10-stage shift 

register with taps at stages 0, 1, 4, and 9. Table 9 l ists  the symbols stored 

in the shift-register stages and the symbols that a r e  read out from the initial 

conditions through the f i r s t  5 shifts. The operation of this interleaver is iden- 

tical to that of the corresponding Type I interleaver, but it requires only 10 shift- 

register stages instead of 19. 

Similar storage-reducing techniques can be applied to the Type 11, 111, and 

IV interleavers. The details will not be given here,  since they follow closely 

the methods just described for reducing the storage capacity of Type I inter- 

leavers. It turns out that the reduced-storage version of each type of inter- 

leaver requires D t 1 storage elements, where D is the encoding delay of 

the basic interleaver. We shall now demonstrate that this realization achieves 

the minimum possible combined storage capacity for any (n2, n l )  interleaver and 

its unscrambler. 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table 9. Steps of interleaver operation for Example 5. 

Encoding Delay; 
also Combined Range of 

Storage Capacity Optimality Type 

I n2(n-l) 2 1  

I1 n1 (nZ-l 2 

I11 (n2-l)(nl+1) n1 a 2 n 2  

IV (nl-l)(n2+l) n2 2 2 n l  

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< n < 2n2 

nl < n < 2nl 

Symbols Stored in Stages 

Re strict  ions 

n n + 1 relatively prime 

+ 1 relatively prime 

relatively prime 

relatively prime 

1' 2 

"2' nl  

n l '  "2 

"1' n2 

8 7 6 5 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 2 1 0 

Initial 
Contents 

Shift 1 

Shift 2 

Shift 3 

Shift 4 

Shift 5 

18 16 15 14 12 11 8 7 4 0  

19 18 16 15 14 12 11 8 7 4  

20  19 18 16 15 14 12 11 8 4  

21 20 19 18 16 15 12 11 8 4  

2 2  20  19 18 16 15 12 11 8 4  

2 3  22 20  19 18 16 15 12 11 8 

Theorem 11 

Symbol 
Read Out 

0 

7 

14 

21 

4 

11 

S + Su zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa D. (199) 

Proof of Theorem 11 : The effect of the combined interleaver-unscrambler operation 

is to  delay the original sequence by D symbols. 

aifl,  ai+2, . . . , a 

symbol ai is read out of the unscrambler. 

We have shown that at every point in the (n l ,  n2) plane satisfying the appropriate rela- 

tive primeness conditions one of the four basic interleaver realizations achieves the min- 

imum possible encoding delay. We have then shown that for  the reduced-storage 

versions of these interleavers and unscramblers, 

At the very least, therefore, symbols 

must be stored in either the interleaver o r  the unscrambler when 
i+D 

S + Su = D + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(200) 

Both the interleaver and its unscrambler contain one stage of storage more than is 

absolutely necessary (consider Example 5 with shift-register stage 9 removed), but this 

initial stage is generally desirable in practical realizations. Except for this 

Table 10. Summary of optimum interleaver parameters. 
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technicality, the reduced-storage interleavers achieve the minimum possible com- 

bined storage requirements for  any (n2, n l )  interleaver and its unscrambler. 

We summarize the properties of the optimal interleavers that we have found in 

Table 10. 
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APPENDIX A 

Proof of Theorems 8 and 9 

To prove Theorem 8 we use the following lemma. 

Lemma A. 1 

Let aZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, a , . . . , a be a set of n contiguous symbols in the output sequence of an 

. . . , z be the positions of these symbols in the input sequence. 
2’ n 

1 ‘n J n 

Z 
1 z2 n 

interleaver, and z l ,  z 

Let z. = max {zi, . . . 
the interleaver is at least  (zi-z.) - (i-j). 

} and z .  = min {zl , .  . . , z }, i # j .  Then the encoding delay for 

J 

Proof: From sec. 6. 1, since D = sup (j-z.) and 0 = inf (j-z.), then 
J - 

j 
J 

j 

D 3(z . -z . )  - (i-j) = (j-zj) - (i-zi) 3-D. (A. 1) 
1 J  

be a se t  of n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a contiguous symbols zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z 2 Proof of Theorem 8: Let aZ , 

1 aZ2’ . . . ’  a n2+a 

in the output sequence, and z l ,  z2, . . . , z 

input sequence, where {zl, z2 , .  . . , z 

be the positions of these symbols in the 
n2+a 

) a r e  mutually separated by at  least  nl .  Let 
n,+a 

L. 

. . . , z }, and z.  = min{zl, z 2 , .  . . , z }. Since the positions a r e  
1’ z2’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2+a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 n2+a 

z .  = max {z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

a r e  mutually separated by at least n l ,  

z i j  - z >,(n2+a-l)nl. (A. 2)  

On the other hand, 

1 Gi, j Gn2 + a ,  i f  j ,  

so  that 

i - j G n  + a - 1 .  
2 

Applying Lemma A. I ,  we obtain 

D 3(zi-z.)  - (i-j) 
3 

>, (n2+a-l)nl - (n2+a-l) 

= (n2tu-l)(nl-1). (A. 5) 

For a nonuniform (n n ) interleaver, a 2 1, and Theorem 8 is proved. 

define a subblock to  be the se t  {az , aZ , . . . , aZ } of n 2 contiguous symbols in the output 

sequence, whe-re z l ,  z2, . . . , z 

2’ 1 
Before proving Theorem 9, we shall first establish some intermediate results. We 

2 1 2  n 

denote the positions of these symbols in the input 
n2 
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, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaZ 
(n2fkn2 1 

sequence. The kth adjacent subblock is the set ' aZ 
( 1+kn2) (2+kn2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 
of n, contiguous symbols in the output sequence. The relative ordering of a subblock 

ic1 

is defined to be the ordering of the input positions z l ,  z2, . . . , zn2. 

Lemma A. 2 

For  a uniform (n2, n l )  interleaver, the relative ordering of contiguous subblocks is 

the same. 

Proof: From the definition of a uniform (n2, n l )  interleaver, 

I 'k-n2 -zkl < n l .  

Suppose the relative ordering of two contiguous subblocks differs. 

j in the range 1 =Si# j en2 ,  

Then, for  some i and 

while 

1' 
z 2 Z  t n  
j t n2  i t n2  

Suppose i > j .  Using (A. 8), we obtain 

- z  = z  - z .  t z  - z  
i i tn2  j t n2  j t n2  i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 
i t n  

Z 

<-nl t (Zjtn2-zi). 

Since I zitn2-zi( < n l  f rom (A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6) ,  (A. 9) implies 

z - z. > 0. 
j t n2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Using (A. 7) ,  however, we have 

- z  = z  - z. t z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2 
j t n2  j j t n2  1 i j z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 n l  t (Zjtn2-zi). 

Since from (A. 6 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI z -z I < nl ,  (A. 11) implies 
J+n2 j 

Z - zi < 0. 
j+n2 

(A. 10) 

(A. 11) 

(A. 12) 

But (A. 10) and (A. 12) a re  contradictory. 

i < j. 

the lemma is proved. 

A similar  contradiction exists when 

Thus the relative ordering of two contiguous subblocks cannot differ, and 
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Lemma A. 3 

Let the boundaries of a subblock of output symbols f rom a uniform (n2, n l )  inter- 

leaver be chosen so that z1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= min {zl, z2, .  . . , z }. Furthermore,  let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = znZtl-zl) < nl.  

Then max {z2, z3, .  . . , z } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 z1 t (n2-l)n + a .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( n 

1 2 
n 

Proof: Let zi = min {z2, z3, . . . , z }. Since the members of all se t s  of n2 contig- 

uous symbols in the output sequence a r e  mutually separated by at least n symbols in 
1 

the input sequence, z 2 z1 + a t n and thus max {z2, z3, .  . . , z } 2 z1 + (n2-1)n + a .  
i 1' 1 

Lemma A. 4 

Let the boundaries of a subblock of output symbols from a uniform (n2 ,n l )  

Furthermore,  let  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG a l  = interleaver be chosen so that z1 = rnin {zl, z2, .  . . , z }. 
n2 

< nl ,  and 1 e a 2  = ( ~ ~ ~ ~ + ~ - z ~ ~ ~ ~ )  < nl. Then, unless z2 > z3 7 . . . > z , 
(zn2+ l-zl) n2 
max {z2, z3, .  . . , z } a  z1 + (n,-l)n t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 1  + a 2 .  

1 
2 n 

> z is not satisfied. Then there  a r e  

Without loss of generality, suppose 
2 3 ... n 

Proof: Suppose that the condition z2 > z 

two indices j and k such that j < k and z. < zk. 

that z. is the Qth lowest number of the set  {zl, z2, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz }, and zk is the (Qtl)th lowest 

number of the set. 

Z 

so that max{z2, z 3 , .  . . , z } 2 z l  t (n2-l)n t a l  + a 2 .  

J 

2 J n 

2 z1 + (a-l)nl t a l  t a 2 .  

A simple extension of the proof of Lemma A.3 establishes that 

1 2' 
= z  t Q n l t a  + a  Then, since j < k, zk 3 

1 

t n l  n2+j 

n2 

Lemma A. 5 

For  any subblock 

storage, le t  z. = min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

N 

of output symbols f rom a uniform (n3, n,  ) interleaver with finite 
& I  

Then 
{zl, z 2 , .  . . , z n2 }. Define ak = z kn2+i - '(k-l)n2ti. 

(A. 13)  
2' ak = n 

Proof: Let z.  = max {zl, z2 , .  . . , z }, and consider the set  of input symbols that 
2 J n 

appears in the first k subblocks of the output sequence. As k becomes arbitrari ly large, 

this set will include all of the symbols a l  through tn , except for a few symbols near 

symbols al or a 
2 

, under the assumption that the interleaver has finite storage. This 
kn, 

1; 

assumption also implies that the range R k = 'kn2+j - z  kn2+i of the kth subblock is also 

finite. For 0 GCL Gk - 1, let .IL) = min z Then 
and let .IH) = max z Qn2+i' 

Qn2ti '  Q 
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N 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l im  - (kn2-Rk) = n2, 

k-w 
(A. 14) 

and Lemma A. 5 is established. 

We have now accumulated enough resul ts  to  prove Theorem 9. 

Proof of Theorem 9: Consider the symbols appearing in a subblock of the output 

We con- sequence. Without loss  of generality, assume that z1 = min {zl, z2, . . . , z }. 
sider  two cases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

n 

Case I: z2 > z > . . . > zn . 
2 3 

From Lemma A. 5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = n and thus for some k 2' 

2 n2. 
'k = %n2t 1 - '(k-l)n2t 1 

Applying Lemma A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,  (assuming k = l ) ,  we obtain 

z = max{zl, z2 , .  . . , z ) 2 z l  t (n2-l)nl t (n2-1) t 1. 
2 

2 n 

Applying Lemma A. 1, we establish that 

D 2 (z2-z1) - (2-1) 

(A. 15) 

(A. 16) 

(A. 17) 

thereby proving Theorem 9 for Case I. 

Case 11: The condition z2 > z3 > . . . > z is not satisfied. 
n2 

From Lemma A. 5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = n2, so that fo r  some k such that ak 2 ak-l, 

ak-l t ak 22n2. (A. 18) 

Suppose akel < 0. Then uk > 2n2, and we can apply Lemma A.3 (assuming k = 1) to obtain 

t (n2-l)nl t 2n } 2 z1 n 
t 1. 

2 max {?l, z2,. . . , z 
2 

Applying Lemma A. 1, and observing that i - j =Sn - 1, we obtain 
2 

thereby proving Theorem 9 for  Case I1 when ak-l < 0. 

t o  obtain 

Finally, suppose that ak-l > 0. Then we can apply Lemma A.4 (assuming k = 1) 
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max {zl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , z } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 z1 3. (n2-l)nl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2n2. 
2 n 

Applying Lemma A. 1 as before, we obtain 

D 2 [(n,-l)(nl+l) + 21, 

thereby completing the proof of Theorem 9. 

(A. 21) 

(A. 22) 
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3 At1 R A C T  

eascaded codes a r e  long codes that a r e  constructed by successively encoding a 
series of relatively short  constituent codes. The purpose of cascading is t o  facilitate 
decoding by dividing the composite decoding process into a sequence of relatively sin 
ole steps, each of which corresponds to the decoding of one ofthe constituent codes. 

We study cascading techniques in which the constituent codes a r e  t r ee  codes. We 
determine the efficiency attainable with cascading, and bound the attainable e r r o r  
probability in t e rms  of the composite decoding complexity. Our major results in 
these a reas  a r e  the following. 

1. A 2-stage cascaded t r ee  code can be formulated to yield an e r r o r  exponent tha 
equals 1/2 of the single-stage e r r o r  exponent at all rates below capacity. 

2. If N is the composite decoding complexity per  decoded symbol for a cascaded 
tree code in which maximum-likelihood decoding is applied to each constituent code, 
then in the limit of asymptotically large N one can find a code for which the decoding 

error probability becomes arbitrari ly close to ( l / N )  
3. Sequential decoding can be used on the outer stage of a cascaded t r ee  code 

whose composite ra te  exceeds Rcomp, provided the alphabet sizes of the constituent 
codes a r e  suitably restricted. 

We also show how to  apply the Viterbi decoding algorithm to an unterminated tree 
code, and describe the burst characteristics of decoding e r r o r s  made by a Viterbi 
decoder. Finally, we present techniques for efficiently realizing a useful class oi 
synchronous int er leavers  . 
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