
Cascading Convolutional Temporal Colour Constancy

Matteo Rizzo, Cristina Conati
University of British Columbia

{marizzo, conati}@cs.ubc.ca

Daesik Jang, Hui Hu
Huawei

{daesik.jang, huhui12}@huawei.com

Abstract

Computational Colour Constancy (CCC) consists of esti-
mating the colour of one or more illuminants in a scene
and using them to remove unwanted chromatic distortions.
Much research has focused on illuminant estimation for
CCC on single images, with few attempts of leveraging the
temporal information intrinsic in sequences of correlated
images (e.g., the frames in a video), a task known as Tempo-
ral Colour Constancy (TCC). The state-of-the-art for TCC
is TCCNet, a deep-learning architecture that uses a ConvL-
STM for aggregating the encodings produced by CNN sub-
modules for each image in a sequence. We extend this archi-
tecture with different models obtained by (i) substituting the
TCCNet submodules with C4, the state-of-the-art method
for CCC targeting images; (ii) adding a cascading strategy
to perform an iterative improvement of the estimate of the
illuminant. We tested our models on the recently released
TCC benchmark and achieved results that surpass the state-
of-the-art. Analyzing the impact of the number of frames
involved in illuminant estimation on performance, we show
that it is possible to reduce inference time by training the
models on few selected frames from the sequences while re-
taining comparable accuracy.

1. Introduction
From the perspective of human cognition, Colour Con-
stancy (CC) is the ability of the visual system to perceive
colours of objects invariant of the colour cast generated by
the lighting conditions of a scene [9]. Computationally, CC
(also known as Computational Colour Constancy, or CCC)
consists of estimating the colour of one or more illumi-
nants in a scene and using them to remove unwanted chro-
matic distortions by colour-correcting the input. CCC has
attracted considerable attention in computer vision enabling
the compensation of the effects of changing illumination in
images and videos. Prominent applications of CCC relate to
off-line tasks such as the preprocessing of these digital con-
tents in datasets used to train models for computer vision
tasks benefiting from intrinsic colour information (e.g., fine-

Figure 1: The single-frame CCC task (a) and the multi-frame, or
temporal, CCC task (b).

grained object recognition and semantic segmentation), in
domains such as video surveillance [27], screening tools for
healthcare [13], digital pathology [4], etc., and the postpro-
cessing of consumer photography. Compensation of chang-
ing illumination is also a key step of the processing pipeline
of images and videos in digital cameras known as white
balancing [22]. In this context, CCC is used in real-time
for processing the raw data captured by the camera sensor,
and allows, for instance, to constantly adjust the stream of
frames displayed to the user in the camera viewfinder for
enhanced chromatic fidelity.

Figure 1 shows CCC leveraging a single frame (i.e., an
image) vs a sequence of frames (as in a video). In single-
frame CCC, the illuminant for an input frame is estimated
using only the information stemming from that frame. The
multi-frame, or temporal, CCC task (TCC from now on)
implies leveraging information from a window of frames
preceding the one in the sequence for which the illuminant
is being estimated (i.e., the so-called shot frame).
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Addressing the TCC task to improve video quality is in-
creasingly important, as videos are becoming a predomi-
nant medium in all aspects of everyday life, especially af-
ter the surge of online video-based activities caused by the
COVID-19 pandemic. However, TCC entails unique chal-
lenges such as changes of illuminant chromaticity and vary-
ing viewing angles of the camera [18]. Note that, when
dealing with sequences of images, a naive approach may
consist of estimating an illuminant for each image individ-
ually. However, such a strategy does not account for the
temporal information inherent in a sequence of correlated
items (e.g., the frames of a video), which may be deter-
minant in a realistic scenario featuring drastic changes of
light sources and content in subsequent images. In this pa-
per, we contribute to improving the state-of-the-art accuracy
of TCC by extending an existing method that leverages the
temporal cues intrinsic to sequences of correlated images.

The TCC task was formally introduced in [18] as a gen-
eral illuminant estimation for a sequence of images, relax-
ing strong assumptions such as constant illuminant across
frames and fixed-length sequences. More specifically, given
a sequence of frames Ii of arbitrary length, the illuminant
colour of the t-th frame ĉt = [ŷr, ŷg, ŷb] ∈ R3 (assumed
to be only one) is estimated by some function f(·) consid-
ering the N − 1 (with 1 ≤ N ≤ t) frames preceding it
(Formula 1). Note that single-frame CCC is a special case
of the temporal task where N = 1 (i.e., only the shot frame
is considered).

ĉt = f(It−(N−1), It−(N−2)...It−1, It) (1)

Most of the research so far has focused on CCC for sin-
gle frames (see [11] for a survey), with some attempts of
leveraging the temporal information intrinsic in sequences
of correlated frames for illuminant estimation [18, 19]. In
both cases, state-of-the-art methods in terms of accuracy
rely on Deep Learning (DL).

In this paper, we investigate how to advance the state-
of-the-art in TCC by proposing three new architectures that
integrate the current best-performing model for TCC [19]
with a strategy that proved successful in the single-frame
scenario [29] but which is novel to the temporal task. Our
results show that the novel approaches surpass in terms of
accuracy the state-of-the-art on the TCC benchmark [19],
which is currently the only dataset specifically designed for
experimenting with CCC in the temporal scenario. We also
present a detailed analysis of the trade-off between model
accuracy and computational cost (in terms of inference time
and memory occupancy), relevant for the practical applica-
tions of CCC. As part of this analysis, we investigate the
number of frames involved in the illuminant estimation as a
possible way to reduce the inference time of the TCC mod-
els. Contrary to preliminary results in [19], we show that it
is possible to train models that work with shorter sequences,

with substantial gain in inference efficiency and no major
loss in accuracy, if the retained frames are selected to cap-
ture global temporal information.

2. Related Work
In the last decades there has been extensive research on
single-frame CCC, categorized by [11] in three groups of
methods: (i) static methods, (ii) gamut-based methods, and
(iii) learning-based methods. Static methods operate on the
basis of predefined statistical or physical properties of the
image formation, whereas learning-based methods are ca-
pable of learning a mapping between some features of the
input images and the target illuminants. Many gamut-based
methods (such as [12]) use training data to define a target
gamut and can therefore be considered as learning-based
methods. Recent DL-based methods such as [1, 3, 21, 29]
have proved the most accurate among learning-based meth-
ods and outperformed static methods with a notable discrep-
ancy in performance. Among these DL methods for single-
frame CCC, the state-of-the-art is represented by FFCC [1]
and C4 [29], performing similarly on standard benchmark
datasets (i.e., NUS 8-Camera [5] and Color Checker [10]).
FFCC relies on quite an unusual yet very effective strategy
that solves illuminant estimation by reducing it to a spatial
localization task on a torus and operating in the frequency
domain. The best performing FFCC model leverages a Con-
volutional Neural Network (CNN) in the optimization step.
C4 tackles the problem with a more standard neural ap-
proach. This method builds on FC4 [14], a fully convolu-
tional network architecture based on a pretrained backbone
(i.e., either SqueezeNet [15] or AlexNet [16]). C4 iterates
FC4 in three stages while performing incremental correc-
tions of the input image based on the illuminant estimate
outputted at each stage. For developing some of the novel
architectures we propose in this paper for the multi-frame
scenario, we used the same cascading strategy introduced
by C4 for the single-frame scenario (described in more de-
tail in Section 3.1.2).

In contrast with the plethora of methods for CCC target-
ing single images, few attempts have been made to deal with
sequences of frames (i.e., with the temporal task). Research
on TCC so far has either focused on some special cases
(e.g., [28] target AC bulb illuminated scenes and [20] pairs
of images with and without flash), or made strong assump-
tions such as constant illumination across frames [26, 17].
There have been only a few attempts that we are aware of
devising more general-purpose neural strategies [1, 18, 19].
Our work fits the latter category. The previously mentioned
FFCC method natively supports a multi-frame extension for
temporal smoothing, but does not achieve state-of-the-art
results [1]. [18] propose a neural network architecture for
illuminant estimation on multiple frames called RCCNet.
This is based on encoding each of the single images in a



Figure 2: The cascading strategy implemented by the C4 method.

sequence with an AlexNet CNN [16], and then processing
these encodings temporally with an LSTM recurrent net-
work. RCCNet was shown to outperform other straightfor-
ward extensions of learning-based single-frame algorithms
for processing multiple frames. The baseline established by
RCCNet was recently overcome by TCCNet [19], an im-
proved version of the same method featuring a more pow-
erful backbone CNN and a ConvLSTM for the sequential
processing of the encoded frames. We will describe TCC-
Net in more detail in later sections as this is the architecture
we extended in our approach.

3. Proposed Approaches
This section describes how we extended existing state-of-
the-art CCC strategies to build our novel architectures. We
first provide an overview of both C4 and TCCNet, the exist-
ing models that we leveraged, which target the single-frame
and multi-frame scenarios respectively. Then, we detail the
three different architectures we propose to integrate and im-
prove such models.

3.1. The C4 and TCCNet Architectures

3.1.1 C4 Architecture

In the C4 method, the illuminant estimate for an input image
is built via a cascading strategy, illustrated in Figure 2. In
each of the L = 3 stages of the cascade, a SqueezeNet [15]
backbone produces a prediction of the colour of the illumi-
nant for its input. This prediction is then used to generate
a colour-corrected version of the original image, which is
fed to the next stage in the cascade. Formally, given an im-
age I and a ground truth colour of the illuminant cgt, the
estimate ĉ = [ŷr, ŷg, ŷb] ∈ R3 of cgt is used to generate
the corrected image Ī ∈ RH×W×3 so that the original in-
put results under some standard illuminant, usually white

light (Formula 2). The correction assumes that each RGB
channel can be adjusted independently [25].

Īj = Ij/ĉj ∈ IRH×W, j ∈ {r, g,b} (2)

The colour ĉi used for correcting the input at stage i is
obtained by multiplying the current estimate with those pro-
duced in the previous stages (Formula 3).

ĉi =

i∏
k=1

ck, i ∈ [1, L] (3)

3.1.2 TCCNet Architecture

The architecture of TCCNet is described in Figure 3. It
consists of two branches: (i) a temporal branch process-
ing the original sequence of images and (ii) a shot frame
branch processing a Pseudo-Zoom (PZ) sequence in the
shot frame. The PZ sequence strategy for the TCC task was
introduced in [18] and consists of multiple frames gener-
ated on a random zoom-path (i.e., a series of sub-patches
based on consecutive geometric transformations) for a tar-
get image. Both branches follow the same CNN + LSTM
structure and their output is merged for producing the fi-
nal classification. In the original architecture, the CNN
submodules are instantiated to pretrained SqueezeNet [15]
models. The LSTM network is a 2D ConvLSTM using con-
volutional structures in both input-to-state and state-to-state
transitions, as proposed by [23]. The original frames and
the PZ sequence are passed to the CNN submodules to gen-
erate two parallel sequences of encodings. These are then
processed by as many ConvLSTMs, whose output is con-
catenated to generate the estimated illuminant for the shot
frame.



Figure 3: The TCCNet architecture. Our proposed TCCNet-C4
architecture substitutes the CNN submodules with C4.

3.2. Novel Architectures

In an attempt to improve the performance of the best exist-
ing neural methods for TCC, we propose three novel ar-
chitectures that leverage either C4, TCCNet or both: (i)
TCCNet-C4, (ii) Cascading TCCNet (C-TCCNet) and (iii)
C-TCCNet-C4, described in the rest of this section.

3.2.1 TCCNet-C4 Architecture

Whereas the CNN submodules in the branches of the orig-
inal TCCNet architecture (see green and orange squares la-
belled as CNNA and CNNB at the center of Figure 3) are
substantially SqueezeNet, in TCCNet-C4 we replaced them
with instances of C4. The final linear layer on top of the
last stage in the cascade used by the C4 submodules is re-
moved to feed the generated encodings directly to the recur-
rent component. The rationale for substituting C4 submod-
ules to the original SqueezeNets is to provide the TCCNet
architecture with a more powerful backbone to encode each
frame in a sequence, given that C4 is the state-of-the-art
neural architecture for single-frame CCC. This is achieved
by applying the cascading colour correction to each image
in the sequence independently, which intuitively results in
feeding to the temporal component a series of encodings of
frames whose colour of the illuminant is more resembling
the ground truth (and thus easier to process).

3.2.2 C-TCCNet and C-TCCNet-C4 Architectures

Inspired by the cascading approach that C4 proved to be
successful in the single-frame CCC scenario, we sought to

apply it to the TCC task. Following a similar strategy to
that implemented by the C4 method, we plugged the TC-
CNet and TCCNet-C4 models in a cascading architecture
to build the C-TCCNet and C-TCCNet-C4 architectures re-
spectively. The network architecture for the C-TCCNet
models is presented in Figure 4. These novel strategies al-
low for iterative coarse-to-fine refinement of the estimate of
the illuminant of the shot frame accounting for information
stemming from the temporal sequence. Namely, each stage
in the cascade outputs a prediction for the illuminant of the
shot frame, which is used to generate the input to the follow-
ing stage by colour-correcting each frame in both the origi-
nal sequence and PZ sequence. In the same fashion as C4,
the estimated colour used for the cascading correction is the
product of the current estimate by the predictions at the pre-
vious stages. By incorporating C4 as a submodule, the C-
TCCNet-C4 architecture leverages a cascading-correction
approach both in the per-frame and sequence-wise estimate.

3.3. Implementation

All our presented models were built and trained using the
PyTorch1 library. The code is available in a dedicated open-
source repository2 which, aside from the novel TCCNet-C4,
C-TCCNet and C-TCCNet-C4 architectures, also features
a clean re-implementation of the baseline TCCNet and C4
(for better integration with the rest of our codebase).

4. Models Evaluation
4.1. Dataset and Settings for Model Training

We evaluated our models on the TCC dataset [19], which
is the largest and most realistic dataset available for TCC3.
It consists of 600 real-world videos recorded with a high-
resolution mobile phone camera shooting 1824 x 1368 sized
pictures. The length of these videos ranges from 3 to 17
frames (7.3 on average, the median is 7.0 and mode is 8.5).
Ground truth information is present only for the last frame
in each video (i.e., the shot frame), and was collected using
a gray surface calibration target.

Despite TCC being the largest dataset available, the
number of sequences is relatively low for training a DL
model effectively. Data augmentation is therefore per-
formed according to the same procedure used in [19] to train
TCCNet. Namely, the frames in the sequences were ran-
domly rotated by an amount in the range [-30, +30] degrees
and cropped to a proportion in the range of [0.8, 1.0] on
the shorter dimension. The generated patches were flipped
horizontally with a probability of 0.5. Data augmentation

1https://pytorch.org/
2Link omitted for preserving anonymity
3Of the other existing datasets for TCC, [17] is very small, [28] was

specifically designed for experiments on AC bulb illumination and [6] fea-
tures very low-resolution images which are not in line with the standards
of modern consumer photography.



Figure 4: Our proposed C-TCCNet architecture. In C-TCCNet-C4 we replaced the TCCNet submodules with TCCNet-C4.

is achieved by dynamically applying the aforementioned
transformations at training time to each batch of sequences,
which is the standard practice in PyTorch.

All models have been trained using a mix of Tesla P100
and NVidia GeForce GTX 1080 Ti GPUs from local lab
equipment and cloud services (name withdrawn to presence
anonymity) and took about two to four days based on the
complexity of the model. The training of the TCCNet mod-
els was performed for 2k epochs using the RMSprop [24]
optimizer with batch size 1 and learning rate initially set to
3e−5. We opted for hidden size = 128 and kernel size = 5,
as suggested by the ablation study in [19]. The SqueezeNet
backbone was initialized with the weights pretrained on Im-
ageNet [7] provided by PyTorch4. The error ε between
the illuminant ĉ estimated by the TCCNet models and the
ground truth cgt has been computed using the angular er-
ror, a measure of error used in many works on CCC and
reported in Formula 4.

εĉ,cgt = arccos(
ĉ · cgt
‖ĉ‖ ‖cgt‖

) (4)

Using the same optimizer, batch size and learning rate,
the cascading models were trained for 1k epochs initializ-
ing the submodules to the corresponding pretrained TCC-
Net models. L = 3 was selected as the number of stages
for each cascade as an analysis of the length of the iteration
in [29] showed how this is a good trade-off between perfor-
mance and complexity of the model. The measure of the er-
ror of choice for these models was the multiply-accumulate
loss function L for cascading convolutional CCC intro-
duced in [29] and reported in Formula 5.

4The pretrained models offered by PyTorch are available at
https://pytorch.org/docs/stable/torchvision/models.html

L =

L∑
l=1

L(l)(

l∏
i=1

fi(Xi), y) (5)

This loss function is meant to enforce coarse-to-fine opti-
mization of each of the stages in the cascade via supervision
of the intermediate estimates. The intermediate error scored
at the l-th stage of the cascade with respect to the input X
of ground truth y is monitored using the angular error loss
(denoted as L(l)). This is computed based on the product of
the current estimate f(X) with all those preceding it.

4.2. Accuracy Metrics

As in previous works on CCC, the metrics we selected to
evaluate model performance in terms of accuracy provide
insights into the distribution of the angular errors across
the test items. These metrics include the Mean Angular
Error (MAE), the median and the trimean (defined as the
weighted average of the median and upper and lower quar-
tiles) across the test set, indicating how the models per-
formed on average and accounting for outliers. We also
report the MEA on the best 25th and worst 25th and 5th per-
centiles, showing how the model performed on easy, hard,
and very hard inputs, respectively.

4.3. Results

In this section we first present results related to the per-
formance of our proposed models when using the full se-
quences from the TCC dataset, namely performance in pre-
dicting the illuminant of the last frame in each sequence
(the only one for which the ground truth is available) us-
ing all the preceding frames. Performance is discussed both



Model Mean Median Trimean Best 25% Worst 25% Worst 5%

TCCNet 1.99 1.21 1.46 0.30 4.84 6.34
C-TCCNet 1.95 1.22 1.42 0.25 4.78 6.10
TCCNet-C4 1.72 1.08 1.20 0.20 4.33 6.01
C-TCCNet-C4 1.70 0.92 1.13 0.22 4.36 6.05

Table 1: Distribution of the angular error for the proposed methods and TCCNet on the TCC benchmark split (best results are bolded,
second best are underlined).

Model Mean Median Trimean Best 25% Worst 25% Worst 5%

TCCNet 1.98 (0.18) 1.17 (0.14) 1.38 (0.14) 0.29 (0.02) 4.98 (0.50) 6.18 (0.22)
C-TCCNet 1.94 (0.18) 1.14 (0.12) 1.34 (0.10) 0.25 (0.02) 4.91 (0.59) 5.88 (0.66)
TCCNet-C4 1.86 (0.22) 1.14 (0.19) 1.32 (0.22) 0.26 (0.07) 4.66 (0.45) 6.00 (0.61)
C-TCCNet-C4 1.79 (0.23) 1.10 (0.26) 1.25 (0.27) 0.22 (0.04) 4.55 (0.48) 5.71 (0.86)

Table 2: Distribution of the angular error for the proposed methods and TCCNet over 4 training-test splits from the TCC dataset. All
metrics are reported in terms of average and standard deviation (best results are bolded, second best are underlined).

in terms of accuracy and efficiency. Then, we present re-
sults related to the impact on performance of reducing the
number of frames used for illuminant estimation (estimat-
ing frames from now on).

4.3.1 Accuracy on full sequences

In this section we evaluate models accuracy in estimating
an illuminant for the last frame in a sequence (i.e., the shot
frame) by leveraging all the preceding frames.

The TCC dataset comes with a fixed training-test split
(with 2/3 of the data used for training, and 1/3 for testing)
for benchmarking, which is what was used to evaluate the
original TCCNet approach in [19]. For a fair comparison
with results previously achieved on the same benchmark,
we first trained and tested the models (our three proposed
models as well as our re-implementation of TCCNet) on the
split provided with the dataset. These results are presented
in Table 1. For this data split, all our proposed models out-
perform the original TCCNet on all reported metrics (the
only exception is the median error for C-TCCNet, which is
slightly worse). Among our models, those which rely on C4
(C-TCCNet-C4 and TCCNet-C4) show lower errors with
respect to the one that does not (C-TCCNet). In particu-
lar, C-TCCNet-C4 is the best performing model in terms of
measures of central tendency, while TCCNet-C4 achieves
slightly better scores on the easiest and hardest samples.

In addition to the above comparison on the original data
split in [19], we also tested the models on three alterna-
tive 2/3-1/3 splits, to achieve more robust results beyond
the evaluation on a single split. Table 2 reports model per-
formance over the 4 splits tested5, in terms of average and

5The three additional splits have disjoint test sets as in standard cross-
validation. The test set of the original spit has approximately a 33% overlap

standard deviation of the performance metrics. In terms of
sheer numbers, results are consistent with the benchmark
split as all the novel models we propose show better val-
ues than TCCNet on all the evaluation metrics. C-TCCNet-
C4, in particular, shows the lowest values on all the metrics.
TCCNet-C4 performs better than C-TCCNet on the mea-
sures of central tendency, but slightly worse on some of the
extreme samples.

We performed a statistical comparison of the perfor-
mance of each of our proposed models against TCCNet,
focusing on the mean error (first column in Table 2) as a
general measure of central tendency that we used to for-
mally rank our models. The analysis is done via one-
tailed paired t-tests with the Benjamini-Hochberg adjust-
ment [2] to account for multiple comparisons (3 in total)
and effect sizes (a well-recognized indication of practical
significance) measured via Cohen’s D [8]. This statistical
analysis shows significant improvement, with a large ef-
fect size6 for C-TCCNet-C4 (p < 0.05, d = 0.9050), as
well as a significant improvement with a small effect size
(p < 0.05, d = 0.2380) for C-TCCNet. Such findings
suggest that it is the strategy of cascading TCCNet archi-
tectures the aspect of our proposed approaches that has the
more solid contribution in achieving a lower mean error of
the predicted colour of the illuminants.

with the others, on average. We use this approach rather than a full 4-
fold cross-validation because of the amount of time needed to train the
proposed models on one data split (between two and four days depending
on the model).

6Following [8], we consider the effect size large if d ≥ 0.8, medium if
d ≥ 0.6, small otherwise.



Model MAE Time Model size
Avg (Std dev) (s) (MB)

TCCNet 1.98 (0.18) 0.60 72.1
C-TCCNet 1.94 (0.18) 1.84 216.5
C-TCCNet-C4 1.79 (0.23) 3.33 298.6

Avg (Std dev) 1.90 (0.10) 1.92 (1.36) 195.7 (114.7)

Table 3: Models performance in terms of Mean Angular Error
(MAE), over 4 different splits of the TCC dataset, and inference
time, using full sequences.

4.3.2 Efficiency on full sequences

In light of the multiple applications of colour constancy,
ranging from off-line tasks to real-time processing and in-
volving deployment on both low-end and high-end hard-
ware, in this section we investigate the trade-off between
model accuracy and time/space efficiency. In particular, we
focus on the baseline TCCNet model and our two proposed
models that generated the best performance in the previous
section, namely C-TCCNet and C-TCCNet-C4.

Table 4 compares the three aforementioned models in
terms of accuracy, inference time, and model size. Whereas
accuracy is generally the primary concern for off-line tasks,
inference time is particularly relevant for real-time applica-
tions, such as processing the raw data captured by the sensor
of a digital camera, while model size has implications in
the deployment on low-memory hardware (e.g., commod-
ity mobile devices). In Table 4, accuracy is reported as the
Mean Angular Error (MAE) averaged across the 4 training-
test splits described in the previous section. Inference times,
intended for a single input, were measured on an i7-6500U
CPU averaging the data recorded over the 200 sequences
from the test set of the benchmark split of the TCC dataset.
The size of the models is the amount of memory occupied
on the disk by their serialization.

As the table shows, our proposed C-TCCNet-C4 brings
the most substantial accuracy gain, with a 10.61% increase
with respect to TCCNet and an 8.38% increase with respect
to C-TCCNet. However, it is considerably more resource-
intensive, suggesting that C-TCCNet-C4 should be used for
off-line applications, where space and time are less concern-
ing and can be traded in favour of better accuracy (e.g., data
preprocessing upstream of computer vision tasks requiring
intrinsic colour information). In terms of inference time and
model size, TCCNet is by far the top-performing model,
and thus the most suitable option in real-time scenarios and
for deployment in circumstances where memory is limited.
The performance of C-TCCNet lies in the middle of the
other two models: it provides a smaller gain in accuracy
compared to C-TCCNet-C4 and it is still rather demanding
in terms of resources, thus it would be a sub optimal choice
for both real-time and off-line applications.

A factor affecting inference time for all the considered
models is the number of frames used for illuminant estima-
tion (i.e., the estimating frames), which we discuss in the
next section.

4.3.3 Impact of number of estimating frames

Intuitively, a way to reduce inference time for our TCC
models is to perform illuminant estimation using shorter se-
quences of estimating frames, namely use a lower value for
the parameter N in Formula 1. However, it is reasonable to
expect that this approach may impact estimation accuracy,
and as a matter of fact [19] report preliminary results sug-
gesting that this might be the case for TCCNet. These re-
sults involved an informal comparison using full sequences
(as we did in Section 4.3.1) vs. sequences of 5 estimating
frames, consisting of the shot frame and the four contiguous
frames preceding it. Here we provide a more formal anal-
ysis of the impact of sequence length on accuracy and effi-
ciency of both TCCNet and our proposed models, and we
investigate shorter sequences than in [19] to push the bound-
ary toward higher efficiency and monitor how accuracy is
affected. Namely, we first trained and tested our models on
sequences of two frames only (i.e., the shot frame and the
preceding frame), providing the minimum amount of local
temporal information to the model. Next, we looked at se-
quences of three frames, but instead of selecting them to be
contiguous to the shot frame, we considered the first frame
in the sequence, the median one and the shot frame to ascer-
tain the value of bringing more global temporal information
into the process.

Figure 5 shows how models accuracy varies when se-
quence length is two or three, as described above, or full, in
terms of the angular error for all the metrics introduced in
Section 4.2. This plot confirms that there is a trend of re-
duced length generating worse accuracy. However, whereas
going from three to two frames causes a substantial loss in
accuracy (+52% MEA), the loss is much smaller when go-
ing from full sequences to three frames (+19.05% MEA).
This difference is still statistically significant for our best
performing model on full sequences, namely C-TCCNet-
C4, but it is no longer statistically significant for TCCNet
and C-TCCNet7. In contrast with the limited loss in ac-
curacy, using our selected sequences of length three sub-
stantially reduces inference time compared to using full se-
quences. Table 4 provides a direct comparison between ac-
curacy in terms of MAE and inference time (computed as
described in the previous section) when using full sequences
vs sequences of three frames. As the table shows, process-
ing shorter sequences of three frames reduces the inference
time considerably (a 53.25% reduction across models, see

7Accuracy was compared via a one-way ANOVA with post hoc testing
performed via Tukey HSD, which adjusts for multiple comparisons.



Figure 5: Trends of the angular error on Full Sequences (FS) vs 3 Frames (3F) vs 2 Frames (2F).

Model Full sequences 3 frames

MAE Time (s) MAE Time (s)

TCCNet 1.98 (0.18) 0.60 2.31 (0.13) 0.29
C-TCCNet 1.94 (0.18) 1.84 2.29 (0.13) 0.80
C-TCCNet-C4 1.79 (0.23) 3.33 2.20 (0.11) 1.57

Avg (Std Dev) 1.90 (0.10) 1.92 (1.36) 2.27 (0.06) 0.89 (0.65)

Table 4: Models performance in terms of Mean Angular Error (MAE) and inference time, using full sequences vs 3 frames. The MAE is
reported as average over 4 different splits of the TCC dataset and related standard deviation.

last row of Table 4).
Combined, these results indicate that using three frames,

selected as we discussed to capture global temporal infor-
mation over the full sequences, is a good compromise be-
tween accuracy and efficiency, at least for the videos in the
TCC dataset (including sequences of 7.3 frames on average
with minimum length of 3, maximum of 17, and very few
sequences with length below 5 or above 13).

Of the two models that from our analysis resulted to be
most resilient to the reduction of sequence length in terms
of accuracy, namely TCCNet and C-TCCNet, the former is
the one that achieves the best trade-off between accuracy
and efficiency, and thus the most suitable for deployment
in real-time scenarios, where inference time is a prominent
concern. On the other hand, C-TCCNet-C4 still retains the
highest accuracy when trained and tested on full sequences
and thus is the model to consider when time and space re-
sources are not an issue. Interestingly, reducing the number
of sequences as we did, in general, reduces the differences
in accuracy among all models, suggesting that our proposed
strategy of cascading TCCNet architectures makes a differ-
ence in capturing the richer temporal information available
in long sequences.

5. Conclusions and Future Work
In this work, we investigate three novel deep learning archi-
tectures for Temporal Colour Constancy (TCC) that build
on TCCNet, a neural approach that showed the top accu-
racy for this task. The first architecture, named TCCNet-
C4, attempts to improve TCCNet by substituting its back-
bone CNN with C4, i.e., the state-of-the-art for single-frame

CCC. The other two plug TCCNet and TCCNet-C4, respec-
tively, into a cascading strategy. This cascading strategy re-
sulted in a statistically significant improvement in accuracy
over TCCNet when using the full sequences offered by the
TCC dataset, which is, at present, the only collection of data
specifically designed for CCC in the temporal scenario.

We performed a novel analysis of the impact of the se-
quence length and frames selection on accuracy and infer-
ence time, finding that, for some of the models in exam,
shorter sequences can be processed preserving accuracy
while decreasing inference time. Whereas TCCNet proved
to be the best option for real-time applications, especially
benefiting from the speed boost derived from running on a
lower number of frames, our proposed C-TCCNet-C4 pro-
vides the top accuracy when time and space are less of a
concern. Looking ahead, we plan to further evaluate the
performance of the proposed models when using different
numbers and selections of frames preceding the one for
which the illuminant is estimated. This will allow us to as-
sess the size and configuration of the window of frames that
optimizes the trade-off between model accuracy and com-
putational resources needed for training and inference.

With regards to our proposed cascading architectures,
we plan to analyze how model performance depends on
the number of stages in the cascade, both in terms of ac-
curacy and efficiency. For instance, C-TCCNet-C4 lever-
ages a double cascading strategy (i.e., the outer iteration
of the TCCNet-C4 architecture and the inner iteration in-
side the C4 submodule), which lends itself to be fine-tuned.
Furthermore, in these cascading architectures, we applied a
very straightforward approach to the iterative colour correc-
tion of the sequences, that is correcting the whole sequence



based on the estimated illuminant for the shot frame. We
plan to look into more sophisticated corrections (e.g., ac-
counting for an estimate of the illuminant for each frame
across the sequence). Finally, we want to investigate how to
improve the interpretability of our proposed architectures
(e.g., using attention-based methods) to better ground the
reasons for the detected improvements in performance and
to point out possible directions for further refinement.
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