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1 Abstract

The goal of this research is the development of a technique for vehicle navigation and control in the

presence of obstacles. A potential function has been devised that peaks at the surface of obstacles

and has its minimum at the proper vehicle destination. This function is computed using a systolic

array and is guaranteed not to have local minima. A feedforward neural network is then used to

control the steering of the vehicle using local potential field information. In this case, the vehicle

is a trailer-truck backing up. Previous work has demonstrated the capability of a neural network

to control steering of such a trailer-truck backing to a loading platform, but without obstacles.

Now, the neural network has been able to learn to navigate a trailer-truck around obstacles while

backing toward its destination. The network is trained in an obstacle free space to follow the

negative gradient of the field, after which the network is able to control and navigate the truck to

its target destination in a space of obstacles which may be stationary or movable.



2 Introduction

The methods of backpropagation and backpropagation-through-time [1,2,3] are useful in many

neural-control applications [4,5,6,7,8]. Nguyen and Widrow have successfully used the technique

to train a multi-layer neural network to act as a nonlinear state feedback controller for backing a

trailer-truck to a loading dock [6,7]. This paper examines a computationally efficient method of

modifying the work of Nguyen and Widrow to permit truck backing in the presence of obstacles.

Robotic path-planning and obstacle avoidance has been approached successfully using a variety

of techniques [9,10,11,12]. For example, Khatib has proposed a method of obstacle avoidance

for robotic systems using artificial potential fields defined in "operational space "1. Using this

method, a potential field in the vicinity of obstacles induces repulsive forces on the robot [10].

When combined with an acceleration term toward the goal and the robot's dynamic equations,

it is possible to calculate analytically the desired trajectory and control forces. Variants of this

formulation have been used by others as well [13,14,15,16].

The analytical nature of the artificial potential fields used by Khatib does not lend itself directly

to a neural network implementation. However, the concept of low-level control and navigation based

on such potential fields is quite useful and motivates the technique for truck-backing presented in

this paper. The backing trailer-truck is the vehicle model used in this study for the development

of learning systems which are capable of navigation in the presence of obstacles, nevertheless, the

method is applicable to other vehicles.

In this paper, a hybrid network technique for truck navigation based on potential fields is

presented. The technique involves the calculation of a potential field using a systolic array as

shown in section 3. Several algorithms for the systolic array are presented and the properties of

the resulting fields are analyzed. This is followed, in section 4, by a discussion of how a multi-layer

feedforward neural network can be trained to use local potential field information to control truck

steering.

3 Potential Field for Navigation

The role of the potential field is to distribute information about obstacle and goal locations through-

out operational space, thus providing local information about how to solve the global navigation

problem. A field is developed which is a measure of the penalty associated with a given location in

obstacle space. A secondary controller can then use that local information to navigate by attempt-

ing to follow the negative field gradient. This field directs the truck toward the goal and away from

obstacles. In light of its role, the potential field should possess certain properties:

1. The field should decrease as the goal is approached so that following the negative gradient

will drive the truck toward the goal.

I operational 8pace: space in which avoidance task is defined as opposed to a transformed joint space [10]



2. Thefield should increase rapidly in the vicinity of an obstacle to avoid collisions.

3. The field should have a single local minimum (the goal) to prevent the truck from getting

trapped at some undesired location.

3.1 Notation

3.1.1 Operational Space Representation

Obstacle representation directly affects the choice of algorithms used to solve the obstacle avoidance

problem. In previous works, obstacles have been represented in many ways, including polygons [ll]

and sets of known object shapes (squares, circles etc.) placed at specified coordinates [10].

In this work, navigation takes place within a 2 dimensional operational space. The space is

partitioned by a rectangular lattice with grid spacing b into grid-squares whose centers are at

lattice points. A particular lattice point is denoted by ni,j - (i6,j6) and the grid-square that

contains it is denoted by gi,j. With these definitions we can specify obstacles as sets of such grid-

squares which corresponds to regions of operational space where the truck cannot navigate. The

set of lattice points associated with obstacles is denoted by O. The target destination for the

truck is called the goal and is denoted by riG. It is assumed that the goal is located at a lattice

point and is not contained within an obstacle. This representation, and the proposed algorithms,

presumes that obstacle locations within operational space are known, possibly via an over-head

camera. An example obstacle space, which will be used throughout this paper, is shown in figure 1.

The boundary of the operational space will also be considered as an obstacle or barrier.

A notion of lattice point neighbors is needed to discuss the potential field algorithms.

Definition 1 (Neighbor) Two lattice points are said to be neighbors if they are separated by

distance 6. The set of 4 neighbors for a lattice point, nij, will be denoted as

N4(ni,j) - {ni+l,j, ni-l,j, hid+l, hid-l}.

Two lattice points will be called extended neighbors if they are separated by distance 5 or 5v_.

The set of 8 extended neighbors for a lattice point, hi,j, will be denoted as

Ns(ni,j) -" {N4(ni,j), ni+l,j+l, ni-ld-1, ni+l,j-1, ni-l,j+l}.

A concept of "connectedness" for lattice points will also be useful. This definition is similar to the

notion of "path connected" when speaking of a subset of _n and describes whether there exists a

path between two points which does not cross an obstacle. Defined formally we have:

Definition 2 (Lattice path-connected) Lattice points na and nb will be called lattice path-

connected if there exists an ordered set of lattice points, Pab -- {nl,...,nN} _ O, called the

path, such that nl -- na, nN - nb, and ni+l E N4(ni). A similar concept of extended-lattice

path-connected can be defined using Ns0 instead of/740.
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Figure 1: A sample obstacle space. Obstacles are represented by black squares in a rectangular grid.

3.1.2 Systolic Array for Computing Potential Fields

The regularrepresentationof obstacleson a grid as presentedabove permits computation of the

potentialfieldby a setofsimple,identicalprocessorsarranged ina rectangulararray(oneprocessor

associatedwith each latticepoint,nid). Each processorsenseswhether the correspondinglattice

point iscontainedin an obstacle,thatiswhether aid E O. The processorthen computes the local

levelofthe potentialfieldby interactingdynamicallywith neighboringprocessors.Such a structure

isa type of systolicarray.We introducethe followingdefinitions:

Definition 3 (Lattice potential field)The potentialfield,denoted by @x,_(k),isa 2-D function

givingthe value ofthe potentialfieldat time iterationk at location(=,y).The set ofvaluesofthe

potentialfieldat the latticepointsaid at time iterationk definea latticepotentialfield,d_id(k).

Definition 4 (Lattice local minimum) A lattice point, na, will be called a lattice local mini-

mum of &i,j if ¢n. <_ '_nb Vnb E N4(n.). Likewise, ns, is said to be an extended-lattice local

minimum of &i,j if _,. <_ ¢nb Vnb E Ns(na). This conveys the notion of whether or not there is

a neighboring point which is "downhill" from the current point.

The various methods presented for calculating the potential field involve relaxation of the inter-

connected processors while subjecting them to obstacle and goal positions. The specific relaxation

equation implemented by all of the processors determines the properties of the potential field. We



develop a set of such equations in this paper, and examine the properties of the resulting potential

fields.

3.2 Single Layer Relaxation Methods

In this section two relaxation methods are presented which seem most intuitive but which do not

produce desirable potential fields. These methods are presented as motivation for the slightly more

complicated method presented in section 3.3.

3.2.1 Local Averaging Relaxation

An obvious relaxation implementation is to fix the outputs of the goal-processor and obstacle-

processors at two different levels while allowing the other processor outputs to converge to inter-

mediate values by averaging the outputs of their nearest neighbors. The equations governing this

process are:

o,_(0) = 0
¢

¢_(_ + 1) = ¼(_+_,j(_) + ¢,_aj(k) + ¢_z+_(k)+ _,j__(_)) for
Bi,j ¢ 0

¢ij(k + 1) = ¢max for nld E 0

¢id(k + 1) = 0 for ni,j -nG

(i)

This results in a field which decreases smoothly toward the goal, and increases toward obstacles.

Convergence of the relaxation equations is easily shown by noting that '_ij(k) forms a bounded,

non-decreasing sequence in k for each n ij. However, a unique local minimum, as defined above, is

not guaranteed. It is possible, albeit rare, to have a point, n_ _ nG, where &,_, = Crib Vnb E N4(na).

This approach also has more serious problems.

First, as can be seen in the example of figure 2, the field increases approximately logarithmically

away from the goal. This can be derived by rearranging the relaxation equation

4¢id = (@i-i-ld "4- @i--l,j "_- @i,j+l "_- ¢i,j-1) (2)

into two separate terms

0 = (¢i+l,j --2fi,j + ¢i-l,j) -'t- (¢i,j+l --2@i,j + ¢i,j-1) (3)

Noting that each term approximates a second-derivative, this equation is then converted into a

continuous model,
02¢ 02¢

ox---T+ _ = 0 (4)

If we assume circular symmetry of the solution, the equation can be rewritten in terms of radius,

r: 02_ 1 0@
+ --- = 0 (5>

0r 2 r Or



The solution to this Euler equation is

= G + C2Inr (6)

The reader may note that the local-averaging calculation is equivalent to the numerical solution of

Laplace's equation. The logarithmic growth rate implies that the resolution required in estimating

the gradient of the field grows linearly with the distance from the goal. Using the feedforward

neural-controller described in section 4, a linear growth rate of the field, requiring a constant level

of accuracy for gradient estimation, is more desirable. Second, there is no parameter which controls

the rate of growth. Hence, the resolution of the obstacle grid cannot be changed without affecting

the cross-sectional shape of the potential field, nor can the radius of influence of obstacles be

adjusted. Finally, for regions of operational space partially shielded from the goal by obstacles, the

field is effectively "pinned" to the upper value of the potential field.

goal

Figure 2: Local-averaging relaxation solution showing the undesirable logarithmic growth rate.

3.2.2 Distance-to-Goal Relaxation

In an attempt to correct the undesirable growth rate, a different technique is considered. This

technique involves the calculation, for each field point, of the minimum distance to the goal along

lattice paths not intersecting obstacles. The distance measure used here is a "city block metric."

The relaxation equations are:

= 0

evi,i(k + 1) = 1 + min _i-ld(k)' for nij ¢. 0
• i,j+l(k), ni,j _ nG

(k)
_i,j(k + 1) _ c_ for ni,j E 0

d_i,j(k + 1) = 0 for ni,j =nG

(7)

6



This techniqueproducesthe desiredlineargrowthrate. Furthermore, convergence of this method

to a solution with unique local minimum is guaranteed. (the proofs are similar to those in lem-

mas 2 and 3). This method, however, does not provide a mechanism for repelling the truck away

from obstacles. There is no penalty for coming close to an obstacle, only a mechanism for preventing

a path from crossing through an obstacle.

3.3 A Two Layer Relaxation Method

A method which combines the obstacle repulsion property of the local-averaging technique with

the linear growth-rate and unique local minimum properties of the distance-to-goal technique is

presented next. The method relies on a 2-layered approach. A first processing layer uses the

obstacle positions to compute a barrier-potential field, ¢.s A second processing layer uses the
st3 "

barrier-potential field and the goal position to compute an overall potential field, CP.st2 •

3.3.1 Barrier-Potential Field

The barrier-potential field, ¢.s. is designed only to spread information about obstacle locations to
s_3,

surrounding nodes and therefore ignores the location of the goal. The relaxation equations are:

• = 0

¢_,i(k + 1) - max av_ ¢_-1d+ l(k)' for ni,j ¢ O (8)
a Chld(k),

_maz nl,j4'_,j(k + 1) = s for e 0

The result of applying the calculation to the obstacle pattern presented earlier is shown in

figure 3. The barrier potential field, ¢.s. decays geometrically away from obstacles. The geometric
¢,3 '

ratio, a, is used to control the effective radius of influence of obstacles.

3.3.2 Overall Potential Field

The overall potential field, CP. measures a "generalized distance" from each lattice point to the
s_3,

goal. The generalized distance consists of the weighted sum of two terms. The first is an "extended

city block distance" from the point to the goal along the "best" path. This is similar to a "city

block metric," except that paths are allowed in 8 directions instead of the usual 4. The second term

measures the cumulative barrier potential, ¢._- along the path. Thus, the potential field, ¢0. has
st3 ' s,3 '
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Figure 3: Barrier potential field for the ezample obstacle pattern ('a = 0.6). Square sizes represent

the values of _6"

the effect of stretching out the distance metric in the vicinity of obstacles, hence favoring paths

which steer clear of obstacles. The relative weighting of city-block distance vs. barrier-penalty is

. The "best" path in question is the path which minimizescontrolled using the parameter (I)m__

this generalized distance. The neural-controller uses this overall field to perform the navigational

task as will be shown in section 4. Once (I)._. has reached steady-state, the relaxation calculations

for 4)P. are:
s ,,7

D

(I)_d(k + 1) = (I)-_.,,,+ min

aS( ok+l) - (I',_=_c¢

(I)_,.d(k+ 1) = 0

+
+
+

1 +
1 + aS+l(k),
1 + 1(k)

for
{ nij ¢ O

for nld _ (9

for hid = nG

After _-_. has converged, the minimum-distance path from a random initial lattice point can be
D

found by repeatedly moving to the nearest neighbor with smallest (I)P. Setting <l>m:= sufficiently1,3"



large prevents this minimum-distance path from ever "punching through" an obstacle rather than

going around it, no matter the length of the path. The values of _.D.,,_calculated for the example

obstacle pattern are shown in figure 4.
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Figure 4: Overall potential field ('_smax = 50, _ = 0.6). Square sizes indicate the level of ff_,j.

3.3.3 Features of Two Layer Relaxation Method

The two-layer relaxation method and the resulting lattice potential field have several desirable

properties which will be explained in this section.

Finite Convergence Time -- The relaxationprocessconsistsofa setofiteratedequations.In

lemmas I and 2,we show thatthe iterativeprocessconvergesina finitenumber ofstepsto a unique

setofvalues.The convergencetime of&_d isproportionalto the maximum separationofobstacles

and the convergence time of (1)P.isproportionalto the length of the longestminimum-distance
s_3

path to the goal.

Lemma 1 The barrier potential field, compnted by eqnation 8, converges in a finite nnmber of

steps.

Proof. Consider any point not in an obstacle, n, _ (9. There exists a minimum length path,

Poa = {nx, ..., nN}, from some obstacle to the point, where nl E O and nN = na. Now assume

that at iteration k, the lattice point nk = {Po_}k converges to its final value. The minimum-length

path from nl to nk+l is along the same path, {nl, .", nk+l}. So, at iteration k + 1, nk+l = 7nk.



Thus, nk+l, converges to its final value in k + 1 iterations. Since nl converges at time iteration 1,

by induction nN converges to its final value in N iterations. •

Lemma 2 The generalized distance-to-goal potential field, computed by equation 9, converges in a

finite number of steps for all points, ni,j, extended-lattice path-connected to the goal, nG.

Proof. Consider any such point, na. By assumption, there exists a minimum distance path,

PGa = {nl, ..., nN}, from the goal to the point, where nl = nG and nN = n_. Now assume that

at iteration k, the lattice point nk = {Pa_}k converges to its final value. The minimum-distance

path from the goal to nk+l is clearly {nl, ..., nk+l}. So, at iteration k + 1, nk+l = 7 + n_. Thus,

nk+l, converges to its final value in k + 1 iterations. Since nl = na converges at time iteration 1,

by induction, nN converges to its final value in N iterations. •

Although these proofs assume certain initial conditions for O.B. and ¢o. it is stated without
sO *,3 '

proof that the field computations will converge to the same values for any initial conditions. Thus,

if the obstacle pattern changes at time iteration k, O_j(k) and O_,j(k) can serve as the new initial

conditions. This facilitates tracking of moving obstacles.

Single Minimum -- In previous works such as [10,13,16], the computation of the potential field

consisted of three steps. First, an obstacle-repuisor field was computed. This field decayed from

some maximum value at the surface of obstacles to zero far from obstacles. Second, a uniform,

global basin of attraction with minimum value at the goal was constructed. Finally, the overall

potential field was computed by superimposing these two fields. Such a scheme, however, often

resulted in local minima of the field "uphill" from obstacles. Volpe and Khosla have proposed the

use of superquadric functions in the construction of artificial potential fields to prevent the creation

of such local minima [16]. However, they found that the technique did not solve the problem of

local minima caused by obstacles containing large concavities pointing away from the goal.

Using the method proposed here, ¢.8 serves the role of a obstacle-repulsor field. However, a
I _J

global basin of attraction is not computed independently of the obstacle-repulsor field. Rather,

the overall potential field, ¢.D. contains cumulative information about ¢.s along the best path to
s,3, 1,3

the goal. This fact is essential in preventing undesirable local minima. Figure 5 shows a sample

potential field calculated by directly adding the obstacle-repulsion field, ¢B to a simple distance-to-s j,

goal field. Notice the local minimum occurring in the concavity "uphill" of the obstacle. However,

as can be seen in figure 6, the potential field calculated using the cumulative ¢._. method has nos,3

such spurious local minimum. A proof of this property is given in lemma 3.

Lemma 3 The lattice field, ¢P- calculated by 2-layer relaxation contains a unique local minimum
IpJ '

at na over the set of lattice points which are extended-lattice path-connected to ha.

Proof. Clearly d_d(k ) _> 0 Vk. Therefore, by lemma 1, _.B.,j converges to ff.B.,,_> 0. Now, for all

10



Figure 5: Potential field computed by adding d_.B. to a distance-to-9oal field has a local minimumIt3

"uphill" of the obstacle.

Figure 6: Potential field using cumulative d_.B.,,ahas no local minima.

11



pointsextended-latticepath-connectedto goal,thecalculationof 4)_d converges by lemma 2. Now,

assume there exists a point, n,, _ nG, which is a lattice local minimum of 4)ij. By assumption,

(I)Tla _ (I)n b _/nb E Ns(n,). However, since na _ nG, by equation 9 there exists nb E Ns(na) such

that On, = 7 +&nb > &'_b which contradicts the assumption. •

Potential Field Cross-Sectional Shape -- The cross-sectional shape of the potential field

is an important consideration. First consider the potential field which results from using the two

layer relaxation method as presented. Consider an arbitrary point, n_, in operational space and

the associated optimal lattice-path, Pg" = {nl,..., nN}, from the goal to na. Recall the relaxation

equation for the overall potential from equation 9:

¢_j(k+ 1) = ¢-_. + min {dn+¢_(k)} (10)

In steady state, at any point, nj = nl ...nN, along the path, pg,, we can rewrite this relaxation

equation as
D

0_ = O_, + dn_ + O,_s_, for j> 1 (11)
4,.vl = 0

where dnj C {1, V_} is the lattice distance between nj and nj-1. The solution to this equation is

N

*:. =Z +d.,)
j=2

First consider the case where na is at the surface of an obstacle, i.e. nN E 0 and nN-1 _- O. Recall

that (}s,j _ -m,x_n_ko where ko is the distance to the nearest obstacle. If _n_,z ) 1, then _Bn__ dn_

for nj near n_. This results in the geometric relation

_e
-_a N-j + v (13)

¢_J- 1-a

Now consider the case where n_ is far from any obstacle, thus, &_i << dn_. This yields the linear

relation

(I,fi =kg+v (14)

where k9 is the distance from the goal to nj along the optimal path, Pgi" In both cases, the constant

v incorporates the barrier potential accumulated in the vicinity of other obstacles.

At the expense of computational simplicity, the lattice relaxation method can be extended to

obtain fields with other cross-sectional shapes. For example, we can modify the relaxation equation

for _.v. to
I *3

+ 1)= g / (,,j) + min + (¢g(k)) (15)
n_Ns(ni0)

12



By specifyingdifferentfunctions,f0 and g0, the shape of the potential field can be altered. In

order to retain a single local minimum, g() must be positive and monotonically increasing. The

function f0 need only be positive. The solution to equation 15 is

(16)

3.4 Potential Field Interpolation

The potential field calculated above is defined only at lattice points (grid square centers). To obtain

a continuous field, _x,_D, it is necessary to interpolate between these points. Interpolation can be

accomplished using the bilinear form:

(b°,_ = _,j(1- )(1- ) + &i+lj-ff-( 1- ) + i,i+l - &i+lj+l _ 6

Aae = x - 6i

Ay = Y-H

i-- (17)

J =

This formula represents nothing more than a weighted average of the field at the 4 nearest lattice

points. The weights are dependent on the distances to the lattice points along the z and y axes.

The interpolation described in equation 17 can be implemented in hardware in the following

manner: The output, @P. of each processor is connected to a common output summing node via

a cascade of 2 attenuators. The 2 attenuation levels are set by row and column selector levels. For

any given (z, y) access, 2 row selectors and 2 column selectors are set to attenuation values between

0 and 1, all other row and column selectors are set to 0. The interpolated field value is produced at

the output of the summing node. A few properties of the interpolation formula and of the resulting

continuous field, CxDy, follow.

Lemma 4 If d_.B. is omitted in the calculation of &P. and there is a unique goal, nG, then the
1,3 I,J ,

lattice field, &P. does not contain any two points, na and nb, both extended-lattice path-connected
1,3 '

to nG, such that n_ E Ns(nb) and r_v = r_n_."t'_a

Proof. Assume that there are two such points. Then there must be two minimum distance paths,

PG, and PGb, connecting each of the two points to the goal such that there are an equal number of

diagonal path-segments and an equal number of non-diagonal path-se_nents in the two paths. A

diagonal path segment can be replaced by two non-diagonal path segments without affecting the

proof. Thus there must be a closed path, {Pa,.,Pab,PbG} with an odd number of path segments.

However it is impossible to have such a closed path with an odd number of segments. •

13



Lemma 5 If _j is omitted in the calculation of _. D.,_,and there is a unique goal, na, the contin-

uous field, _xD,v contains a nnique local minimum, na.

Proof. The interpolation function of equation 17, within the region, 0 < (z - i6) < 6 and

0 < (y - j6) < 6, is bilinear in z and y. Thus, minima must occur on the boundary of this region.

Hence, local minima of _,u must occur on the line segments connecting neighboring lattice points

(in the N40 sense). By lemma 4, neighboring lattice points cannot have equal values of _p.,,a, so
o such a con-minima must occur at latticepointsthemselves.By the piecewisebilinearityof ffx,_,

tinuouslocalminima at a latticepoint impliesa latticelocalminima at that point. However, by

lemma 3,thiscan only occur at riG.•

If _.B. is included in the calculation of @P. then lemma 5 can be modified to show that ¢xD,V
$t3 I,J '

has a unique local minimum except for the possible occurance of an equi-potential trough of length

6 occurring between two neighboring lattice points having equal value. However, recall that the

lattice potential field itself has a unique local minimum, and the length of the trough can be made

arbitrarily small by increasing the resolution of the lattice.

4 Feedforward Neural-Controller

So far we have only concerned ourselves with various potential fields and have made no mention

about how the fields are to be used to control the truck or similar autonomous vehicle. In this

section we develop a feedforward neural network capable of using the potential field to control and

navigate the truck to the goal.

4.1 Controller Structure

Previous work by Nguyen and Widrow [6,7] has shown that a feedforward neural network can

successfully be trained to implement a nonlinear state feedback controller for backing a trailer-

truck to a loading dock. The two segmented truck in consideration had the following state and

control vectors (fig. 7).

state = [ztr_ile_, Ytrailcr, Otralter, Oc_b]

control = [Osteerlnu]

We refer to /gc_b- Otraile r as the jack angle, Ojack. In the work of Nguyen and Widrow, the state

vector (and 2 redundant inputs) were used as the controller input. This input vector was chosen

to provide the controller with the necessary information to solve the backing problem. For the

navigation problem, the previous choice of controller inputs is clearly not sufficient; information

about obstacles must be provided to the controller. Attempts were made to use the previous

controller input definition with a single, fized obstacle and learn the obstacle position implicitly _.

_F. Beaufays, personal communication, Stanford University, 1990
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Althoughthisscheme was abletosteerthe truckclearofan obstacle,extensionto multipleobstacles

was not feasible.Furthermore,the method requiredretrainingforeach new obstacleposition.

i

I

Figure 7: Truck state variables and field interpolation points.

In developingan alternateset of controllerinputs,a set of fieldinterpolationpoints,{si},

configuredin a circleabout the rearofthe truckwas definedin the localcoordinatesystem ofthe

truck (fig.7). During each discretecontrolcycle,the localcoordinatesof the setof points,{si},
D

were convertedintoglobalcoordinatesby the appropriatetransformation.The fieldvalue,4)z,u,

was measured at theselocationsgivingthe set D{(bs_}. The differencebetween thefieldlevelateach

ofthe outer pointsand the levelat the centerpoint(fig.7),was computed:

Ai = @D &v for i = 1...N
$i "Y" $center (18)

The vector

AS-" [AI,...,AN] (19)

gave a measure of the directionalderivativeof the potentialfieldin N directions.This vector,

combined with 9jackand appropriatelyscaled,constitutedthe input vectorto a 2-1ayer,sigmoidal

feedforwardnetwork with 20 hidden units(fig.8). The overallnavigation-controlstructure,in-

cludingthisfeedforwardnetwork and the 2-]ayerlatticenetwork describedpreviously,isshown in

figure9.

4.2 Controller Training

Training of the feedforward neural-controller was performed using backpropagation-through-time

in an obstacle-free operational space. First, _0. was computed for this space. Note that, since
s_J

there were no obstacles,(I)'_'*o= 0 and (_Ps_consistedsimply of the distance-to-goalmeasure. The

truck was then placed inrandom initialconfigurationswithinthe space and trainedto back to the

goal,while minimizing Ojsck.Trainingwas carriedout as in the work of Nguyen and Widrow [7]
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Figure 8: Structure of the neural-controller consisting of feedforward network and scaling factors.

except that the docking-angle constraint was lifted by setting

[e_:,eu, co,, co,] = [Zdock -- xlin_t, Ydock-- Yfin_t, O, 0] + 0j_ck[0, 0, 1, --1] (20)

Imposing the first term caused the truck to dock with the goal while imposing the second term

caused the controller to minimize the angle between the cab and trailer, thus preventing jack-

knifing. Training required about 1000 complete docking cycles, with initial conditions being chosen

progressively further from goal and at larger offset angles. When the truck was then placed in

an operational space with obstacles, the obstacles warped _P- The truck was now able to nav-t j3 •

igate around ol_stacles without any further training. The truck trajectories from different initial

conditions in the sample obstacle space are shown in figures 10 and 11.

Consider what task-knowledge was gained by the feedforward network during the training pro-

cess which permitted it to successfully Use CxD,v to navigate. If the controller had been provided

with only truck state information, the controller would have learned the task of directly driving

the state vector to zero, knowledge which would not have permitted obstacle avoidance. However,

the particular choice of controller inputs, [Oi,ek, As], led to different task-knowledge. Previously

we mentioned that the desired truck behavior was to follow the negative gradient of the potential

field, -V¢_._:':in figure 10, the desired behavior is evidenced. Enough ififormati0n is provided in

As to accomplish the navigational task.

o 09. OP.

layer 1 layer 2 l

Ojack _ Ostee_ i

_- I Nem- I--2 1 TruckI-.,
AS I

C°ntr°ller I | I/

state [

Figure 9: Overall navigation/control structure comprised of a two-layered systolic array, a lattice

interpolation function, and a feedforward network controlling truck steering.
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Figure 10: Truck trajectories from fwo initial conditions in the sample obstacle space.

Figure 11: Trajectories showing desired behavior of driving "nphill" when obstacle configuration

prevents driving "downhill. _
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However, the truck dynamics do not permit motion in arbitrary directions. Hence, simply

following -Vff_,_ is not always feasible, nor necessarily desirable. In figure 11, initial condition 2,

the truck is started in a narrow corridor facing the wrong way. The truck backs nphill first before

circling around the obstacle. This is correct since attempting to turn around sharply, trying to

immediately follow -xTff_,_, would result in a collision.

In reality, the feedforward network combined the objective of following -xTffxD,_ with the dy-

namic constraints of the truck, thus attempting to minimize the directional derivative of ffzD,v within

an arc of feasible directions. This was done while minimizing 8jack- It is interesting to observe that

this complex behavior was learned in an obstacle-free space.

5 Conclusion

A hybrid-network method for obstacle avoidance in the truck-backing system of Nguyen and Widrow

has been presented. The method uses a relatively simple, low-level algorithm easily implemented

in hardware or software.

A key advantage of the technique is the separation of the systolic array structure from the

feedforward network. The systolic array computations are independent of the truck dynamics,

constraints, etc., and serve simply to distribute information about goal and obstacle locations.

These computations, carried out in parallel, are quick. In the examples given, the systolic array

converged in less than 40 cycles. It is important not to view this procedure as path-planning. Path-

planning requires consideration of both obstacle locations and truck configuration. There is actually

no path-planning being done, as the computations serve only as a mechanism for distributing

information. The feedforward neural network, on the other hand, is trained independently of any

particular obstacle configuration and thus can be held fixed after initial training. No additional

training is needed when a new obstacle pattern is presented.

Currently, grid-squares are either impenetrable obstacles or completely free. The technique
19 D

presented can easily be extended to handle variable terrain difficulties by making ff,_ax and _m,_

vary for each obstacle square. This could be used, for example, to avoid rocky terrain if a clear

path was available, yet allow the rocky terrain to be crossed if it constituted the only path. Specific

choices of ff,nax depend on the trading-off of terrain difficulty and path length.

In situations where tight maneuvering is necessary to negotiate obstacles, the method presented

may fail. It would, in those cases, be desirable to further train the feedforward network in the

presence of obstacles to tune the control. This might also require additional sensory input to the

controller. One may also observe that the method could generate a path which passes through a

barrier aperture too narrow for the truck to fit through. It is envisioned that the truck controller

could determine this while navigating. When such an aperture is encountered, the controller could

modify the obstacle space description by increasing the local obstacle level (the input to the 1st

layer of the systolic array) until the potential field shifted to favor a different direction. This could

be accomplished in real-time due to the speed of convergence of the array computations.
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The systolicarray requiresobstacleinformationforthe entirespace in which navigationisto

occur.In the casewhere the vehiclemust navigateovera longdistanceforwhich the entireobstacle

space isnot known, the method could be used to perform localpath-planningassuming that the

generaldesireddirectionof travelisknown.

Currently,work is underway to extend the techniquepresentedto include a docking angle

constraintand eventuallyto maneuver multiplelinkedobjects,such as a roboticarm. This would

involve"path-planning"for multiplepointson the object.Work isalsobeing done to characterize

the warping of @D. resultingfrom multipleminimizationcriteria.
1,2
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