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Cascading and Enhanced Residual Networks for

Accurate Single-Image Super-Resolution
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Abstract—Deep convolutional neural networks (CNNs) have
contributed to the significant progress of the single-image
super-resolution (SISR) field. However, the majority of exist-
ing CNN-based models maintain high performance with massive
parameters and exceedingly deeper structures. Moreover, several
algorithms essentially have underused the low-level features, thus
causing relatively low performance. In this article, we address
these problems by exploring two strategies based on novel local
wider residual blocks (LWRBs) to effectively extract the image
features for SISR. We propose a cascading residual network
(CRN) that contains several locally sharing groups (LSGs), in
which the cascading mechanism not only promotes the propaga-
tion of features and the gradient but also eases the model training.
Besides, we present another enhanced residual network (ERN)
for image resolution enhancement. ERN employs a dual global
pathway structure that incorporates nonlocal operations to catch
long-distance spatial features from the the original low-resolution
(LR) input. To obtain the feature representation of the input at
different scales, we further introduce a multiscale block (MSB) to
directly detect low-level features from the LR image. The exper-
imental results on four benchmark datasets have demonstrated
that our models outperform most of the advanced methods while
still retaining a reasonable number of parameters.

Index Terms—Convolutional neural network, multiscale
learning, residual learning, single-image super-resolution (SISR).
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I. INTRODUCTION

S
UPER-RESOLUTION (SR) image reconstruction is

widely used in many practical cases, such as military

surveillance, medical diagnostics, satellite images, and video

applications, and the demand for high-resolution (HR) images

has dramatically increased recently. In practice, the qual-

ity of image resolution is limited by physical constraints.

Much of the SR algorithms have been proposed to address

this problem, and they can be broadly divided into models

developed for still images or for video sequences. In this

article, we focus on single-image super-resolution (SISR).

The task of recovering super-resolved HR images ISR from

low-resolution (LR) versions ILR is ill-posed since a num-

ber of HR solutions can map to any LR image. Therefore,

numerous approaches have been developed so far, including

interpolation-based, reconstruction-based, and learning-based

methods [31], [45], [51], respectively.

The interpolation-based algorithms, such as bicubic inter-

polation [17], are very fast but suffer from lower accuracy

and are limited in applications. More advanced reconstruction-

based SR algorithms [29], [36] are proposed by introduc-

ing prior knowledge to limit the possible solution space.

These methods can recover sharp details but rapidly degrade

as scale factors increase; subsequently, the learning-based

methods [4], [15], [26], [43], [44], [50], [56] are employed

that exploit machine learning algorithms to analyze relation-

ships between the ILR image and the corresponding IHR image

by training substantial examples. Although such learning-

based methods are outstanding, they involve time-consuming

optimization operations.

Currently, deep convolutional neural networks (CNNs)

have contributed to the significant progress of the SISR

field because of their superior ability of feature repre-

sentation. Dong et al. [7], [8] first proposed a convolu-

tional model to solve the SISR problem in 2014, which

became a milestone in the image restoration area. Since

then, more complicated networks were designed to enhance

the performance [10], [16], [18], [19], [21], [23], [25], [39],

[40], [58]. Lim et al. [25] proposed a very deep and

wide model with residual blocks and achieved satisfactory

performance in terms of both peak signal-to-noise ratio

(PSNR) and structural similarity (SSIM) [48]. Although

these networks present promising results, there are some

limitations to the CNN-based models: 1) the state-of-the-

art models [23], [25], [47], [57], [58] mainly concentrate on

improvements obtained via substantially increasing the depth

or the width; thus, they have massive parameters and consume
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increasingly more computational resources, time, and tricks

during training and 2) most of the CNN-based models do not

fully use the hierarchical features from the original LR image.

To address these drawbacks, we explore two strategies to

effectively extract features for accurate SISR. First, we propose

a cascading residual network (CRN) for more efficient feature

extraction. Specifically, we introduce a cascading connections

mechanism for better feature fusion and gradient propagation.

With such a mechanism, our network can incorporate fea-

tures from multiple layers at both the local and global level.

Moreover, a locally sharing group (LSG) structure is proposed,

in which the local wider residual blocks (LWRBs) are stacked

to exploit the feature of the ILR image and allow the abundant

low-level features to be passed.

Second, we present another enhanced residual network

(ERN) for SISR. In this method, we introduce a dual global

pathway structure for a more powerful feature expression.

This schema incorporates nonlocal operations to catch long-

distance spatial features from original LR input. Meanwhile,

by stacking LWRBs, we can boost the feature representation

ability. To fully use the low-level information, we addition-

ally introduce a multiscale block (MSB) that directly extracts

low-level features from the original ILR image at different

scales.

As the key component of our proposed networks, the

LWRB contains two convolutional layers and a nonlin-

ear layer ReLU. We exploit wider channels before the

ReLU layer for building an inverted residual block, and

it leads to significant improvements, due to the fact that

using the activation function in bottlenecks indeed hurts the

performance [34]. As discussed above, the latest state-of-

the-art models [25], [58] maintain high performance with

massive parameters and exceedingly deeper structures (e.g.,

over 100 layers). Compared with these models, our meth-

ods are more efficient since the parameters of the proposed

models are only approximately 1/4 and 1/2 of those of the

referenced algorithms, respectively, and the proposed models

are considerably lower than them in depth. Experimentally,

our methods show gain similar superior results regarding

PSNR and SSIM.

The main contributions of this article are summarized

as follows.

1) We propose the LWRB, which not only effectively

preserves features via expanding the low-dimensional

representation to high dimension before the activation

function but also utilizes the information of all layers

within a block via an identity connection.

2) We introduce a cascading schema to effectively boost

feature fusion and gradient propagation. Such a mech-

anism enables our network to incorporate the features

from multiple layers. Furthermore, an LSG structure

is used to build the network and enhance its future

expression.

3) We present an ERN for accurate SISR, which mainly

contains the dual global pathway and several LWRBs.

The global structure incorporates nonlocal operations

to catch long-distance spatial features from original

LR input. Meanwhile, stacking the residual blocks can

enhance the representational capability.

The remainder of this article is arranged as follows. In

Section II, we present a brief review of the relevant works

on SISR. In Section III, we provide the architecture of the

proposed networks in detail. In Section IV, we show extensive

results to evaluate the proposed methods. Finally, we conclude

the proposed methods in Section V.

II. RELATED WORKS

In this section, we briefly introduce some works that are

related with our proposed models.

A. SISR Using Convolutional Neural Networks

Recently, CNN-based models have achieved dramatic suc-

cess against traditional methods in image recovery, especially,

super-resolution, given their powerful ability of feature expres-

sion. Dong et al. [7] first proposed a CNN-based algorithm

to directly learn an end-to-end mapping between the ILR

image and the ISR image. In their work, the model called

SRCNN consists of three convolutional layers and shows an

impressive performance over the conventional methods, such

as sparse coding [29] and bicubic interpolation [17]. Later,

many advanced models were developed by designing more

complex CNN architectures. VDSR [18] introduced residual

learning to increase the depth of the network and proved

that this strategy can improve reconstruction performance and

accelerate convergence. DRCN [19], a deeply recursive neu-

ral network for SISR, uses the same convolutional kernel in

the reference network 16 times. By doing so, it can efficiently

reduce the number of parameters. Notice that all of these meth-

ods use the interpolated image as input; this behavior not only

leads to detail-smoothing effects but also relatively increases

the computational cost and time consumption.

To address the problem of computational efficiency, several

algorithms were proposed to automatically learn a mapping

from ILR to ISR. FSRCNN [9] and ESPCN [35] explored two

different active upsampling modules to reconstruct the low-

quality image. The former used the standard deconvolution

layer [53], which upsamples the previous features with an

arbitrary interpolation operator and a subsequent convolution

operator with a stride of 1. Rather than increasing resolution

by inserting zero values, the latter introduced a subpixel con-

volution layer, which expanded the channels of the output

features and then reshaped them to generate the HR out-

put through a specific mapping criterion. It has been proven

that the subpixel layer provides more contextual information

and the interpolation is more efficient. Thanks to these mer-

its, most of the following works also adopted this module,

such as SRResNet [23], EDSR [25], and RDN [58]. Although

impressive results have been achieved by these mentioned

methods, most of them tend to consume a lot of computational

resources.
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B. Skip Connections

The concept of skip connections is first introduced in

ResNet [11] and has been widely employed in diverse

computer visual tasks, such as image restoration [40] and

semantic segmentation [5], [6], [30], [41]. Since the plain SR

network is hard to go deeper, various skip connections were

introduced and achieved additional gain in performance. This

strategy can be roughly divided into two categories, that is,

global or local residual connections and dense connections.

1) Global or Local Residual Connections: The LR image is

highly connected to the HR image in such an image-to-image

translation task. Learning the residual map between these

two images can capture the missing high-frequency details.

VDSR [18], the first residual model used in super-resolution,

proved the assumption that residual learning can improve the

representation ability and accelerate convergence. Thus, this

approach is widely used in the SR models [22], [47], [49].

2) Dense Connections: DenseNet [12], an effective

network based on skip connections, allows the current layer to

be connected with all the preceding layers. This schema pro-

vides richer information for recovering high-resolution details.

Consequently, dense connections were introduced into the SR

field [1], [10], [40], [46], [47], [58].

Memnet [40], proposed by Tai et al., stacks memory blocks

and adds the dense connections among each block. Based on

this construction, the approach keeps a short and long memory

of low-level features. RDN [58] used a similar architecture but

is more useful to extract hierarchical features. Different from

the aforementioned models, CARN [1] implemented a cas-

cading connection mechanism to improve the SR performance

and decrease operations. Haris et al. [10] proposed D-DBPN,

which performs iterative upscaling and downscaling opera-

tions with dense connections and provides an error feedback

mechanism for tuning the high-resolution results. This schema

further improves the SR performance, especially, in a large

enlargement such as ×8 SR.

C. Multiscale Learning

To optimize the sparse local features in a convolutional

module, Szegedy et al. [38] proposed the inception module.

This architecture processes the input data at various scales and

then aggregates those information as input of the next stage

to gain different abstract features. Inspired by [38] and [37],

MSRB [24] was introduced as a multiscale residual block that

used a 3×3 and a 5×5 kernel to adaptively extract local fea-

tures and a 1×1 Conv layer to fuse the feature maps. It showed

that performing different kernel operations could provide bet-

ter extraction capability. However, this manner cannot cover

a large range of receptive fields and generate more detailed

layerwise multiscale representations.

III. PROPOSED APPROACH

In this section, we present a detailed description of the

design methodology of our proposed networks and, then,

discuss the difference between our methods and other state-

of-the-art ones.

A. Network Architectures

The VGG-like algorithms of SISR do not make full use

of the feature information from low-level layers, such as

ESPCN [35] and FSRCNN [9]. The deeper models usually

contain massive parameters for gaining the state-of-the-art

performance. To better address the mentioned problems, we

introduce two different strategies: 1) cascading connection

structure and 2) globally dual residual path. The pipeline of

our models includes three steps. Taking an ILR image as input,

a feature extraction module is used to obtain features from

the low-quality image, and then these features are sent to

the mapping stages. Finally, a simple upsampling block con-

tains a convolutional layer, and a pixel-shuffle layer is adopted

to enlarge the LR image. The main difference between these

models is the mapping stages.

Specifically, let us denote ILR and ISR as the input and out-

put of our models. We use two convolutional layers to extract

low-level information from ILR inputs

Fext = Hext

(

ILR
)

(1)

where Hext(·) means the convolution operation, and then Fext is

sent to the mapping stages for higher level feature abstraction,

we have

Fmap = Hmapm

(

Hmapm−1

(

· · ·
(

Hmap1
(Fext)

)

· · ·
))

(2)

where Hmap(·) denotes our proposed mapping function and

Hmapm−1
and Hmapm

are the input and output of the mth LWRB,

respectively. Finally, these features are upscaled via a single

upsampling block

Fup = Hup

(

Fmap

)

(3)

where Hup(·) represents an upscale module. There are many

strategies to enlarge features, such as pre-upsampling [7];

post-upsampling [9], [35]; progressive upsampling [21]; and

iterative upsampling and downsampling [10]. The post-

upscaling method is used in this article and we chose the

subpixel convolution layer [35] as the magnification function,

which is proven effective to increase resolution. Therefore, our

approach can be formulated as

ISR
= Hup

(

Hmap

(

· · ·
(

Hext

(

ILR
)))

· · ·
)

. (4)

B. Local Wider Residual Block

Residual networks [11], [18], [32] have exhibited note-

worthy performance in computer vision areas, ranging from

low-level to high-level problems. Although Lim et al. [25]

successfully improved the ResNet architecture to address the

SISR problem with EDSR, we further explore a better residual

block to enhance the performance.

As shown in Fig. 1, the central building component of

our proposed architectures is the basic residual block, which

includes two convolutional layers and has been studied in [25].

This component is utilized to map the low-level features to

HR space. We compare the building block from the origi-

nal ResNet [11] and our proposed block. The modifications

include the following: 1) removing BN layers; 2) reducing

ReLU layers reasonably; and 3) expanding features before the

ReLU layer.
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(a)

(b)

Fig. 1. Comparison of residual blocks in original ResNet and ours. We
remove the BN layers and expand features before the ReLU activation layer.
We experimentally show that this simple modification substantially reduces
the number of parameters and computational costs while regularly achieving
superior results.

Recently, most of the PSNR-oriented tasks, including SISR,

tend to remove BN layers [14] because it has been proven

that the BN layers have a side effect on the final results of

image super-resolution while increasing computational com-

plexity [23], [25], [58]. The BN layers normalize the features

among minibatches by using the mean and variance in a

batch during training or testing. Regarding SISR, the LR

input image and the reconstructed image have a similar struc-

ture; this layer makes it difficult to estimate the target image

since the BN layers tend to introduce artifacts and limit

the flexibility of networks. Note that we also tried to intro-

duce other normalization methods to boost performance (e.g.,

weight normalization (WN) [33] and switchable normaliza-

tion (SN) [28]), and experimentally showed that this is a

time-consuming trick that causes extra computation but does

not lead to better performance than an approach without nor-

malization. Thus, we avoid using any normalization layers.

Generally, the activation layer follows a specific convolu-

tional layer to maintain the high nonlinearity of deep neural

networks. However, we only use ReLU after the first convo-

lutional layer in each basic block, given the assumption that

the nonlinear ReLUs prevent the information in the low-level

layer flow into deeper layers [34]. Moreover, we expand wider

channels before the activation layer to capture more spatial

information. Experimentally, these adjustments substantially

reduce the number of parameters and the consumption of

computational materials while achieving superior results.

Besides, the proposed block is different from EDSR [25]. A

wider channel is used throughout the block in EDSR (e.g., it

increased the channel up to 256), which dramatically increases

the number of parameters and poses a challenge to train

the model. In our models, we expand features before the

ReLU activation layer and the low-level channel following

it. Empirically, we found that it does not affect the great

performance of the SR models while reducing a large number

of parameters.

C. Cascading Residual Network

We now present our cascading residual network. Cascading

connections have been widely applied to various computer

vision tasks [1], [12], [27] since they allow the propagation

of information across multiple paths. In Fig. 2, the mapping

stages of our cascading network include G LSGs with skip

connections. Each LSG further contains B LWRBs.

Expressed formally, let Gouti be the output of the Gith group.

To increase the receptive field of the feature extraction module

and reduce the number of parameters, we stacked small kernel

sizes (e.g., 1 × 1 and 3 × 3) rather than directly using a large

kernel size (e.g., 7×7 and 11×11). The low-level features Fext

are attained via the module and then sent to the Gith group

and final upsampling block. The output Gouti of the Gith group

flows into one of the subsequent groups. Finally, a simple

upscaling block is adopted to merge hierarchical features and

enlarge the LR image.

Locally Sharing Group: It has been proven that stacking

residual blocks is useful to build a deep architecture [18], [25].

However, a very deep plain network generally suffers from

training difficulty due to the problem of the vanishing or

exploding gradient. Thus, we propose an LSG as the basic

unit. Given that stacking the residual blocks within a rea-

sonable range can gain better performance, we accordingly

investigate the number of LWRB included in the group. Then,

the Gith group can be expressed as

Gouti = Hlsg

(

Gouti−1

)

(5)

where Hlsg(·) is the function of the Gith group. Gouti−1

and Gouti denote the input and output of the Gith group,

respectively.

D. Enhanced Residual Network

As previously discussed above, the low-level features from

the original input play a significant role in the SR task and

many previous CNN-based methods ignore their importance.

Based on this perception, we utilized an enhanced residual

structure that contains a dual pathway structure.

Similar to the process of CRN, the low-level features are

extracted by the feature extraction module and the MSB simul-

taneously. The output of the feature extraction block Fext is

sent to the mapping stages, which consist of several LWRBs to

enhance the deep feature representations and the final upsam-

pling module. The output of MSB (Fmsb) directly operates

an elementwise sum with Fmap and Fext via the long skip

connections so that the features can be fully used in the recon-

struction step. Subsequently, these refined features flow into

the upsampling module for enlargement. We define the process

as follows:

ISR
= Hup

(

Fext + Fmap + Fmsb

)

. (6)

Dual Global Pathway: The global residual paths are shown

in Fig. 3, where the top branch is designed to extract the

low-level information with different kernel sizes (see Fig. 4)

and the bottom path is a typical global connection to ensure

a deeper network. This global structure incorporates nonlo-

cal operations to catch long-distance spatial features from the

original LR input; thus, we can take advantage of the low-level

features to improve performance.

MSB: To optimize the sparse local features in a convolu-

tional module with different scales, we propose the MSB to
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Fig. 2. Architecture of the CRN. Our model consists of a low-level feature extraction module for extracting information from original input, nonlinear
mapping subnetwork for enhancing representation ability, and upsampling convolutional layers for upsampling feature maps and images. The blue arrows
indicate the cascading connections.

Fig. 3. Detailed network architecture of the ERN. Our model has two parallel branches, where the first branch exploits input data ILR to gain high-level
feature maps, and the second branch extracts hierarchical information from the original image to catch low-level representations. Then, fusing those features
to recover the final high-resolution result.

Fig. 4. Structure of the MSB. We use three parallel branches with different
kernel sizes to exploit input data, and then concatenate them in the channel
dimension for multiscale feature representations.

exploit the low-level information. This feature extraction block

consists of three Conv layers with different kernel sizes, and

the results of these Conv kernels are concatenated. In addition,

we take the multiscale output to employ elementwise feature

fusion with Fmap. The ablation study reveals that benefits are

achieved in the restoration.

E. Discussion

To further clarify the significance of the proposed models,

this part discusses the differences between our models and the

existing related ones.

1) Difference With Respect to CARN: Although the

proposed CRN and CARN [1] are both based on ResNet [11],

there are some differences between them. The CARN model is

mainly constructed on the local and global cascading modules.

The output of cascading blocks is cascaded into the higher

layers. A cascading block contains several Residual-E blocks

and 1 × 1 convolutional layers that are much more complex

than the counterpart of our model. In CRN, each group is

stacked with several blocks without extra connections and the

block is only based on residual learning. Fewer connections

undoubtedly mean fewer operations. For the global cascading

connections, the output of each cascading block flows into all

of the subsequent 1 × 1 convolutional layers via shortcut con-

nections in CARN. However, our proposed model has different

rules to use cascading connections. Specifically, the output of

the low-level feature extraction module connects to the last

group and one of the intermediary groups. The feature maps

of the intermediary group pass to the following group in a

specific gap.

2) Difference With Respect to EDSR: There are three main

differences between the proposed ERN and EDSR [25]. The

first difference is the design of the basic residual block. In

EDSR, it utilizes the same wider input/output channel within

the block, and this behavior comes with a large number of

parameters. However, in ERN, we only expand the feature maps

before the ReLU activation layer. Experiments revealed that
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this simple alteration leads to an advanced performance while

reducing the parameters. The second difference lies in that there

is no MSB in the EDSR model. Considering the multiscale

features of the LR image in final reconstruction, we introduce

the block to fully extract hierarchical features with different

kernel sizes. The third difference concerns the component

modification as follows: 1) our model stacks two Conv layers

to extract low-level features; 2) we use relatively few modules

in the non-linear mapping stage but obtain comparable feature

representation ability; and 3) we simplified the reconstruction

part that includes a Conv layer and an upscale layer.

3) Difference With Respect to WDSR-A: In addition to the

different choice of the normalization layer, that is, WN used

in WDSR-A [52], we mainly conclude another three differ-

ences between WDSR-A and our ERN network. First, the

low-level feature extraction module is dissimilar. WDSR-A

simply extracts the low-level feature by a single Conv layer

while we stack two Conv layers to enlarge the receptive field

of the hierarchical features. Second, we introduce a dual global

structure because this approach is more effective to catch

long-distance spatial features from the original LR input and

promote the propagation of the gradient. In contrast, WDSR-A

only considers a residual path. Third, WDSR-A uses a single

convolutional layer with a 5 × 5 Conv kernel that directly

detects low-level features of the original image. However, in

ERN, we utilize a MSB that consists of different kernel sizes.

We find that this modification improves the accuracy of our

proposed SR model.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the implementation and

training details of the proposed models and, then, we briefly

depict the used benchmark datasets as well as the strategy

to generate the LR images; model analysis follows this step.

Finally, we compare our models with several state-of-the-art

algorithms on four benchmark datasets.

A. Implementation and Training Details

In the proposed models, we set 3 × 3 as the filter size of

all convolutional layers except those in the low-level feature

extraction module and the multiscale branch. For the cascading

model, experiments showed that the mapping module with G

= 4 groups and B = 4 blocks led to a better performance.

Meanwhile, from our observations, the mapping part of ERN

that consists of N = 16 LWRBs possessed great representation

ability.

We chose L1 loss as our loss function instead of L2 loss

to train our models. The L2 loss has been widely used in

the SR task due to its close connection with PSNR. However,

recent work [25] indicated that L1 loss provides more powerful

accuracy and convergence. During the training process, we use

a batch size of 16 with size 96 × 96. Each epoch employs

1000 iterations of backpropagation. For optimization, we use

the ADAM [20] optimizer with β1 = 0.9, β2 = 0.999, and

ǫ = 10−8. The learning rate is initially set to 1e-4 for all

layers and is decreased to half every 200 epochs for a total

of 850 epochs. It takes about two days to train the proposed

Fig. 5. Training results with different values of G and B. We investigate the
linear combinations of G and B. An empirical formula G = B = 4 is a good
tradeoff between performance and efficiency through this article.

models while EDSR takes eight days. All experiments were

implemented with PyTorch and training on an NVIDIA Tesla

P100 GPU.

B. Datasets

The DIV2K dataset [42] is a new high-resolution RGB

image dataset with a large diversity of contents that includes

800 training images, 100 validation images, and 100 test

images, respectively. In this article, we train the proposed mod-

els with 800 training images and select ten validation images to

evaluate in the training process. During testing, we use four

standard benchmark datasets: 1) Set5 [3]; 2) Set14 [54]; 3)

B100 [2]; and 4) Urban100 [13]. The Set5 [3], Set14 [54],

B100 [2] testsets mainly consist of natural scenes (i.e., land-

scapes, animals, and flowers) and the Urban100 [13] set

collects 100 urban scenes images with a variety of real-world

structure.

Following the previous work [58], two widely used qual-

ity metrics, PSNR and SSIM, are calculated on the final ISR

images on the Y channel of the transformed YCbCr color

space. ILR is downscaled from the corresponding IHR image

using bicubic downsampling.

C. Model Analysis

1) Comparison on Different Network Depths: In this sec-

tion, we thoroughly investigate the basic parameters of our

proposed models. For the CRN model, we present a compari-

son of the different numbers of group (G), block (B). As shown

in Fig. 5, we first set G = 2, 3, 4 and B = 3 to investigate
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TABLE I
QUANTITATIVE EVALUATION OF THE LINEAR COMBINATIONS OF

G AND B. WE TEST THE PROPOSED MODEL WITH DIFFERENT

G AND B ON THE SET5 AND SET14 DATASETS FOR ×2 SR

Fig. 6. Quantitative evaluation of the number of LWRBs. We build ERN
with different network depth by varying the values of N on the validation
dataset for ×2 SR.

the choice of G and then fixed G = 4 and B = 2, 3, 4 to

explore the selection of B. The PSNR results on the DIV2K

validation image with a scale factor of 2 describe the fact that

a larger G and B can boost the performance. Meanwhile, we

present the quantitative evaluation of different network depth

in Table I. While the G3B4 and G4B3 models perform com-

parably, the G4B4 method achieves the best reconstruction

accuracy. Therefore, we chose G = B = 4 to obtain a balance

between performance and depth.

For the ERN model, we studied the network depth by vary-

ing the number of LWRBs (denoted as N for short). We

set N = 2, 4, 8, 12, 16, 20, and the experimental results (the

best performance on the validation dataset within 200-epoch

training) are shown in Fig. 6. In general, the deep network

achieves better results than the low-level ones; however, it is

worth noting that the growth of PSNR is significantly less

when N > 10 (e.g., it only increased by 0.019 dB when N

increased from 16 to 20.) Under a certain parameter budget,

we chose N = 16 for our SR network because the PSNR value

is approximately equivalent to the state-of-the-art models, and

it achieves 35.812 dB for ×2, which is better than the results

0.433 dB and 0.149 dB at N = 4, 8, respectively.

2) Effect of Multiscale Block: To demonstrate the effect of

the MSB in the ERN model, we set up an ablation study with

two scenarios: 1) with the block and 2) without the block.

Fig. 7. Adding MSB can enhance the final results. The curves are based on
the PSNR (dB) on DIV2K(val) (×3) in 300 epochs.

TABLE II
ABLATION STUDY OF NORMALIZATION LAYER. WE TRAIN THE

PROPOSED MODELS WITH WN OR NO NORMALIZATION AND

OBSERVE PERFORMANCE (PSNR/SSIM) DROP ON TWO

BENCHMARKS: B100 AND URBAN100 WITH

SCALING FACTORS 3 AND 4

For the formal expression, we denote the former model

as MSB and the latter model as Basic. Fig. 7 presents the

PSNR values of Basic, indicating they are relatively low on the

validation dataset with a scaling factor ×3 under the same con-

figuration. The statistical results of SSIM also show a matching

trend. These comparisons demonstrate that MSB can improve

the performance of super-resolution.

3) Number of Parameters: We show comparisons about the

performance and number of parameters in Fig. 8. Compared

with these mentioned algorithms, our models have consider-

able advantages. Although our networks have only approx-

imately a quarter of the parameters of EDSR [25], they

achieve roughly similar results on the benchmark B100(×4).

Meanwhile, in comparison to MRSN [24], the state-of-the-art

method proposed recently also has thousands of parameters,

our CRN and ERN models increased by 0.14 dB and 0.18 dB,

respectively. Moreover, our models achieve much better

performance regarding PSNR and SSIM than the low-level

networks, such as VDSR [18] and LapSRN [21]. This evidence

indicates that our networks attain a better tradeoff between

performance and model size.

4) Impacts of the Normalization Layer: We train our mod-

els with a WN layer and achieve advanced performance while

removing all WN layers; the models gain comparable results
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TABLE III
QUANTITATIVE EVALUATION OF THE STATE-OF-THE-ART SR METHODS. WE SHOW THE AVERAGE PSNR/SSIM FOR ×2, ×3,

AND ×4 SR. Red/blue TEXT MEANS THE BEST/SECOND−BEST PERFORMANCE, RESPECTIVELY

Fig. 8. Performance versus number of parameters. The results are calculated
on the B100 dataset with a scale factor of 4. The proposed methods stride a
balance between reconstruction accuracy and parameters.

on the test dataset. Regarding the CRN model, training with

the WN layers obtains slightly better results than without

normalization layers. Unfortunately, the ERN network shows

an opposite trend when we carry out the same experiment.

Specifically, from the results on ×3 and ×4 enlargement, the

former model with the WN layers is only better by 0.02 dB

and 0.01 dB on test datasets with an upsampling factor of 3,

respectively. The ×4 upscaling results are similar. When we

train the ERN network without using the normalization layers,

it outperforms the same model with the WN layers for ×3 and

×4 enlargement on different datasets. Therefore, we chose to

remove all WN layers from our models. As shown in Table II,

this modification does not degrade the performance but saves

the computational resources and memory usage.

D. Comparisons With the State-of-the-Art Methods

Finally, we compared our proposed networks with nine

state-of-the-art methods: 1) A+ [44]; 2) SRCNN [7]; 3)

FSRCNN [9]; 4) VDSR [18]; 5) LapSRN [21]; 6) EDSR [25];

7) SRMDNF [55]; 8) CARN [1]; and 9) MSRN [24]. These

methods are evaluated on four aforementioned datasets as in

the technical literature.

Table III illustrates the performance of all the above algo-

rithms. It can be observed that our networks outperform the

comparative models by a large margin on different scaling fac-

tors except EDSR [25]. The performance of CRN and ERN are

entirely close to or even better than those of EDSR on some

datasets, but the number of parameters of EDSR is about four

times that of CRN or ERN.
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Fig. 9. Visual comparison on benchmark testsets. From top to bottom are ×2, ×3, and ×4 super-resolved results, respectively. The SR results are for images
barbara and comic from Set14 and img_096 from Urban100. Our methods tend to generate more faithful and clear details.

1) Results on Set5: Our models outstrip the current state-of-

the-art networks on ×2 enlargement and obtain an even larger

margin of improvements for other upsampling factors except

EDSR [25], which is only better by 0.01 dB and 0.07 dB than

that obtained by our ERN model, respectively.

2) Results on Set14: Similar to the aforementioned results,

for all upscaling factors, the ERN network achieves 33.88 dB,

30.51 dB, and 28.75 dB, which is better by 0.14 dB, 0.17 dB,

and 0.15 dB than that achieved by MSRN [24], respectively.

In addition, ERN achieves an improvement of approximately

0.32 dB over CARN [1] on different scales.

3) Results on B100: On this dataset, the CRN model

achieves superior performance in terms of PSNR and SSIM

for different enlargements. In detail, an average increase of

approximately 0.6 dB using the proposed method was achieved

over the deeper networks such as [18] and [21].

4) Results on Urban100: The Urban100 dataset consists

of 100 building images. As stated in [10], EDSR tends to

recover regular shapes, such as stripes or circles, and the basic

elements in Urban100 are these patterns. Therefore, it achieves

approximately 0.2 dB higher than CRN for all enlargements.

Undoubtedly, our methods outperform other models by a large

margin.

In Fig. 9, we present the visual results of four representa-

tive algorithms (Bicubic, VDSR, LapSRN, and MSRN) and

the proposed ones. All methods here are tested on different

upscaling factors, and the test images are selected from the

Set14 and Urban100 datasets. The corresponding PSNR and
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SSIM values are also reported for each method. From our

observations, most of the comparative models tend to produce

blurred edges. In contrast, the proposed networks can recover

shapes and clear images. These obtained results indicate that

the LWRBs are able to gather more information and the

cascading connection or MSB fully uses the low-level features.

V. CONCLUSION

In this article, we proposed two CNN architectures, namely,

CRN and ERN, to address the SISR problem. Compared with the

existing CNN-based models, the proposed CRN takes account

of the cascading mechanism to boost feature fusion and gradient

propagation, while the ERN employs a dual global pathway to

catch long-distance spatial features from the original LR input.

Extensive benchmark evaluations showed that our proposed

models present both quantitative and visible improvements

compared with the previous state-of-the-art methods.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their valued comments and constructive suggestions that

significantly improved the quality of this article.

REFERENCES

[1] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight
super-resolution with cascading residual network,” in Proc. Eur. Conf.

Comput. Vis. (ECCV), Sep. 2018, pp. 256–272.
[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection

and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 33, no. 5, pp. 898–916, May 2011.
[3] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-

complexity single-image super-resolution based on nonnegative neighbor
embedding,” in Proc. Brit. Mach. Vis. Conf., 2012, pp. 1–10.

[4] C. L. P. Chen, L. Liu, L. Chen, Y. Y. Tang, and Y. Zhou, “Weighted cou-
ple sparse representation with classified regularization for impulse noise
removal,” IEEE Trans. Image Process., vol. 24, no. 11, pp. 4014–4026,
Nov. 2015.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.
[6] D. Dai, Y. Wang, Y. Chen, and L. Van Gool, “Is image super-resolution

helpful for other vision tasks?,” in Proc. IEEE Win. Conf. Appl. Comput.

Vis. (WACV), Mar. 2016, pp. 1–9.
[7] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional

network for image super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 184–199.

[8] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[9] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
2016, pp. 391–407.

[10] M. Haris, G. Shakhnarovich, and N. Ukita, “Deep back-projection
networks for super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2018, pp. 1664–1673.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2016, pp. 770–778.
[12] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.
[13] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution

from transformed self-exemplars,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2015, pp. 5197–5206.
[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proc. 32nd

Int. Conf. Mach. Learn. (ICML), Lille, France, Jul. 2015, pp. 448–456.
[Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html

[15] J. Jiang, Y. Yu, S. Tang, J. Ma, A. Aizawa, and K. Aizawa, “Context-
patch face hallucination based on thresholding locality-constrained
representation and reproducing learning,” IEEE Trans. Cybern., vol. 50,
no. 1, pp. 324–337, Jan. 2020.

[16] J. Jiang, Y. Yu, Z. Wang, S. Tang, R. Hu, and J. Ma, “Ensemble
super-resolution with a reference dataset,” IEEE Trans. Cybern., to be
published.

[17] R. Keys, “Cubic convolution interpolation for digital image process-
ing,” IEEE Trans. Acoust. Speech Signal Process., vol. ASSP-29, no. 6,
pp. 1153–1160, Dec. 1981.

[18] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit.(CVPR), Jun. 2016, pp. 1646–1654.

[19] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit.(CVPR), Jun. 2016, pp. 1637–1645.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015. [Online]. Available: http://arxiv.org/abs/1412.6980

[21] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., 2017, pp. 624–632.

[22] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Fast and accurate
image super-resolution with deep laplacian pyramid networks,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11, pp. 2599–2613,
Nov. 2018.

[23] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jul. 2017, pp. 105–114.

[24] J. Li, F. Fang, K. Mei, and G. Zhang, “Multi-scale residual network
for image super-resolution,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 527–542.

[25] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR) Workshops, Jul. 2017,
pp. 1132–1140.

[26] L. Liu, L. Chen, C. L. P. Chen, Y. Y. Tang, and C. M. Pun, “Weighted
joint sparse representation for removing mixed noise in image,” IEEE

Trans. Cybern., vol. 47, no. 3, pp. 600–611, Mar. 2017.

[27] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[28] P. Luo, J. Ren, Z. Peng, R. Zhang, and J. Li, “Differentiable learn-
ing to-normalize via switchable normalization,” in Proc. 7th Int. Conf.

Learn. Represent. (ICLR), New Orleans, LA, USA, May 2019. [Online].
Available: https://openreview.net/forum?id=ryggIs0cYQ

[29] A. Marquina and S. J. Osher, “Image super-resolution by TV-
regularization and Bregman iteration,” J. Sci. Comput., vol. 37, no. 3,
pp. 367–382, 2008.

[30] V. Nekrasov, C. Shen, and I. D. Reid, “Light-weight refinenet for real-
time semantic segmentation,” in Proc. Brit. Mach. Vis. Conf. (BMVC),
Newcastle upon Tyne, U.K., Sep. 2018, p. 125. [Online]. Available:
http://bmvc2018.org/contents/papers/0494.pdf

[31] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image recon-
struction: A technical overview,” IEEE Signal Process. Mag., vol. 20,
no. 3, pp. 21–36, May 2003.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Med. Image

Comput. Comput. Assist. Intervent. (MICCAI), 2015, pp. 234–241.

[33] T. Salimans and D. P. Kingma, “Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks,” in Proc.

Adv. Neural Inf. Process. Syst., 2016, pp. 901–909.

[34] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc.

IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 4510–4520.

[35] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1874–1883.

[36] J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradi-
ent profile prior,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), 2008, pp. 1–8.

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception
v4, inception-resnet and the impact of residual connections on
learning,” in Proc. 31st AAAI Conf. Artif. Intell., San Francisco,
CA, USA, Feb. 2017, pp. 4278–4284. [Online]. Available:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806



LAN et al.: CASCADING AND ERNs FOR ACCURATE SISR 125

[38] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.
[39] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive

residual network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jul. 2017, pp. 2790–2798.
[40] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory

network for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Oct. 2017, pp. 4549–4557.
[41] K. Tang, Z. Su, Y. Liu, W. Jiang, J. Zhang, and X. Sun, “Subspace

segmentation with a large number of subspaces using infinity norm
minimization,” Pattern Recognit., vol. 89, pp. 45–54, May 2018.

[42] R. Timofte et al., “Ntire 2017 challenge on single image super-
resolution: Methods and results,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR) Workshops, Jul. 2017, pp. 1110–1121.
[43] R. Timofte, V. De Smet, and L. Van Gool, “Anchored neighborhood

regression for fast example-based super-resolution,” in Proc. IEEE Int.

Conf. Comput. Vis. (ICCV), Dec. 2013, pp. 1920–1927.
[44] R.Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored

neighborhood regression for fast super-resolution,” in Proc. Asian Conf.

Comput. Vis. (ACCV), 2015, pp. 111–126.
[45] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve

example-based single image super resolution,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 2016, pp. 1865–1873.
[46] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using

dense skip connections,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4809–4817.

[47] X. Wang et al., “ESRGAN: Enhanced super-resolution generative adver-
sarial networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops,
Sep. 2018, pp. 63–79.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE

Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
[49] Y. Wen, B. Sheng, P. Li, W. Lin, and D. D. Feng, “Deep color guided

coarse-to-fine convolutional network cascade for depth image super-
resolution,” IEEE Trans. Image Process., vol. 28, no. 2, pp. 994–1006,
Feb. 2019.

[50] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[51] W. Yang, X. Zhang, Y. Tian, W. Wang, J. Xue, and Q. Liao, “Deep
learning for single image super-resolution: A brief review,” IEEE Trans.

Multimedia, vol. 21, no. 12, pp. 3106–3121, Dec. 2019.
[52] J. Yu, Y. Fan, J. Yang, N. Xu, X. Wang, and T. S. Huang, “Wide activa-

tion for efficient and accurate image super-resolution,” 2018. [Online].
Available: arXiv:1808.08718.

[53] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional
networks for mid and high level feature learning,” in Proc. IEEE Int.

Conf. Comput. Vis. (ICCV), Nov. 2011, pp. 2018–2025.
[54] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using

sparse-representations,” in Curves and Surfaces, J.-D. Boissonnat et al.,
Eds. Heidelberg, Germany: Springer, 2012, pp. 711–730.

[55] K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional
super-resolution network for multiple degradations,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 3262–3271.
[56] Y. Zhang, F. Shi, J. Cheng, L. Wang, P.-T. Yap, and D. Shen,

“Longitudinally guided super-resolution of neonatal brain magnetic res-
onance images,” IEEE Trans. Cybern., vol. 49, no. 2, pp. 662–674,
Feb. 2019.

[57] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.

Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 294–310.
[58] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense

network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2018, pp. 2472–2481.

Rushi Lan received the B.S. and M.S. degrees from
the Nanjing University of Information Science and
Technology, Nanjing, China, and the Ph.D. degree
from the University of Macau, Macau, China.

He is currently an Associate Professor
with the School of Computer Science and
Information Security, Guilin University of
Electronic Technology, Guilin, China. His research
interests include image classification, image
restoration, and medical image processing.

Long Sun received the B.S. degree from the
Yunnan University of Finance and Economics,
Kunming, China, in 2018. He is currently pursuing
the M.S. degree with the School of Computer
Science and Information Security, Guilin University
of Electronic Technology, Guilin, China.

His current research interests include image/video
restoration, computational photography, and
machine learning.

Zhenbing Liu received the B.S. degree from Qufu
Normal University, Qufu, China, and the M.S. and
Ph.D degrees from the Huazhong University of
Science and Technology, Wuhan, China.

He was a Visiting Scholar with the Department of
Radiology, University of Pennsylvania, Philadelphia,
PA, USA, in 2015. He is currently a Professor and
a Doctoral Supervisor with the School of Computer
Science and Information Security, Guilin University
of Electronic Technology, Guilin, China. His main
research interests include image processing, machine
learning, and pattern recognition.

Huimin Lu received the M.S. degree in elec-
trical engineering from the Kyushu Institute of
Technology, Kitakyushu, Japan, and Yangzhou
University, Yangzhou, China, in 2011, and the Ph.D.
degree in electrical engineering from the Kyushu
Institute of Technology in 2014.

From 2013 to 2016, he was a JSPS Research
Fellow with the Kyushu Institute of Technology,
where he is currently an Associate Professor and
an Excellent Young Researcher of MEXT, Tokyo,
Japan. His research interests include computer

vision, robotics, artificial intelligence, and ocean observation.

Zhixun Su received the B.S. degree in mathematics
from Jilin University, Changchun, China, the M.S.
degree in computer science from Nankai University,
Tianjin, China, and the Ph.D. degree from the Dalian
University of Technology, Dalian, China.

He is currently a Professor with the School of
Mathematical Sciences and the Director of the Key
Laboratory of Computational Geometry, Graphics
and Images, Dalian University of Technology. His
research interests include computer graphics, image
processing, computational geometry, and computer
vision.

Cheng Pang received the B.S. degree in com-
puter science and the M.S. and Ph.D. degrees in
computer technology from the Harbin Institute of
Technology, Harbin, China, in 2011, 2013, and 2018,
respectively.

He is currently with the Faculty of the Guilin
University of Electronic Technology, Guilin, China.
His interests include pattern recognition, image pro-
cessing, machine learning, and computer vision.

Xiaonan Luo received the B.S. degree in com-
putational mathematics from Jiangxi University,
Nanchang, China, the M.S. degree in applied math-
ematics from Xidian University, Xi’an, China, and
the Ph.D. degree in computational mathematics
from the Dalian University of Technology, Dalian,
China.

He is currently a Professor with the School
of Computer and Information Security, Guilin
University of Electronic Technology, Guilin, China.
He received the National Science Fund for

Distinguished Young Scholars granted by the National Natural Science
Foundation of China. He was the Director of the National Engineering
Research Center of Digital Life, Sun Yat-sen University, Guangzhou, China.
His current research interests include computer graphics, machine learning,
and pattern recognition.


