Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1987

Cascading Divide-and-Conquer: A Technique for Designing
Parallel Algorithms

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Richard Cole

Michael T. Goodrich

Report Number:
87-665

Atallah, Mikhail J.; Cole, Richard; and Goodrich, Michael T., "Cascading Divide-and-Conquer: A Technique
for Designing Parallel Algorithms" (1987). Department of Computer Science Technical Reports. Paper
576.

https://docs.lib.purdue.edu/cstech/576

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CASCADING DIVIDE-AND CONQUER:
A TECHNIQUE FOR DESIGNING
PARAIIEIL ALGORITHMS

Mikhail J. Auallah
Richard Cole
Michael T. Goodrich

CSD-TR-665
March 1987
(Revised June 1989)

SIANM J Cuonnrrur) C 19K Socicin for ladustral snd Apphied Mulheanines
Vol 150 Neo X pp aNNLSAZ bunce 1989 s

CASCADING DIVIDE-AND-CONQUER: A TECHNIQUE FOR
DESIGNING PARALLEL ALGORITHMS*

MIKHAILIL J. ATALLAH®, RICHARD COLE%#, aAND MICHAEL T. GOQDRICHS

Absiract. Techniques for paraile! divide-and-conquer are prescnted, resulting in improved parallel
zlgarithms for a number of problems. The problems for which improved algorithms are given include
seczmenl interseciton detcction, trapezoidal decomposition, and planar point location. Efficient parallel
atgorithms are algo given lor fractional cascading. three-dimensional maxima, iwo-set dominance counting,
and visibility from a point. All of the algorithms presented run in Ollog n) time with either a linear or a
sublinear number of pracessors in the CREW PRAM model.

Key words. parallel algorithms, parallel data structures, divide-and-conquer, computational geometry,
fractional cascading, visibility, planar peint location, trapezoidal decompaosition, dominance, intersection
delection

AMS(MOS) subject classifications. 65E05, 68C05, 68C25

1. Introduction. This paper presents a2 number of general techniques for parallel
divide-and-conquer. These techniques are based on nontrivial generalizations of Cole's
recent parallel merge sort result [13] and enable us to achieve improved complexity
bounds for a large number of problems. In particular, our techniques can be applied
to any problem solvable by a divide-and-conquer method such that the subproblem
merging step can be implemented using a restricted, but powerful, set of operations,
which include (i) merging sorted lists, (ii) computing the values of labeling functions
on elements stored in sorted [ists, and (iii) changing the identity of elernents in a sorted
list monotonically. The elements stored in such soried lists need not belong to a total
order, so long as the computation can be specified so that we will never try to compare
twe incomparable elements. We demonstrate the power of these techniques by using
them to design efficient parallel algorithms for solving a number of fundamental
probiems from computational geometry.

The general framework is one in which we want to design efficient parallel
algorithms for the CREW PRAM or EREW PRAM models. Recall that the CREW
PRAM model is the synchronous shared memory mode! in which processors may
simultaneously read from any memory location but simultaneous writes are not aliowed.
The EREW PRAM model does not allow for any simultaneous access to a memaory
cell. Our goal is 1o find algorithms that run as fast as possible and are efficient in the
following sense: if p(n) is the processor complexity, 1(n) the parallel time complexity,
and seq(n) the time complexity of the best-known sequential algorithm for the problem

* Received by the editors September 14, 1987: accepted for publication (in revised form) August 12,
1988. This paper appeared in preliminary form as [3] and as portions of [17].

* Department of Computer Science, Purdue University, West Lafaveute. Indiana 47907. The research
of this author was supported by the Office of Naval Research under graats NOOG14-84-K-0502 and NO0OO| 4-86-
K-0689, and by the National Science Foundation under grant DCR-84-51393, with matching funds from
ATET.

% Courant institete, New York University, New Yoark, New York 10012. The research of this author
was supportied in part by National Scicnce Foundation grants DCR-84-01633 and CCR-8702271, and by
an Office of Naval Research grant N0O0014-85-K-0046.

§ Depantment of Computer Science, Johns Hopkins University, Baltimore. Maryland 21218. The research
of this author was supporied by Office of Naval Research grants N00O14-84.K-0502 and NO00-86-K-0689,
National Science Foundation grants DCR-84-51393, with matching funds from AT&T, and CCR-88-10568,
and a David Ross grant from the Purduc Research Foundation.

400

500 M, J. ATALLAH, R. COLE, AND M. T. GODDRICH

under consideration, then ((n} * p(n}= O(seqg(n}). If the product {(n} * p(n) achieves
the sequenual lower bound for the problem, then we say the algorithm is oprimal
When specilying the processor complexity, we omit the “'big oh,” c.g., we say *p
processors” rather than “O(n) processors™; this is justified because we can always
save a constant {actor in the number of processors at a cost of the same constant (actor
in the running time. In all of the problems listed below, we achieve f(n) = O(log n)
and, simultaneously (except lor planar point location), an optimal t{n) * p(n).
Previous work on parallel divide-and-conquer has produced relatively few
algorithms that are optimal in the above sense. Exceptions 10 this include some of the
previous algorithms {or the convex hull problem [t], [4], [6],[18],[27] and the problem
of circumscribing a convex polygon with a2 minimum-area triangle [1]. Unlortunately,
each of these approaches was very problem-specific. Thus, there 1s a need {or techniques
of wider scope.
This s 1n fact the motivation for our work, for we give a number of general
techniques for efficiently solving problems in parailel by divide-and-conquer. We model
the divide-and-conquer paradigm as a binary tree whose nodes contain sorted lists of
some kind. The computation involves computing on this tree in a recursively defined
bottom-up fashion using lists of items and [abeling functions defined for each node
in the tree. In Cole’s scheme [13], the list at a node was defined to be the sorted merge
ol the two lists stored at its children. In our scheme. however, the lists at a node of
the tree can depend on the lists of its children in more complex ways. For example,
in our solution to the segment inrersection detection problem, the lists at a node depend
on computing, in addition to merges, set difierence operations that are not directly
solvable by the “cascading’™ method used by Cole [13]. Such operations arise here
because the lists at a node contain segments ordered by their intersections with a
vertical line (the so-calied “*above™ relationship), which is obviously not a total order.
One may be tempted to try to solve this problem by delaving the performance of these
set difference operations until the end of the computation. Unfortunately, this is not
feasible for many reasons, not the least of which s that this approach could lead to
a situation in which a processor tries to compare two incomparable items. Nor does
it seem possible to explicitly perform the set difference operations on-line without
sacrificing the time-efficiency of the cascading method. QOur solution avoids both of
these problems by using an on-line “identity-changing™ technique.
Another significant contribution of this paper ts an optimal parallel construction
of the “fractional cascading™ data structure of Chazelle and Guibas [12]. This too is
based on a generalization of Cole's method [13] in the sense that instead of having
the compuation proceeding up and doawn a tree, i now moves around a directed
graph {possibly with cycles). Qur solution to fractional cascading is quite different
from the sequential method of Chazelle and Guibas (their method relies on an
amortization scheme to achieve a linear running timel.
The following is a list of the problems [or which our techniques result in improved
complexity bounds. Unless otherwise specified, each performance bound is expressed
as a pair {{(n}, p(rn)), where t(n) and p(n) are the time and processor complexities,
respectively, in the CREW PRAM model. .
Fractional cascading, Given a directed graph & =(V, E), such that every node v
contains a sorted list C{v), construct a data structure that, given a walk (v, 02, * - -, U,)
in G and an arbitrary element x, enables a single processor Lo locate x quickly in each |
C(v,), where n=|V|+][E|+Y _,|C(v). In [12] Chazelle and Guibas gave an elegant !
O(n} \ime, O(n) space, sequential construction, where n=% _,|C(v)]. We give a |
(log n, n/log n) construction, '

CASCADING DIVIDE-ANMD.CONQUER 501

Trapezoidal decomposition. Givenaset S of 1 line segments in the plane, determine
for each segment endpoint p the first segment “stabbed™ by the vertical ray emanating
upward {and downward} (rom p. A (log” n, n) solution to this problem was given by
Aggarwal et al. in [1], later improved 1o (log n log log i1, n) by Atallah and Goodrich
in [5]. We improve this 10 (log m, n).

Planar point location. Given a subdivision of the plane into (possibly unbounded)
polygons, construct, in parallel, a data structure that, once buiit, enabies one processor
to determine for any query point p the potygonal face containing p. Let Q(n) denote
the time for performing such a query, where n is the number of edge segments in the
subdivision. A (log™ n, n), Q(n)= O(log” u) solution was given by Aggarwal et al. in
(1], later improved o (log n loglog n, n}, Q{n)=O(log n) by Atallah and Goodrich
in [5]. In [14] Dadoun and Kirkpatrick further improved this 1o (log n log™ n, n),
Q(n) = Ollog n). We give a (log n, n), Q(n)= O{log n) solution.

Segmen(intersection detection. Given a set S of n hine segments in the plane,
determine if any two segments in S intersect. A (log” n, n) solution was given in (1],
later improved to (log n log log n, n) in [3]. We improve this to (log n, n).

Three-dimensional maxima. Given a set S of n poinis in three-dimensional space,
determine which points are maxima. A maximum in S is any point p such that no
other point of S has x, y, and z coordinates that simultaneously exceed the correspond-
ing coordinates ol p. A (log n log log n, n} solution was given in [5]. We improve this
to (log m, n}. .

Two-ser dominance counting. Given a set A= {9,9:, - . q} and a set B=
{ri,ra, -+, ru} of points in the plane, determine for each point r; in B the number of
points in A whose x and v coordinates are both less than the corresponding coordinates
of r;. The problemsizeisn=14+m. A (log n log log n, n) solution was given in {5]. We
improve this to (log n, n).

Visibilitv from a point. Given n line segments such that no two intersect {excepr
posstbly at endpoints) and a point p, determine that part of the plane visible from p-
if all the segments are opaque. A (log n log log n, n) solution was given in [5]. We
improve this to {log n, n).

We recently learned that Reif and Sen [24] solved planar point location, trapezoidal
decomposition, segment intersection and vistbility in randomized O(log n) time using
O(n) processors in the CREW PRAM model. All of our algorithms are deterministic.

This paper is organized as follows. In § 2 we present a generalized version of the
cascading merge procedure and in § 3 we give our method for doing fractional cascading
in parallel. In § 4 we show how to apply the fractional cascading technique 1o a data
structure we call the plane sweep tree, showing how to solve the trapezoidal decomposi-
tion and point location problems. In § 5 we show how 1o extend the cascading merge
techntque to allow for cascading in the “above” partial order of line segments, giving -
solutions to the problems of building the plane sweep tree and solving the intersection
detection probiem. In §6 we use the cascading divide-and-conquer technique to i
compute labeling functions and show how to use this approach to solve three- !
dimensional maxima, two-set dominance counting, and visibility from a point. Finally,
in § 7, we briefly describe how most of our algorithms can be implemented in the
EREW PRAM model with the same time and processor bounds as our CREW PRAM
algorithms, and we conclude in § 8.

2. A generalized cascading merge procedure. In this section we present a tech nique :
for a generatized version of the merge sorting problem. Suppose we are given a binary i
tree T (not necessarily complete) with items, taken {rom some total order, placed at !

502 M. J. ATALLAH, R, COLE. ANI? M. T. GOODRICH

the leaves of T, so thar each leaf contains at most one item. For simplicitv, we assune
that the items are distinct. We wish to compute lor each internal node ve T the sorted
list U(v) that consists of all the items stored in descendant nodes of v (See Fig. 1)
In this section we show how to constrict U(v) for every node in the tree in O(height (TH
time using | 7| processors, where |T| denotes the number of nodes in T. This is g
generalization of the problem studied by Cole [13], because in his version the tree T
is complete. Without loss of generality, we assume thal every internal node v of T
has two children. For if v has only one child then we can add a child to v (a leaf
node) that does not store any items {rom the total order. Such an augmerntation wil]
at most doubie the size of T and does not change its height.

Need to construct

U(v) = (4,12,13,50,103) o

4 20

FiG. |. An example of the generalized merge problem.

Let a, b, and ¢ be three items, with a = b. We say cis betweena and b ila<c=b.
Let two sorted (nondecreasing) lists A=(a,, a.,---,a,) and B=(b,, b, - -, b,_) be
given. Given an element a, we define the predecessor of a in B to be the greatest
element in B that is less than or equal to a. If @ < b,, then we say that the predecessor
of a 1s —0. We define the rank of a in B to be the rank of the predecessor of a in B
(—o0 has rank zero). We say that A is ranked in B if for every element in A we know
its rank in B. We say that A and B are cross-ranked if A is ranked in B and B is
ranked in A. We define two operations on sorted lists. We define AU B to be the sorted
merged list of all elements in A or B. If B is a subset of A, then we define A~ B 10
be the sorted list of the elemented in A that are not in B.

Let T be a binary tree. For any node v in T we let parent{v), sibling(v), Ichild (v),
rchild (v), and depth(v) denote the parent of v, the sibling of v, the left child of v, the
right child of v, and the depth of v (the root is at depth zero), respectively. We also
let root(T) and height(T) denote the root node of T and the height of T, respectively.
The altitude, denoted ali(v), is defined alt(v) = height{T) — depth(v). Desc(v) denotes
the set of descendant nodes of v {including v itself).

Let a sorted fist L and a sorted list J be given. Using the terminology of Cole
[13], we say that L is a ¢c-cover of J if between each two adjacent items in (—c0, L, ©)
there are at most ¢ items from J (where (—oo, L, co) denotes the list consisting of —c0,
followed by the elements of L, followed by o). We let SAMP.(L) denote the sorted

CASCADING DIVIDE-AND-CONQUER 503

list consisting of every cth element of L, and call this list the c-sample of L. That is,
SAMP.(L) consists of the cth element of L followed by the {2¢)th element of L, and
50 On.

The algorithm for constructing U(v) for each v € T proceeds in stages. Intuitively,
in each stage we will be performing a portion of the merge of U(lchild (v)) and
U(rchild (v)} to give the st U(v). After performing a portion of this merge we will
gain some insight into how to perform the merge at v's parent. Consequently, we will
pass some of the elements formed in the merge at v lo v's parent, so we can begin
performing the merge at v's parent.

Specifically, we denote the list stored at a node v in T at stage s by U, (v). Iniually,
Up{v) ts empty for every node except the leal nodes of T, in which case Uy(v) contains
the item stored at the leaf node v (if there is such an item). We say that an internal
node v 1s acrive af stage s il |s/3| Salt(v)=s, and we say v is full ar stage s if
alt(v) = |5/3|. As will become apparent below, if a node v is (ull, then U(v)y= U(v).
For each acuve node ve T we define the list U!, ,(v) as follows:

SAMP,(U.(v)) if alt{v) = 5/3,
Uiri{(v) ={ SAMP(U.(v)) If alt(p)=(s—1)/3,
SAMP,((U.(v)) il alt(v)=(s~2)/3.

At stage s+ 1 we perform the following computation at each internal node v that is
currentlv active.

Per-stage computation {v,s+1). Form the two lists U, (lchild (£)) and
U+ (rchild (v)), and compute the new list

User(v) = UL, (Ichild (v))U UL, ((rehild (v)).

This formalizes the notion that we pass information from the merges performed
at the children of v in stage s 1o the merge being performed at v in stage 5+ 1. Note
that until v becomes full, U, (v) will be the list consisting of every fourth element
of U.(v). This continues 1o be true about U, {v) up to the point that v becomes full.
Il s, 1s the stage at which v becomes full (and U,{v)= U(v)), then at stage s.+1,
Li(v) is the two-sample of U,(v), and, at stage s, +2, Uin(v)=Ulv) (=U(v)).
Thus, at stage s, +3, parent(v) is full. Therefore, after 3 * height(T) stages every node
has become [ull and the algorithm terminates. We have vet to show how to perform
each stage in O(1) time using n processors.

We begin by showing that the number of items in U.si{v) can be only a little
more than twice the number of items in U,(v), a property that is essential to the
construction.

LEMMA 2.1. For any stage s =20 and any node ve T, | U, e {0)] Z 21U (v)] + 4.

Proof. The proof is by induction on s.

Basis (s =0). The claim is clearly true for s = 0.

Induction srep (s> 0). Assume the claim is true for stage s—1. If v is full (i.e.,
alt{v)=|s/3]), then the claim is obviously true, since U..,(v)= U, (v} = U(v). Con-
sider the case where either the children of © were not full at stage s or had just become
full at stage s. We know that U, ,(v)=U’,,(x)U Uii(y), where x = Ichild(v) and

504 M.), ATALLAH. R. COLE. AND M. T. GOODRICH

¥ =rchild (v). In addition, we have the following:

f iy
|Uiei(0)] = [{ U‘:XHJ + [’ L':"I ”J (from definitions)

114

AU, (x)|+4 JU_ () +4 - i
[| ()] J%W—] J (by induction hypothesis)

4 4
g:([lu"'(x”J+[!U“'(-")IJ)+4
4 4

=2|U,(v)]+4.

The case when the children of v are full at stage s — 1 is similar {except that one divides
by 2 or 1 instead of 4). Actually, it is simpler, since in this case the children of v were
full in stage s —1; hence, the step using the induction hypothesis can be replaced by
a simple algebraic substitution step. 0

In the next lemma we show that the way n which the U.(v)'s grow is “well
behaved.”

LEMMA 2.2. Let {a, b] be an interval with a, b e (—c0, U (v}, c0). If [a, b] intersects
k+1 items in (—co, Ul(v),), then it intersects ar most §k +8 items in U,(v) for al
k=1 and s=1.

Proof. The proof is by induction on s. The claim is initially true (for s = 1).
Actually, for any stage s, if {J.{v) is erﬁpty, then U,_,{v) contains at most three ilems,
hence, U,(v) contains at most ten elements, by the previous lemma. Also, il U!(v)
contains one item, then U,_,(v) contains at most seven items, hence, U, (v) contains
at most 18 items, by the previous [emma. At most 15 of these items can be between
any two adjacent items in (~cc, U(v),), since the item in U’(v) was the fourth ltem
in U,_,(v) by definition.

Inductive step (assume true {or stage s5). Let [a, b] be an interval with a, b
both in the list (—oo, U, ,(v), ®), and suppose [a, b] intersects K+ 1 items in
(=0, Ui, (v),). The lemma is immediately true if » was full stage 5, since the
smaliest sample we take is a four-sample. So, nexi, suppose that either the children
of v are not full or have just become full in stage 5. Let g be the number of items
in (—o0, U, (v),) intersected by [a, b]. Recall that Ul(v)=
U Uchild (v))U U (rehild (v)). Let [a,, b,] (respectively, [a., b.]) be the smallest
interval containing [a, b] such that a,, b, s(—co, Us(lchild (v)), o) (respectively,
as, bye (—oo, Ui(rchild (v}),)). Suppose the interval [a,, b,] intersects h + 1 itemns in
the list (-0, Ui(lchild (v)),®©) and [a., b,] intersects j+1 jtems in
(—co, U(rchild (v)),). Note that h+j=g. By the induction hypothesis, [a,, b,]
intersects at most 841+ 8 items in U,(Ichild (v)), and hence at most (8h+8)/d=2h+2
ttems in U, (lchild (v)). Likewise, [a., b.] intersects at most 2j+2 items in
U'si(rchild {v)). The definition of U, (v) implies that g=4k+ . Therefore, since
Uini(v) = U . (Ichild (v))U U, (rchild (v}), [a, b] intersects at most (2h+2)+
(2j+2) items in U, (v), where (2h+2)+(2j+2)=(2h+2)+(2(4k—h+1)+2) =
8k +38.

The proof for the case when the children of ¢ were [ull in stage 5s—1 is similar.
Actually, itis simpler, since the induction steps can be replaced by algebraic substitution
sieps in this case. O

Cororrary 23, The list (—co, Uj(v),©) is a four-cover Jor Ui, (v), for
all s = 0. J

CASCADING DIVIDE-AND-CONQUER 505

This corollary is used in showing that we can perform each stage of the merge
procedure in O(1) time. In addition to this corollary, we also need to maintain the
following rank information at the start of each stage s:

(1} For each item in U'(v): its rank in U(sibling(v)).

(2) For each item in Ul{v): its rank in U (v) (and hence, implicitly, its rank
in UL, (v)).

The lemma that follows shows that the above information is sufficient 10 allow us
to merge U, (Ichild (v)) and U, (rchild (p)) into the list U, (v} in O(1) time using
[U.s(v)| processors.

LeMMA 2.4 (THE MERGE LEMMA) [13]. Suppose we are given sorted lisis A_, A', |,
B, B.s\, Ci, and C.,,, where the following {input} conditions are true:

(1) A, =8B.UCI;

(2) ALy is a subset of A,;

(3} B{ is a c,-cover for B, ;

(4) C; is a ca-cover for Ci,,;

(5) B: is ranked in B’ ,,;

(6} C; is ranked in C!,;

(7} B, and C' are cross-ranked.

Then in O(1) time using |B', || +|Ci. | processors in the CREW PRAM muodel, we
can compute the following (outpur compurarions):

(1) the sorted list A, =B.,,UC'.; N

(2) the ranking of A, in A, ;

(3) the cross-ranking of B.,, and C',,. 0

We apply this lemma by setting A, = U, (v), AL, = U’ (), Ay, = U, (v), Br=
Ulx), Biy=UL(x), Ci=U{y), and ClL, = U, (v), where x=lchild (v) and
y=rchild (v). Note that assigning the lists of Lemma 2.4 in this way satisfies input
conditions (1)-(4} from the definitions. The ranking information we maintain from
stage 1o stage satisfies input conditions (5)-(7). Thus, in each stage 5, we can construct
the list U, ., (v} in O(1} time using | U, ,(v)| processors. Also. the new ranking informa-
tiont (of output computations (2) and (3}) gives us the input conditions {5)-(7) for the
next stage. By Corollary 2.3 we have that the constants ¢, and ¢, (of input conditions
{3) and (4)} are both equal to four. Note that in stage s it is only necessary to store
the lists for s —1; we can discard any lists lor stages previous to that.

The method for performing ali these merges with a 1otal of |T| processors is
basically to start out with O(1} virtual processors assigned to each leaf node, and each
time we pass k elements (rom a node v to the parent of v (to perform the merge at
the parent}, we also pass O(k) virtual processors to perform the merge. When v's
parent becomes full, then we no longer “store™ any processors at v. (See (17] for
details.) There can be at most O(n) elements present in active nodes of T for any
stage s (where n is the number of leaves of T'), since there are n elements present on
the {ull level, at most n/2 on the level above that, n/8 on the level above that, and so
on. Thus, we can perform the entire generalized cascading procedure using O(n) virtual
processors, or n actual processors (by a simple simulation argument). This also implies
that we need only O(n) storage {or this computation, in addition to that used for the
output, since once a node v becomes full we can consider the space used for U(v) to
be part of the output. Equivalently, if we are using the generalized merging procedure
in an algorithm that does not need a U(v) list once v’s parent becomes full, then we
can implement that algorithm in O(n) space by deallocating the space for a U{s) list
once it is no longer needed (this is in fact what we will be doing in § 6).

506 M.). ATALLAH. R. COLE. AND M. T. GOOBRICH

[t will often be more convenient to relax the condition that there be at most One
itemn stored at each leal. So, suppose there is an unsorted set A(p) (which may be
empty) stored at each leaf. In this case we can construct a tree 7" (rom T by replacing
each teal v of T with 2 complete binary tree with |[A(v)| leaves, and associating each
item in A(v} with one of these leaves. T° would now satisfy the conditions of the
method outlined above. We incorporate this observation in the following theorem,
which summarizes the discussion of this section.

THEOREM 2.5. Suppose we are given a binary tree T such that there is an unsorieq
set A(v) (which may be empty) stored at each leaf. Then we can compute, for each node
ve T, the list U(v), which is the union of all items stored ar descendents of v, sorted in
an array. This computation can be implemented in O(height(T) + log (max, |A(»)])) time
using a toial of n+ N processors in the CREW PRAM compurational model, where n is
the number of leaves of T and N is the total number of items stored in T.

Proof. The complexity bounds follow from the fact that the tree T” described
above would have height at most O(height(T)+log (max,|A(v)])) and ITY is
O(|T]+ N). 0

The above method comprises one of the main buiiding blocks of the algorithms
presented in this paper. We present anather important building block in the following
secrion.

3. Fractional cascading in parallel. Given a directed graph G =(V, E), such that
every node v contains a sorted list C(v), the fractional cascading problem is to construct
an O(n) space dara structure that, given a walk (»,, vs,- - -, v} in G and an arbitrary
element x, enables a single processor to locate x quickly in each C(v;), where n=
IVI+[E|+Y.. v |C(v)l. Fractional cascading problems arise naturally from a number
of computational geometry problems. As a simple example of a fractional cascading
problem, suppose we have five different English dictionaries and would like to build
a data structure that would allow us 10 look up a word w in all the dictionaries,
Chazelle and Guibas [12] give an elegant O(n) time sequential method for constructing
a fractional cascading data structure from any graph G, as described above, achieving
a search ume ol O{log n+ m log d(G))}, where d(G) is the maximum degree of any
node in G. However, their approach does not appear to be “parallelizable.”

In this section we show how to construct a data structure achieving the same
performance as that of Chazelle and Guibas in O(log n) time using frn/log n] pro-
cessors. Our method begins with a preprocessing step similar to one used by Chazelle
and Guibas where we “expand” each node of G into two binary trees—one for its
in-edges and one for its out-edges—so that each node in our graph has in-degree and
out-degree at most 2. We then perform a cascading merge procedure in stages on this
graph. Each catalogue C(v) is “fed into™ the node v in samples that double in size
with each stage and these lists are in turn sampled and mérged along the edges of G.
Lists continue to be sampled and “pushed™ across the edges of G (even in cycles) for
a logarithmic number of stages, at which time we stop the computation and add some
links between elements in adjacent lists. We conclude this section by showing that this
gives us a fractional cascading data structure, and that the computation can be
implemented in O(log n) time and O(n) space using [n/log n] processors.

We show below how to perform the computations in O(log n) time and O(n)
space using n processors. We will show later how to get the number of processors
down to [n/log n] by a careful application of Brent's theorem {11).

Define In(v, G) {respectively, Out{v, G)) to be the set of all nodes w in V such
that (w, v)€ E (respectively, (v, w)€ E). The degree of a vertex v, denoted d(v), is

CASCADING DIVIDE-AND.CONQUER 507

defined as d(v)=max {|In{v, G)|, |Ous(v. G)|}. The degree ol G, denoted d(G), is
defined as d(G) =max,. v {d(v)}. A sequence (v, 0, - - -, 1) of vertices is a walk il
{(v,va}eE forallief{1,2,-- m—1)}.

As mentioned above, we begin the construction by preprocessing the directed
graph G to convent it into a directed graph G =(f’. £) such that d(é)§2 and such
that an edge (v, w) in G corresponds (o a path in &G of length at most O{log d(G)).
Specifically, for each node ve V we construct two complete binary trees T\" and T2,
Each lealin T (respectively, T7") corresponds o an edge coming into v (respectively,
going out of v). So there are {In(v, G}| leaves in T\ and |Out(v, G)| leaves in T°.
(See Fig. 2.) We call T the fan-in tree for v and T2 the Jan-out tree for v. An edge
e = (v, w) in G corresponds 10 a node e in G such that e is a leal of the fan-out tree
for v and e is aiso a leafl of the fan-in tree for w. The edges in T'" are all directed up
towards the root of T, and the edges in T¢™ are all directed down towards the leaves
of T.". For each ve V we create 2 new node v’ and add a directed edge from v’ to
v, a directed edge from the root of T to v, and an edge {rom v’ to the root of f i
We call v’ the gateway for v. (See Fig. 2). Note that d((G)=2. We assume that for
each node v we have access to the nodes in In(co, é) as well as those in Our(v, G‘).
We structure fan-out trees so that a processor needing 10 go from v to w in G, with
(v, wi€ E, can correcly determine the path down 7°" 10 the leafl corresponding to
(v, w). More specifically, the leaves of each fan-out tree are ordered so that they are
listed from left 1o right by increasing destination name, i.e., if the leaf in " for
e=(v, u) is to the left of the leaf for f=(v, w), then u < w. (The leaves of T'" need
not be sorted, since all edges are directed towards the root of that tree.) If we are not
given the Qut(v, G} sets in sorted order, then we must perform a sort as a part of the
o™ construction, which can be done in O(log d(G)) time using n processors using
Cole’s merge sorting algorithm [13]. We also store in each internal node z of T2" the
leal node u that has the smaliest name of all the descendants of z.

(<) (d)

Frc. 1. Converitng G inio a bounded degrec graph G. A node vin G (a) corresponds iniv a node v adjacert
fo iis gateway v°, which is connected to the fan-in tree and the fan-out iree for v (b). An edge ¢ in'G (c) is .
converted into @ node in G which corresponds to a leaf node of two trees (d). |

508 M. 1. ATALLAH. R. COLE, AND M. T. GOODRICH

The above preprocessing step is similar to a preprocessing siep used in the
sequential fracuonal cascading algorithm of Chazelle and Guibas [12]. This is where
the resemblance to the sequential algorithm ends, however.

The goal for the rest of the computation is to construct a special sorted list B(yp),
which we call the bridge lisi, for every node ve V. We shall define these bridge lis(s
so that B(v)=C(v) il visin V;if visin V but notin V, then for every (v, w)e E if
a single processor knows the position of a search item x in B(v), it can find the position
of x in B{w)} in O(l) time.

The construction of the B(v)'s proceeds in stages. Let B.{v) denote the bndge
list stored at node ve V at the end of stage s. Initially, Bo(v)= for all » in ¥
[ntuitively, the per-stage computation is designed so that if v came from the original
graph G (i.e.. ve V), then v will be “feeding™ B, (») with samples of the catalogue
C{(v) that double in size with each stage. These samples are then cascaded back intg
the gateway v’ [or » and from there back through the fan-in tree for v. We will also
be merging any samples ““passed back™ from the (an-out tree {or v with B.{¢v"), and
cascading these values back through the fan-in tree for v as well. We iterate the
per-stage computation for [log N | stages, where N is the size of the largest catalogue
in G, We will show that after we have completed the last stage, and updated some
ranking pointers, G will be a fractional cascading data structure for (. The details

follow.
Recall that Bo(v) =@ forall ve V. For stage s =0, we define B, ,(v) and B..,(v)
as {ollows:
B (u)_{SAMP,,(B,(u)) ifve V-V,
TR SAMP, L (Cv) ifveV,
Bl (w))U By (wy) if Out(p, &) = {w,, wal,
B, (v)=¢ B, (w) if Qui(o, (-:‘17)={1.t']'1
%) il Out(v, G) =

where ¢(s)=2"2"1"" and N is the size of the largest catalogue. The per-stage
computation, then, is as follows.

Per-stage compuration (v, s+ 1}. Using the above definitions, construct B,, (v}
for all ve V in parallel {using |B..,(v)| processors for each v).

The function ¢(s} is defined so that if ve V, then as the computation proceeds
the list B, (v} will be empty for a while. Then at some stage s+ L, it will consist of
a single element of C(v) (the (2192 N1=syih element), in stage s+2 at most three
elements (evenly sampled), in stage s+3 at most five elements, in stage s +4 at most
nine elements, and so on. This continues until the final stage (stage [log N1}, when ,
B, (v)= C(v). Intuitively, the c(s) funciion is a mechanism for synchronizing the
processes of ““feeding” the C(v) lists into the nodes of G so that all the processes
complete at the same time. We show below that each stage can be performed in O(1)
time, resulting in a running time of the cascading computations that is O(log N) (plus
the time 1t takes time to compute the value of N, nameiy, O(log n}). The following
important lemma is similar to Lemma 2.1 in that it guarantees that the bridge lists do
not grow “too much™ from one stage to another.

Lemma 3.1, For anv stage s 20 and any node ve T, | B (v} =2|B. (v} +4.

Proof. The proof is by induction on s.

Basis (s =0). The claim is clearly true for s =0.

Inducrtion step (5 > 0). Assume the claim is true for stage s—1. [f v V, then the
ciaim follows immediately from the definition of ¢(s), since in this case B,, (v} and

CASCADING DIVIDE-AND-CONQUER 509

B.(v) are both samples of C(r) with B, (v) being twice as fine us Buv), ie.
| B (0] Z2|B(v)]+1.))

Consider the case when ve V — V.and Out(v, G) ={w,, w.). We know in this case
B (v} =B (w,)U B, (w,). Thus, we have the following:

1B (o) = [@—"J +[

4

1 J (from definitions)

= [213'_'(:')|+4J +I\2I B"'(‘:':)HA;J {by indUCIion'h)’pOLhcsiS)
gz([lB-Thl(WIJJ - ’\IB‘FI(W:)IJ) 4

4 4
=2|B,(v)|+4. '

For the case when ve V— V and Our(v, G) conrains only one node, w, the argument
is similar and, in fact, simpler. We simply repeat the above argument, replacing w,
with w and eliminating those terms that contain Wa. D

In the next lemma we show that the way in which the B_(v)s grow s “well
behaved,” much as we did in Lemma 2.0,

Lemma 3.2, Let [a, b] be an inrerval with a, be (-, Bi(v),). If [a, b] intersects
k+1 items in {(—0, B.(v),), then it intersects ar most 8k +8 items in B.(v) for all
kzl ands= 1,)

Proof. The proof is structurally the same as that of Lemma 2.2, since that lemma
was based on a merge definition similar to that for B,,,(v). g

CoROLLARY 3.3. The list {—c0, Bi(v),) is a Jour-cover for B, (v), for s =0.

CororLLary 3.4. The fist (-, B (v},) is a 16-cover Jor B.(w), for s=0 and
(v, w)e £.

The first of these two corollaries implies that we can satis{y all the c-cover input
conditions for the Merge Lemma (Lemma 2.4) for performing the merge operations
for the computation at stage s in O(1) time using n, processors, where n, =Y .ol 8:(v).
We use the second corollary to show that when the computation is completed we will
have a fractional cascading data structure {after adding the appropriate rank pointers).
We maintain the following rank information at the start of each stage s.

(1) For each item in B(v): its rank in B!(w) if In(v, G)}N In{(w, G) 1S nonempty,
re., if there is a vertex u such that (4, v)e E and (u, w)e E.

(2) For each item in B(v): its rank in B.(v) (and thus, tmplicitly, its rank in
Bl i(v)).

By having this rank information available at the start of each stage s, we satisfy
all the ranking input conditions of the Merge Lemma. Thus, we can perform each
stage in O(1) time using n, processors. Moreover, the output computations of the
Merge Lemma allow us to maintain all the necessary rank information into the next
stage. Note that in stage s it is only necessary to store the lists for s — l; we can discard
any lists [or stages previous to that, as in the generalized cascading merge.

Recall that we perform the compuration for [log N stages, where N is the size
of the largest catalogue. When the computation completes, we take B{v}= B.(v) for
all ve V, and for each (v, w)e E we rank B(v) in B(w). We can perform this ranking
step_by the following method. Assign a processor 10 each element b in B(v) for ali
ve Vin paraliel. The processor for & can find the rank of b in each B'(w) such that
we Out(v, G) in O(1) time because B,(v) contains B.(w) as a proper subset (Bi(w)
was one of the lists merged 10 make B.{v)). This processor can then determine the

510 M. I. ATALLAH, R. COLE, AND M, T. GOODRICH

rank of b 1n B{w)= B (w) for each we Oui(u, G)in O(1} time by vsing the ranking
information we maintained (from B (w} o B,(w)) for stage s {rank condition (2)
above}.

Given a walk W=(p,,---, ¢}, and an arbitrary element x, the guery that asks
for locating x in every C(v,) is called the mulrilocation of x in (v, - -, v,). To perform
a muliilocation of xﬂin a walk (v,, -+, v,), we extend the walk W in G (o its
corresponding walk W= (5,,---,¢,) in G and perform the corresponding multiloca-
tion in &, similar to the method given by Chazelle and Guibas [12] for performing
multilocations in their data structure. The multilocation begins with the location of x
in B{6,) = B(v)), the gateway bridge list for v,, by binary search. For each other vertex
in this walk we can locate the position of x in B(#;) given its position in B(5,_,) in
O(1) ume. The method is to follow the pointer from x's predecessor in B(5,_,) to the
predecessor of that element in B(#) and then locate x in B{5;) by a linear search from
Lthat position (which will require at most 15 comparisons by Corollary 3.4). In addition,
il 6, corresponds {o a gateway v', then we can locate x in C{v) in O(1) time given its
position in B(v‘) by a similar argument. (See Fig. 3.) Since each edge in the walk W
corresponds to a path in W of length at most O(log d(()), this implies that we can
perform the multilocation of x in (v, - -, v,) in O(log]B(p})|+ m log d{G})) time.
In other words, G is a fractional cascadmg ddta structure. We show that G uses O(n)
space in the following lemma.

m &
O_’_ﬂ—_;o\eM
v v U3

A multilocation in ¢ (in &):

B(wi) Bla) B(w) Ble) B(vs

binary — — — —
search — — — —

M; R n

LL LT]

C(Ul)
C(Uz)

" F1a. 3. Mulititecating an element x in (v, vy, ty).

LEmMA 3.5. Let n, denote the amount of space that is added to G because of the
presence of a particular catalogue C{v), ve V. Then n =2|C(v)|.

Proof. Recall that while constructing the bridge lists in G we copy one-fourth of
the elements in each bridge [ist 1o at most two of its neighbors. Thus, we have the

CASCADING DIVIDE-AND-CONQUER S11
following:
n Z|C(o)|+2[|C(e))/4) +2°|
=2|C(v)].

Col/4°) +2*(ICw)l/4"] +- - -

analysis.} O

CoroLLARY 3.6. The toral amount of space used by the fractional cascading data

Proof. The total amount of space used by the (ractional cascading data
structure is O(|V[+|E|+Y . 1B(v)]). Since all the bridge lists start out empty,
Y e | Bw) =ZUE}, n,. The previous lemma implies that 2oy
Therefore, since |V|+|E]| is O(|V{+|E]) by the definition of G, the to1al amount of
space used by the {ractional cascading data structure is O(n). 0
holds even if G contains cycles. This corollary, then, implies that we can construct a
fractional cascading data structure G from any catalogue graph G in O(log nn) time
however, how to assign these n processors to their respective jobs.

The method for performing the processor ailocation is as follows. Initiaily, we
ve V— V. This requires at most 2n virtual processors; hence, can be easily simulated
with n actual processors. Each time we pass & elements from a node v to a node w
to go with them. When we say that we are passing a virtual processor from some node
v to some node w, all we are actually changing is the node to which that processor is
processors assigned to ve V to do this. To see that this also suffices for ve V-V note
that at the beginning of stage s node v has {B,_,(v)| elements (and processors). We
s and receive |B,(v)| elements (and processors). Consequently, there are enough
processors to perform the merge to construct B,(v) and repeat the give-away procedure
another node, each processor p, can maintain not only which node it is assigned but
p. can also maintain m,, the number of other processors that are assigned 1o that node,
Thus, we have the following lemma.

Lemma 3.7. Given any caralogue graph G, we can construct a fractional cascading
PRAM madel. O ,

Thus, we can solve the fractional cascading problem in O(log n) time using n
better. The following lemma enumerates two important situations where the method
just described can be improved. |
Out(v, G) in sorted order for cach ve V, then the total number of operations performed
by the fractional cascading algorithm is O(n).
construction of the graph G (without any bridge lists) requires only O(n) operations,
since we do not have 1o perform any sorting. Let us account for the total work performed

(This is obviously an overestimate, but it is good enough for the purposes of the
structure is O(n), where n=| VI+HE|+Y .., |Cw).
¥ vev M=Yu0, 21C (o).
Note that the upper bound on the space of the fractional cascading data structure
and O(n) space using n processors, even if G contains cycles. We have not shown,
assign 2|C(v)] vinwal processors ta each node ve V and no processors to each node
(in performing the merge at node w) we also pass along (exactly) k virtual processors
assigned. Since, by Lemma 3.5, n, =2|C(v)], we know that there are enough virtual
“gtve away™ at most 2||B,_,(p)}{/4] elements (and processors) from B,_,(v) in stage
for the next stage. In addition, since we pass a processor for each item we pass to
as well as maintaining a unique integer identification for itself in the range [1, m,].
data structure for G in O(log n) time and O(n) space using n processors in the CREW
processors. For the applications we study in this paper, however, we can do even
LEMMA 3.8. Given anv catalogue graph G, if d(G) is O(1) or if we are given
Proof. Il d(G) is O(1) or we are given Qui(v, G) in sorted order, then the
S

512 M, J. ATALLALL, R COLE. AND M, T. GOODRICH

by computing the total number of other operations that are performed because of the
fact that the catalogue for each node v contains |C(v)| elements (we will only charge
vertices in V). Let s, be the first stage that B, (¢') becomes nonempty. In this stage
B.(v') receives one element of C(v) lrom v, and hence we charge one operation in
stage s, for the node v. In stage s, +1 we will then perform at most 3 operations, a
most 7 in stage s,.+ 2, al most 15 in stage 5.+ 3, and so on. As soon as B,(v') contains
at least four elements from v (as early as stage 5.+ 2), then we will perform one more
operation, passing one element to the fan-in tree for v. In the next stage, s, +3, we
will perform at most two additional operations, then at most four additional operations
in stage s.+4, and so on. This pattern will “ripple” back through the fan-in tree for
v and on through the graph G for as long as the computation proceeds. Specifically,
the number of operations charged to a node ve V is, at most, the sum of the {ollowing
k. = flog, |C(v)]] rows:

1 3 7 15 31 63 127 - -- |C(v)}
2%1 2%3 2%7 2%15 2x31 --- 2]|C(v)i/4]
2P2xl 2'x3 Y%7 .- 2Y|JC(0)|/47]

2w

where the number in row i and column j corresponds to the maximum number of
operations performed in stage s,/ —1 at nodes at distance { from v because of the
fact that the catalogue at node v contains [C(v)| elements. (This is actually an
overestimate, since not all nodes in G have out-degree 2). Summing the number of
operations for each row, and then summing the rows, we get that the number of
operations charged to ve V is at most H|C(w)| +2[|C(o)|/4] + 27 C(u)/4*] +- - -+
2%}, which is at most 4/C(v)]. Thus, the total number of operations performed by the
fractional cascading algorithm is O(n). O

This lemma immediately suggests that we may be able to apply Brent's theorem
to the fractional cascading algorithm so that it runs in O{log) time using [n/log n]
Processors.

TheoreM 3.9 ([11]). Any synchronous parallel algorithm 1aking time T that consists
of a total of N operations can be simulated by P processors in O({N/P]+ T} time.

Proof of Brent's theorem. Let N, be the number of operations performed at step
i in the paraliel algorithm. The P processors can simulate step { of the aigorithm in
O([N,/ P]) ume. Thus. the total running time is O(|N/P}+ T):

T T
Y [NJPIST (IN/PI+1D=[N/P|+T 0
1=1 1=l

There are two qualifications we must make to Brent’s theorem belore we can apply
it in the PRAM model, however. The first is that we must be able to compute N; at
the beginning of step i in O({N;/P]) time using P processars. And, second, we must
know how to assign each processor to its job. Thus, in order to apply Brent's theorem
1o our problem of doing fractional cascading, we must deal with these processor
aliocation problems.

Let T={p,,ps." " - .Pm} be the set of virtual processors used in the fractional
cascading algorithm (with m=2n), and let "= {pl, P% " . Pleregn;} be the set of
processors we will be using to simulate the fractional cascading algorithm. Assuming
that d{G) is constant or we are given Lhe list of vertices in Our{p, G) in sorted order,
we can compute the graph G and the initial assignment of processors from [, so that

CASCADING DIVIDE-AND-CONQUER 513

we assign 2|C{v)| virtual processors o each node ne V. in Oflog n) tme using the
processors in I by a parallel prefix computation. { Recall that the problem of computing
all prefix sums ¢, =Z:‘__, a, of a sequence of integers (a,,a,,--+,a,) can be done in
O(log n} tme using [#/log n] processors {21], [22].) Let v(p;) denote the vertex in
G to which p, el is assigned. Recall that we will be “passing™ the processor p, around
G during the compulatton, so the value of v(p,) can change {rom one stage to the
next. Once a processor p, becomes active, it stays active for the remainder of the
computation. So, the only thing left to show is how to compute the number of processors
active In stage s, and 1o assign the processors in I to their respective tasks of simulating
the processors in . We do this by sorting the set of processors in I' by the stage in
which they become active. It is easy to compute the stage in which a processor p,
becomes active in O(1) time, because this depends only on the initial value of v(p;)
and the size of C(v(p;)) relative 10 N (the size of the largest catalogue). We can son
the processors in I' by the stage in which they become active in Oflog n) time using
the {n/log n] processors in [, by using an algorithm from Reif [23] (since the stage
numbers fall in the range [1, [log N]]). Thus, by performing a parallel prefix computa-
tion on this ordered list of processors, we can determine the number of processors
active in each stage 5, and also know how to assign the processors in [V so that they
opitmally simulate the activities of the processors in I’ during siage s. We thus have
established the lollowing theorem.

Tueorem 3.10. Given a catalogue graph G =(V, E), such thai.d(G) is O(1) or
given each Oui{v, G} set in sorted order, we can build a fracrional cascading data struciure
for G in O(log n) time and O(n) space using [n/log n | processors in the CREW PRAM
model, where n =|V|+|E{+3 _,1C(v)|. This bound is optimal. o

4. The plane-sweep tree data strucrure. In this section we define a data structure,
which we call the plane-sweep tree, and show how to use it and the fractional cascading
procedure of the previous section 1o solve the trapezoidal decomposition problem and
the planar-point location problem in O(log n} time using n processors. Since the
construction of this data structure is quite involved, we merely define the data structure
now, and show how to construct it in these same bounds in § 3.

Let S={s,,5., - -,s,} beasetof nonintersecting line segments in the plane, and
let X(S)=(a,, @, -, a,,) be the (nondecreasing) sorted lisi of the x-coordinates
of the endpoints of the segments in S. To simplify the exposition, we assume that no
(wo endpoints in S have the same x-coordinate, i.e., o, < @ivy - Let X' =(x, X2, -, X,,,)
be some subsequence of X(S) and let T be the complete binary tree whose m+1
leaves, in lelt to right order, correspond 1o the intervals (=0, x,], [x1, x2], [x2, x3],
o [y X], [X, +00), respectively. Associated with each internal node ve T s
the interval [, which is the union of the intervals associated with the descendanis of
v. Let [1, denote the vertical strip [, x{—~cc, +00). We say a segment s, covers a node
ve T il it spans [1, but not [parenices- NO segment covers more than two nodes of any
level of T'; hence, every segment covers at most O(log m) nodes of T. For each node
ve T we let Cover(v) denote the set of all segments in S that cover v,

The idea of using a tree data structure such as this to parallelize plane-sweeping
is due to Aggarwal et al. [1] and is itself based on the “segment tree” of Bentley and ?
Wood [8]. The data structure of Aggarwal et al. consists of the tree T described above i
with X'= X(S) (i.e., it has 2n+1 leaves). Aggarwal et al. store the list Cover(v) at
cach node v sorted by the “above™ relation for line segments. They construct these
fists by first collecting the segments in each Cover(v) and then sorting all the Cover(v)'s
in parailel, an operation that requires O(log® n) time using n processors [13], since

514 M, J. ATALLAH, R. C"OLE. AND M. T. GOODRICH

there are a total @(n log n) items o sort. Once these lists are construcied the data
structure can then be used to solve various problems by performing certain searches
on the nodes of T. These scarches are of the [ollowing nature: given a set of O(n)
input poinis, for each point p locate the segment in Cover(v) that is directly above
(or below) p, lor all v e T such that p € I],.. Notice that for the leaf-to-root walk starting
with the leal v such that p e Il,, this search can be solved by the multlocation of p in
that walk. Aggarwal et al. [1] perform all O(n) multilocations in O(log™ n} time using
n processors by assigning a processor Lo each point p and doing a binary search for
p in all the Cover(v) lists such that pell, (there are O(log i) such lists [or each p).

Although based on the structure of Aggarwal et al., the plane-sweep tree difiers
from it in some important ways. One such diflerence is that the plane-sweep tree allows
us to perform O(rn) muliilocations in O(log n) time using n processors, after a
preprocessing step that takes O(log n) ime using n processors. Also, instead of taking
X' 10 be the entire X (S} list, we define X' to be the list consisting of every [log n|th
element of X (S}, ie,, X' = SAMP ., (X{(58)). Thus, each vertical strip I1. associated
with a leaf of T in our construction contains (}(log n) segment endpoints. Like Aggarwai
et al., we also store each Cover(v) list sorted by the “above™ relation. In addition, for
every node v of T we define the set End{v) as follows:

End(v) ={s|s, € S. has an endpoint in II,, and does not span I[1,}.

Although End{(v) is defined [or each node of T we only construct a copy of End(v)
if vis a ieaf node. We do not store the elements of any End(v) in any particular order.
This is due o the fact that End(v) contains Oflog n) segments lor any leaf node;
hence a single processor can search the entre list in O(log n}) time.

Note that all the segments in the Cover(v)'s of any root-to-leal path in T are
comparable by the “above™ relation. Thus, if we direct all the edges in T so that each
edge goes from a child to its parent, then the elements stored in any directed walk in
T are all comparable by the “above” relationship. Therefore, we can apply the fractional
cascading technique of the previous section to T (with each Cover(v) playing the role
of the catalogue C(v)). Since T has bounded degree and has O(n log n) space, we
can, by Theorem 3.10, construct a fractional cascading data structure T for T in
Of(log n) time and O(n log n) space using n processors. This data structure allows us
to perform the multilocation of any point p {in a leaf-to-root walk} in O{log n) time
(O(log n) for the binary search at the leaf, and an additional O(1) lor each internal
node on the path to the root). We also store the set End(v) in each feal v of T. The
plane-sweep tree data structure, then, consists of the (ree T constructed from T by
fractional cascading, where T is defined with X'=SAMP . ., (X(5)), has Cover(v)
stored in sorted order for every node v € T, and the set End(v) stored (unsorted) for
each leaf node ve T (see Fig. 4).

In § 5 we show how 1o construct this data structure efficiently in parallel. Since
the construction is rather involved, before giving the detatls of the construction, we
give two applications of this data structure. We begin with the trapezoidal decomposi-
tion problem.

4.1. The trapezoidal decomposition problem. Let $={s,,s,,---,s,} be a set of
nonintersecting line segments in the plane. For any endpoint p of a segment in § a
trapezoidal segment for p is a segment of S that is directly above or below p such that
the vertical line segment from p to this edge is not intersected by any other segment
in S. The trapezoidal decomposition problem is to find the trapezoidal segment(s) for
each endpoint of the segments in 5. Even in the paralel setting, this problem is often

CASCADING DIVIDE-AND . CONQUER 515

(3)
{10,11,7,86)

o
I

el Tl T e

FIG. 4. A poriion of a planc.sweep tree. The segmenis are numbered in this example by embedding the
“above™ relation of § 2 in the toral order 1,2, - - - | 11, For simplicity we denore the list Cover{ v) by parentheses
and the set End(v) by ser braces,

used as a building block to solve other problems, such as polygon triangulation [1],
{19], [28] or shortest paths in a polvgon [16].

THEOREM 4.1. A rrapezoidal decomposition of a set S of n nonintersecting segments
in the plane can be consiructed in O(log n) time using n processors in the CREW PRAM
model, and this is optimal.

Proof. Construct the plane-sweep tree data structure T for S. Theorem 5.2 (to be
given larer, in § 5} shows that this structure can be constructed in O(log n) time using
n processors. And we already know that T can be made into a fractional cascading
data structure T in these same bounds. We assign a single processor to every segment
endpoint {there are 2n such points). Let us concentrate on computing the trapezoidal
segment below a single segment endpoint p. Let (v, - - -, roor{ T)) be the leal-to-root
path in T that starts with the leaf v such that pell,.. We first search through End(p)
to see if there are any segments in this set that are below p, and take the one that is
closest to p (recall that End(») contains O(log n) segments). We then perform the
multilocation of p in the leaf-to-root walk starting at v, giving us {or each w such that
pell, the segment in Cover(w) directly below p. We choose among these {log n]
segments the segment that is closest to p. Comparing this segment to the one {possibly)
found in End(v), we get the segment in S, if there is one, that is directly below p.
Since the length of the walk from v 10 root(T) is at most [log n], by the method
outlined at the end of § 3 [12], this computation can be done in O(log n} time using i
11 processors. Since the two-dimensional maxima problem can be reduced 1o trapezoidal
decomposition in O(I) time using n processors [17], and the two-dimensional maxima
problem has a sequential lower bound of Q(# log n) in the algebraic computation tree
model [7], {20], we cannot do better than O(log n) time using n processors. 8]

516 M, §, ATALLAIL R. COLE, AND M. T. GOODRICH

Salving the trapezoidal decomposition problem efficiently in parallel has proven
10 be an important step in triangulating a polygon efficiently in parallel [11. {2], {5],
[17], [28]. In lact, Theorem 4.1 is used in the algorithms of Goodrich [19] and Yap
28] to achieve an O(log n) time solution to palvgon triangulation using only n
processors. We next point out that the plane-sweep tree can also be used Lo solve the
planar point location problem.

4.2. The planar point location problem. The planar point location problem ts the
following: Given a planar subdivision S consisting of n edges, construct a data structure
that, once constructed, enables one processor 1o determine for a query point p the
face in S containing p. This problem has applications in several other parallel computa-
tional geometry problems, such as Voronoi diagram construction.

THEOREM 4.2. Given a planar subdivision S consisting of n edges, we can construct
a data structure that can be used 1o determine for any query point p the face in § containing
p in O{log n) serial time. This construction rakes O(log n) time using n processors in the
CREW PRAM model.

Proof. The solution to this problem is to build the plane-sweep tree data structure
[or § (with fractional cascading) and associate with each edge s; the name of the face
above s;. As already mentioned, Theorem 5.2 (to be given later, in § 5} shows that the
tree T can be constructed in O(log n) time using 7 processors. Also recall that T can
be made a fractional cascading data structure T in these bounds. Let a query point p
be given. A planar point location query for p can be solved in O(log n) senal time by
performing a multilocation like that used in the prool of Theorem 4.1 (o find the
segment in S directly below p. After we have determined the segment s, in § that is
directly below p, we then can read off the face of § containing p by iocoking up which
face is directly above s;. 0

Incidentally, Theorem 4.2 immediately implies that the running time of the Voronol
diagram algorithm of Aggarwal et al.[1] can be improved from O(log" n) to O(log™ n),
still using only n processors. (We have recently learned that in the final version of
their paper [2], they reduce the time bound of their algorithm to O(log™ n) using a
substantially different technique.)

The resuits of §§ 4.1 and 4.2 are conditional: they hold if we can construct the
plane-sweep tree data structure efficiently in parallel. We next show how 1o construct
the plane-sweep tree in O(log n) time using only n processors.

5. Cascading with line segment partial orders. In this section we show how to
modify the cascading divide-and-conquer technique of § 2 to solve some geometric
problems in which the elemenis being merged belong to the partial order defined by
a set of nonintersecting line segments. Recali that in this partial order a segment s, is
“above’" a segment 5, il there is a verucal line that intersects both segments, and its
‘ntersection with s, is above its intersection with s,. We apply this technique to the
problems of constructing the plane-sweep tree data structure and of detecting if any
two of n segments in the plane intersect.

We now give a brief overview of the problems encountered and our solutions to
them. The essential computation is as follows: we have a binary tree with lists stored
in its leaves, and we wish (o combine them in pairs (up the tree) 1o construct lists at
internal nodes. The main difficulty is that the list stored at some node v is not defined
as a simple merge of the lists stored at the children of v. Instead, its definition involves
deleting elements from lists stored at children nodes before performing a merge. These
deletions are quite troublesome, because if we try to perform these deletions while
cascading, then the rank information will become corrupted, and the cascade will fail.

CASCADING LNVIDE-AND-CONQUER 57

On the other hand, if we try to postpone the deletions 10 some posiprocessing siep,
then there will be nondeleted elements that are not comparable to others at the same
node; hence, there will be instances when processors Iry to compare two elements that
are not comparable, and the cascade will Mail. The main idea of our method for getting
around these problems is to embed partial orders in total orders “on the fiy” while
we are cascading up the tree. That is, we change the identity of segments as they are
being passed up the tree, so that the segments in any list are always linearly ordered.
To be able o do this, however, we must do some preprocessing that involves simul-
taneously performing a number of cascading merges in parallel. We complete the
computation by performing a purging postprocessing step to remove the segments that
“changed identity™ (as an alternative to being deleted).

For the interseclion detection problem, we need to dovetail the detection of
intersections with the cascading. That is, we cascade the results of intersection checks
along with the segments being passed up the tree. The complication here is that if we
should ever detect an intersection on the way up the tree we cannot stop and answer
“yes™ as this would require O(log n) time (to ““fan-in" all the possible answers). Thus
we are forced to proceed with the merging until we reach the root, even though in the
case of an intersection the segments being merged no longer even belong to a partial
order. We show that in this case we can replace the segment with a speciat place holder
symbol so that the cascades can proceed. After the cascading merge completes we
perform some postprocessing to then check if any intersections are present.

The next two subsections give the details.

5.1. Plane-sweep tree construction. In this subsection we describe how to construct
the Cover(v) lists for each node v in the plane-sweep tree T. We begin by making a
few definitions and observations. We let left (I1,.) (respectively, right (I1,.)) denote the
teft (right} vertical boundary line for [1,. We define the dominaror node of a segment
s;, denoted dom(s;), to be the deepest node v (i.e., farthest from the root) in T such
that s; is completely contained in I.. That is, the dominator of s; 1s the node v such
that s5; does not intersect left (IT1,) or right (I1,), but 5; does intersect the vertical
boundary separating Il .., and I eritaop- In addition, we define the following sets
for each node ve T:

L(v) ={s}s; € End(v)and 5;Nleft (IT,) = a3},

R(v) = {s;{s; € End(v) and s; Nright (I1,) = @},
{lv,d)={ss;e L(v) and d = deptih(dom(s,))},
r(v, d) ={si|s; € R(v} and d = depth(dom(s,))}.

Note that (v, d) and r{v, d) are only defined for 0= d < deptir(v). Any time we
construct one of these sets it will be ordered by the “above” relation, so for the
remainder of this section we represent these sets as sorted lists. In the following lemma
we make some observations concerning the relationships between the various lists
defined above.

LEmMMa 5.1. Let v be a node in T with left child x and right child v. Then we have
the following (see Fig. 5):

(1) (e, dY=Hx, YUy, d) ford < depth(v),

(2) rlo,d}=r(x, d)Ur(y,d) ford< depth(v),

(3) Llv)=He,OU (e, DU - - -Ul(v, depth{v} - 1),
(4} R(v)=r(0,0)Ur(e, DU---U r(v, depth(v)—1),
(5) L{v)= L{(xYU(L(¥)— (v, depth(v))),

518 M. J. ATALLAH, R. COLE. AND M, T. GOODRICH

1

in i(zx, d) All in some

F Yy v, d)for) T
, d < depth(v) % E

(a) (b)

in l(y, depth(v))
and not in Cover(z)

(d)
FIG.5. Theplane-sweep tree equations. (a) v, d} = Hx, dYU Iy, d);(B) L(vy= I, 01U . depih(v)—1)-
(e) L{v)= LU VU L) =1r, deptivip))); (d) Cover{x)= L(y}— Xy, depth(v)).
(6) R(v)=(R(x)—r(x, depth(v)))U R(»),
(7) Cover(x}= L(y)~{(y, depth(v)),
- (8) Cover(y)=R(x)-r{x, depth(p)).

Proaf. The proof follows from the definitions. g

Lemma 5.1 essentially states that the lists I, r, L, R, and Cover for the nodes on

a particular level of T can be defined in terms of lists for nodes on the next lower
level of T. We couid use this lemma and the parallel merge technique of Valiant [26],
as implemented by Borodin and Hopcroft [10], to construct a sorted copy of each
Cover(v) list in O(log n log log n) time using n processors, improving on the previous
bound of O(log” n) time using the same number of processors, due to Aggarwal et al,
[1]. We can do even better, however, by exploiting the structure of the L and R lists.
We describe how to do this below, in order to achieve a running time of O(log n) sill
using n processors. Before going into the derails of the plane-sweep tree construction,
we give a brief overview of the algorithm.

HiGH-LEVEL DESCRIPTION OF PLANE-SWEEP TREE CONSTRUCTION.

The construction cousists of the following four steps:

Step 1. Construct {(v, d) and r(v, d) for every v€ T. To implement this step, we
perform [log n] generalized cascading merges in parallel (one for each d) based on
(1) and (2} of Lemma 5.1 (starting with the leaf nodes of T). We implement this step
in O(log n) time using n processors in total for all the merges.

Step 2. Let d,. = depth(parent(v)). Compute for each segment in (v, d,) (respec-
uvely, r(v, d,)) its predecessor segmentin L(v}~ (v, d,) (respectively, R(v)—r{uv, d,))
based on (3) and (4). We do this, for each ve T, by making 4, copies of (v, d,) and
r(v, d,), and merging {(v, d,) (respectively, r(v, d,)) with all the (v, d) (respectively,
r(v, d)) such that d < d,.. Note: we perform this step without actuaily constructing
L(v) or R{v).

Step 3. Construct L{v) and R(wv) for every ve T. To implement this step we
perform a generalized cascading merge procedure based on (5) and (6) and the
information computed in Step 2 (starting with the leal nodes of T). We never actually
perform the set difference operations of (5) and (6), however. Instead, at the poiat in
the merge that a segment in, say, I(v, 4,), should be deleted we “change the identty™

CASCADING [PIVIDE-AND-U ONQULR 519

of that segment 1o its predecessorin LI) ~ e, d,) (which we know from Step 2}. That
is, lrom this point on in the cascading merge this segment is indistinguishable [rom
its predecessor in L(v)—/{v, d.). We show below that (i) the cascading merge will not
be corrupted by doing this, (ii) the lists never conain Loo many duplicate entries {that
would require us to use more than n processors), and (iii) after the merge completes,
we can construct L{v) and R(v) {or each node by removing duplicate segments in
Of(log n) ume using # processors.

Step 4. Construct Cover{v) lorevery v T using (7) and (8) and the lists construc-
ted in Step 3. The implementation of this step amounts Lo compressing each L{p}
(respectively, R(v)} so as 1o delete all the segments in /(& d,} (respectively, r(v, d.}),
and then copying the list of segments so computed to the sibling node in T,

Eno oF HiGge-LEVEL Descrirrion.

We now describe how (o perform each of these high-level steps.

5.2. Step 1: Constructing {(2, d) and r{v, d). We construct the /{r.d) and r{c. d}
lists as lollows. We make [log nn] copies of T. and let T(d} denote tree number d.
Note that by our definition of T the space needed o store the “skeleton™ of each
T(d) 1s O(n/log n). This of course results in a 1otal of O(n) space for all the T{dVs.
For each node v of T(d) such that deptli{v) > d we wish to construct the lists (¢, d)
and rie, d), as given by (1) and (2) of Lemma 5.1. This implies that if we store {(v, d)
(respectively, r(v, d)) in every leal node ¢ of T{d}, then for any node ve T{d), I(v, d)
is precisely the sorted merge of the lists stored tn the descendants of v, We start with
the elements belonging to (v, d) (respectively, r(r, d)) slored (unsorted} in a list A{v)
for each leaf v in T(d), and construct each {(v, d} and r(v, d) by the generalized
cascading merge technique of Theorem 2.5 {(using the A(v)’s as in the theorem). Nolte:
since (v, d) and r{r, d) are only defined for d < depth(v}, we only proceed up any
tree T(d) as (ar as nodes at depth 4 + |, terminating the cascading merge at that point.
Weallocate [n/log n]+ N, processors Lo each tree T(d), where N, denotes the number
of segments stored initiaily in the leaves of T(d). Thus, since ©5°%"1 N, = n, we have
shown how to construct ali the /{v, d) and r(p, d) lists in O(log n) time and O(n log n)
space using # processors.

5.3. Step 2: Computing predecessors. In Step 2 we wish to compute for each
segment in the list /(v d.) {(respectively, r(v, d.}} its predecessor segmeni in L(p)—
(v, d.) (respectively, R(v)—r(r, d,)), where d,.=depth{parent(v)). Without loss of
generality, we restrict our attention to the seaments in Kp, d.) (the treatment for the
segments in r{v, d.) is similar). Recall that (3) and {(4) state that L({p)=
e, 0YU e, DU---Ulle, d.) and that R(v)=r(e, 00U r(e, DU---Ur(v, d.). We
make d, copies of {{v, d,.) and, using the merging procedure of Shiloach and Vishkin
[25] or that of Bilardi and Nicolau [9], we merge a copy of [{v, d.} with each of
Ke,0),-- -, (v, d,—1). This takes Of(logn) time wusing [|L({v){/logn]+
fd.|l(v, d.)}/1og n] processors for each ve T. Since (i) there are O(n/log) nodes in
each T(d); (ii) each segment appears exactly once in some (¢, 4.); and (i) ¥ __, | L(v)]
15 O(n log n), we can implement all these merges in parallel using n processors. Once
we have completed all the merges, we assign a single processor to cach segment s; and
compare the predecessors of s, in I(¢,0),- - -, l{v,d.—1) so as 1o find the predecessor
of 5, in L{v)—{lv,d,) (=1, U ---Ul(e, d.—1)). This amounts to Oflog n) addi-
tional work for each s,; thus Step 2 can be implemented in O(log n} time using n
Processors.

5.4. Step 3: Constructing L{v) and R(v). [n this step we perlorm another cascading
merge on T, this time to construct L{v) and R(v) for each v < T based on (5} and (6)

520 M. I. ATALLAH. R. COLE., AND M. T. GOODRICII

of Lemma 5.1. Initially, we have L{v} and R{¢) construcied only lor the leaves. We
then merge these lists up the tree based on (5} and (6) as in Theorem 2.5. The
computation {or this step difiers from the cascading merge of Step 2, however, in that
we need Lo be performing sci-difference operations as well as list merges as we are
cascading up the tree. Unfortunately, it is not clear how to perform these difference
operations on-line any faster than Otlog nn) time per level, which would result in a
running time that is O(log™ n). We get around this problem by never actually performing
the difference operations. That is, we do not actually delete sezments from any lists,
Instead, we change the identity of a segment s, in say, {(y, d,), 0 its predecessor in
L(¥)—I(v,d,) when we are performing the merge as node v, where = rchild (v) (see
Fig. 6). We do this instead of simply marking s; as “deleted™ in L{v), because segments
in I(y, d.) may not be comparable to segments in L(x) (the list with which we wish
to merge L(y)—1(y, d.)). Simply marking a segment as being “deleted™ could thus
result in a processor attempting 10 compare two incomparable segments.

U(z) = (—o0, —00,—00, —00, —00, —00,—00, —00)

Uw) =(1,1,1,1,1,2,7,7)

Uu) = (1,3,3,3,5,7,8)

U(v) =(1,3,4,6,7,8)

1

1
- B 1
. . 1
Yv ¥
FLG. 6. Segmenr identity changing during the cascading merge. We ilustratc the way segment names

change identitv 1o that of their predecessor as we are peeforning the cascading merge. In this case we are
constructing the L(v)'s. We denote the predecessor of eacl segnmient by a dotted arrow,

Clearly, the fact that we change the identity of a segment in I{(x, d,) to its
predecessor in L(y)}— {(1, d,) means that there will be multiple copies of some segments.
This will not corrupt the cascading merge, however, because one of the properties of
the “above™ relation for segments is that all duplicate copies of a segment will be
contiguous. Moreover, they will remain contiguous as the cascading merge proceeds
up the tree. In addition, even though we will have multiple copies of segments In lists
as they are merging up the tree, we can still implement this step with a total of n
processors, because there will never be more items present in any L{¢) than the total
number of items stored in the (leaf) descendants of v. At the end of this step we assign
[|L()|/log n] processors to each v and compress out the duplicate entries in L(v) in
Oflog n) time. Thus, we can construct L(v) and R(v) (compressed and sorted) for
each ve T in O(log 1) time using n processors.

5.5. Step 4: Constructing Cover(v). In this step we construct Cover(v) for every
vin T, based on (7) and (8) of Lemma 5.1. We impiement this step by first compressing
cach L(v) (respectively, R(v)) so as to delete all the segments in /{r, d.) {respectively,

CASCADING [NVIDE-AND-CONQUER 5

r(v, d.)}, and then by copying the list of segments so computed Lo the sibling of v in
T. This can all be done in O(log n) time using n processors.

Thus, summarizing the entire previous section, we have the following theorem.

THEOREM 5.2. Given a set S of nonintersecting line segments in the plane, we can
construct the plane-sweep tree T for S in O{log n) time using n processors in the CREW
PRAM model, and this is optimal.

Proof. We have already established the correciness and complexity bounds. To
see that our construction is optimal, note that the plane-sweep tree requires Q(n log n)
space. 0

In the previous sections we assumed that segments did not intersect. Indeed, T
is defined only if they do not intersect. We show in the next section that we can detect
an intersection, if there is one, by constructing T while simultaneously checking for
intersections.

5.6. The segment intersection detection problem. The problem we solve in this
section is the following: given a set S of n line segments in the plane, determine if
any two segments in S intersect. We begin by stating the conditions that we use 1o test
for an intersection.

LeEmMMA 5.3 [1]. The segmenrts in S are nonintersecting if and onlv if we have the
Sfollowing for the plane-sweep tree T of S:

(1) Foreverv ve T all the segments in Cover(v) intersect left (I1,) in the same order
as they intersecr right (If.).

(2) For every ve T no segmenr in End(v) intersects any segment in Cover{v). a

Aggarwal et al. [1] used this lemma and their data structure to solve the intersection
detection problem in O(log® n) time using n processors. Their method consisted of
constructing the Cover(v} lists independently of one another, basing comparisons on
segment intersections with feft (I1.}, and then testing for condition (1) by checking if
each list Cover(v} would be in the same order if they based comparisons on segment
intersections with night (I,). Il no intersection was detected by this step, then they
tested for condition (2) by performing O(n) multilocations of segment endpoints. This
entire process ook O(log” n) time using n processors.

We use this lemma by testing for condition (1) while we are constructing the
plane-sweep tree [or S (instead of waiting until after it has been built) and in so doing
we achieve an O(log n) time bound for this test (since our construction takes only
O(log n) time). We test condition (2) in the same lashion as Aggarwal et al., that is,
by doing O(n) multilocations after the plane-sweep tree has been built. Since with our
data structure the multplications can all be performed in O{log n) time, the entire
intersection-delection process takes O(log n) time using n processors.

Since we do not construct the Cover(v) lists independently of one another, but
instead construct them by performing several cascading merges, we must be very careful
in how we base segment comparisons, and in how we test for condition (1). For if two
segments intersect, then determining which segment is above the other depends on the
vertical line upon which we base the comparison.

We consider each step of the construction in wrn, beginning with Step 1. Recall
that in Step | we construct al! the {{v, d) and r(v, d) lists foreach ve T, In the following
lemma we show that if we base segment comparisons on appropriate vertical lines,
Step 1 can be performed just as before.

LEMMA 5.4, Let ve T and 0=d < depth(v) be given, and let 5, and s, be two
segmenis such thar s, e l(w, d) and s.€{(z,d) (or s,e r(w, d) and s-€ r(z, d)), where
w, 2 € Desc(v). Then dom(s,}= dom(s.).

R M, L. ATALLAM. R, COLE, AND M. T. GOODRICH

Proaf. Let v T and 0=d = [log n] be civen. Recall that (o, d} (respectivety,
riv, d)t is defined to be the list ol all segments in L{e} {(R(v)) that have a dominator
node at depth d in T. Note that the dominator node for any segment s; in f(w, d},

riw,), = d), or r{z.d), where w, == Desc{r), must be an ancesior ol v, since
d < depth(v) and, by definition, s, € End(v) and s, € End{dom(s,)). There is only one
node that is an ancestor of r and is at depth d in T. a

Thus, we can perform the merges based on (1) and (2) of Lemma 5.1 (e.g.,
(v, d)y=1Hx, dYU {r, d)} by basing all secament comparisons on the intersection of the
seaments with the vertical boundary separating the two children of their dominator
node. That is, if 5, and s. are (wo segments to be compared in Step 1, then we say
that s, is “‘above™ s. if and only if the intersection of s, with L is above the intersection
of 5, with L, where L is the vertical boundary line separating the two children of
dom(s|) (= dom(s.)).

In Step 2 we computed lor each segment in (e, d.) (respecuvely, riv, d.)} its
predecessor segment in L{v)—1{(p,d.) (respectively, R(v)—r(v,d,)), where d.=
depth{parent(v)). Recall that we did this by merging /{v, 4,) with each of
Hu,0), - -, He d.—1). A similar computation was done for r{r, d,); without loss of
generality, we concentrate on the computation involving (2, d,). Also recall that all
the seaments in /{v, 0}, - - -, /{v, d,.) belong to L(r); hence they intersect left {I1,). After
Step | finishes, each list /{ ¢, d) will be sorted based on segment intersections with the
vertical boundary line separating the two children of the ancestor of v at depth d (the
domtnator of all the seaments in (¢, d)). In Oflog n) time we can check il thts order
is preserved in each of I{x, 0}, - - -, (v, d.} il we base segment intersections on left {II,),
instead. If the order changed in any {{v, d), then we have detected an intersection,
and we are dane. Otherwise, we proceed with Step 2 just as before, basing comparisons
on seament intersections with teft (I1,).

In Step 3 we performed a cascading merge up the tree T, constructing L(v) and
R{v) for every node v € T. Recall that this cascading merge was based on {3) and ({6)
of Lemma 5.1 (e.g., L{v)= L{x)U(L{r)—-1(y, depth(v)))). Let us concentrate on the
testing procedure for the L(u)'s, since the method for the R{v)'s is similar. Initially,
let us start with each L{v) constructed at the leaves of T sorted by segment intersections
with left (I1,). Thus, before we perform the merge based on the equation L(v) = L(x)U
(L{v) = Iy, depth{v))), we must first check to see if the segments in the sample of
L{¥)—H, deprth(v)) (1o be merged with the sample of L(x)} have the same order
independent of whether comparisons are based on segment intersections with lteft (I1,)
or left (I1,). Unfortunately, to do this completely would require O(log n} ume ar every
level of the tree, resulting in an Oflog™ n) time algorithm. So, instead of broadcasting
at each level whether an intersection has occurred or not, we cascade that information
up along with the merges. More precisely, before doing the merge at a node o, we test
if every consecutive pair of items in the sample of L{y}—{(y, depth(v)) would remain
in the same order independent of whether comparisons were based on segment
intersections with left ([1.} or with left (IL,). If we detect that an intersection has
occurred, then we will have two elements that are out of order. If this should occur,
we replace both items by the distinguished symbol S. Then, as the merges continue up
the tree, any time we compare an ilem with $, we replace that item with $ and proceed
just as before. This keeps the merging process consistent, and after the cascading merge
completes we can then in Oflog n) time test if any of the items in any L{v) or R(v)}
contain a S svmbol, by assigning [|L(v}{/log n] processors to each v€ T.

In Step 4 we consiructed Cover(v) [or each ve T. Recall that we did this by simply
performing compressing and copying operations on lists constructed in Step 3. Thus,

CASCADING DIVIDL-AND-CONQULR 323

assuming that no intersection was detected in Step 3, we can perform Step 4 just as
before. After Slep 4 completes we can assign [|Cover {v)]/log n] processors to each
ve T and test condition (1) directly in Q(tog) time, checking if the items in Cover{v)
would be tn the same order independent ol whether comparisons were based on
left {I1,.) or on nght {[1,).

If we have not discovered an intersection after Step 4, then the only computation
left is 10 perform fractional cascading on the plane-sweep tree T, constructing a
fractional cascading data structure T In direcung all the edges in T to the root, and
performing the (ractional cuscading preprocessing on T 1o construct ?A' we associate
a verical strip with each node in T, Since T is a tree then T is also a tree (recall the
preprocessing step of the (ractional cascading algorithm). For each node v in T il v
is also in T, then we take I, for v in T to be the same as [T, Tor v in T. Then. for
any v that is in ThbunotinT (i.e., v is a gateway or a node in a (an-in or fan-out
wree), we 1ake 11, to be the union of al] the vertical strips that are descendents of .
Every time we perform the per-stage merse computation we compare adjacent entries
in each bridge list B(v) to see if thev would be in the same order independent of
whether we base comparisons on segment intersections with left (11,.) or right (IT). (f
we detect that two adjacent sesments intersect, then we replace both with the special
symbol 5. Then, as before, any time we compare a seament with S we replace that
segment by 5. Finally, when we complete the computation for Step 5, we assign
[1B{e}{/log n] processors to each node v and check if there are any 3 svmbols present
in any B{r) iisr.

il there are no intersections detected during the fractional cascading, then we
perform O{n) multitocations of ali the segment endpoinis as in [1] to test condition
(2). Let p be an endpoint of some segment 5,. We perform the multilacation of p in
the plane-sweep tree for S, and check if s; intersects the seament directly above p or
the segment directly below p in each Cover(v) list such that pell,. Thisestis sufficient,
since 1l 5 Intersects any segment in Cover(v), it must intersect the segment directly
above p in Cover(r} or the segment directly below p in Cover(v). Thus, by performing
a multilocation for p, we can test for condition (2) in O(log 1) time using # processors.
We summarize this discussion in the following theorem.

THeoreM 5.5. Given a set of n line segmenis in the plane, we can derect if any two
intersect in O(log n) time using n processors in the CREW PRAM model. O

So far in this paper we have restricted ourselves to applications involving line
segments. In the next section we show how to apply the cascading divide-and-conquer
technigue to other geometric problems as well.

6. Cascading with labeling functions. In this section we show how o solve
several diflerent geomeiric problems by combining the merging procedure of § 2 with
divide-and-conquer straiegies based on merging lists with labels defined on their
elements. For most of these problems our divide-and-conquer approach gives an
efficient sequential alternative 1o the known sequential algorithms (which use the
plane-sweeping paradigm) and gives rise to efficient parallel algorithms as well. We
begin with the three-dimensional maxima problem.

6.1. The three-dimensional maxima problem. Let V={p, p,,-- -, p.} be a seL of
points in R*. For simplicity, we assume that no two input points have the same x
(respectively, v, =) coordinate. We denote the x, ¥, and z coordinates of a point p by
X(p). r(p), and (p), respectively. We say that a point p, one-dominares another point
Pl xtp} > (p,), two-dominases p, if x(p;) > x(pi)and v{p,) > v(p;), and three-dominaies |

524 M. J. ATALLAH. K, COLE. AND M. T. GOODRICH

poil x(pd)z=x(p), v(p)=>vip), and z{p)>z(p). A point p,e V is said 1o be 3
maximum il it 1s not three-dominated by any other point in V. The three-dimensional
maxima problem, then, is to compute the set, M, of maxima in V. We show how (g
solve the three-dimensional maxima problem efficiently in parallel in the following
algorithm.

Our mcthod is based on cascading a divide-and-conquer strategy in which the
subproblem merging siep involves the computation of two labeling functions lor each
point. The [abels we use are motivated by the optimal sequential plane-sweeping
algorithm of Kung, Luccio, and Preparata [20]. Specifically, for each point p; we
compute the maximum z-coordinate from among all points that one-dominate p, and
use that label to also compute the maximum z-coordinate {rom among all points thar
two-dominate p,. We can then test if p; is 2 maximum point by comparing z(p,) 1o
this latter label. The details follow.

Withoutloss of generality, we assume the input points are given sorted by increasing
¥y-coordinates, i.e., ¥(p;) < v(p,+,), since if they are not given in this order we can son
them in Oflog n} time using n processors [[3]. Let T be a complete binary tree with
leal nodes v, va, - - -, v, (in this order). In each leaf node v; we store the list B(v,) =
(-0, p;), where ~o0 is a special symbol such that x(—) < x{p;) and v(—0) < y(p,)
for all points p; in V. Initializing T in this way can be done in O(log n) time using n
processors. We then perform a generalized cascading merge from the leaves of T a5
in Theorem 2.5, basing comparisons on increasing x-coordinates of the points (not
their p-coordinates). Using the notation of § 2, we let U/(v) denote the sorted array of
the points stored in the descendants of ve T sorted by increasing x-coordinates. For
_ each point p, in U(v} we store two labels: zod{(p;, v) and ztd(p,, v), where zod (p;, v)
is the largest z-coordinate of the points in U(v) that one-dominate p;, and ztd{(p;, v)
is the fargest z-coordinate of the points in U{v) that two-dominate p;. Initially, zod
and ztd labels are only defined {or the leal nodes of T. That is, zod(p;, v,) = ztd(p;, v,} =
—c0 and zod{—0, v;) = ztd(—o0, v;) = z(p;) for all leal nodes v; in T (where U{p)=
(=00, p,}). In order to be more explicit in how we refer 1o various ranks, we let
pred (p;, v} denote the predecessor of p; in U(v) (which would be -0 if the x-
coordinates of the points in U(p) are all larger than x(p;)) (see Fig. 7). As we are
performing the cascading merge, we update the labels zod and zid based on the
equations in the following lemma.

LemMmA 6.1, Let p, be an element of U(v) and let u = Ichild (v} and w = rchild (v).
Then we have the following:

9 zod]_{max{zod(p,—,u),zod(pred(p,, w), w)} if pe Ulu),
20 P V) = max {zod{pred (p;, u), u), zod(p;, w)} if p;e U(w),
max {ztd(p;, u), zod(pred (p,, w), w)} if p;e U{u),

(10) nd(p;, v) = {z!d(p.—,w) if ppe U(w).

Proof. Consider (9). If p, € U(u), then every point that one-dominates p;’s pred-
ecessor in U{w) also one-dominates p,, since p,’s predecessor in {J(w) is the point
with largest x-coordinate less than x(p;) (or —o0 if every point in U(w) has larger
x-coordinate than p;). Thus zod(p;, v) is the maximum of zod(p,, u) and
zod (pred (p;, w}, w) In this case. The case when p, € U(w} is simiflar. Next, consider
(10). We know that every point in U{w} has y-coordinate greater than every point in
U(u), by our construction of T. Therefore, if p, e U(u), then every point in U{w) that
one-dominates p,’s predecessor in U/(w) must two-domtinate p,. Thus, z:d(p,, v) is the

CASCADING DIVIDE-AND-CONQUER 525

w o a
a 5 ________________________
N o
¢ pred(p;,w) .
v 1
Q 1 @
o 1
1 o
] Q
o pred(piw) L
u pJ- o

FIG. 7. The combwing step for three-dimensional maxima. Paints to the right of the dotied line one-dominate
p. {respectively, p;), and points enclosed in the dashed lines nvo-dominase p,(p,}.

maximum ol zd(p;, u) and zed{pred (p,, w), w). On’the other hand, if p; € U(w) then
no point in U(u) can two-dominate p,; thus, zid(p;, v) = ztd (p;, w). G

We use these equations during the cascading merge to maintain the labels for
each point. By Lemma 6.1, when v becomes (ull (and we have U{u), U(w), and
U{u)U U(w) available), we can determine the labels for all the points in U(v) in
O(1) addiuonal time using |U(v)| processors. Thus, the running time of the cascading
merge algorithm, even with these additional label computations, is still O(log n) using
n processors. Moreover, after ¢’s parent becomes full we no fonger need U(e), and
can deallocate the space tt occupies. resulting in an O(n) space algorithm, as outlined
in § 2. After we complete the merge, and have computed U(root(T)), along with all
the labels for the points in U(reot{ T)), note thata point p; € U{reot(T)} is a maximum
if and only if ztd(p,, roor(T)) = z(p,) (there is no point that two-dominates p; and has
c-coordinate greater than z(p;)}. Thus, after completing the cascading merge we can
construct the set of maxima by compressing all the maximum points into one contiguous
list using a simple parailel prefix computation. We summarize in the following theorem.

THEOREM 6.2. Given a set Vof n points in W, we can construct the set M of maxima
points in 'V in Oflog n) time and O(n) space using n processors in the CREW PRAM
model, and this is optimal.

Proof. We have established the correctness and complexity bounds lor paralle!
three-dimensionatl maxima finding in the discussion above. Kung, Luccio, and Preparata
[20] have shown that this problem has an {}(» log n) sequentiai lower bound (in the
comparison model). Thus, we can do no better than O(log n) time using n proc-
S50[S, 0

It is worth noting that we can use roughly the same method as that above as the
basis step of a recursive procedure for solving the general k-dimensional maxima
problem. The resulting time and space complexities are given in the following theorem.
We state the theorem for k Z 3 (since the two-dimensional maxima problem can easity
be solved in O(log n) time and O(n) space by a sorting step [ollowed by a parallel
prefix step).

326 A) ATALLAINL. R COLL. AN M. T. GOODRICH

Tieorem 6.3, For k=3 the h-dimensional maxima problem can be selved in
Ot{log n}* ™) fime using n processors in the CREW PRAM madel.

Proof. The method is a straightforward parallelization of the algorithm by Kung,
Luccio, and Preparata [20]. using a procedure very similar to that described above as
the basis for the recursion. We leave the details to the reader. g

Next, we address the two-sct dominance counting problem. We also show how
the multiple range-counling problem and the rectilinear segment intersection counting
problem can be reduced to two-set dominance problems efficiently in parallel.

6.2. The two-set dominance counting probiem. In the two-set dominance counting
problem we are given aset A={g,, 4>, " " . G} and aset B={r, r.,---, r} ol points
in the plane, and wish to know for each point r, in B the number of points in A that
are 1wo-dominated by r,. For simplicity, we assume that the points have distinct x
(respectively, 1) coordinates. Qur approach to this problem is similar to that of the
previous subsection, in that we will be performing a cascading merge procedure while
maintaining two labeling functions for each point. In this case the labels maintain [or
each point p,(from A or B) how many points of A are one-dominated by p; and also
how many points of A are t(wo-dominated by p;. As in the previous solution, the first
label is used to maintain the second. The details follow.

Let Y={p,,ps, " . Msm} be the union of A and B with the points listed by
increasing r-coordinate, i.e., r(p) <y(p..;). We can construct Y in O(log n} ume
using n processors [13], where n = { + n. Our method for solving the two-set dominance
counting problem is similar to the method used in the previous subsection. As before,
we let T be a complete binary tree with leaf nodes v,, va, - - -, L,, in this order, and
in each leal node v, we store the list U(g;) = (-2, p,} (—oc still being a special symbol
such that x{(—o) < x(p,) and y(—20) < y(p;) for all points p; in Y). We then perform
a generalized cascading merge from the leaves of T as in Theorem 2.5, basing com-
parisons on increasing x-coordinates of the points (not their r-coordinates). We let
U(p) denote the sorted array of the points stored in the descendants ol ve T sorted
by increasing x-coordinate. For each point p, in {(v) we store two labels: nod{ p;, v}
and ntd(p;, v). The label nod(p,, v) is the number of points in U(v) that are tn A and
are one-dominated by p,, and the label nrd(p,, v} is the number of points in U{p) that
are in A and are wo-dominated by p,. Initially, the nod and nrd labels are only defined
for the leafl nodes of T, That is, nod{ p;, v,) = nod (=0, v,) = md{p,, v;) = nrd(—o0, b} =
0. For each p,e Y we define the lunction xa(p) as follows: ya(p;) =11l p, € A, and
xalp.) =0 otherwise. {We also use pred { p,, v) to denote the predecessor of p in U(wv).
As we are performing the cascading merge, we update the labels nod and nsd based
on the equations in the following lemma (see Fig. g).

LeMMA 6.4. Let p; be an element of U(v) and ler u = Ichild {v) and w = rchild {v}.
Then we have the following:

nod(p,, u)+nod(pred (p,, w), W)+ xalpred (p., w)) if p, e Ulu),

() ""d("’“”’={nod(pred(p,,). w)+ nod (p,, w)+ ya(pred (po u)) if p.€ Ulw),

ntd (p;, u) if poe Ulu),

2 =
(12) nedlpr, 0) [nod(prcd(p,.u).ul+nrd(p.-.H‘}+XA(prcd(p.-.u)) if p.e Ulw).

Proof. Consider(11). Forany point p, € U) the number of points one-dominated
by p, is equal to the number of points in U(u) that are in A and one-dominated by

CARCADING DIVIDE-AND.CONQULER 327

Q a
° o
w P
_____ .q o
o ° o pred(p;,w) ,
|
U 1
o o =] [+]
a
¢ pred(p;,u
v o-oppredleey)
a ° o

FiG. B, The combinemg step for domingnee counting. Paints 1o the left of the dotted tine are one-dominated
by p, (respectivelyv. p, 1. and points enclosed in dashed lines are two-deminoied by p, (p.

p.. plus the number of points in U{w) that are in A and one-dominated by pred(p,, wi,
plus once if pred { p,, w) is in A (since the predecessor of pi 1s one-dominated by p;).
Thus, we have the equation for the case when p, = {J{u). The case when pieUl{w}is
similar. Next, consider (12). By our construction, every point in {/{u) has r-coordinate
less than the y-coordinate of every point in Ulw). So if p, € Ulu), then the number
of points in U(v) that are in A and are two-dominated by p; 1s precisely mid{p,, u),
since p, cannot iwo-dominate any points in U(w). Il p. € U(w), on the other hand,
then the number of points in U(v) that are in A and two-dominated by p, is the number
of points in Ul(u) that are in A and one-dominated by pred { p;, u}, plus the number
of points tn UJ(w) that are in A and two-dominated by p., plus one il pred (p;, u) is
in A. This is exactiy (12) in this case. o .

By Lemma 6.4, when v becomes full {(and we have Ulu), U(w),and Ulr) = Ulu)U
U(w) available), we can determine the labels for all the points in Ule) in O(1}
additional time using | U(v)] processors. Thus, the running time of the cascading merge
algorithm, even with these additional label computations, is still O(log n) using n
processors. After we complete the merge, and have computed U(root (T}t along with
all the labels for the points in U(root (7)), then we are done., We summarize in the
following theorem.

THEOREM 6.5. Given a set A of | points in the plane and a ser B of m points in the
plane, we can compute for each point p in B the number of points in A two-dominared by
pin Ollog n} time and O(n) space using n processors in the CREW PRAM model, where
n=1+m, and this is optimal.

Proof. The correciness and complexity bounds should be apparent [rom the
discussion above. To prove the lower bound note that the two-dimensional maxima
problem can be reduced to dominance counting in O(1) time using n processors {see
[17]). Since the maxima problem has an Q(n tog n) lower bound {20] in the comparison
model, we conclude that we can do no better than O(log n) time using n processors
in the CREW PRAM model. 0

There are a number of other problems that can be reduced 1o 1wo-set dominance
counting. We mention two here, the first being the multiple range-counting problem:

28 M. J. ATALLAH, . COLE, AND M. T. GOOQDRICH

Lh

given a set V ol / points in the plane and a set R of m isothetic rectangles (ranges)
the multiple range-counting problem is to compule the number ol points interior to
each rectangle.

COROLLARY 6.6. Given a ser V of | points in the plane and a ser R of m isothetic
recrangles, we can solve the multiple range-counting prablem for V and R in Oflog n)
time and O(n) space using n processors, where n ={+ m.

Proof. Let d(p) be the number of points in V two-dominated by a point p.
Edelsbrunner and Overmars [15] have shown that counting the number of points
tnterior to a rectangle can be reduced to dominance counting. That is, given a rectangle
r={p., P2, P\, P4) {where vertices are listed in counterclockwise order starting with
the upper right-hand corner}, the number of pointsin Vinteriorto ris d{p,) ~d(p.) +
d(p;)—d(ps). Therefaore, it suffices to solve the (wo-set dominance counting
problem. a

Another problem that reduces 10 two-sel dominance counting is rectilinear segment
intersection counting: given a set .S of n rectilinear line segments in the plane, determine
for each segmeni the number of other segments in S that intersect it.

CororLary 6.7. Given a set S of n rectilinear line segments in the plane, we can
determine for each segment the number of other segments in S that intersect it in O(log n)
time and O{n) space using n processors in the CREW PRAM madel.

Proof. Let U, (U.) be the set of left {right) endpoints of horizontal segments, and
et d,(p) (d-(p)) denote the number of points in U, {{,) two-dominated by p. For
any vertical segment s, with upper endpoint p and lower endpoint g, the number of
horizonial segments that intersect s is d,(p) —d,(g)+d-{g)—d.(p). This is because
d\(p)—d,(q) (respectively, d.(p) —d-(g)) counts the number of horizontal segments
with a left {right) endpoint to the left of 5 and y-coordinate in the interval [v(q), y(p}].
Thus, d,(p}—d,(q)—(d-(p) —d-(g)) counts the number of horizontal segments with
feft endpoint 1o the left of s, right endpoint to the right of s, and y-coordinate in the
interval [v(g), v(p)] (i.e., the set of horizontal segments that intersect). B}

The final problem we address at is visibility from a point.

6.3. The visibility from a point problem. Given a set of line segments S=
{s,, 52, * . 5.} In the plane that do not intersect, except possibly at endpoints, and a
point p, the visibility from a point problem is to determine the part of the plane that
is visible lrom p assuming every s; 1s opaque. Intuitively, we can think of the point p
as a specular light source, the segments as walls, and the problem to determine all the
parts of the plane that are illuminated. We can use the cascading divide-and-conquer
technigue to solve this problem in O(log n) time and O(n) space using # processors.
Withourt loss of generality, we assume that the point p is at negative infinity below all
the segments. The algorithm is essentially the same if p is a finite point, except that
the notion of segment endpoints being ordered by x-coordinate is replaced by the
notion that they are ordered radially around p. In other words, it suffices to compute
the lower envelope ol the n segments 10 give a method for computing the visibility
from a point. For simplicity of expression, we also assume that the x-coordinates of
the endpoints are distinct. ‘

In the previous two subsections the set of objects consisted of points, but in the
visibility problem we are dealing with line segments. The method is slightly different
in this case. In this case, we store the segments in the leaves of a binary tree and
perform a cascading merge of the x-coordinates of intervals of the x-axis determined
by segment endpoints. We maintain a single label {or each interval which represents
the segment which is visible from —ao on that interval. The deiails follow.

CASCADING DIVIDE-AND-CONQUER 529

Let T be a compiete binary tree with leal nodes v,, v», - - - . v, ordered (rom lef
to right. We associate the segment s; with the leal p, and ar o, store the list Ulp) =
(=20, py, pa), where py and p. are the two endpoints of s,, with x(p,) < x(p-), and —
is defined such that x{~o0) < x(p) and v(-00) < r(p) for all poinis p. We then perform
a generalized cascading merge [rom the teaves of T as in Theorm 2.5, basing com-
parisons on increasing x-coordinates of the points. For each internal node v we let
U(v) denote an array of the points siored in the descendants of ve T sorted by
increasing x-coordinates. For each point p, in U{v) we store a label vis(p,, v) which
stores the segment with endpoints in U(v) that is visible in the interval
{x(p.), x(suee(p;, v)}), where succ(p,, v) denotes the successor of p,oin U(e) (based
on x-coordinates). Iniually, the vis labels are only defined for the leal nodes of T.
That is, il U(v)=(-c, p,, p.}, where s;=p, p., then vis{(—) = +cx0, vis(p,)=75,, and
vis{ p2) = +00, We use pred (p,, v) 1o denote the predecessor of p; in U{v). As we are
performing the cascading merge, we update the vis labels based on the equation in
the following lemma (see Fig. 9).

LemMma 6.8. Let p; be an elemenr of U(v) and let u = Ichild (v) and w = rchild (v).
Then we have the following (if two segments s; and s; are comparable by the “above™

Before merge: U(u) and U{w)

Pr P2 Pa P+ Ps Ps P71 Pe Ps ; P10 Pl PizP1s (Pud)

I

U) (EEIEEE () EEEEH0E
pred(p;, w) [0]2]5]5 5 [10[i0] pred(p;,u;[1(3|3|s[a|12'

After merge: U(v)

pL P2 p3 P4+ Ps Pe PT P8 Do PIo Pu P1zP13 (PL4)
FIG. 9. An example of visibifity merging. The dashed segments correspond 16 the visible region for X{u)
and the sofid segmenrs carrespond o the visible regian for X {w}. For simpliciny, we stare the painters pred (p,, u)
and pred (p,, w) in arravs and denote each point p, by irs index i. Note that pous are never removed. even if
the same segmen: defines the visible region for manv consecunve intervals {eg.. pu through p,).

N
Y
p——
=

AL 1. ATALLAH. R, COLE. AXD M. T. GOODRICH
relation. then we ler min {s,, 5,} denote the tovwer of the new):

» 3 {min {vis(p,. u). vis(pred (p,, w), w)} if p.e U,
PSP B2 min {vis(pred (p,, u), 1), vis{ p,, W)} if p,e U{w).

Proof. IT we restrict our attention to the segments with an endpoint in U{n),
then for any potnt p € U(u} the segment visibie ([rom -~} on the interval
{x{p;), x(succ{p,. v))) is the minimum of the segment visible on the interval (x(p,),
x{succ(p;, u))) and the segment that is visible on the interval (x(pred(p,, wh,
x{succ(pred { p;, w), w))). This is because the interval (x(p;), x(suce(p;, v))) 15 exactly
the intersection of the interval (x(p;), x(suce(p,. 1)) and the interval (x(pred (p;, w)),
x(succ(pred { p,, w), wh)}, and there is no segment in U(v) with an endpoint interior
to the interval (x(p,), x(sucel p,, ©))). Thus, vis(p,, v) is equal to minimum of vis(s i)
and vis(pred { p;, w), w). The case when p, € U(v) 15 similar. 0

By Lemma 6.8, after merging the lists U{u) and U(w), we can determine the
labels for all the points in U (v) in O(1) additional time using | U{v)| processors. Thus,
the running time of this generalized cascading merge algorithm is still O(log #) using
n processors. After we complete the merge and have computed U{roof(T)), along
with all the vis labels (or the points in U{roof(T)), then we can compress out duplicate
entries in the list (vis(p,, root(T)), vis(p>. root(T)), - - - . vis(ps,, root{T))) using a
paraliel prefix computatiorrto construct a compact representation of the visible portion
of the plane. We summarize in the following theorem.

THEOREM 6.9. Given a sef S of n nomintersecting segmenis in the plane. we can find
the Iower envelope of S in O(log n) time and OQ(n) space using n processors in the CREW
PRAM model, and this is oprimal.

Proof. The correctness and complexity bounds follow from the discussion above.
Since we require that the points in the description of the lower envelope be given by
increasing x-coordinates, we can reduce sorting 1o this probiem, and thus can do no
better than Oflog n) time using n processors. G

7. EREW PRAM implementatiohs. In this section we briefly note that the same
techniques as employed by Cole in [13] to implement his merging procedure in the
EREW PRAM model (no simultaneous reads) can be applied to our algorithms for
generalized merging, fractional cascading, constructing the plane-sweep tree. three-
dimensional maxima, two-set dominance counting, and visibility [rom a point, resulting
in EREW PRAM algorithms lor these problems. Apparently, we cannot apply his
techniques Lo our algorithms for trapezoidal decomposition and segment intersection
detection, however. since our algorithms lor these problems explicitiy use concurrent
reads (in the multilocation sieps).

Applying his techniques to our algorithms results in EREW PRAM algorithms
with the same asymptotic bounds as the ones presented in this paper, excepi that the
space bounds for the problems addressed in § 6 all become O(n log n). The reason
that his techniques increase the space complexity of these problems is because of our
use of labeling functions. Specifically, it is not clear how to perform the merges on-line
and still update the labels in O(1) time after a node becomes full. This is because a
label whose value changes on level [mayv have 10 be broadcasted to many elements
in level 71— 1 to update their labels, which would require {}{log n) time in this model
il there were (#n) such elements.

We can get around the problem arising [rom the labeling [unctions, however. For
the three-dimensional maxima problem and the two-set dominance counting problem,

=0
't
—

CASCARDING DIVIDE-AND-CONQUER

we separate the computation of the L 1) lists and compurtation of the labeling functions
into wo separale steps, rather thun “dovewailing”™ the two computatons as before.
Each ol the labeling Munctions we used lor these two problems can be redefined so as
1o be EREW-computabie. Specifically, the tabel for an element p in Ut v), on level /,
can be expressed in terms of a label pref(p, v} and a label up(p, v), where pref(p, v)
can be computed by performing a parallel prelix computation [21], [22} in U(r) and
up{p,v) can be dchned in terms ol pref(pred (p, Ichild (v)), Ichild (v)),
pref (pred { p, rehild ()}, relild (¢}, and the up label p had on level {41 (say, in
Ureinld (0)) if pe Ulrchild (1)), In particular, for the three-dimensional maxima
problem pref(p, v)=zod(p, v)and up(p, v} = ztd(p, v}, und for the two-set dominance
counting problem pref(p, v}=nod{p, v) and up(p, vY=nid (p, v). We can compute
all the pref(p, v} labels in O(log n) time using n processors by assigning {| U{v)|/log n]
processors to cach node v [21]. We can then broadcast each pref(p, v) label 1o the
successor of v n sibling(v). which takes O(log n) time using n processors by assigning
[fU{r)l/log n] processors to each node v, Finally, we can compute alt the up(p, v)
labels in O(log n) additional time by assigning a single processor to each point p and
tracing the path in the tree from the leal node that contains p up to the root. This is
an EREW operation because computing all the up(p, v} labels only depends upon
accessing memory locations associated with the point p.

The EREW solution to the visibility from a point problem requires O{n log 1)
space lor a diflerent reason, namely, because we can solve it by constructing the
plane-sweep tree for the segments (we need not have the Cover{uv}'s in sorted order,
however], computing the jowest segment in each Cover{v), and then perlorming a
top-down parallel min-finding compuiation to find the segment visible on each interval
(Pis P11). Since these are all straightforward computations, given the discussion presen-
ted earlier in this paper, we leave the details to the reader.

8. Conclusion. [n this paper we gave several general techniques for solving prob-
lems efficiently using parallel divide-and-conquer. Qur techniques are based on non-
trivial generalizations of the merge-sorting approach of Cole [13]. It is interesting to
note that Cole’s algorithm improved the previous results by a constant {actor, whereas
our algorithms improve the previous results asymptotically.

Two of our techniques involved methods for performing fractional cascading and
a generalized version of the merge-sorting problem optimally in parallel. Qur method
for doing fractional cascading runs in O(log n) time using [n/log »n | processors, and,
il implemented as a sequential algorithm, results in a sequential alternative to the
method of Chazelle and Guibas [12] for ractional cascading.

We also showed how to apply the generaiized merging procedure and (ractional
cascading to efliciently solve several problems by “cascading™ the divide-and-conquer
paradigm. For three of the problems—itrapezoidal decomposition, planar point loca-
tion, and segment interseciton detection—the method involved merging in the line
segment pariial order, and required considerable care to avoid situations in which the
algorithm would hall because it attempied to compare two incomparable segments.
Al three of these algorithms ran in O(log n} time using n processors, which is optimal
for all but the point locauon problem. In addition, since our algorithm lor doing planar
point location results in @ query time of O(log n}, our result immediately implies an
O(]0g3 n) time, # processor solution ta the problem of constructing the Voronoi diagram
of n planar points, using the algorithm ol Aggarwal er al. [1].

We showed how to apply the cascading divide-and-conquer technigue to problems
that can be solved by merging with labeling functions. We used this approach (o soive

LA
bt
I~

M.). ATALLAH, R, COLE, AND M. T. GOODRICH

the three-dimensional maxima problem, the two-set dominance counting problem, the
rectilinear segment intersection counting problem, and the visibility from a point
problem. Our algorithms {or these probtems all ran in O(log n) time using n processors,
which is optimal. -

REFERENCES

(1] A. AGGARWAL, B. CHAZELLE, L. Guiaas, C. O'DUNLAING. AND C. YAP, Parallel computasionaf
geomerry, Proc. 26th TEEE Svmposium on Foundations of Compulter Science, 1985, pp. 468-477,

[2] . Parallel compurationai geameiry, Algorithmica, 3 (1988}, pp. 293-328.

[3] M. J. ATAaLLan, R, CoLe, anp M. T. GoopRrICH, Cascading divide-and-conguer: A iechnigue for
designing parallel algorithms, Proc. 28th IEEE Symposium on Foundations of Computer Science,
1987, pp. 151-160.

{4] M. }. ATaLLAH aND M. T. GoopricH, Efficient parallel solutions 1o some geomerric problems, |
Parallel and Distributed Computing, 3 (1986), pp. 492-507.

(5] . Efficiens plane sweepmg in parallel, Proc. 2nd ACM Symposium on Computational Geometry,
1986, pp. 216-225.
[6] . Parallel algorithms for some funciions af twa convex polrgons, Algorithmica, 3 (19381, pp. 535-548.

[7] M. BEN-ORr, Lower bounds for algebraic computation recs, Proc. 13th ACM Symposium on Theory of
Computng, 1983, pp. 80-86.
[8] I. L. BENTLEY AND D. WooD, An opiimal worst case algorithm for reparung miersections of rectangles,
IEEE Trans. Comput., C-29 (1980}, pp, 571-576.
[9] G. BiLarpr AND A. NiCOLAU, Adapiive bitonic sorting: An opiimal parallel algorithm for shared
memory machines, TR 56-769. Depunment of Computer Science, Corneli University, August 1986,
[10] A. BorODIN AND J. E. HOPCROFT, Rouring, merging. and soriing on parallel madels af computation,
J. Compul. Svstem Sci., 30 (1983}, pp. 130-1435.
[1L] R. P. BRENT, The parallel evaluarion of general arithmeric expressians, 1. ACM, 21 (1974), pp. 201-206,
[12] B. CHAZELLE AND L.J. GuiBas, Fracrional cascading: 1. A data structuring technique, Alparithmica,
| {1986). pp. 133-162.
[13] R. CoLE, Parallel merge sort, Proc. 27th IEEE Symposium on Foundations of Computer Science. 1956,
pp- 511-516, SIAM J. Comput.. 17 (1988), pp. 770-783.
[14] N. Dapoun anD D, KIRKPATRICK, Parallel pracessing for efficient subdivision search, Proc. Jrd ACM
Svmposium on Computational Geomertry, 1987, pp. 205-214.
[15] H. EDELSBRUNNER AND M. H. OVERMARS, On the eguivalence of some recrangle problems. Inform,
Process. Lett., 14,(1982), pp. 124-127.
[16] H. ELGINDY AND M. T. GOODRICH, Parallel algorithms for sheriest path problems in pefvgans, The
Visual Computer: Internar, J. Comput. Graphics, 3 {1988}, pp. 371-378.
[17] M. T. GooDprICR, Efficient parallel techniques far compuiational geomein, Ph.D. thesis, Department
of Computer Scicnce, Purdue University, W. Lulaverte, IN, 1987.

[18] . Finding the convex hull of a sorted point ser in parallel, {nlorm. Process. Let., 26 (19871, pp.
173-179.
[19] . Triangularing a polygan in paraliel, J. Algarithms, 10 appear.

[20] H. T. KuNG, F. Luccio, anD F. P. PREPARATA, On finding the maxima af a ser of vecrars, 1. ACM,
22 (19751, pp. 469-476.

{21] C. P. KruskaL, L. RUDOLFPH, anD M. SR, The Power aof Parallel Prefix, Proc. 1985 LEEE Imernat
Conflerence on Parallel Processing, St. Charles, IL, 1985, pp. 180-185.

[22] R. E. LADNER AnD M.). FISCHER, Parallel prefix campuiaiion, J. ACM (1980), pp. 831-838.

[23] 1. H. REIF, An aptimal parallel algorithm for integer soriing, Proc, 26th |EEE Symposium on Foundations
of Computer Scicnce, 1985, pp. 496-504.

[24] J. H. REIF AND §. SEN, Optimal Randomized Parallel Afgorithms for Computational Geomeiry, Proc.
1987 {EEE I[nternat. Conference on Parallel Processing, 1987, pp. 270-277,

[25] Y. SHILOACH AND U. VISHKIN, Finding the maximurt merging, aud sorting in a paraliel compuiation
model, J, Algorithms. 2 (1981), pp. 88-101.

[26] L. VaLiaNT, Parallelism in comparison problems. S1ANM). Comput., 4 (1975), pp. 348-1355.

(27] H. WAGENER, Optimalh- parailel alporitivms for convex Indl determination. manuscript, 1983,

{28) C. K. Yav, Parallel triangulation of a palvgon in two calls to the trapezoidal map, Algorithmica, } {1988).
pp. 279-288.

	Cascading Divide-and-Conquer: A Technique for Designing Parallel Algorithms
	Report Number:
	

	tmp.1307986960.pdf.skb7c

