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Abstract. This paper investigates the use of cascadic multiresolution methods for image deblurring. Iterations
with a conjugate gradient-type method are carried out on each level, and terminated by a stopping
rule based on the discrepancy principle. Prolongation is carried out by nonlinear edge-preserving
operators, which are defined via PDEs associated with Perona–Malik or total variation-type models.
Computed examples demonstrate the effectiveness of the methods proposed.
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1. Introduction. Image deblurring is an important task with many applications. The
blurring of images may be caused by object motion, calibration errors of imaging devices,
or random fluctuations of the medium, e.g., the atmosphere. We are interested in restoring
images that have been contaminated by both blur and noise; in particular, we would like to
be able to recover edges accurately.

Gray-scale two-dimensional images often are represented by real-valued functions defined
on a rectangular region Ω ⊂ R

2 or by the discretization of such functions. Let the function f δ

represent the available observed blur- and noise-contaminated image and let the function û
represent the associated (unavailable) blur- and noise-free image that we would like to recover.
We assume that f δ and û are related by the degradation model

(1) f δ(x) =

∫

Ω
h(x, y)û(y)dy + ηδ(x), x ∈ Ω,

where ηδ represents additive noise in the data f δ and h is the point spread function. In our
applications, h is smooth, and, hence, the integral operator is compact. Moreover, h does not
depend on x and y individually but only on x− y. Thus, with a slight abuse of notation, we
have h(x, y) = h(x− y). Then (1) can be expressed as

(2) f δ = h ∗ û + ηδ,
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where ∗ denotes two-dimensional convolution. In addition, we assume h(s) to be symmetric;
i.e., h(−s) = h(s). Nonsymmetric kernels will be considered in future work.

Our task is to recover û given h and the observed image f δ. The noise η is not known,
but a fairly accurate bound for the norm of ηδ,

(3)

(
∫

Ω
(ηδ(x))2dx

)1/2

≤ δ,

is assumed to be available.
Straightforward solution of the linear model

(4) f δ = h ∗ u

for u does not provide a meaningful approximation of the desired noise- and blur-free image
û. The reason for this is that (4) ignores the noise ηδ in the right-hand side of (2) and that
the inverse of the integral operator in (4) is unbounded if it exists. The latter follows from
the compactness of the integral operator. The task of solving (4) therefore is an ill-posed
problem; see, e.g., Engl, Hanke, and Neubauer [7] for discussions on the solution of this kind
of problem.

A meaningful approximation of û can be determined by first replacing (4) with a nearby
problem whose solution is less sensitive to perturbations in the data f δ. Tikhonov regulariza-
tion is possibly the best understood replacement approach. For image restoration problems,
the following form of Tikhonov regularization has proved to be successful:

(5) min
u

{
∫

Ω

1

2
(h ∗ u− f δ)2 + αR(u)dx

}

,

where R(u) is a regularization operator and α > 0 a regularization parameter. For instance,
we may choose R to be of the form

(6) R(u) = ψ(|∇u|2),

where ψ is a monotonically increasing function and ∇u denotes the gradient of u; see, e.g., Welk
et al. [23] for a discussion on this kind of regularization operator. For example, ψ(t) = t1/2

yields the total variation (TV) operator

(7) R(u) = |∇u|;

see, e.g., Rudin, Osher, and Fatemi [19].
The Euler–Lagrange equation associated with (5), supplied with a gradient descent, which

gives a minimizer of (5) as t → ∞, is of the form

(8)
∂u

∂t
= −h ∗ (h ∗ u− f δ) + αD(u), u0 = f δ,

where u0 denotes the initial function. The derivation of (8) uses the symmetry of h and the
Dirichlet boundary condition u = 0; however, we note that other boundary conditions, such
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as Neumann conditions, may yield a more accurate restoration in some situations; see, e.g.,
[15, 23]. We also refer to D as a regularization operator. For instance, ψ(t) = 1

2 t gives

(9) D(u) = Δu,

where Δ denotes the Laplacian. For more general monotonically increasing differentiable
functions ψ, we obtain

(10) D(u) = div(g(|∇u|2)∇u)

with diffusivity g(t) = dψ(t)/dt.
Instead of specifying ψ, one may choose the diffusivity g. A common choice is the Perona–

Malik diffusivity

(11) g(s) = 1/(1 + s/ρ),

where ρ > 0 is a small positive constant; see [16]. The TV operator (7) yields

(12) D(u) = div

(

∇u

|∇u|

)

.

The choice of regularization operator in (8) is important for the success of the deblurring
process. The operator (9) typically yields oversmoothed restored images, while the operators
(10) and (12) generally provide restored images of higher quality and with sharper edges than
(9).

This paper considers two nonlinear regularization operators. The first is a weighted TV
operator,

(13) D1(u) = |∇u|qǫ div

(

∇u

|∇u|qǫ

)

,

where |∇u|qǫ =
(

|∇u|2 + ǫ
)q/2

with q a constant, such that 1 ≤ q ≤ 2. This operator is a
modification of (12) and, hence, is related to TV-norm regularization (7); see, e.g., [13].

The other operator we consider is given by (10) with g defined by (11). We refer to this
operator as D2, i.e.,

(14) D2(u) = div(g(|∇u|2)∇u), g(|∇u|2) = 1/(1 + |∇u|2/ρ).

We turn to the discretization of linear and nonlinear deblurring methods based on (4) and
(8), respectively, and discuss the computational effort required by these methods. Discretiza-
tion of (4) yields a linear system of equations

(15) bδ = Au, A ∈ R
n×n, u, bδ ∈ R

n,

where A represents the blurring operator and bδ the available noise- and blur-contaminated
image. The special form of (4) makes it possible to choose A as a real symmetric block
Toeplitz matrix with Toeplitz blocks. The singular values of the matrix A “cluster” at the
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origin. Therefore, A is of ill-determined rank. In particular, A is severely ill-conditioned and
may be singular. The matrix A may be indefinite.

Let û also denote a discrete approximation of the desired continuous solution, û, of (2).
Specifically, we let û be the minimal-norm solution of the linear system of equations

(16) b̂ = Aû,

which is assumed to be consistent. The left-hand side, b̂, represents a blurred, but noise-
free, image. Let R(A) and N (A) denote the range and null space of A, respectively. Then
û ⊥ N (A) or, equivalently, û ∈ R(A).

Iterative methods for the solution of (15) provide an attractive alternative to Tikhonov
regularization for large-scale problems; see, e.g., [7, 9]. The iteration number can be thought
of as a discrete regularization parameter. A regularized solution of (15) is obtained by ter-
minating the iterations after suitably few steps. Truncated iteration methods of this kind
often give reasonable results when applied to image deblurring; however, due to cut-off of
high frequencies, these methods may introduce artifacts, such as “ringing,” and fail to recover
edges accurately.

The Euler–Lagrange equation (8) is discretized in space using finite differences; the com-
putational grid for the spatial finite difference discretization corresponds to the pixel grid.
Semidiscretization of (8) yields

(17)
du

dt
= (αL(u) −A2)u + Abδ,

where L(u)u is a discretization of the regularizing operator D(u) in the right-hand side of (8).
Thus L(u) is a discrete nonlinear diffusion operator.

Explicit time-stepping schemes give fully discretized versions of (17) with the discretized
solution easily computable for every time-step τ . The Courant–Friedrich–Levy (CFL) condi-
tion determines an upper bound for the time-step τ that guarantees stability of the evolution.
This bound is very restrictive and typically requires that a very large number of time-steps
be carried out; see, e.g., [23] for a discussion. Explicit methods therefore are computationally
expensive.

Semi-implicit time-discretizations of (17) allow larger time-steps τ . These discretizations
linearize (17) by using the u-value from the previous time-step in the evaluation of L(u). Let
ui denote the computed solution at time τi. Semi-implicit integration methods require the
solution of a linear system of equations at every time-step; i.e., ui is determined by solving

(18) [I − τ(αL(ui−1) −A2)]ui = ui−1 + τAbδ

(see, e.g., [8] and [21] for further details on these kinds of schemes). Although the matrix
L(ui−1) is sparse and A is a block Toeplitz matrix with Toeplitz blocks, the matrix in the left-
hand side of (18) cannot be easily factored or inverted. Moreover, the term A2 in (18) demands
a restriction in the size of the time-step in order to guarantee stability. This restriction
combined with the difficulty of solving (18) for ui makes solution methods based on semi-
implicit integration expensive. Thus, while nonlinear models based on (17) provide denoising
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of high quality and deblurring of acceptable quality, their integration by explicit or semi-
implicit methods is computationally expensive. This is illustrated with a computed example
in section 4.

The present paper proposes new cascadic multiresolution methods that share the compu-
tational efficiency of truncated iteration for the solution of linear systems of (15) with the edge-
preserving property of nonlinear models (8). The multiresolution methods typically require
fewer matrix-vector product evaluations than standard 1-level truncated iterative methods for
the solution of (15) and often determine restored images of as high quality as the much more
expensive methods for the solution of nonlinear models of the form (8). Our multiresolution
methods are based on regularization by truncated iteration on each level and use a stopping
criterion for the iterations on each level based on the discrepancy principle. Nonlinear edge-
preserving prolongation operators enable the accurate restoration of edges. These operators
are inspired by the nonlinear regularization operators (13) and (14) used in (8).

This paper is organized as follows. Section 2 introduces the multiresolution framework and
our stopping criterion for the iterations. Section 3 discusses the edge-preserving prolongation
operators used. Numerical examples in section 4 illustrate the performance of the methods,
and section 5 contains concluding remarks.

Other multilevel methods for ill-posed problems recently have been described in [6, 18].
The numerical examples presented in these references show the promise of multilevel meth-
ods. In [18] cascadic multilevel methods that use linear prolongation operators are discussed.
Computed examples in section 4 show the method of the present paper to yield restorations of
higher quality. Further references to multilevel methods for ill-posed problems can be found
in [18].

2. Multiresolution and the discrepancy principle. We first discuss the application of
a 1-level conjugate gradient-type iterative method, commonly referred to as MR-II, to the
solution of (15), and describe the discrepancy principle for the termination of the iterations.
This is followed by a presentation of multiresolution methods and some of their properties.

Introduce for v = [v(1), v(2), . . . , v(n)]T ∈ R
n the weighted least-squares norm

(19) ‖v‖ =

(

1

n

n
∑

i=1

(

v(i)
)2

)1/2

.

Assume that a bound for the error e = bδ − b̂ in the right-hand side bδ of (15) is available; i.e.,
analogously to (3) we have

(20) ‖e‖ ≤ δ.

This bound allows us to use the discrepancy principle to determine a suitable number of
iterations with the MR-II method applied to the (approximate) solution of (15). Let the
initial approximate solution be u0 = 0. Then, typically, the first few iterates furnish improved
approximations of the desired solution û of the error-free system (16). However, after an
optimal number of iterations, which generally is not explicitly known, subsequently computed
iterates commonly suffer from severe error-contamination due to the error e in bδ. It is
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therefore important to terminate the iterations sufficiently early. The discrepancy principle is
an aid for determining how many iterations to carry out.

Definition (discrepancy principle). Let γ > 1 be a fixed constant and let e = bδ − b̂ satisfy
(20). The vector u is said to satisfy the discrepancy principle if ‖bδ −Au‖ ≤ γδ.

We will apply the discrepancy principle for fixed γ and different values of δ. MR-II is
a conjugate gradient-type method, which is well suited for the solution of linear systems of
equations with a symmetric, possibly indefinite, matrix. Each iteration requires the evaluation
of one matrix-vector product with the matrix A. The MR-II method has been studied by
Hanke [9, Chapter 6]; an alternate implementation is described in [3].

With initial iterate u0 = 0, the kth iterate determined by MR-II, uk, belongs to the Krylov
subspace

Kk(A,Ab
δ) = span{Abδ, A2bδ, . . . , Akbδ}.

MR-II is a minimal residual method; i.e., uk satisfies

‖bδ −Auk‖ = min
u∈Kk(A,Abδ)

‖bδ −Au‖,

and it follows that

(21) ‖bδ −Auk+1‖ ≤ ‖bδ −Auk‖ ∀k.

Thus, all iterates generated by the method live in R(A). Therefore, the MR-II method is
referred to as a range restricted minimal residual (RRMR) method in [3]. Since R(A) =
N (A)⊥, the iterates uk are orthogonal to N (A). The property (21) makes it natural to
terminate the iterations using the following stopping rule based on the discrepancy principle.

Stopping Rule 2.1. Let δ and γ be the same as in the discrepancy principle. Terminate the
iterations when for the first time

(22) ‖bδ −Auk‖ ≤ γδ.

Denote the resulting stopping index by k(δ).
Note that typically k(δ) increases monotonically as δ decreases to zero with γ kept fixed.

This depends on the fact that the right-hand side bound in (22) gets smaller when δ decreases.
Bounds for the growth of k(δ) as δ decreases are provided by [9, Corollary 6.18].

An iterative method equipped with this stopping rule is said to be a regularization method
if the computed iterates uk(δ) satisfy

(23) lim
δց0

sup
‖e‖≤δ

‖uk(δ) − û‖ = 0,

where û is the minimal-norm solution of (16). Hanke [9, Theorem 6.15] shows that the iterates
determined by MR-II satisfy (23) in a Hilbert space setting. Regularization is achieved because
the computed approximate solution uk(δ) lives in the Krylov subspace Kk(δ)(A,Ab

δ) of typically
fairly small dimension k(δ). The parameter γ > 1 in (22) is chosen to be close to unity if an
accurate estimate of the norm of the noise ‖e‖ is available; otherwise a larger value of γ is
used.
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There are also quite a few heuristic stopping rules that do not use information about the
norm of the noise in the right-hand side bδ; see, e.g., [12, 14, 17] for recent discussions and
references. Many of these rules work well for a large number of problems, but they may fail for
others. It would appear possible to use some of these rules in the context of multiresolution
methods. This requires further investigation.

We use the MR-II method because it is a regularization method and the iterates satisfy
a short recurrence relation. The conjugate gradient method applied to the normal equations
associated with (15) also satisfies these properties, but generally requires more computational
work, since each iteration demands the evaluation of two matrix-vector products, one with A
and one with AT .

We turn to the description of a multiresolution method based on MR-II and a termination
criterion analogous to Stopping Rule 2.1. Let W1 ⊂ W2 ⊂ · · · ⊂ Wℓ be a sequence of nested
linear subspaces of R

n of increasing dimensions with Wℓ = R
n. We refer to the subspaces Wj

as levels, with W1 being the coarsest level and Wℓ the finest. The dimension of Wj is denoted
by nj . In the computed examples, we let

(24) nj+1 = 4nj ∀j.

Each level is equipped with a weighted least-squares norm analogous to (19). Specifically, Wj

has a norm of the form (19) with n replaced by nj .
Define, for 1 ≤ i < ℓ, the restriction operators Ri : R

n → Wi as follows. Let Mi+1 :
Wi+1 → Wi denote the averaging operator in Wi+1 that replaces groups of four adjacent
pixels in the image represented by bδi+1 by one pixel, whose value is the average of the values
of the four pixels it replaces. Introduce

(25) bδi = Mi+1b
δ
i+1, Ri = Mi+1Mi+2 . . .Mℓ, 1 ≤ i < ℓ.

For notational convenience, we let bδℓ = bδ and Rℓ = I. Then

bδi = Rib
δ, 1 ≤ i ≤ ℓ.

Define

(26) b̂i = Rib̂, Ai = RiAR
∗
i , 1 ≤ i ≤ ℓ,

where R∗
i is the adjoint of Ri. Thus, Ai is the restriction of A to Wi. Since averaging is a

smoothing operator, we expect the vector bδi−1 to contain less high-frequency noise than bδi .
Example 2.1. Assume that the entries of the noise e in bδ are uncorrelated random variables

with zero mean. Then the entries of

ei = [e
(1)
i , e

(2)
i , . . . , e

(ni)
i ]T = bδi − b̂i

are uncorrelated and have zero mean for all i. Let ‖ei‖
2
V denote the average variance of the

components e
(j)
i of ei; i.e.,

‖ei‖
2
V =

1

ni

ni
∑

j=1

Var(e
(j)
i ).
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Then

‖ei‖
2
V =

1

ni

ni
∑

j=1

Var(e
(j)
i ) =

1

16ni

ni+1
∑

j=1

Var(e
(j)
i+1) =

1

4
‖ei+1‖

2
V ,

where we have used (24) and the fact that the components e
(j)
i are the average of four entries

of ei+1. Thus, ‖ei‖V = 1
2‖ei+1‖V . Approximating ‖ei‖V by ‖ei‖ for all i yields

(27) ‖ei‖ ≈
1

2
‖ei+1‖.

We also require prolongation operators from level i− 1 to level i for all i. Both linear and
nonlinear prolongation operators will be used. In the computed examples, the linear prolonga-
tion operators Pi : Wi−1 → Wi, 1 < i ≤ ℓ, are defined by piecewise linear interpolation, while
the nonlinear prolongations SiPi : Wi−1 → Wi, 1 < i ≤ ℓ, are designed to be edge-preserving.
Here the Si : Wi → Wi are nonlinear edge-preserving smoothing operators. Different choices
of smoothing operators and further details are discussed in section 3.

The multiresolution methods of the present paper are cascadic and are based on the MR-II
iterative method. Thus, the multiresolution methods first determine an approximate solution
of A1u = bδ1 in W1 using MR-II. The iterations with MR-II are terminated as soon as an
iterate that satisfies a stopping rule related to the discrepancy principle has been determined.
This iterate is mapped from W1 into W2 by the nonlinear edge-preserving prolongation S2P2.
A correction of this mapped iterate in W2 is computed by MR-II. Again, the MR-II-iterations
are terminated by a stopping rule related to the discrepancy principle. The approximate
solution in W2 determined in this fashion is mapped into W3 by the edge-preserving nonlinear
prolongation S3P3. The computations are continued in this manner until an approximation
of û has been determined in Wℓ = R

n. We refer to these methods as multiresolution MR-II
(MR-MR-II) methods. They are described by the following algorithm. The multiresolution
methods used in this paper differ in the choice of smoothing operators Si and in the number of
levels used. One may, of course, also choose prolongation operators Pi different from piecewise
linear interpolation; however, this is not explored in the present paper.

Algorithm 2.2 (MR-MR-II).
Input: A, bδ, δ, ℓ ≥ 1 (number of levels);
Output: approximate solution uℓ ∈ Wℓ of (15);
Determine Ai and bδi from (26) for 1 ≤ i ≤ ℓ;
u0 := 0;
for i := 1, 2, . . . , ℓ do

ui,0 := SiPiui−1;
∆ui,mi

:= MR-II(Ai, b
δ
i −Aiui,0);

Correction step: ui := ui,0 + ∆ui,mi
;

endfor
uℓ := Sℓuℓ;

In the algorithm above MR-II(Ai, b
δ
i − Aiui,0) denotes the computation of the approximate

solution ∆ui,mi
of

(28) Aizi = bδi −Aiui,0
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by mi MR-II-iterations, using initial iterate ∆ui,0 = 0. For i = 1, the algorithm sets u1,0 = 0.
We remark that the matrix Ai typically has the same structure as Ai+1 when the unknowns
on each level are enumerated in the same fashion. For instance, if Aℓ = A is a symmetric
block Toeplitz matrix with Toeplitz blocks, then so are the Ai, 1 ≤ i < ℓ. Also, if A is banded,
then so are the matrices Ai, 1 ≤ i < ℓ. In our applications, the Ai are symmetric Toeplitz
matrices with Toeplitz blocks and may be indefinite.

Our stopping rule on each level is based on the assumption that there are constants ci
independent of δ, such that

(29) ‖bδi − b̂i‖ ≤ ciδ, 1 ≤ i ≤ ℓ,

where δ satisfies (20). Relation (27) suggests the choice

(30) ci =
1

2
ci+1, 1 ≤ i ≤ ℓ,

with cℓ = γ, where γ is the same as in (22). We use these values of ci in the computed
examples of section 4.

Stopping Rule 2.3. Let δ and the ci be the same as in (20) and (29), and denote the iterates
determined by MR-II applied to the solution of (28) by ∆ui,m, m = 1, 2, . . ., with initial iterate
∆ui,0 = 0 and u1,0 = 0. Terminate the iterations on level i as soon as an iterate ∆ui,mi

that
satisfies

‖bδi −Aiui,0 −Ai∆ui,mi
‖ ≤ ciδ

has been determined, where mi = mi(δ) denotes the termination index.
Cascadic MR-II-based multiresolution methods related to those of Algorithm 2.2 are dis-

cussed in [18]; the methods in [18] differ from the MR-MR-II methods described by Algorithm
2.2 in that they use piecewise linear prolongation operators only and the restriction operators
are defined by interpolation instead of by local averaging. Theorem 3.3 and Corollary 3.2 in
[18] show that, under suitable conditions, the MR-II-based multiresolution methods consid-
ered in [18] are regularization methods in the sense that the computed solution on each level
converges to the minimal-norm solution of the noise-free problem for the corresponding level.
This is analogous to the property (23) of 1-level MR-II.

The proofs of Theorem 3.3 and Corollary 3.2 in [18] carry over to the MR-MR-II meth-
ods of the present paper when Si = I for all i. These results are shown for solutions and
operators defined in infinite-dimensional Hilbert spaces and require the δi to be chosen in a
particular order. Since images are represented by pixels, image restoration problems live in
finite-dimensional spaces. We will show that the MR-MR-II methods defined by Algorithm
2.2 with Si = I for all i are regularization methods for finite-dimensional problems. Our proof
allows the reduction of all δi simultaneously. Specifically, we let δi = δ for all i and then let
δ ց 0.

Theorem 2.4. Assume that the equation

(31) Aiu = b̂i

is consistent and has minimal-norm solution ûi for each i. In particular, ûℓ = û. Let Si = I
for all i and let the linear projections Pi satisfy

(32) R(Pi) ⊂ R(Ai), 1 < i ≤ ℓ.
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Algorithm 2.2 computes the approximate solution of ℓ linear systems of equations with noise-
contaminated right-hand sides. Assume that the associated noise-free right-hand sides b̂i are
generic; i.e., b̂i is assumed not to be in an invariant subspace of Ai of low dimension. Let the
errors in the projected right-hand sides be of the form

(33) bδi − b̂i = ciδ ei, 1 ≤ i ≤ ℓ,

where ei ∈ Wi is a unit vector independent of δ and the ci > 0 are the constants in (29).
Terminate the iterations with MR-II in Algorithm 2.2 on levels 1, 2, . . . , ℓ according to Stopping
Rule 2.3. This yields the iterates ui for levels 1 ≤ i ≤ ℓ. Then the MR-MR-II method described
by Algorithm 2.2 is a regularization method on each level, i.e.,

(34) lim
δց0

‖ui − ûi‖ = 0, 1 ≤ i ≤ ℓ.

Proof. It suffices to show the theorem for ℓ = 2 levels. A proof for ℓ > 2 levels can
be established similarly. Let Ai have 1 ≤ ki ≤ ni distinct nonvanishing eigenvalues. By
assumption, the right-hand side b̂1 of

(35) A1u = b̂1

is generic, and, therefore, the solution of (35) by MR-II requires k1 iterations. The iterates
determined by MR-II live in R(A1), and it follows that the solution û1 computed by MR-II
is of minimal norm. Thus,

(36) û1 = A†
1b̂1,

where A†
1 denotes the Moore–Penrose pseudoinverse of A1. When A1 is nonsingular, A†

1 = A−1
1 .

We are interested in the behavior of the computed solution as δ ց 0. We therefore may
choose the initial δ > 0 small enough so that Stopping Rule 2.3 yields the maximal number of
iterations on both levels. We then consider the limit of the computed solution as δ is reduced
further.

For δ > 0 sufficiently small, the perturbed right-hand side bδ1 also is generic, and satis-
faction of Stopping Rule 2.3 requires that k1 MR-II-iterations be carried out. The computed
solution can be expressed as

(37) u1 = A†
1b

δ
1.

The entries of u1 are continuous functions of the entries of bδ1, which, in view of (33), are
continuous functions of δ, provided that δ > 0 is sufficiently small. This shows that u1 → û1

as δ ց 0.
We turn to level ℓ = 2 and apply MR-II to the solution of

(38) A2z2 = bδ2 −A2P2u1.

By assumption, the noise-free vector b̂2 −A2P2û1 associated with the right-hand side in (38)
is generic, and, therefore, so is the right-hand side in (38) for all δ > 0 sufficiently small. This
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implies that, for all δ > 0 sufficiently small, MR-II applied to the solution of (38) requires
that k2 iterations be carried out to satisfy Stopping Rule 2.3. The computed solution ∆u2,k2

can be expressed as

∆u2,k2
= A†

2(b
δ
2 −A2P2u1),

and, hence,

u2 = P2u1 + ∆u2,k2
= (I −A†

2A2)P2u1 + A†
2b

δ
2 = A†

2b
δ
2,

where the last equality follows from the fact that (I − A†
2A2)P2 = 0, which is a consequence

of (32). In view of (31), we have û2 = A†
2b̂2 and, therefore,

u2 − û2 = A†
2(b

δ
2 − b̂2),

which establishes (34) for i = 2.

It is essential in the above proof that MR-II terminate after finitely many steps with
a minimal-norm least-squares solution. The proof carries over to other iterative methods
with this property, such as the conjugate gradient method applied to the normal equations.
However, as already mentioned above the latter method typically requires more matrix-vector
product evaluations than MR-II. We therefore use MR-II in the present paper. Note that the
standard conjugate gradient method cannot be applied, because the method is not guaranteed
to yield the minimal-norm least-squares solution when the matrix is singular.

The property (34) for the multiresolution method is analogous to (23) for MR-II and
justifies its use. However, this property does not guarantee that the restored images are of
high quality. To achieve the latter, we use nonlinear smoothing operators Si and carry out
local smoothing described in subsection 3.3.

We remark that the multiresolution methods presented in this section differ significantly
from cascadic and other multilevel methods designed for the solution of well-posed boundary
value problems for PDEs; see e.g., [1, 20] and references therein for discussions of the lat-
ter kinds of methods. One reason for this is that in the problems considered in the present
paper, the solution of discretized Fredholm integral equations of the first kind, highly oscil-
latory eigenvectors typically are associated with eigenvalues close to the origin and have to
be damped; see, e.g., [11, Chapter 1] for a discussion. Multilevel methods developed for the
solution of well-posed boundary value problems for PDEs damp eigenvectors associated with
large eigenvalues; see, e.g., [1, 20]. Therefore iterative methods used for the latter problems,
such as variants of the Gauss–Seidel method, cannot be used for the solution of the problems
considered in the present paper.

The use of cascadic multilevel methods is natural for the problems considered in this
paper, because the following hold:

• The smaller problems, i.e., linear systems of equations Aiui = bδi with i small, typically
are not very ill-conditioned. It is therefore often possible to compute fairly accurate
approximations of the restriction of the desired vector û to Wi even in the presence
of error in bδi . The computed solution in Wi, after prolongation, generally furnishes a
fairly accurate approximation of the desired solution in Wi+1.

• It is easy to apply stopping rules based on the discrepancy principle.
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3. Edge-preserving prolongation operators. The cascadic multilevel method proposed
in [18] applies prolongation by piecewise linear interpolation. While these piecewise linear
prolongation operators work well in some contexts, they are not well suited for image restora-
tion, because the restored images obtained with these prolongation operators often suffer from
attenuation of high frequencies and checkerboard effects; see section 4 for illustrations. This
section describes nonlinear edge-preserving prolongation operators, which yield more accu-
rate restorations than the piecewise linear prolongation operators used in [18] for very little
additional computational work. The nonlinear prolongation operators SiPi : Wi−1 → Wi

combine the piecewise linear prolongation operator Pi : Wi−1 → Wi, defined by piecewise
linear interpolation, with the nonlinear edge-preserving smoothing operator Si : Wi → Wi.
The smoothing operator reduces the shortcomings of piecewise linear prolongation.

The smoothing operators Si are determined by integration of PDEs of the form

(39)
∂u

∂t
= D(u)

for a short time-interval, where D(u) is the regularization operator in (8) defined by either
(13) or (14).

Let ui−1 denote the computed solution determined in the Correction step of Algorithm 2.2
on level i− 1. The piecewise linear prolongation operator Pi yields Piui−1 ∈ Wi. Application
of the smoothing operator Si to Piui−1 gives the initial approximation ui,0 of the desired
solution on level i; see Algorithm 2.2. The operator Si is defined implicitly by integration of
the nonlinear system of differential equations in Wi,

(40)
du

dt
= L(u)u, u ∈ Wi, u0 = Piui−1,

with Dirichlet boundary condition u = 0 and initial function u0. Here L(u)u is the same
discretization of D(u) as in (17).

The nonlinear system of differential equations (40) is designed to determine an element in
Wi that has edges close to those of ui−1 in Wi−1. Integration is performed by carrying out fewer
than 10 time-steps with an explicit method. The small number of time-steps avoids difficulties
due to numerical instability. Moreover, the computational effort required for integration is
small. The following subsections discuss the discretization of the operator D(u) in (39).

3.1. Discretization of D1(u). We describe the discretization of the operator D = D1,
defined by (13) and used in (39), by finite differences and proceed similarly as in [4]. The
discretization defines the matrix L(u) in (40). Each row of L(u) is associated with a pixel and
has, generically, five nonvanishing entries. We enumerate the pixels with index pairs (i, j).
Consider a generic row associated with pixel (i, j). Its five nonvanishing entries are determined
by the values of u at pixel (i, j) and at the four adjacent pixels in the horizontal and vertical
directions. We refer to the latter pixels as E(ast) (i+1, j), W (est) (i−1, j), N(orth) (i, j+1),
and S(outh) (i, j − 1); see Figure 1 for the enumeration of the pixels and associated u-values.
The row of L(u) corresponding to pixel (i, j) is given by

(41) {lij,S , . . . , lij,E ,−(lij,S + lij,E + lij,W + lij,N ), lij,W , . . . , lij,N},



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CASCADIC MULTIRESOLUTION METHODS FOR IMAGE DEBLURRING 63

uij

u

u

u

u

ij−1

i+1j

i−1j

ij+1

Figure 1. Stencil for the finite difference discretization of D1.

where the coefficients associated with the pixels W (est) and E(ast) of (i, j) are of the form

(42) lij,W =
2sij,E

sij,W + sij,E
, lij,E =

2sij,W
sij,W + sij,E

,

with

(43) sij,W = (δ2
i−1/2,j(u) + ǫ)q/2, sij,E = (δ2

i+1/2,j(u) + ǫ)q/2.

Here δ2
i−1/2,j(u) denotes the finite difference approximation of |∇u|2 evaluated at the midpoint

between the pixels (i − 1, j) and (i, j). Similarly, δ2
i+1/2,j(u) denotes the finite difference

approximation of |∇u|2 evaluated at the midpoint between the pixels (i + 1, j) and (i, j).
These midpoints are marked by rectangles in Figure 1. For example,

δ2
i−1/2,j(u) = (uij − ui−1,j)

2 +

(

1

2

(

ui−1,j+1 + ui,j+1

2
−

ui−1,j−1 + ui,j−1

2

))2

= (uij − ui−1,j)
2 +

1

16
(ui−1,j+1 + ui,j+1 − ui−1,j−1 − ui,j−1)

2.

In the computed examples reported in section 4, we let q = 1.5 and choose ǫ to be a small
constant in (43).

The coefficients lij,N and lij,S in (41) are evaluated similarly, where we note that the
operator (13) is symmetric with regard to the partial derivatives ∂/∂x and ∂/∂y. At boundary
pixels, u is set to zero. The discretization outlined is a nine-point discretization scheme since,
generically, u-values at pixel (i, j) and at all the eight surrounding pixels are used. The pixel
(i, j) and its eight neighbors are marked by solid dots in Figure 1.

3.2. Discretization of D2(u). This subsection discusses finite difference discretization of
the operator D = D2, defined by (14) and used in (39). The matrix L(u) in (40) obtained by
the discretization has, generically, five nonvanishing entries in each row. In the row associated
with pixel (i, j), these entries are determined by the values of u at pixel (i, j) and at the four
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adjacent pixels in the horizontal and vertical directions, denoted by N,S,E,W . A typical row
of L(u) associated with pixel (i, j) is of the form (41) with elements

lij,E(u) =
gij + gi+1,j

2
, lij,W (u) =

gij + gi−1,j

2
,

where gij represents the discretization of g(|∇u|2) in (14). The partial derivatives are approx-
imated by central finite differences, giving

gij = g

(

(

ui+1,j − ui−1,j

2

)2

+

(

ui,j+1 − ui,j−1

2

)2
)

.

Expressions for lij,S(u) and lij,N (u) can be derived similarly; see [22] for details.

3.3. Local smoothing. Nonlinear models (8) based on the Perona–Malik or weighted TV-
norm regularization operators (13) or (14), respectively, may yield restored images which suffer
from “staircasing”; i.e., the restored images display large flat regions separated by artificial
boundaries instead of a desired smooth surface. Mild forms of staircasing also can be discerned
in the images determined by the nonlinear prolongation operators SiPi. Following Buades,
Coll, and Morel [2], we reduce this problem by local least-squares smoothing. At each pixel
x, we solve the local least-squares approximation problem

(44) min
aj∈R

∑

y∈Ω8(x)

((SiPiui−1)(y) − p(y))2 ω(x, y), p(y) = a0 + a1y1 + a2y2,

where Ω8(x) denotes the punctured eight-pixel neighborhood of the pixel x made up of the
pixels closest to but different from x,

(45) ω(x, y) = e−(ui,0(y)−ui,0(x))2

is a weight function, and (SiPiui−1)(y) denotes the entry of SiPiui−1 corresponding to pixel
y. Moreover, y has the coordinates y1 and y2.

Let p denote the solution of (44). Note that p depends on x. The computation of p and
evaluation of p(x) for each pixel x is quite inexpensive. Let ui,0(x) denote the entry of the
vector ui,0 corresponding to pixel x. In Algorithm 2.2, we let ui,0(x) = p(x) for all pixels x
(instead of ui,0 = SiPiui−1). This amounts to local smoothing of the entries of SiPiui−1. Due
to the weight function (45), this smoothing does not blur edges significantly. For notational
simplicity, we include the local smoothing of this subsection in the definition of the operator
Si. The local smoothing is applied on all levels.

We refer to application of the nonlinear prolongation operator SiPi as D1-prolongation
and of the smoother Si as D1-smoothing when L(u) in (40) is defined by D1. Analogously,
when L(u) is defined by D2, we refer to application of SiPi as D2-prolongation and of Si as
D2-smoothing.

4. Numerical examples. We present several numerical examples, which illustrate prop-
erties of the multiresolution methods of this paper. Comparisons with the multilevel methods
described in [18] and with the nonlinear model (8) also are reported.
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The gray-scale images to be restored are represented by m×m pixels with each pixel stored
in 8 bits. This allows pixel values in the interval [0, 255]. The pixels are ordered row-wise and
stored in a vector of dimension n = m2. Let û ∈ R

n represent a blur- and noise-free image.
We generate an associated blurred and noise-free image b̂ by multiplying û by a block Toeplitz
matrix A ∈ R

n×n with Toeplitz blocks. The matrix A represents a Gaussian blurring operator
and is generated with the MATLAB function blur.m from Regularization Tools [10]. This
function has two parameters, band and sigma. The former specifies the half-bandwidth of the
Toeplitz blocks and the latter the variance of the Gaussian point spread function. The larger
sigma is, the more blurring. Enlarging band increases the storage requirement, the arithmetic
work required for the evaluation of matrix-vector products with A, and to some extent the
blurring.

A blur- and noise-contaminated image bδ ∈ R
n is obtained by adding an error vector

e ∈ R
n to b̂. Thus,

bδ = Aû + e.

The corrupted image bδ ∈ R
n is assumed to be available, and we would like to determine

the blur- and noise-free image û. In our experiments, e has normally distributed entries with
mean zero, scaled to yield a desired noise-level

ν =
‖e‖

‖û‖
,

from which we determine the value of δ in (20).
We denote the number of levels used in Algorithm 2.2 by ℓ. The vectors bδi , 1 ≤ i < ℓ, are

determined by local averaging of the entries; cf. (25). The matrices Ai are defined by (26).
The entries of the Ai can easily be computed for decreasing values of i. Note that the matrices
Ai do not have to be stored; it suffices to define functions for the evaluation of matrix-vector
products with the Ai. These products can be computed efficiently by using the structure of
the Ai.

In all examples with multiresolution methods, we integrate the system of nonlinear dif-
ferential equations (40) by Euler’s method. Numerical experiments suggest that 5 time-steps
of size 0.2 is appropriate for images contaminated by a moderate amount of noise (noise-level
1 ·10−2) and 10 time-steps is suitable for images that have been contaminated by a fairly large
amount of noise (noise-level 1 · 10−1). The computed results are not sensitive to the number
of time-steps in this range.

We assume that δ is a fairly accurate estimate of the norm of the noise, ‖e‖, in the right-
hand side bδ and therefore let γ = 1.01 in Stopping Rule 2.1. Moreover, cℓ = γ in Stopping
Rule 2.3. The other coefficients ci in the latter stopping rule are determined by (30).

The displayed restored images provide a qualitative comparison of the performance of
the proposed multiresolution methods for different prolongation operators. A quantitative
comparison is given by the peak signal-to-noise ratio (PSNR):

(46) PSNR(uℓ, û) = 20 log10

255

‖uℓ − û‖
dB,

where û is the blur- and noise-free image and uℓ the restored image determined by Algorithm
2.2. Note that the norm ‖uℓ − û‖ is the root mean squared error (RMSE) of uℓ − û; cf. (19).
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Figure 2. Blur- and noise-free images for Examples 4.1 and 4.2.

The numerator 255 is the largest pixel-value represented. We remark that PSNR-values do
not always agree with visual judgment. All computations are carried out in MATLAB with
machine epsilon about ǫ ≈ 2 · 10−16.

Example 4.1. The noise- and blur-free image used in this example is shown in Figure
2 (left). It is represented by 512 × 512 pixels. The black background makes it natural to
use Dirichlet boundary conditions with boundary value zero. Figure 3 provides a qualitative
comparison of images restored by Algorithm 2.2 with ℓ = 5 levels and different prolongation
operators; in particular, the figure displays the performance of piecewise linear prolongation
as well as of nonlinear D1- and D2-based prolongations. The D2-based prolongation operators
are seen to provide the most accurate restoration, while piecewise linear prolongation gives
the worst restoration; the restored image determined with piecewise linear prolongation shows
artifacts and poorly defined boundaries.

The last row of Table 1 reports PSNR-values for the restorations shown in Figure 3. The
image determined with D2-based prolongation achieves the highest PSNR-value in agreement
with the qualitative comparison furnished by Figure 3. Table 1 shows results for several noise-
levels ν and number of levels ℓ in Algorithm 2.2. The columns marked “lin prlg” show results
achieved with piecewise linear prolongation. Here and elsewhere in this section, ℓ = 1 denotes
the basic 1-level MR-II method applied on the finest level without smoothing. The results are
reported in the columns marked “lin prlg” even though no prolongation is carried out.

Table 1 shows the multiresolution method with 3 levels to give larger PSNR-values than
the 1-level method. Moreover, the accuracy achieved by the multiresolution method with 3
levels is about the same as with 5 levels. The numbers of iterations on the finest levels for
the 3- and 5-level multiresolution methods are about the same. This, as well as numerical
experiments with other images, indicates that 3 to 4 levels is appropriate for many image
restoration problems. The quality of the restored images does not deteriorate by choosing
more than 3 to 4 levels, but generally does not increase either. The smallest number of levels
that yields restored images of the highest or close to the highest quality is related to the image
content in the sense that the reduced image on the coarsest level should contain many of the
structures (details) which characterize the finest image.
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Figure 3. Example 4.1: Blurred and noisy image with noise-level ν = 1 ·10−1 and blur parameters band = 5
and sigma = 3 (top left); restored images with piecewise linear prolongation (top right), with nonlinear D1-
prolongation (bottom left), and with nonlinear D2-prolongation (bottom right). Number of levels ℓ = 5.

Table 1

Example 4.1: PSNR and number of iterations (iter) as functions of the number of multiresolution levels ℓ

and noise-levels ν for the same point spread function determined by band = 5 and sigma = 3.

PSNR PSNR PSNR iter iter iter
ℓ ν lin prlg D1-prlg D2-prlg lin prlg D1-prlg D2-prlg

1 1 · 10−2 28.84 - - 8 - -
3 1 · 10−2 29.41 29.89 30.80 9 12 6 9 12 6 9 12 6
5 1 · 10−2 29.41 29.89 30.80 1 1 9 12 6 1 1 9 12 6 1 1 9 12 6

1 5 · 10−2 26.53 - - 4 - -
3 5 · 10−2 26.76 26.91 27.97 5 4 2 5 4 2 5 4 3
5 5 · 10−2 26.76 26.91 27.94 1 1 5 4 2 1 1 5 4 2 1 1 5 4 3

1 1 · 10−1 25.70 - - 3 - -
3 1 · 10−1 26.29 26.43 27.13 4 3 2 4 3 2 4 3 2
5 1 · 10−1 26.28 26.43 27.12 1 1 4 3 2 1 1 4 3 2 1 1 3 3 2
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Figure 4. Example 4.1: Effect of too many iterations. The image is determined by application of 5 1-level
MR-II iterations to the restoration of the contaminated image shown in Figure 3 (top left). Propagated noise
is clearly visible. Stopping Rule 2.1 suggests that only 3 iterations be carried out.

Figure 5. Example 4.1: Edge maps for images restored by 1-level MR-II applied on the finest level (left)
and by Algorithm 2.2 with ℓ = 3 levels with linear prolongation (right). The available corrupted image is
contaminated by blur and noise determined by band = 5, sigma = 5, and ν = 5 · 10−2.

The 1-level MR-II method applied to the restoration of the blurred and noisy image of
Figure 3 (top left) yields after 3 iterations a restored image with PSNR 25.70; see Table 1.
This number of iterations is determined by Stopping Rule 2.1. If we ignore this stopping rule
and carry out 2 additional iterations, then the restored image in Figure 4 is obtained. The
latter image is seen to be of fairly poor quality. It has PSNR 23.01. We conclude that it is
important not to carry out too many iterations.

In order to gain further insight into the performance of Algorithm 2.2, we display edge
maps determined by the edge detector of gimp, a public domain software tool for image
processing, to restored images. The image to be restored is a blurred and noisy version of
Figure 2 (left), corresponding to the parameters band = 5 and sigma = 5 of blur.m; the
noise-level is ν = 5 · 10−2. Figure 5 displays edge maps for restorations determined by 1-level
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Figure 6. Example 4.1: Edge maps for images restored by 1-level MR-II followed by D2-smoothing (left)
and by Algorithm 2.2 with ℓ = 3 levels and D2-prolongation (right). The available contaminated image is the
same as for Figure 5.
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Figure 7. Example 4.1: The smooth (black) graph displays the cross-section for the restored image deter-
mined by Algorithm 2.2 with ℓ = 3 levels and D2-prolongation (left). The right-hand figure shows a blow-up.
The jagged (red) graphs show the corresponding cross-sections for the available contaminated image. The latter
is contaminated by blur and noise determined by band = 5, sigma = 5, and ν = 5 · 10−2.

MR-II (left) and Algorithm 2.2 with ℓ = 3 and piecewise linear prolongation. The 3-level
multiresolution method yields the edge map with fewest artifacts. Figure 6 displays edge
maps for images restored by 1-level MR-II followed by D2-smoothing (left) and by Algorithm
2.2 with ℓ = 3 levels and D2-prolongation (right). A comparison of the left-hand side edge
maps of Figures 5 and 6 shows that D2-smoothing applied to the 1-level MR-II method does
not provide a significantly improved edge map. The edge map of the highest quality by far
is shown by Figure 6 (right). This comparison suggests that the use of several levels and a
suitable prolongation operator is important for achieving accurate restorations.

The smoothing and edge-preserving effect of D2-prolongation is also illustrated in Figure
7. The left-hand side of this figure displays the cross-section of a restored image (smooth
black graph) along with the corresponding cross-section of the contaminated image (jagged
red graph). The latter image is a blurred and noisy version of Figure 2 (left), corresponding
to the parameters band = 5, sigma = 5, and ν = 5 · 10−2. The restored image is determined
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Table 2

Example 4.1: PSNR and number of iterations (iter) for several values of the parameters band and sigma

and fixed noise-level ν = 5 · 10−2. Columns 3–4 report results for 1-level MR-II, columns 5–6 for Algorithm 2.2
with ℓ = 3 levels and D1-prolongation, and columns 7–8 for Algorithm 2.2 with ℓ = 3 levels and D2-prolongation.

PSNR iter PSNR iter PSNR iter
band sigma 1-level 1-level D1-prlg D1-prlg D2-prlg D2-prlg

3 3 29.45 3 30.08 1 3 2 30.88 1 3 2
3 5 29.23 3 30.03 1 3 2 30.84 1 3 2

5 3 26.61 4 26.85 5 4 2 27.98 5 4 3
5 5 26.48 4 27.58 16 4 3 28.49 16 4 3

9 3 25.83 5 26.10 4 4 3 26.78 4 4 3
9 5 23.68 6 24.32 8 5 3 25.14 8 5 4

by Algorithm 2.2 with ℓ = 3 levels and D2-prolongation. Figure 7 (right) shows a blow-up of
the graphs on the left-hand side. The restored cross-section is seen to be fairly noise-free.

The improved quality achieved by the multilevel methods, when compared with 1-level
MR-II, stems from the fact that the multilevel methods have available a better initial approx-
imate solution when starting with the iterations on the finest level. This is important because
the linear systems of equations (15) generally are numerically singular and therefore have
numerically nonunique solutions; i.e., they have many not necessarily close approximate solu-
tions with tiny residual error. The purpose of the nonlinear prolongation operators used on
each level is to steer the computations toward a desirable approximate solution. Specifically,
they are chosen to remove undesirable oscillations in the restored images.

Table 2 compares 1-level MR-II (columns 3–4) with Algorithm 2.2 using ℓ = 3 levels
with D1- and D2-prolongations (columns 5–6 and 7–8, respectively). The table shows results
for several images that have been contaminated by blur corresponding to the values of the
parameters blur and sigma displayed in columns 1–2. The noise-level is ν = 5 · 10−2 for
all images. The PSNR-values for images determined by Algorithm 2.2 with D2-prolongation
are the highest. We remark that the computational work, as measured by the number of
matrix-vector product evaluations on the finest level, is smaller for Algorithm 2.2 than for
1-level MR-II.

Example 4.2. We illustrate the performance of Algorithm 2.2 when applied to the restora-
tion of 256 × 256-pixel images with many small-scale details. The blur- and noise-free image
is shown in Figure 2 (right). Contamination by severe blur, determined by the parameters
band = 5 and sigma = 3 of the function blur.m, and by additive Gaussian noise of noise-level
ν = 1 · 10−1 yields the image in Figure 8 (top left). The restoration obtained with Algorithm
2.2 using ℓ = 4 levels and piecewise linear prolongation is shown in Figure 8 (top right). The
coarser levels have 128 × 128, 64 × 64, and 32 × 32 pixels. The restoration determined with
Algorithm 2.2 using ℓ = 4 levels and D1-prolongation is shown in Figure 8 (bottom left);
the image determined when D2-prolongation is used instead is displayed in Figure 8 (bottom
right). The images determined with D1- and D2-prolongations are seen to be of somewhat
higher quality than the images obtained with piecewise linear prolongation.

We now compare Algorithm 2.2 to the nonlinear model (8). The contaminated image to
be restored is shown in Figure 9; it is determined by band = 3, sigma = 1, and ν = 1 · 10−2.
The nonlinear PDE model (8) with D = D2 is discretized by finite differences in space; time
integration is carried out by the forward Euler method, advancing 500 time-steps of size τ = 2·
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Figure 8. Example 4.2: Blurred and noisy image corresponding to band = 5, sigma = 3, and ν = 1 · 10−1

(top left), image restored by Algorithm 2.2 with ℓ = 4 levels and piecewise linear prolongation (top right),
D1-prolongation (bottom left), and D2-prolongation (bottom right).

Figure 9. Example 4.2: Image contaminated by blur and noise corresponding to band = 3, sigma = 1, and
ν = 1 · 10−2.
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Figure 10. Example 4.2: Image restored by the nonlinear PDE model (8) carrying out 500 time-steps with
an explicit Euler method (left), and image restored by Algorithm 2.2 with ℓ = 3 levels and D2-prolongation
(right).

10−4. These computations require the evaluation of 1000 matrix-vector products with the
matrix A. Figure 10 (left) shows the restored image determined in this fashion. Algorithm 2.2
with ℓ = 3 levels and D2-prolongation yields the image in Figure 10 (right). The computation
of the latter image requires only 4 matrix-vector product evaluations on the finest level; on
the coarsest level 1 iteration is carried out and on the middle level 2. Thus, the computational
effort required by Algorithm 2.2 is much smaller than for the nonlinear PDE model. Moreover,
comparing the images of Figure 10 shows the restoration determined by Algorithm 2.2 to be
more accurate. The PSNR-values provide a quantitative comparison; the image restored by the
nonlinear PDE model has PSNR = 28.84, while the image determined by Algorithm 2.2 has
PSNR = 35.85, a significantly larger value. We remark that the relatively poor performance of
the nonlinear model (8) may be due to the fact that there are two regularization parameters,
α and the length of the time-interval of integration. The optimal values of these parameters
are difficult to determine in general nonlinear evolution PDE models (8), (13), and (14). In
particular cases, such as for the TV-model, a steady state solution and an optimal α-value
can be determined; see [5].

Tables 3 and 4 report applications of Algorithm 2.2 with ℓ = 3 levels to the restoration
of perturbed versions of the image in Figure 2 (right). Each table corresponds to one point
spread function and different noise-levels ν and lists PSNR-values for the restored images, the
prolongation operator used, and the number of iterations required on each level (iter). As
can be expected, the quality of the restored images is higher (larger PSNR-values) when the
noise-level in the available contaminated image is lower. Comparison of entries corresponding
to the same noise-level in Tables 3 and 4 illustrates the very good performance of Algorithm
2.2 for the restoration of images with little blur.

Finally, we remark that the step-size for the PDE model has to be chosen smaller the
more the image is blurred in order to avoid instability problems during the integration in
time. Therefore, we chose fairly little blur in the image restored by the PDE model. The
matrices Ai for this example are not very ill-conditioned. The multiresolution methods can
easily be applied to the restoration of both mildly and severely blurred images.
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Table 3

Example 4.2: PSNR and number of iterations (iter) for different noise-levels ν and prolongation operators.
The point spread function is defined by band = 5 and sigma = 3.

PSNR PSNR iter iter
ν D1-prlg D2-prlg D1-prlg D2-prlg

1 · 10−2 26.09 26.35 9 11 5 9 11 6
5 · 10−2 24.27 24.49 5 4 2 5 4 3
1 · 10−1 23.69 23.74 4 2 2 4 3 2

Table 4

Example 4.2: PSNR and number of iterations (iter) for different noise-levels ν and prolongation operators.
The point spread function is defined by band = 3 and sigma = 3.

PSNR PSNR iter iter
ν D1-prlg D2-prlg D1-prlg D2-prlg

1 · 10−2 29.07 29.10 1 18 4 1 18 4
5 · 10−2 27.13 26.96 1 3 2 1 3 2
1 · 10−1 25.49 25.22 1 2 1 1 2 1

5. Conclusion. Several methods for the restoration of images which have been contami-
nated by blur and noise are compared. The blurring operator and an estimate of the norm of
the noise are assumed to be known. Visual inspection of the restored images shown in section
4 and quantitative evaluation of the results reported in the tables indicate that multiresolution
methods with nonlinear edge-preserving prolongation operators yield more accurate restora-
tions with generally less computational work than the MR-II method applied on the finest
level only. Multiresolution methods also can provide restorations of higher accuracy than fully
nonlinear models (8) and require significantly less computational effort.

We observe that, in general, multiresolution methods are applied to the solution of well-
posed problems, because they can reduce the computational work significantly, when compared
with 1-level solution methods. In the application to image restoration, the most important
feature of our multiresolution method with nonlinear edge-preserving prolongation operators
is the improved quality in the computed restorations, when compared with 1-level solution
methods.
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