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CASCADING DIYIDE-AND-CONQUER: A TECHNIQUE FOR

DESIGNING PARALLEL ALGORITHMS'

MIKHAIL J. ATALLAHt. RICHARD CO LEt. AND MICHAEL T. GOODRICH§

AbSlracl. T<:chniqucs for parallt:l divide-and-conquer are presenled. rcsulting in improved parallel

:lIgorjthms for a number of probl<:ms. The problems for which improved algorithms are gi\'cn include

5cg.menL inlcrscctlon detection. trapezoidal decomposition. and planar point location. Efficient parallel

algorithms ilre algo given for fraclional cascading. lhree·dimensional maxima. lwo-set dominancc counting.

and visibility from a point. All of the algorithms presenled run in O(log n) lime with either a linear or a

sub linear number of proccssors in the CREW PRAM model.

K e ~ ' words. parallel algorithms. parallel data structures, divide-and-conquer. computational geometry.

fraclional cascading. visibility. planar point locat;on. trapezoidal decomposition. dominance, lnlersection

deteCllon

AMS(MOS) subject ci:l.ssil1cations. 68E05, 68C05. 68C15

l. Intl'oduction. This paper presents a number of genel'al techniques for parallel

divide-and-conquer. These techniques are based on nontrivial generaliza[ions of Cole's

recent parallel merge son resulI r13] and enable us [Q achieve improved complexi[y

bounds for a large number o( pl'Oblems_ In panicular, our [echniques can be applied

[0 any problem solvable by a divide-and-conquer method such that the subproblem

merging step can be implemented using a restl'icted, but powerful, set of opemtions,

which include (i) merging soned lists, (ii) computing the values of labeling functions

on elements stored in soned lis[s, and (iii) changing the idemi[y of elemems in a soned

list monoronically. The elements slOl'ed in such sorted lists need not belong to a total

ordel', so long as the compu[ation can be specified so that we will never try to compal'e

two incomparable elemems. We demonstrate the power of these techniques by using

[hem to design efficient parallel algorithms for solving a number of fundamental

problems from computational geomeuy.

The general framework is one in which we want [Q design efficient parallel

algorithms for the CREW PRAM or EREW PRAM models_ Recall that the CREW

PRAM model is the synchronous shared memory model in which processors may

simultaneously read from any memory location but simultaneous writes are nO( allowed.

The EREW PRAM model does not allow for any simultaneous access to a memory

cell. Our goal is La find algol'ithms [hat run as fast as possible and are efficient in the

following sense: if p(n) is the processor complexity, 1('1) the parallel time complexi[y,

and seq( n) the time complexity of the best-known sequemial algorithm for the problem

* Recei\'ed by lhe editors September 14. 1987: accepted for publication (in revised form) August 12,

1988. This paper appeared in preliminary form as [3] and as ponions of [17].
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under considermion. then t( 11) '" p(n) = O(seq( /l)). If the product 1(/1) of' p(,1) achieves

the sequential lower bound for the problem, then we say the algorithm is optimal.

When specifying the processor complexity. we omil the "big oh," C.g., we say "11

processors" rather than "O(n) processors"; this is justified because we can always

save a constant facwr in the number of processors at a cost orthe same conSlanl factor

in the running lime. In all of [he problems listed below, we achieve ten) = D(log n)

and, simultaneously (except for planar point locationl. an optimal ten) * p(n),

Previous work on parallel divide·and-conquer has produced relatively few

algorithms Lhar are optimal in the above sense. Exceptions to this include some of the

previous algorithms for the convex huU problem [1], [4J, [6J, [18J, [27J and the problem

of circumscribing a convex polygon with a minimum-area triangle [IJ. Unfortunately,

each of these approaches was very problem-specific. Thus, there is a need for techniques

of wider scope.

This is in fact the mOlivation for our work, for we give a number of general

techniques for efficiently solving problems in parallel by divide-and-conquer. We model

the divide-and-conquer paradigm as a binary tree whose nodes contain sorted lists of

some kind. The compmation involves compming on this tree in a recursively defined

bOHom-up fashion using lists of items and labeling functions defined for each node

in the tree. In Cole's scheme [13J, (he list at a node was defined to be the sorted merge

of the two lists stored at its children. In our scheme. however, the lists at a node of

the tree can depend on the lists 13f its children in more complex ways. For example,

in our solution to the segmem inTersection deteCTion problem, the lists at a node depend

on computing, in addition to merges. set difference operations thal are not directly

solvable by the "cascading" method used by Cole [13]. Such operations arise here

becausc the lists at a node comain segments ordered by their intersections with a

vertical line (the so-called "above" relationship). which is obviously not a total order.

One may be tcmpted to try to solve this problem by delaying the performance of these

set difference operations un Iii the end of the compmarion. Unfortunately, this is not

feasible for many reasons, not the least of which is that this approach could lead to

a situation in which a processor tries to compare two incomparable items. Nor does

it seem possible to explicitly perform the set difference operations on-line without

sacrificing the time-efficiency of the cascading method. Our solUlion avoids both of

these problems by using an on-line "identity-changing" technique.

Another significant contribution of this paper is an optimal parallel construction

of the "fractional cascading" data structure of Chazelle and Guibas [11]. This too is

based on a generalization of Cole's method [I3J in the sense that instead of having

the computation proceeding up and down a tree, it now moves around a directed

graph (possibly with cycles). Our solution to fractional cascading is quice different

from the sequential method of Chazelle and Guibas (their method relies on an

amortization scheme [0 achieve a linear running time L

The following is a list of the problems for which our techniques result in improved

complexity bounds. Unless otherwise specified, each performance bound is expressed

as a pair (((n),p(n)), where ten) and pen) are the time and processor complexities,

respectively, in [he CRE\-\' PRAM model.

Fractional cascading. Given a directed graph G = (V, E), such that every node U

contains a soned list C(u), construct a data structure that, given a walk (VI, U:!,' .. , um )

in G and an arbitrary element x, enables a single processor 10 locate x quickly in each

C(v,), where f1=IVI+!EI+2:,.",vIC(v)!. In [I:!J Chazelle and Guibas gave an elegant

0(,1) time, 0(11) space, sequential construction, where n = ~ •. cv IC(u)l. We give a

(log 11, n/log n) conscruction.
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Trape=oidal decomposition. Given a set S of II line seg.ments in the planc, detcrmine
for each segment endpoint p the firsr segment "stabbed'" by the verrical ray emanating
upward (and downward) from p. A (Iog~ rl, II) solution [Q this problem was given by
Aggarwal et al. in [I], later improved [Q (log 11 log log n, n) by Atallah and Goodrich
in [5J. We improve this [Q (log tI, n).

Planar poim locatioll. Given a subdivision of the plane inlo (possibly unbounded)
polygons, construct, in parallel, a data structure that, once buill, enables one processor
to determine for any query point p lhe polygonal face containing p. Let Q(1I) denote
the lime for performing such a query, where n is the number of edge segments in the
subdivision. A (Iog~ 11, 11), Q(II) = O([og~ ,,) solurion was given by Aggarwal et al. in
[I], lalcr improved Lo (log '1 log log 11, n), Q(II) = O(log n) by Atallah and Goodrich
in [5J. In [14J Dadoun and Kirkpatrick further improved this to (log n log* 11, r1),
0(11) = O(log /I). We give a (log n, 11), Q(n) = O(log 11) solution.

Segment inrerseclion detection. Given a sel 5 of n line segments in rhe plane,
determine if any two segments in S intersect. A (Iog~ n, n) solution was given in [IJ,
laler improved to (log 11 log log n, n) in [5J. We improve this to (log 11, tl).

Three-dimensional maxima. Given a set 5 of n points in rhree-dimensional space,
determine which points are maxima. A maximum in S is any point p such that no
other point of S has x,)', and z coordinates that simultaneously exceed rhe correspond­
ing coordinates of p. A (log n log log", II) solution was given in [5]. We improve this
La (log", Ill. .

TH.·o-sef dominance coutlting. Given a set A = {qt, q2,' .. , q,} and a set B =
{rl' r2 , ••• ,rn!} of points in the plane, determine for each point ri in B the number of
points in A whose x and.iI coordinares are both less than the corresponding coordinates
of rio The problem size is n = 1+ m. A (log n log log n, ") solution was given in [5]. We
improve this La (log n, nl.

Visibility Ironl a point. Given" line segments such that no tWO intersecr (except
possibly at endpoints) and a point p, determine thaI pan of the plane visible from p.
if all rhe segments are opaque. A (log" log log 11, n) solution was given in [5]. We
improve this to (log n, n).

We recemly learned that Reifand Sen [24J sol ved planar point location, trapezoidal
decomposition, segment intersection and visibilily in randomized O(log n) time using
O(n) processors in the CREW PRAM model. All of our algorithms are deterministic.

This paper is organized as follows. In § 2 we present a generalized version of the
cascading merge procedure and in § J we give our method fordoing fractional cascading
in parallel. In § 4 we show how to apply the fractional cascading rechnique [Q a data
structure we call the plane sweep tree, showing how to solve the trapezoidal decomposi­
tion and point location problems. In § 5 we show how to exrend the cascading merge
technique to allow for cascading in the "above" panial order of line segments. giving
solutions to the problems of building the plane sweep tree and solving the intersection
derection problem. In § 6 we use the cascading divide-and-conquer rechnique lO
compute labeling functions and show how to use this approach to solve three­
dimensional maxima, two-ser dominance couming, and visibility from a point. Finally,
in § 7, we briefly describe how mosl of our algorithms can be implemented in the
EREW PRAM model with the same time and processor bounds as our CREW PRAM
algorithms, and we conclude in § 8.

2. A generalized cascading merge procedure. In this section we presenL a technique
for a generalized version of the merge soning problem. Suppose we are given a binary
lree T (nOl necessarily complete) with irems, taken from some lOral order, placed at
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the leaves of T, so thaT each leaf contains at most one item. For simplicity, we aSSume

that the items are distincr. We wish to compute for each internal node VET the SOrted

list U(v) that consists of all the items stored in descendant nodes of v. (See Fig. 1.)

In this section we show how to constrict U(v) for every node in the tree in O(heighl (T))

time using ITI processors, where ITI denotes the number of nodes in T This is a

generalization of the problem studied by Cole [13], because in his version the tree T

is complete. Without loss of generality, we assume thaL every internal node v of T

has two children. For if v has only one child then we can add a child to v (a leaf

node) that does not store any items from the total order. Such an augmentation will

at most double the size of T and does not change its height.

Need to construct

U(v) = (4,12,13,50, 103) ~

13

103 12

23

5

4 50

FIG. I. All example of the generalized merge problem.

Let a, h, and c be three items, with a ~ b. We say c is between a and b if a < c~ b.

Let two sorted (nondecreasing) lists A =(a" az, - . -, an) and B =(b], b:!.· .. ,b
m

) be

given. Given an element a, we define the predecessor of a in B to be the greatest

element in B that is less than or equal to a. If a < bl , then we say that the predecessor

of a is -co. We define the rank of a in B to be the rank of the predecessor of a in B

(-co has rank zero). We say that A is ranked in B if for every element in A we know

its rank in B. We say that A and B are cross-ranked if A is ranked in Band B is

ranked in A We define two operations on sorted lists. We define AU B to be the sorted

merged list of all elemems in A or B. If B is a subset of A, then ":'Ie define A - B to

be the sorted list of the elemented in A that are not in B.

Let T be a binary tree. For any node v in T we let parent( v), sibling( v), lchild (v),

re/rild (v), and deplh(v) denote the parent of v, the sibling of v, the left child of v, the

right child of v, and the depth of v (the root is at depth zero), respectively. We also

let root( T) and heighl( T) denote the root node of T and the height of T, respectively.

The altitude, denoted a/t(v), is defined a/t(v) = height( T) -deprh(v). Desc(v) denotes

the set of descendant nodes of v (including v itself).

Let a sorted list L and a sorted list J be given. Using the terminology of Cole

[13], we say that L is a c-cover of J if between each two adjacent items in (-co, L,co)

there are al most c items from J (where (-co, L, co) denotes the list consisting of -co,

followed by the elemems of L, followed by 00). We let SAMP..(L) denote the sorted



CA~CADING DIVIDE.I\ND.CONQUER 503

list consisting of every clh element of L, and call this list the c-sample of L. That is,

SAMP,.(L) consists of the clh element of L followed by the (2c)th element of L, and

so on.

The algorithm for constructing U(u) for each VET proceeds in smges. Intuitively,

in each stage we will be performing a portion of the merge of U(lchild (u») and

U(rchild (v)) to give the list U(u). After performing a ponion of this merge we will

gain some insight into how to perform the merge at v's parent. Consequently, we will

pass some of the elements formed in the merge at v to l'·S parent, so we can begin

performing the merge at v's parent.

Specifically, we denote the list stored at a node v in T at stage s by V,(v). Lnitially,

Uo(u) is empty for every node except the leaf nodes of T, in which case Uo(v) contains

lhe item sIOrcd at the leaf node v (if lhere is such an item). We say that an internal

node v is aCliue ar stage s if ls/3J ?o al/(vl ?os, and we say v is lull al slage s if

a/leu) = lsnJ. As will become apparent below, if a node v is full, then U ~ ( v ) = U(v).

For each aClive node VE T we define the list U.:+1(v) as follows:

{

SAMP,(U,(V))

U;.,(v) ~ SAMP,(U,(v))

SAMP,(U,(v))

if all(v)?;s/3,

if all(v) ~ (s - i)/3.

if all( vi ~ (s - 2)/3.

At stage s + 1 we perform the following- computation at each internal node v that is

currently active.

Per·srage computation {v, s+ 1). Form the two lists U ~ + l ( l c h i l d (v)) and

U:+l(rchild (v)), and compute the new list

U•• , ( v ) : ~ U;.,(lchUd (v))U U;.,(,chUd (v)).

This formalizes the notion that we pass information from the merges performed

at the children of v in stage s to the merge being performed at v in stage s + I. Note

that until v becomes full, U ~ " ' l ( V ) will be the list consisting of every fourth element

of U,(v). This continues to be true aboUl U:+1(v) up to the point that v becomes full.

If s,. is the stage at which v becomes full (and U.(v)= U(v)), then at stage s,.+I,

U:+1(v) is the two-sample of U,(v), and, at stage s,.+2, U ~ + I ( U ) = U,(v) (= U(o)).

Thus, at stage s" + 3, parent ( 0) is full. Therefore, after 3 * height( T) stages every node

has become full and the algorithm terminates. We have yet to show how to perform

each stage in 0(1) time using n processors.

We begin by showing that the number of items in U'+I(U) can be only a little

more than twice the number of items in U.(v). a property that is essential to the
construction.

LEMMA 2.1. For anJ' stage s ~ 0 and any node vET, 1U
S
+l( v))?o 21 U,( 0)1 +4.

Proof The proof is by induction on s.

Basis (5 = 0). The claim is clearly true for s = o.
Induction slep (s> 0). Assume the claim is true for stage s - 1. If v is full (i.e.,

a//(v)= ls/3j), then the claim is obviously true, since U'+I(V)= U ~ ( v ) = U(v). Con­

sider rhe case where eirher the children of v were nO[ full at stage s or had just become

full at stage s. We know that U,+I(V)=U:-,-I(X)UU;+I(Y), where x=Jchild(vl and



504 M. J, ATALLAH. R. COLE. AND M ..T. GOODRICH

r = rchild (vl. In <lddition. we have the following:

Iu.•,( "II'--llU.~ x IIJ + II U}'IIJ.. (from definitions)

~ ~ - l 2 1 U ' _ ' ~ X II +4J +l21u._,;YII +4J
- (by induction hypOlhesis)

"2( II U._~(XIIJ +l! u.-~("IIJ) +4

~2!U.(vII+4.

The case when the children of v are full at stage s-1 is similar (except that one divides

by 2 or I instead of 4). Acmally, ir is simpler, since in this case the children of v were

full in smge s - I; hence, the step using rhe induction hypothesis can be replaced by

a simple algebraic substitUlion step. 0

In the next lemma we show that the way in which rhe V,curs grow is "well
behaved:·

LEMMA 2 . ~ . Let [a, bJ be an imerval willi a, bE (-co, U ~ ( v), ex)). If [a, b] intersects

k + I items in (-00, U:(v), OJ), then it intersects at mosT 8k +8 items in U,ev) for all
k ~ I and s ~ 1.

Proof The proof is by i n d u c t i o ~ _ o n s. The claim is initially true (for s= I).

Actually, for any slage S, if U:(v) is empty, then U'_I(V) contains at most three iLems,

hence, V,(v) contains at most ten elements. by lhe previous lemma. Also, if U:(v)

contains one item, then U'_l(U) contains at most seven items, hence, V,(v) contains

at most 18 ilems, by the previous lemma. At most 1-5 of these items can be between

any two adjacent items in (-cc, U ~ ( u ) , co), since the item in U:(v) was the fourth item
in V5_l(U) by definition.

Illductive sfep (assume lrue for stage s). Let [a, b] be an imerval with a, b

both in the list ( ~ o o , U . ~ + I ( V ) , 00), and suppose [a, b] intersects k+ I items in

(-co, U ~ + I ( V ) , co). The lemma is immedialely true if v was full stage s. since the

smallesl sample we take is a four-sample. So, next, suppose that either the children

of v are not full or have just become full in stage s. Let g be the number of iLems

in (-00, U,(u).co) intersected by [a,b]. Recall that U
5
(v) =

U;(lchild (v))U U;(rchild (vI). Let [a .. b,J (respectively, [a" b,]1 be the smallest

interval containing [a, b] such that a l , b l E (-0:::, U:(lchUd (v)), co) (respectively,

a;:, b1 E (-w, V:( rc1lild (u)), co)). Suppose the interval [a I, bd intersecls 11 + I items in

the Jist (-OCI,U:(/c1lild(u)),oo) and [a2,b1 ] inlersects j+l ilems 10

(-co, U:(rchiJd (v)), co). Note that h + j = g. By the induction hypothesis, [ai, b
l

]

intersecls al mosl8h+8 items in U.(lc1lUd (u)), and hence at most (811+8)/4=211+2

items in U: ... 1(lc1lild (u)). Likewise, [a 2 , b~] imersects at most 2j+2 items in

U:+I(rchild (u)). The definilion of U:+I(u) j-mplies that g ~ 4 k + '- Therefore, since

U5+I(V) = U:+I(lchiid (v))U U:+I(rchiid (u)), [a, b] intersects at most (211+2)+

(2)+2) ilems in U'+I(U), where ( 2 1 1 + 2 J + ( 2 j + 2 ) ~ ( 2 1 1 + 2 ) + ( 2 ( 4 k - " + I J + 2 ) ~
8k+8.

The proof for the case when the children of v were full in stage s - I is similar.

AClually, it is simpler, since the induction sleps can be replaced by algebraic subSlitution
sleps in this case. 0

COROLLARY 2.3. TIle Jist (-co, U;(u),oo) is a four-cover for U:+I(v), for
all s ~ o. []
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This corollary is used in showing that we can perform each stage of the merge

procedure in O( I) time. In addition (Q this corollary, we also need to maintain the

following rank informalion at the start of each stage s:

(1) For each item in U:(v): its rank in U:(.~ibling(I)).

(2) For each item in U ~ ( v ) : its rank in V,(v) (and hence, implicitly, its rank

in U~+I(V)).

The lemma that follows shows that the above information is sufficient to allow us

to merge U:+ I (Ichild (v)) and U:+ I (rchild (v)) into the list U.+ 1(v) in O( I ) time using

IU'+l(v)1 processors.

LEMMA 2.4 (THE MERGE LEMMA) [13]. Suppose we are given sor/ed lisfS A" A:+
"B~, B~+" C~, and C:+ lt where tile following (input) cal/ditions are true:

(1) A,~B:UC;;

(2) A ~ + I is a subser of A,;

(3) B: is a cl-coverfor 11:'1;

(4) C: is a c~-coverfor C:+ 1;

(5) B: is ranked in 8:+ 1 ;

(6) C ~ is ranked in C:+ 1 ;

(7) B: and C: are cross-ranked.

Dlen in 0(1) time usillg IB',+,I+IC:+d processors in rhe CREW PRAM model, we

can compute lhe following (output computations):

(I) tire sorted list A,+, = B~+, WC:+ 1;

(2) tire ranking of A:+ 1 ill A'+I;

(J) the cross-ranking of B:+ 1 and C ~ + I . 0

We apply this lemma by setting As = V,( v), A.:+ 1 = U:+. (v), A,+ I = U.+ 1(v), B; =

U',(x), 8:+ 1 = U'.+I(X), C: = U',(Y), and C:+ I = U:+.(y), where x=lchild (v) and

y= rcllild (v). Note that assigning the lists of Lemma 2.4 in this way satisfies input

conditions (1)-(4) from the definitions. The ranking information we maintain from

stage to stage satisfies input conditions (5)-(7). Thus, in each stage S, we can construct

the list U,+I(V) in 0(1) lime using IU, .... (u)1 processors. Also. the new ranking informa­

tion (of output computations en and (3») gives us the input conditions (5)-(7) for the

next stage. By Corollary 2.3 we have that the constants C l and c ~ (of input conditions

(3) and (4)) are both equal to four. Note that in stage s it is only necessary to store

the lists for S -1; we can discard any lists for stages previous to that.

The method for performing all these merges with a total of ITI processors is

basically to start out with O( I) virtual processors assigned to each leaf node, and each

time we pass k elements from a node v to the parent of v (to perform the merge at

the parent), we also pass O(k) virtual processors to perform the merge. When u·s

parent becomes full, then we no longer ··store" any processors at v. (See [17] for

details.) There can be at most O(n) elements present in active nodes of T for any

stage s (where n is the number of leaves of T), since there are n elements present on

the full level, at most nil on the level above that, n/8 on the level above that, and so

on. Thus, we can perform the entire generalized cascading procedure using O( n) virtual

processors, or n actual processors (by a simple simulation argument). This also implies

that we need only O(n) storage for this computation, in addition to that used for the

outpUl, since once a node v becomes full we can consider lhe space used for U(v) to

be part of the output. Equivalently, if we are using the generalized merging procedure

in an algorithm that does not need a U(v) list once v's parent becomes full, then we

can implement that algorithm in O(n) space by deallocating the space for a U(v) list

once it is no longer needed (this is in fact what we will be doing in § 6).
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It will arLen be more convenient [0 relax the condition that there be at most One

item stored at each leaf. So, suppose there is an unsorted set A(v} (which may be

empty) stored at each leaf. [n this case we can construct a tree T' from T by replacing

each leaf v of T with a complete binary tree with IA(u)! leaves, and associating each

item in A(v) with one of these leaves. T' would now satisfy the conditions of the

method outlined above. We incorporate this observation in the following theorem,

which summarizes the discussion of this section.

THEOREM 2.5. Suppose we are given a biliary tree T such rhat there is an unsorted

set A( v) (which mQy be empty) stored at each leaf 77'clI we can compute, for each node

vET, Ihe list U( u), which is the union oj all irems srored at descendents oj u, sorted in

an array. TIlis computalion can be implemented ill O( height( T) + log (max,. IA( v)l)) lime

using a loral of n + N processors in the CREW PRAM compuralionaf model, where n is

the number of leaves of T and N is rhe total number of items stored in T.

Proof The complexity bounds follow from the fact that the tree T' described

above would have height at most O(height(T)+log (max v jA(u)l)) and ITI is

OCIT[+N). 0

The above method comprises one of the main building blocks of the algorithms

presemed in this paper. We presem another important building block in the following

secllon.

3. Fractional cascading in parallel. Given a directed graph G = (V. £1, such that

every node v conmins a sorted lisl C(ul, the fractional cascading problem is to construct

an O(n) space dam structure that, given a walk (VI, V2,' .. , um) in G and an arbitrary

e1emem x, enables a single processor to locate x quickly in each C(v;), where n =

IVI +1 £1 + [,'<: v IC(v)!. Fractional cascading problems arise naturally from a number

of compmational geometry problems. As a simple example of a fractional cascading

problem, suppose we have five different English dictionaries and would like to build

a dala strucrure thal would allow us [0 look up a word w in all the dictionaries.

Chazelle and Guibas [12] give an elegant O(n) time sequential method for conslructing

a fractional cascading data structure from any graph G, as described above, achieving

a search time of O(log n + m log d(G)), where d(G) is the maximum degree of any

node in G. However, their approach does not appear to be "parallelizable."

In this section we show how (Q construct a data structure achieving the same

performance as that of ChazeJle and Guibas in O(log n) time using fn/log nl pro­

cessors. Our method begins with a preprocessing step similar to one used by Chazelle

and Guibas where we "expand" each node of G into two binary trees-one for its

in-edges and one for its out-edges-so thal each node in our graph has in-degree and

out-degree al most 2. We then perform a cascading merge procedure in stages on this

graph. Each catalogue C(u) is "fed imo" the node v in samples that double in size

with each stage and these lists are in turn sampled and merged along the edges of G.

Lisls continue to be sampled and "pushed" across the edges of G (even in cycles) for

a logarithmic number of smges, at which time we stop the computalion and add some

links between elements in adjacent lists. We conclude this section by showing that this

gives us a frac[ional cascading data structure, and that the computation can be

implemented in O(log n) time and O(n) space using r"flog n1 processors.

We show below how to perform the compu[3tions in O(log n) time and O(n)

space using n processors. We will show later how (0 get the number of processors

down to rnflog III by a careful application of Brent's theorem [11].

Define [lI(V, GJ (respectively, Out(v, G)) to be the set of all nodes w in V such

that (w, u) E E (respectively, (u, w) E E). The degree of a venex u, denoted d (u), is
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defined as d(v)=max{IIn(v,G)I, !Ollt(v.Gll}. The degree of G. denoted d(G), is

defined as d(G) == max"" I' {d(v)}. A sequence (VI, v ~ , · · · , Vm) ofvenices is a walk if

(V"Vj+I)EE for all iE{1,2.···.m-I}.

As mentioned above. we begin the construction by preprocessing the directed

oraph G to convcIl it into a directed graph 6 == ( ~~ E.) such that d (6) ~ 2 and such
o •

thaI an edge (v, Il') in G corresponds 10 a path in G of length at most O(log d(G).

Specifically, for each node v E V we construct two completc binary trees T ~ ~ and T ~ u , .

Each leaf in T ~ ~ (respectively. T ~ U I ) corresponds to an edge coming into v (respectively,

going out of v). So there are IIn(v. G)lleaves in T~~ and IOut(u, G)lleaves in T ~ U I .

(See Fig. 2.) We call T ~ n tbe fan-in tree for v and T ~ U I the fan·oul tree for v. An edge

e == (v, w) in G corresponds to a node e in G such that e is a leaf of the fan-out tree

for v and e is also a leaf of the fan-in tree for 11'. TIle edges in T ~ ~ are all directed up

towards the root of T ~ ~ , and the edges in T ~ U I are all directed down towards the leaves

of T ~ / ' . For each v E V we create a new node v' and add a directed edge from v' to

u, a directed edge from the rOOt of T ~ ~ to v', and an edge ~ r o m v'to the root of r:;UI.
We call v' the gateway for v. (See Fig. 2). Note that d(G)==2. We assume that for

each node v we have access to the nodes in In(v, 6) as well as those in Out(v. 6).
We struclUre fan-out trees so that a processor needing to go from V to w in 6. with

(u, w)l:" E. can correctly detennine the path down r:.. u
, lo the leaf corresponding to

(v, 11'). More specifically, the leaves of each fan-out tree are ordered so that they are

listed from left to right- by increasing des[ination name, i.e., if the leaf in T ~ u , for

e == (D, ll) is w the left of the leaf for f == (v. w), then u <: w. (The leaves of T ~ n need

not be SOIled, since all edges are directed towards the root of that tree.) If we are not

given the Out(v, G) sets in soned order. then we must perform a sort as a part of the

~ U ' construction, which can be done in O(log d(G») time using n processors using

Cole's merge SOIling algorithm [13]. We also SWre in each internal node z of ~ U l the

leaf node u that has the smallest name of all the descendants of z.

e, el v

e. e, e. el

e, v' <,

<s <3 <. Tin <3
<, 'I. "

Tout

"eS <,
(a) (b)

v e W
O>-----"--~~~O

(c)

v

Tout

"

(d)

W

FIG_ 2. Conver/Irlg G imo £I b£lUlzded degree gr£lpJr G. A 'lOde L' in G (al corresponds in/a a node vculjacem

{o ilS gareWQI' v'. wlrich is connecled 10 the fan.in free and the fan,olll {reI' lor v (b). An edge e in 'G (c) is

mnver/ed imo a rlOde in G .....hich corresponds {a a lea/node oflM'o trees (d).
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if Out( v, 6) = {WI, n " ~ } ,

if Ou/( v, 0) ~ {wI.

if Ou/(u, 0 ) ~ 0 .

Tile above preprocessing step is similar to a preprocessing step lIsed in the

sequential fractional cascading algorithm of Chazelle and Guibas [12]. This is Where

the resemblance to [he sequential algorithm ends, however.

The goal for the rest of the computation is to construct a special soncd list B(v),

which we call the bridge lisr, for every node v E V. We shall define these bridge lists

so tha[ B(vl= C(v) if v is in V; if v is in \i but not in V, then for every (u, 11')e E, if

a single processor knows the position of a search item x in B( v), it can find the position

of x in B(II') in 0(1) lime.

The construction of the B(v)"s proceeds in stages. Let B,(v) denote the bridge

list stored at node vE V at the end of stage s. Initially, Bo(v)=0 for all v in V.
Intuitively, the per-stage computation is designed so thar if v came from the original

graph G (i.e .. VE V), then lJ will be "feeding" BAv) with samples of the catalogue

C(v) that double in size with each stage. These samples are then cascaded back inlo

the gateway v' for v and from there back through' the fan-in tree for lJ. We will also

be merging any samples "passed back" from the fan-oul tree for v with B,(v'), and

cascading these values back through [he fan-in tree for v as well. We iterare the

per·stage compuration for flog N 1stages, where N is the size of the largest catalogue

in G. We will show rhat after we have completed the last stage, and updated some

ranking poimers, 6 will be a fractional cascading data strucwre for G. The delails

follow.

Recall that Do( vl = 0 for all v E V. Ear srage-s ;;;0, we define B ~ + I ( v ) and B ' ~ ' I ( u )
as follows:

• {SAMP,(B,(U)) ifuEV-V,
B,+I(v) = .

SAMP"., (C(u)) If VE V,

. _{B;+>(":')U B:+,(w,)
B'~l(v) - B<+I(II)

o
where c(s)=2 f10

I!-NJ-s and N is the size of the largest catalogue. The per·stage

computation, then, is as follows.

Per-stage compuration (v, s + 1). Using rhe above definitions, construct B s + I( v)

for all VE V in parallel (using IB,+I(v)1 processors for each v).

The function (.'(s) is defined so that if VE V, then as the compurarion proceeds

[he list B:+l(v) will be empry for a while. Then ar some stage s + I, it will consist of

a single element of C(v) (the (2 1ID
I!-

N l-<)th element), in srage s+2 al most three

elements (evenly sampled), in srage s+3 at most five elements, in stage s+4 al most

nine elements, and so on. This continues until the final stage (srage flog N 1), when

B ~ + I ( v ) = C ( v ) . Intuilively, the c(s) funclion is a mechanism for synchronizing rhe

processes of "feeding" the C(v) lists into the nodes of 6 so that all the processes

complete at the same time. We show below that each stage can be performed in 0(1)

time, resulting in a running lime of the cascading computations rhat is O(log N) (plus

the rime it lakes time to compute the value of N, namely, O(log n)). The following

important lemma is similar to Lemma 2.1 in thal ir guarantees that the bridge lists do

not grow "too much" from one stage [Q another.

LEMMA 3.1. For any stage s ~ 0 and at/y node VET, 1B, ... 1(v )1221 B,( v)I +4.

Proof The proof is by induction on s.

Basis (s = 0). The claim is clearly true for s = O.

/l1ducrilJll step (s > 0). Assume the claim is lrue for slage s -1. If v E V. then the

claim follows immediately from [he definilion of c(s), since in this case B'+I(v) and
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B.,(v) are both samples of C(r') with B'+I(v) being twicc as fine as B,(v), I.e.,

IB.. ,(vll '" 21B.( v)1 +l.. .

Consider the case when v E \1- V; and Out( v, G) = {w
J

, 1I'~}. We know in this case

B,+ I(V) = 11~+1( 1\'1) U B~+I (w~). Thus, we have the following:

IB... ,(v JI ~ IIB, ~'" JI J+ lIB. ~"')' j (from definit;on,)

___ l2IB'_'(4W ,JI+4j +l'IB. '(4"',1I+ 4j .
~ (by induction hypothesis)

~ 2 I B , ( v ) I + 4 .

For the case when v E if - Vand GUf( v, G) comains only one node, II', the argument

is similar and, in facr, simpler. We simply repeat the above argument, replacing "'1
with wand eliminating those terms thal contain I V ~ . 0

In the next lemma we show that the way in which the B,(v)'s grow is .'well
behaved,'- much as we did in Lemma 2.1.

LEMMA 3.2. Let [a, b] be an illterval with a, bE (-00, B: (v), (0). If [a, b] inrersecrs

k + 1 items in (-00, B:( v), (0), Iher! it ill_tersecrs or mosr 81\. + 8 items in. BA v) for all
kS'I and .'lEi; l.

Proof The proof is structurally the same as that of Lemma 2.1, since that lemma
was based on a merge defini[jon similar to that for B,+,(v), 0

COROLLARY 3.3. TIle list (-co, B ~ ( u ) , co) is a four-couer for B:+l(v), for s ~O.
COROLLARY 3.4. TI,e lisr (-oo,B..(v),oo) is a 16-coverJor B . , ( w ) , f o r s ~ O arid

(V,W)EE.

The first of these two corollaries implies that we can satisfy all the c-cover input

conditions for the Merge Lemma (Lemma 2.4) for performing the merge operations

focthe compmation at stage s in 0(1) time using n, processors, where n, = L"E Ii 18,(v)[.
We use the second corollary [Q show that when the computation is completed we will

have a fractional cascading data structure (after adding the appropriate rank pointers).

We maintain the following rank information at the stan of each stage s_

(1) For each item in B:(v): its rank in B;(w) if In(v, O)n In(w, 0) is nonempty,
i.e., if there is a vertex u such that (u, v) E E and (u, 11') E E.

(2) For each item in B:(I)): its rank in B,(v) (and thus, implicitly, irs rank in
B;+,(v)J.

By having this rank information available at the stan of each stage s, we satisfy

all the ranking input conditions of the Merge Lemma. Thus, we can perform each

stage in 0(1) time using n, processors. Moreover, the omput computations of the

Merge Lemma allow us [Q maintain all the necessary rank information into rhe next

stage. Note that in stage s it is only necessary to store the lists for s - I; we can discard

any lists for stages previous to that, as in the generalized cascading merge.

Recall thar we perform the computation for flog Nl stages, where N is the size

of the largest catalogue. When the computation completes, we take B(I)) = B,(v) for

all v E \~ and for each (v, IV) E E we rank B( v) in B( IV). We can perform this ranking

step by [he following method. Assign a processor 10 each element b in B(v) for all

VE V in parallel. The processor for b can find the rank of b in each B:(II') such that

WE Out(u, 6) in 0(11 time because B,(v) contains 8:(11') as a proper subset (B.:(w)

was one of the lists merged to make B,( v)). This processor can then determine the



510 M, J. ATALLAH, R_ COLE, AND M, T. GOODRICH

rank of bin B(w)= 8,(11") for each WE Our(v, 6) in 00> time by using the ranking

information we maintained (from W(II') lO 8.,(11')) for stage s (rank condition (2)

above).

Given a walk HI = (VI, ... , L'".,), and an arbitrary element x, the query that asks

for locating x in every C(v,) is called the mulrjlocalion of x in (VI> ' .. , L'nr). To perform

a muhilocalion of x in a walk (VI.· .. , vrn ), we extend the walk W in G to its

corresponding walk W= (VI, ...• t ~ : " ) in 6 and perform the corresponding multiloca­

tion in 6. similar to the method given by Chazelle and Guibas [ 1 2 ~ for performing

multilocations in their data structure. The multilocation begins WiLh the location of x

in Bev l ) = H( v;), the gateway bridge list for VI, by binary search. For each other Vertex

in Ihis walk we can locate the position of x in B(v;) given its position in B(uj_l) in

00) time. The method is La follow the poimer from x's predecessor in B(u,_I) to the

predecessor of that elemenl in B( Vi) and then locate x in B(v;) by a linear search from

that position (which will require at most 15 comparisons by Corollary 3.4). In addition,

if 6, corresponds 10 a gateway v', then we can locate x in C(v) in 00) time given its

position in B(v') by a similar argument. (See Fig. 3.) Since each edge in the walk W

corresponds to a path in "' of length at most O(log d(G)), this implies that we can

perform the multilocation of x in (VI •... , urn) in O(log IB( v;)1 + m log d (G)) time.

In other words. G is a fractional cascading data structure. We show that 6 uses O(n)

space in the following lemma.

in G:

A multilocation in (T (in G):

B vD
binary

search

B v'J Be,)

C{v,J

FIG. J. "'1ullilocolillg on element x in (VI' vz , vJ ).

LEMMA 3.5. LeI n<, denote the amounI of space that is added to G because of the

presence ofa parcicular catalogue C(v), VE V. TIlen nL,~2IC(v)l.

Proof. Recall that while constructing the bridge lists in 6 we copy one-fourth or
[he elements in each bridge list to at most two of its neighbors. Thus, we have Lhe



following:

CASCADING DIVIDE.AND.CONQUER

",- '" IC( v)1 + 2l1c( ")l/4J +2' L1C( v)I/4'J + 2' II C( v)I/4-'j + _

"'21C(v)1

511

(This is obviously an overestimate, but it is good enough for the purposes of the
analysis.) 0

COROLLARY 3.6. TI,e toral amount of space used by the fractional cascading data
slructure is O( n), where n = IVI +1£1 + ~<'E" v JC( v)l.

Proof The tOlal amoum of space used by the fractional cascading data

structure is O()Vr+!E)+L'd,IB(v)[). Since all the bridge lists stan out empty,

L,,, v IB(v)l) = LVE v n v, The previous lemma implies thai L
VE

v 'I., ;:~::[vr: v 2]C(v)l.
Therefore, since IV/+IEI is O(lVI+)£j) by the definition of 6, the total amount of
space used by the fractional cascading data structure is O(n). 0

Note that the upper bound on the space of the fractional cascading data structure

holds even if 6 contains cycles. This corollary, then, implies that we can construct a

fractional cascading dara structure 6 from any catalogue graph C in O(log n) time

and O( n) space using n processors, even if G contains cycles. We have not shown,

however, how to assign these n processors to their respective jobs.

The method for performing the processor allocation is as follows. [nitially, we

assign 2) C( vHvinua! processors ro. each node v E V and no processors to each node

v E if - V. This requires at most 2n virtual processors; hence, can be easily simulated

with n actual processors. Each time we pass k elements from a node v to a node w

(in performing the merge at node w) we also pass along (exact!y) k virtual processors

to go with them. When we say that we are passing a virtual processor from some node

o to some node w. all we are actually changing is the node to which that processor is

assigned. Since, by Lemma 3.5, n•. ;;;:2IC(v)/, we know [hat there are enough vinual

processors assigned to v E V to do this. To see that this also suffices for v E V-V note

that at the beginning of stage s node v has /Bx_l(v)1 elements (and processors). We

"give away" at most 2 UBX_ I(v)l/ 4J elements (and processors) from B
X

-
l
(v) in stage

s and receive !B,(v)1 elements (and processors). Consequently, there are enough

processors to perform the merge to construct Bx(v) and repeat the give-away procedure

for the next stage. In addition, since we pass a processor for each item we pass to

another node, each processor Pi can maintain not only which node it is assigned but

P, can also maintain mv , the number of other processors that are assigned to that node,

as well as maintaining a unique integer identification for itself in the range [1, m,.].
TI1US, we have the following lemma.

LEMMA 3.7. Given any catalogue graph G, we can construct a fractional cascading

data structure/or C in O(log n) time arid O(n) space using n processors in the CREW
PRAM model. 0

Thus, we can solve the fractional cascading problem in O(log n) time using n

processors. For the applications we study in this paper, however, we can do even

beller. The following lemma enumerates two important situations where the method
just described can be improved.

LEMMA 3.8. Given allY catalogue graph G, if d(G) is 0(1) or if we are given

Out(v, C) in sorred order for each vE V, rhen rhe IOlal number of operations performed
by tIJefractional cascading algorithm is O(n).

Proof If d(C) is 0(1) or we are given Ow(v, C) in sorted order, then the

construction of the graph 6 (without any bridge lists) requires only O(n) operations,

since we do nor have to perform any sorting. Let us account for the total work performed
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IC(vll

211C(v)l/4j

2'lIC(vll/4'j

127

2 * 31

2~ '" 7

633115

hy computing the LOlal numher of other operations that are performed hecausf' of the

fact that the catalogue for each node l' contains IC(v)l elemems (we will only charge

venices in V). Let Sl' be the first stage thal B,( v') becomes nonemplY· In this stage

B,(v') receives one element of C( vl from v, and hence we charge one operation in

stage S,. for the node v. In stage S .. + I we will then perform at most 3 operations, at

most 7 in stage s,.+2, at most 15 in stage s,.+3, and so on. As soon as B,(lI') comains

al least four elements from v (as early as stage St. + 2), then we will perform one more

operation, passing one element (Q the fan-in tree for v. In the next stage, s,.+3, we

will perform at most two additional operations, then at most four additional operations

in stage St.+4, and so on. This pauern will "ripple" back through the fan-in tree for

v and on through the graph 6 for as long as the computation p ~ o c e e d s . Specifically,

the number of operations charged LO a node 1I E V is, at most, the sum of the following

k,. ~ f1og,IC(vlll rows:

3 7

where the number in row i ;lnd column .i corresponds to the maximum number of

operations performed in stage s ~ + j - I at nodes at distance i from v because of the

fact that the catalogue at node v comains IC(v)! elements. (This is actually an

overestimate, since not all nodes in 6 have our-degree 1). Summing the number of

operations for each row, and then summing the rows. we get that the number of

operations charged to vE V is at most 2(IC(vll+2L1c(vll/4J +2'lIC(vll/4'j + ... +

::!k'l, which is at most4IC(v)l. Thus, the total number of operations performed by the

fractional cascading algorithm is O(n). 0

This lemma immediately suggests that we may be able to apply Brent's theorem

to the fractional cascading algorithm so that it runs in O(log n) time using rII/log n1
processors.

THEOREM 3.9 ([ 11]). AllY synchronous parallel algorirhm taking rime T that consisrs

of a roral of N operariotlS can be simulated by P processors in O( IN / PJ+ T) time.

Proof of BretJt's theorem. Let N, be the number of operations performed at step

i in lhe parallel algorithm. The P processors can simulate step i of the algorithm in

0([ N.I Pl1 time. Thus. the total running time is D( IN/ P j + n:
T T

!: rN.lPl"'!: (lNjPj+l)"'lN/PJ+7: o
'0 ,

There are tWO qualifications we must make to Brenes theorem before we can apply

it in the PRAM model, however. The first is that we must be able to compute N; at

the beginning of step i in O( rNJ P 1) time using P processors. And, second, we must

know how to assign each processor to its job. Thus, in order to apply Brent's theorem

to our problem of doing fractional cascading, we must deal with these processor

allocation problems.
Lel f = {PI, P:J., ... , Pm} be the set of virtual processors used in the fractional

cascading algorithm (with m:2 2tl), and lel f' = {p~, P;•... , Plrrflo~,,]} be the set of

processors we will be using to simulate the fractional cascading algorithm. Assuming

that d(Gl is constant or we are given the list of vertices in Out(v. G) in sorted order,

we can compute the graph 6 and the initial assignment of processors from f, so that
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we assign 2lC(vll virtual processors to each node tiE V, in OOog II) time using the

processors in [' by a parallel prefix compm(ltion. (Recall tllatthe problem of computing

all prefix sums c ~ = ~~~ 1 a, of a sequence of inregers (a
1

, a~, ... , a,,) can be done in

D(log n) tinle using f"/Iog "1 processors [2IJ, [22].) Let v(p;) denore the vertex in

6 [Q which p, E [is assigned. Recall thaI we will be "passing" the processor p, around

6 during the computation, so the value of v(p,) can change from one stage to the

nexl. Once a processor P, becomes active, it stays active for the remainder of the

compmation. So, the only thing left to show is how lO compute Ihe number of processors

active in stage s, and to assign the processors in [' to their respective tasks of simulating

the processors in f. We do this by sorting the set of processors in r by the slage in

which they become active. It is easy to compute the stage in which a processor Pi

becomes active in O(ll time, because [his depends only on the initial value of v(p;)

and the size of C(v(p;)) relative to N (the size of the largest catalogue). We can SOrt

the processors in f by the stage in which they become active in O(lOg'l 1 time using

{he rn/log n1 processors in f', by using an algorithm from Reif [23J (since the stage

numbers fall in the range (I, flog NlJl. Thus, by performing a parallel prefix computa­

tion on this ordered list of processors, we can determine the number of processors

active in each stage s, and also know how to assign the processors in f' so thaI they

optimally simulale the activities of the processors in f during stage s. We thus have

escabiished the following theorem.

TH EOREM 3.10. Given a ca!alogue graph G = ( V, E), such thal_d (G) is 0(1) or

given eac" Our( v, G) set in sorted order, we can build a/racliollal cascading data sTrUClure

lor G ill D(log n) time alld O(n) space using r rI/log n 1processors in rile CREW PRAM

model, where n = IVI +[£1 +L"" v jC(v)l. TIlis bound is optimal. 0

4. The plane-sweep tree data structure. In this section we define a data slructure,

which we call the plane-sweep tree, and show how to use it and the fractional cascading

procedure of the previous section to solve the trapezoidal decomposition problem and

the planar-point location problem in O(log 11) lime using n processors. Since the

construction oflhis data structure is quite inVOlved, we merely define the data structure

now, and show how to construct it in these same bounds in § 5.

LeI 5 = {Sl' S2, , s,,} be a set of nonintersecting line segments in the plane, and

let X (5) = (0'1, 0'2, , U2,,) be the (nondecreasing) sorted list of the x.coordinates

of the endpoints of the segments in S. To simplify the exposilion, we assume that no

tWO endpoints in 5 have the same x-coordinate, i.e., 0'; < 0';+ I' LeI X' = (Xl, X2, ..• , x
m

)

be some subsequence of X(Sl and let T be the compiete binary tree whose m + 1

leaves, in left to right order. correspond to the intervals (-co,xIJ, [X
1
,X

2
], (X

2
,Xl],

... , [xm _ I , x",J, [x".. +co), respectively. Associated with each internal node vET is

the interval I" which is the union of the inter....als associated with the descendants of

v. Let n" denote the vertical strip f,. x (-co, +ro). We say a segment s, covers a node

VE T if it spans IT,. but not I 1 r " " ~ " I l [ . I ' No segment covers more than two nodes of any

level of T; hence, every segment covers at most O(log m) nodes of T. For each node

vET we lel Cover( v) denote the set of all segments in 5 that cover v.

The idea of using a tree data structure such as this to paralleiize plane-sweeping

is due to Aggarwal el al. [I] and is itself based on the "segment tree" of Bentley and

Wood [8]. The data structure of Aggarwal et al. consists of the tree T described above

with X'=X(S) (i.e., it has 2n+lleavesl. Aggarwal el a1. store the list Cover(v) at

each node v sorTed by the "above'· relation for line segments. They construct these

lists by first collecting the segments in each Cover( v) and lhen SOrTing all the Cover(v)'s

in parallel, an operarion that requires B(log" rl) lime using n processors [13], since
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there are a total 0( IJ log r1) items lO son. Once these lists are constructed the data

structure can thcn be used to solve various problems by performing cenain searches

on the nodes of T. These searches are of the following nature: given a set of 0(11)

input points, for each point p locate the segment in Cover(v) that is directly above

(or below) p, for all vET such that p E IT,.. Notice thal for the leaf-lo-roOl walk starling

with the leaf v such that p E fl,., this search can be solved by the multilocation of p in

that walk. Aggarwal et al. [1] perform all O(n) mulIilocations in O(log~ 11) time using

n processors by assigning a processor to each point p and doing a binary search for

pin all the Cover(v) lists such thal pEll,. (there are O(log II) such lists for each p).

Although based on the structure of Aggarwal et aL, the plane-sweep tree differs

from it in some imponant ways. One such difference is that the plane-sweep tree allows

us to perform O(n) multilocations in O(log n) time using n processors, after a

preprocessing step that takes O(log n) lime using n processors. Also, instead of taking

X' to be the entire XeS) liSl, we define X' to be the list consisling of every flog nlth

element of xes), i.c., X' = SAMPrlor-"l (X(S)). Thus, each vertical strip IT" associated

with a leaf of T in our construction contains O(log ,,) segment endpoints. Like Aggarwal

et aI., we also slore each Covedv) listsoned by the "above" relation. In addition, for

every node v of T we define the set End(v) as follows:

End(v) = {s,ls, E S. has an endpoint in fI,_. and does :lot span IT,.}.

Although End( v) is defined for each node of T we only construct a copy of End(v)

if v is a leafnodc. We do not store the elements of any Elld(v) in any paI1icular order.

This is due to the fact that End(v) contains O{log tl) segments for any leaf node;

hence a single processor can search the entire list in O(log n) time.

Note that all the segments in the Covedvrs of any root-to-leaf path in Tare

comparable by the "above" relation. Thus, if we direct all the edges in T so that each

edge goes from a child to its parent, Lhen the elements stored in any directed walk in

T are all comparable by the "above" relationship. Therefore, we can apply the fractional

cascading technique of the previous section to T (with each Covedv) playing the role

of the catalogue C(v)). Since T has bounded degree and has O(n log n) space, we

can, by Theorem 3.10, construct a fractional cascading data structure t for T in

O(log n) time and O(n log n) space using n processors. This data structure allows us

to perform the multilocation of any point p (in a leaf-to-roor walk) in O(log tl) time

(O(Iog n) for the binary search at the leaf, and an additional 0(1) for each internal

node on the path to the root). We also store the set End(v) in each leaf v of i: The

plane-sweep tree data structure, then, consists of the tree f constructed from T by

fractional cascading, where T is defined with X'=SAMP[lol;"j (X(S)), has Cover(v)

stored in soned order for every node [:E T, and the set Errd(v) stored (unsonedl for

each leaf node vET (see Fig. 4).

In § 5 we show how to construct this data structure efficiently in paralleL Since

the construction is father involved, before giving the details of the construction, we

give two applications of this data structure. We begin with the trapezoidal decomposi­

tion problem.

4.1. The trapezoidal decomposition problem. Let S = {Sl' S2,' .. ,s,,} be a set of

nonintersecling line segments in the plane. For any endpoinl p of a segment in S a

trapeZOidal segment for p is a segment of S that is directly above or below p such that

the venical line segment from p to this edge is nor intersected by any other segment

in S. The trapezoidal decomposition problem is to find the trapezoidal segment(s) for

each endpoint of the segments in S. Even in the parallel setting, this problem is oflen
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FIG. 4. A pOr/ion of 0 planc.sweep frce. nIl' segmenlS are numhered in Ilris example hy embedding IiiI'

"above" re/alion o f ~ 2 in the forol order 1.2.···.11. For simplicity ",cdenote ,I'e list Cover( vI b.l'porell/Jreses

and the SCI End( vi br sel braces.

used as a building block lO solve other problems, such as polygon triangulation [IJ,

{19], {18J or shortest paths in a polygon {16].

THEOREM 4.1. A trapezoidal decomposition of a set 5 of II I/ollintersecling segmellfs

iTl the plane can be conslTUcted in O(log n) time usirlg n processors in the CREW PRAM

model, and this is oplimal.

Proof Construct the plane-sweep tree data structure T for S. Theorem 5.2 (to be

given later, in § 5) shows that this structure can be constructed in O(log n) time using

n processors. And we already know that T can be made imo a fractional cascading

data structure f in these same bounds. We assign a single processor to every segment

endpoim (there are 2n such points). Let us concentrate on computing the trapezoidal

segment below a single segment endpoint p. Let (v,, ..• roOl{ T)) be the leaf.to-roOl

path in j that starts with the leaf v such that p E fI,.. We first search through ETld(v)

to see if there are any segments in this set that are below p, and take the one that is

closest to p (recall that End(lJ) contains O(log n) segments). We then perform the

multi location of p in the leaf-Io-roar walk starring at lJ, giving us for each", such that

p EO ... the segment in Cover( 11') directly below p. We choose among these pog n 1
segments the segment that is closest to p. Comparing this segment to the one (possibly)

found in End(v), we get the segment in S, if there is one, that is directly below p.

Since the length of the walk from v to root( T) is at most [log n 1, by the method

outlined at the end of § J [12J, this computation can be done in O{log n) time using

n processors. Since the two-dimensional maxima problem can be reduced to trapezoidal

decomposition in 00) lime using TI processors [17J, and the two-dimensional maxima

problem has a sequential lower bound of n(n log 11) in the algebraic computation tree

model [7], {20J, we cannot do better than O(log 11) time using Tl processors. 0
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Solving. the trapezoidal decomrosilion problem efficicnlly in p<Jrallcl has proven

to be an imponam step in triangulaling a polygon efficienlly in parallel [I]. [:2], [5],

[17], [28]. In ract, Theorem 4.1 is used in the algorithms or Goodrich [19] and Yap

[:2.8] [Q achieve an GOog") time solution LO polygon triangulation using only n

processors. We next point OUl that lhe plane-sweep lree can also be used to solve the

planar point location problem.

4:2. The planar point location problem. The planar point localion problem is lhe

rOllowing: Given a planar subdivision S cons is ling or n edges, conSlruct a data structure

that, once constructed, enables one processor to determine ror a query point p the

face in S containing p. This problem has applications in several other parallel computa­

tional geometry problems, such as Voronoi diagram construction.

THEOREM 4.2. Giverl a planar subdivision S consisting of II edges, we call cons/ruet

a dala srructure rhat can be U,'.ed to deremrinefor any query poirlt p the face in S cOlltaining

p if! G(log II) seria/time. TIlis coTlsfruction fQkes GOog rl) lime using" processors in rile

CREW PRAM model.

Proof. The solulion to this problem is to build the plane-sweep tree dala structure

ror S (with fractional cascading) and associate with each edge Si the name of the face

above Si. As already mentioned, Theorem 5.2 (to be given later, in § 5) shows that the

tree T can be constructed in G(log ,,) time using n processors. Also recall that T Can

be made a fractional cascading dam structure t in these bounds. Lct a query point p

be given. A planar point location query ror p can be solved in G(log IT) serial time by

performing a multilocalion like that used in the proof or Theorem 4.1 lO find the

segment in 5 directly below p. After we have determined the segment s, in S that is

directly below p, we then can read off the face or S containing p by looking up which

race is directly above S;. 0

Incidenlally, Theorem 4.2 immediately implies that the running time orthe Voronoi

diagram algorithm of Aggarwal et a!. [1] can be improved from G ( l o g ~ n) to O(log2 n),

still using only" processors. (We have recently learned that in the final version of

their paper [2], they reduce the time bound of their algorithm to G ( l o g ~ rl) using a

substantially different technique.)

The results of §§ 4.1 and 4.2 are conditional: they hold if we can construct the

plane-sweep tree data structure efficiently in parallel. We next show how to construct

the plane-sweep tree in G(log n) time using only n processors.

5. Cascading with line segment partial orders. In this seclion we show how to

modify the cascading divide-and·conquer technique of § 2 to solve some geometric

problems in which the elemems being merged belong to the partial order defined by

a set of nonimersecting line segments. Recall that in this partial order a segment SI is

"above" a segment S2 if there is a vertical line that intersects both segments. and its

intersection with S1 is above its intersection with S2. We apply this technique to the

problems of constructing the plane-sweep tree data structure and of detecling if any

two of II segments in the plane intersect.

We now give a brief overview of the problems encountered and our solulions to

them. The essemial computation is as follows: we have a binary lree with lists stored

in its leaves, and we wish to combine them in pairs (up the tree) to conSlruct lists at

inter'lal nodes. The main difficulty is that the list stored at some node v is not defined

as a simple merge of the lists stored at the children or v. Instead, its definilion involves

deleting elements from lists stored at children nodes before perrorming a merge. These

delctions are quite troublesome, because if we try to perform these deletions while

cascading, then the rank information will become corrupted, and the cascade will fail.
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On the other hand, if we try [Q postpone the deletions La some postprocessing step,

then there will be nondeleted elements that are not comparable [Q others at the same

node; hence, there will be instances when processors try to compare two elements that

are not comparable, and the cascade will fail. The main idea of our method for getting

around these problems is to embed panial orders in total orders ··on the fly" while

we are cascading up the trce. That is, we change the identity of segments as they are

being passed up the tree, so that the segments in any list are always linearly ordered.

To be able to do this, however, we must do some preprocessing that involves simul­

taneously performing a number of cascading merges in parallel. \Ve complete the

computation by performing a purging postprocessing step to remove the segments thal

"changed identity" (as an alternative to being deleted).

For the intersection detection problem, we need to dovetail the deteclion of

intersections with the cascading. That is, we cascade the results of intersection checks

along with the segments being passed up the tree. The complication here is that if we

should ever detect an intersection on the way up the tree we cannot stop and answer

"yes" as this would require O(log n) time (to "fan-in" all the possible answers). Thus

we are forced to proceed with the merging until we reach the root, even though in the

case of an intersection the segments being merged no longer even belong to a panial

order. We show that in this case we can replace the segmem with a special place holder

symbol so thal the cascades can proceed. After the cascading merge completes we

perfo~m some postprocessing to then check if any intersections are present.

The next two subsections give the details.

5.1. Plane-sweep tree construction. In this subsection we describe how to conslruct

the Cover(v) lists for each node v in the plane-sweep tree T. We begin by making a

few definitions and observations. We let lefl (Il<.) (respectively, right (Il<.l) denote the

left (right) vertical boundary line for [1<.. We define the dominaror node of a segment

Si, denoted dam(si), to be the deepest node v (i.e., farthesI from the root) in T such

that 5i is complelely contained in Il
L
__ That is, the dominator of Si is the node t' such

that Sj does not intersect left (II.,) or right (II,.), but Sj does intersect the vertical

boundary s e p a r a ~ i n g IIklu/dlvl and IT''''''ildlvt. In addition, we define the following sets
for each node vET:

L(v) = (s,ls, E End(v) and 5, n left (II,.)" 0j,

R( v) = (s,ls, E End( v) and 5, n r;ght (IIJ" 01.

/(v, d) ~ (.<,1s,E L(v) and d = depth(dom(s,)l.

r( v, d) ~ (s,ls, E R( v) and d ~ depth (dom( 5,) lI.

Note that I( v, d) and r( v, d) are only defined (or 0;;:;;; d < deprh (d. Any time we

construct one of these sets il will be ordered by the "above" relation, so for (he

remainder of this section we represent (hese sets as sorted lists. In the following lemma

we make some observations concerning (he relationships between the various lists
defined above.

LEMMA 5.1. Ler v be a node in T with left child x and right child y. TIlen we have
tI,e following (see Fig. 5);

(1) l ( v , d ) ~ / ( x , d ) U I ( y , d ) for d <depth(v),

(2) r ( v , d ) ~ r ( x , d ) U r ( y , d ) for d <depth(v),

(3) L( vi = I(v, 0) U I(v, l) U' .. U I(v, depth(v) - I),

(4) R ( v ) ~ r ( v , O I U r ( v , I ) U - - -Ur(v,depth(v)-ll,

(5) L( v) ~ L(x) U (L(y) -I(y, depth (v))),



518 r-,.f. J. ATALLAH, R. COLE. AND M, T. GOODRICH

in L(y) -I(y,depth(u))

also in I(y,depth(u))
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in I(y, depth(v))
and not in Cover(x)
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FIG.5. 7711' pia/Ie-sweep Ireeeql./atiuns. (a) I( I), d) = {(x, diU f(l'. d J; (b) L( v J= I( l", 0) U I( t". dep/ll (v1- I J:
(c) L( v) "" L(x I U ( L(r) -1(.1', dept/It v))); (d) Cover(x) = L(y} - !Cl'. deplh( v) l.

(6) R(v) ~ (R(x) - ,(x, depth ( v))) U R(y),

(7) COV.,(x) ~ L(y) -/(y, depth(v)),

(8) COV.,(y) ~ R(x) - ,(x, deprh(v)):

Proof The proof follows [rom the definitions. 0

Lemma 5.1 essentially Slates that the lists I, r, L, R, and Cover for the nodes On

a particular level of T can be defined in terms of lists for nodes on the next lower

level of T. We could use this lemma and the parallel merge technique of Valiant [26],

as implemented by Borodin and Hopcroft [10], to construct a sorted copy of each

Cover(v) list in O(log n log log n) time using n processors, improving on the previous

bound of O ( l o g ~ 11) time using the same number of processors, due to Aggarwal et al.

[1]. We can do even beUer, however, by exploiting the structure of the Land R lists.

We describe how to do this below, in order to achieve a running time of O(log n) still

using n processors. Before going into the demils of the plane-sweep tree construction,
we give a brief overview of the algorithm.

HIGH-LEVEL DESCRIPTION OF PLANE-SWEEP TREE CONSTRUCTION.

The construction consists of the following four steps:

Step 1. Construct l(v, d) and r(v. d) for every VE T To implement this step. we

perform [log n1 generalized cascading merges in parallel (one for each d) based on

(1) and (2) of Lemma 5.1 (starling with the leaf nodes of T). We implement this step

in O(log n) time using n processors in total for all the merges.

Step 2. Let d" = deprh(parenr(v». Compute for each segment in I(v, d
v

) (respec­

tively, r(v, d,,) its predecessor segment in L(v)-I(v. dv ) (respectively. R(v) - r(v, d
v

))

based on (3) and (4). We do this, for each VE T, by making d•. copies of I(v, d
v

) and

r(v, d v ), and merging I(v, dv ) (respectively, r(v, d v ») with all the I(t', d) (respectively,

r(v. d)) such that d < d,.. Note: we perform this step without actually constructing
L(v) or R(v).

Step 3. Conslfuct L(v) and R(u) for every VE T. To implement this step we

perform a generalized cascading merge procedure based on (5) and (6) and the

information computed in Step 2 (starring with the leaf nodes of n. We never actually

perform the set difference operations of (5) and (6), however. Instead, at the point in

the merge that a segment in, say, I(v, d,,), should be deleled we "change the identity"
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or that segrnelllio ils rredecessor in Ll e) -It t·. eI, l (which we know Cram Slep 21. ThaI

is. from this point on in the casc:.lding merge this segment is indistinguishable from

its predecessor in L( t·) -/( L" d,.). \Ve sho\\' helow that (il the cascading merge will not

be corrupted by doing this, (iil the lists ncver comain Loa many duplicate entries (lhm

would require us to use more tban 11 processors), and (iii) alkr the merge completes,

we can construct L(v) and R(L') for each node by removing duplicate seg.ments ill

O(log II) time using /I processors.

Step 4. Construct Cuvcr(vj forever)' VET using (7) and (8) and the lists construc­

ted in Stcp 3. The implementation of this step amounts 10 compressing each L(vl

(respectively, R(v)) so as to delete aillhe segments in I(L" d,,) (respectively, I'(v, d,.)),

and then copying the lisl of segmems so compUled to the sibling node in T.

END OF HIGH-LEVEL DESCRII'T10!"".

We now describe how to perform each or these high-level steps.

5.2. Step I: Constructing I( t', d) and r( v, d). We construct the 1( l'. d) and r( l'. d I

lists as follows. We make flog 111 copies of T. and let TId) denOle tree number d.

Note that by our definition or T the space needed to store the ··skeleton" or each

TId) is O(n/log n). This of course results in a 10tal of 0(11) space for all the Tfdrs.

For each node II of T(d) such that de"tiJ( vl > d we wish to construct the lists I( l', dl

and r( L', d), as given by (I) and (2) of Lemma 5.1. This implies that if we store /(v, d)

Irespectively, r( v, d)) in every lear node [' of T/ dl, lhen ror any node v E T( d), I( Ll, d 1
is precisely the soned merge of the lists stored in the descendants of v. We start with

the elements belonging to 1(1', dl (respectively, r(l', d)l stored (unsorted) in a list A(v)

for each leaf v in T(d), and construct each l(l'. d) and r(L" d) by the generalized

cascading merge technique of Theorem 2.5 (using the A(vl"s as in the theorem). NOle:

since /( L', d land r( L', d) are only defined for d < depth (l'), we only proceed up any

tree n d 1as far as nodes at depth d + !, terminating the cascading merge at that point.

We allocate r1I/log "1 + Nd processors to each lree T(d), where Nu d~nOles the number

of segments stored initially in the lea\'es or T(d). Thus, since I : / : ~ " I N J = n, we have

shown how to construct all the I(v, dl and rev, d) lists in O(log II) time and D(lllog,,)

space uSing /I processors.

5.3. Step 2: Computing predecessors. In Step 2 we wish to compute for each

segment in the list I(v, d,.) (respectively, r(l', de)) its predecessor segmenl in Uv)­

{(v, d L.) (respectively, R(v)-r(v. d,.)), where d,. = depth(parellt(v)). Without loss of

generality, we reslrict our attention to the segments in I( v. d,.) (the trealment for the

se!!ments in r(v,d,.) is similar). Recall that (3) and (4) state that L(v)=

IIv,OIU lev, lIU··· U II v, d,1 and [hat R(vl ~ r(v,O)U rev, l)U", U rev, d,.). We

make d" copies of I( 7.\ d,.) and, using the merging procedure of Shiloach and Vishkin

[15] or that of Bilardi and Nicolau [9], we merge a copy of l(v, d,.) with each of

/(v,O),"·,/(v,d,.-II. This takes O(logn) time using r1L(vllllognl+

rdL.I/(v, dL.)!/log /11 processors for each VE T. Since (i) there are O(n/log II) nodes in

each T(d); (ii) each segment appears exactly once in some I(v, d,,); and (iii) L""'T ILev)!

is 0(" log n l, we can implement all these merges in parallel using n processors. Once

we have completed all the merges, we assign a single processor to each segment Sj and

compare the predecessors of 5, in I( L" 0), ... , I( V, dL' -I) so as to find [he predecessor

of S; in L(v)-/(c,d,,) (=/(v,O)U···Ul(l"d,.-I)). This amounts to O(logn) addi·

tional work ror each 5,; thus Step 2 can be implemented in D(log 11) time using n

processors.

5.4. Step 3: Constructing L(v) <:and R(v). In this Slep we perform another cascading

merge on T; this time to construct L( v) and R(v) for each VE T based on (5) and (6)
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of Lemma 5.l. Initially, we have Ltd and R{vl constructed only for the leaves. We

then merge these lists up the tree based on (51 and (6) as in Theorem 2.5. The

computation for this step differs from the cascading merge of Stcp 2, however, in that

we need to be performing sct-difference opcrations as well as list mcrges as we are

cascading up the trce. Unfortunately, it is not clear how to perform these differcnce

operations on-line any faster than Ot log. n) time per level, which would result in a

running time that is G(log~ II), We get around this problem by ncver actually performing

the difference operations. That is, we do not actually delete segments from any lists,

Instead, we change the identity of a segment S, in say, 1(.1', d,.), to its predecessor in

L(y) -lCI', d,,') when we are performing the merge as node v, where .1' = rchild (v) (see

Fig, 6). We do this instead of simply marking Sj as '"deleted" in L( u), because segments

in 1(.1', d,,') may not be comparable to segments in L(x) (the list with which we wish

to merge L(yl-/(y, d,.)). Simply marking a segment as being ··deleted'· could thus

result in a processor ancmpting to comparc two incomparable segments,

U(z) = (-00, -00 , -00, -00, -00, -00, -00, -(0)

Z ~ - - U(W) = (1,1,1,1,1,2,7,7)

w

U(u) = (1,3,3,3,5,7,8)

u

U(u) = (l,3,4,6, 7,8)

7
8

y I

u

FIG. 6. Segmenr idenlify changing during lilt' ca.{cading merge, \v"e iIIustrale Ihe "'ar segmell/ names

change idenrir,I' to Ihat of rheir predeces,mr as we are performing rlre cascading merge. In /!lis case we are

CO/lstrueting Ihe L( 0 l's. IVe dellOte flie predecessor 0/ cadr segmenr h_,' a dOliI'd armw,

Clearly, the fact that we change the identity of a segment in 1(.1', d,.) to its

predecessor in L(.I') - 1(,1", d,_ 1means that there will be multiple copies of some segments.

This will not corrupt the cascading merge, however, because one of the properties of

the "above" relation for segments is that all duplicate copies of a segment will be

contiguous. Moreover, they will remain contiguous as the cascading merge proceeds

up the tree. In addition, even though we will have multiple copies of segmeOls in lists

as they are merging up the tree, we can still implement this step Wilh a total of n

processors, because there will never be more items present in any L( l:) than the tOlal

number of items stored in the (leaf) descendants of L" At the end of this step we assign

r1 L(v)I/log nl processors to each v and compress out the duplicate entries in L(v) in

D(log II) lime. Thus, we can construct L(vl and R(v) (compressed and sorted) for

each vET in G(log ,,) time using n processors.

5.5. Step 4: Constructing Cover(v). In this step we construct COL'er(v) for every

v in T, based on (7) and (8) of Lemma 5.1. We implement this step by first compressing

cach L( v) (respectively, R( v)) so as to delete all the segments in I( L', d<,) lrespectively,
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r(v, d,.)), and thcn by copying the list of segments so compuled LO thc sibling of v in

T This can all be done in G(log n) time using 11 processors.

Thus, summarizing the entire previous section, we have the following theorcm.

THEOREM 5.2. Given a set S of nonintersecti1/g line ....egmenrs in the plane, we ca,l

constrnct the plane-sweep tree Tfor S in G(log II) time usillg n processors in the CREW

PRAM model, and this is optimal.

Proof We have already established the correcmess and complexity bounds. To

see that our construction is optimal, note that the plane-sweep tree requires !l{n log n)

space. 0

In the previous sections we assumed that segments did nor intersect. Indeed, T

is defined only if they do not intersect. We show in the next section that we can detect

an intersection, if there is one, by constructing T while simultaneously checking for

intersections.

5.6. The segment intersection detection problem. The problem we solve in this

section is the following: given a set S of n line segments in the plane, determine if

any two segments in S intersect We begin by staling the conditions that we use to test

for an intersection.

LEMMA 5.3 [1]. The segments in S are nonintersecting 'fand only ijll'e have the

following for the plane-sweep tree T of S:

(I) For every vET all tI,e segmen/s in Cover( v) intersect left (IT,.) ill rhe same order

as the)' ;lIfersecr right (IT,.).

en For every' VET 1/0 segment in End (v) intersects any segment in Cover( v). 0

Aggarwal et al. [1] used this lemma and their data structure to solve the intersection

detection problem in G(log2 n) time using n processors. Their method consisted of

constructing the Cover(v) lists independently of one another, basing comparisons on

segment intersections with left (n c')' and then testing for condition (1) by checking if

each list Cover(v) would be in the same order if they based comparisons on segment

intersections with right ( I T ~ ) _ If no intersection was detected by this step, then they

tested for condition (2i by performing G{,,) muhilocalions of segment endpoints. This

entire process look O(log:! n) time using n processors.

We use this lemma by testing for condition (1) while we are constructing the

plane-sweep tree for S (instead of waiting until after it has been built) and in so doing

we achieve an G(log n) time bound for this test (since our construction takes only

G(log n) time). We test condition (1) in the same fashion as Aggarwal el aI., that is,

by doing G( n) multilocations after the plane-sweep tree has been built. Since with our

data structure the mUltiplications can all be performed in GOog n) time, the emire

intersection-detection process takes G(log n) time using n processors.

Since we do not construct the Cover(v) lists independently of one another, but

instead construct them by performing several cascading merges, we must be very careful

in how we base segment comparisons, and in how we test for condition (I). For if two

segments intersect, then determining which segment is above the other depends on the

vertical line upon which we base the comparison.

We consider each step of the construction in tum, beginning with Step 1. Recall

[hat in Step I we construct all the /(v, d) and dv, d) lists for each vET In the following

lemma we show that if we base segment comparisons on appropriate vertical lines,

Step I can be performed just as before.

LEMMA 5.4. Let VE T and O;;;d <deprh(v) be given, and let 51 and S::o. be two

5egmellIs such thor 51 E I( w, d) and S::o. E I( Z, d) (or 51 E r( w, d) and S::o. E r( z, d)), where

W, Z E Desc(v). n,en dom(s])::: dom(s::o.).



522 11.1, ,I. ATALLAI-I. R, C(ll.F.. i \ ~ D /1.1. T. (jOODJUCH

Proof. Let t' E T and () 2 d ~ pog III he given. Recall that I( u. d J (resrectively,

r( L" d II is denned to he the list of all segments in L( vI (R( ull that ha\'e a dominator

node at deplh d in T. Note thal the dominator node for any segment s; in {(II', dl,

d w, J). I( =, d), or r(:, d), where II'.: E Desd l' l, must be an ancestor of v. since

d < depth (v) and. by dennition, 5, E End ( v) and 5, E Elld (dom( 5, )). There is only one

node that is an ancesror of I: and is at depth d in T. 0

Thus, we can perform the mcrges based on (I) and (2) of Lemma 5.1 (e.g.,

I( v, d) = I(x, d) U /(.1', d)) by basing all segment comparison.s on the imersection of the

segments with lhe verrical boundary separaling the two children of their dominator

node. That is, if 51 and 5.:-. are twO segments to be compared in Step 1, then we say

thal 51 is "above" s.:-. if and only if the intersection of 51 with L is above the intersection

of 5.:-. with L, where L is the verrical boundary line separating the two children of

Jom(s,l ( = d o m ( s ~ ) ) .

In Step 2 we computed for each segment in I(v, d,.) (respectively, r( t" d,.)) its

predecessor segment in L( v) - /( v, d,_) (respectively, R (v) - r( v, d, ) l, where d,. =

depr1l(parellf(v)). Recall that we did this by merging I(v,d,.) with each of

I(t', 0), .. " I(t:, d,. - Il. A similar computation was done for r(v, d,.); without loss of

generality, we concenrrare on the computation involving I( t" d,_). Also recall that all

the segments in I(v, 0), ... , I{v, d•. ) belong. to U d; hence they intersect left (TI,.). After

Step I finishes, each list I( t·, d) will be sorted based on segment intersections with the

vertical boundary line separating the two children of the ancestor of L' at depth d (the

dominator of all the segmenrs in I( L\ d I). In O(log tl) time we can check if this order

is preserved in each of I( L" 01 .... , I( t" d,.) if we !"lase segment intersections on len (TI,.),

instead. If the order changed in any I(v, d), then we have detected an intersection,

and we are done. Otherwise, we proceed with Step 2 just as before, basing comparisons

on segment intersections with left (TI,,).

In Step 3 we performed a cascading merge up the tree T, constructing L(v) and

R( v) for every node vET Recall that this cascading merge was based on (5) and (6)

of Lemma 5.1 (e.g., L( v) = L(x) U ( LCd -/(.1', depth (v)))). Let us concentrate on the

tesling procedure for the L(vrs, since the method for the R(v)'s is similar. Initially,

let us start with each L( vl constructed allhe leaves of T sorted by segment interseclions

with left (Il,.). Thus. before we perform the merge based on the equation L(v) = L(x) U

(L(y) - fey, deptll(v))), we must first check to see if the segments in the sample of

L(.")-/(.I', deprh(vll (to be merged with the sample of L(x)) have the same order

independent of whether comparisons are based on segment intersections with left (H,.)

or left (Il,,). Unforrunately, to do this completely would require O(log tl) time al every

level of the tree, resulting in an O(log: rI) time algorithm. So. instead of broa'dcasting

at each level whether an intersection has occurred or not, we cascade that information

up along with the merges. More precisely, before doing the merge at a node v, we test

if every consecmive pair of items in the sample of L(y) -1(.1', deprlt(v)) would remain

in the same order independent of whether comparisons were based on segment

intersections with left (IT,.) or with left ([1<.). If we detect that an intersection has

occurred, then we will have tWO elements lhat are out of order. If this should occur.

we replace both items by the distinguished symbol S. Then, as the merges cominue up

the tree, any time we compare an item with S. we replace that item with S and proceed

just as before. This keeps the merging process consistent, and after the cascading merge

completes we can then in O(log IT) time test if any of the items in any L(v) or R(v)

contain a S symbol. by assigning f1L(vll/log nl processors ro each VE T.

In Step 4 we conslructed Cover( v I for each VET. Recall that we did this by simply

performing compressing and copying openllions on lists constructcd in Step J. Thus,
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assuming that no illlcr:-;eclion was detectcd in Step 3. we can perform Step 4 ,iust a~

before. After Step 4 completes we can assign r1COVCf (('II/log 111 processors to each

(' E T and test condition ( I) directly in O(log /I) lime, checking. if the items in Covcd v)

would be in the same order independent or whelher comparisons were based on

left (0,.) or 011 right(n,l.

If we h,l\'e nOt discovered an intersection after Step 4, then the only computalion

lefl is 10 perform fractional cascading on the plane-sweep tree T, construcling a

fractional cascading data structure i: In direcling all the edges in T to the root, and

performing the fractional cascadin¥ preprocessing on T to ;:onslruct i: we associate

a vertical strip with each node in T Since T is a tree then T is also a tree (recall the

prcprocessing step of the fractional cas<,:ading algorithm). For each node v in t if v

is also in T, then we lake II,. for v in T to be the same as 11,- for v in T Then, for

any l! that is in t but nO[ in T (i.e" v is a gateway or a node in a fan-in or fan-oul

lreel, we lake II, lo be the union of all the vertical strips that are descendents of ('.

Every time we perform the per·stage merge computation we compare adjacenl emries

in each bridge list B( v) [Q see if they would be in the same order independent of

whether we base comparisons on segment intersections with left (11,.) or right (IT"l. If

we detect rhat two adjacent segments intersect. then we replace bOlh with the special

symbol S, Then, as before. any lime we compare a segmenl with S we replace lhat

segment by S. Finally. when we complete the computation for Step 5. wc assign

rI B( vll/log 111 processors to each node v and check if there <Ire any S symbols present
in any B{v) list.

If lhere are no intersections detected during the fractional cascading, thcn we

perform O{n) mullilocalions of all the segment endpoints as in [1] to tes! condilion

(2), Ler p be an endpoint of some segment .'I,. We perform the multiloc:nion of p in

the plane-sweep lree for S. and check if .'Ii intersects the segmenl direclly above p or

the segmem directly belm.... fl in each Cover( v) list such that p E il,.. This test is sufficient,

since if s, intersecls any segment in Cover(v), it must intersect the segmenl directly

above f' in Cover( (') or the segment directly below pin Cover(vL Thus, by performing

a multilocation for p, we can tesl for condition (2) in O(]og II) time using II processors.

We summarize this discussion in the following lheorem,

TH EOREM 5.5. Given a set of II line segments in fhe plane, we can deteci (( any tll'O

illferseC( in O(log 11) time llsing " pro.cessors in fhe CREW PRAM model. 0

So far in this paper we have restricted ourselves to applications involving line

segments. In the next section we show how to apply the cascading divide.and-conquer

technique lo mher geometric problems as well.

6. Cascading ...... ith labeling functions. In this section we show how to solve

several different geometric problems by combining the merging procedure of § 2 with

divide-and-conquer strategies based on merging lists with labels defined on their

elements. For most of these problems our divide-and-conquer approach gives an

efficient sequential alternative to lhe known sequential algorithms (which use the

plane-sweeping paradigm) and gives rise to efficient parallel algorilhms as well. We

begin with the lhree-dimensional maxima problem.

6.1. The three·dimensional maxima problem. Let V = {PI, p:J., . ..• PII} be a sel of

poims in ~ H 3 . For simplicity, we assume that no two input points have the same x

(respectively, Y. =) coordinatc_ We denote the x,.I'. and z coordinates of a point p by

x( pl. ,I't p l, and :( p), respectively. We say that a poin! p, olle-dominares another point

P, if X( p" > (PI)' 1ll'o-domillates P, ifx( Pi) > x( Pi) and ,l·{ p,) > ,1"( Pj), and three-domillares
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fir if .,\,( fI, l > x( fI, l, ,1'( p,):> Y/' fI, J, and :( fI, l > z( Pi)· A point fI, E V is said 10 be a

maximum if it is not three-dominated by any other point in V. The three-dimensional

maxima problem, then, is [Q com pUle the set, M, of maxima in V. We show how to

solve the three-dimensional maxima problem efficiently in parallel in the fOllowing

algorithm.

Our method is based on cascading a divide-and-conqucr strategy in which the

subproblem merging step involves the computation of two labeling functions for each

point. The labels we usc are motivated by the optimal sequential plane-sweeping

algorithm of Kung, Luccio, and Preparal3 [20]. Specifically, for each point Pi we

compute the maximum z ~ c o o r d i n a L e from among all points that one·dominate P, and

use that label to also compute the maximum :-coordinate from among all points that

two-dominatc Pi. We can then test if Pi is a maximum point by comparing z(p,) to

this latter label. The details follow.

Without loss of generality, we assume the input points are given sorted by increasing

y-coordinates, i.e., Y(Pi) <Y(P'+I)' since if they are not given in this order we can SOrt

them in D(log r1) lime using II processors [13]. Let T be a complete binary tree with

leaf nodes VI, V!,···, V ~ (in this order). In cach leaf node Vi we store the list B(vi )=

(-00, Pi), where -00 is a special symbol such that x( -00) < x( Pj) and y( -co) < Y( Pj)

for all points Pj in V. Initializing T in this way can be done in G(log II) time using n

processors. We then perform a generalized cascading merge from the leaves of T as

in Theorem 2.5, basing comparisons on increasing x-coordinates of the points (nol

lheir y-coordinatesl. Using the nOlation of § 2, we let U(v) denote the sorted array of

the points stored in the descendants of vET sorted by increasing x-coordinates. For

each point p, in U(v) we store two labels: ZOd(Pi, v) and zrd(p" v), where ZOd(Pi'V)

is the largest z-coordinatc of the poims in U(v) that one-dominate Pi, and Ztd(Pi' v)

is the largest z-coordinate of the points in U(v) that two-dominate Pi. Initially, zod

and ud labels arc only defined forthe leaf nodes of T. That is, ::.od (Pi, 1..',) = ztd (Pi, V,) =

-co and zod(-CO,Vi)=zrd(-oo,Vi)=Z(Pi) for all leaf nodes Vi in T (where U(v,)=

(-co,p,)). In order to be more explicit in how we refer to various ranks, we let

pred (Pi, v) denote the predecessor of Pi in U(v) (which would be -co if the x­

coordinates of the points in U(v) are all larger than x(p;)) (see Fig. 7). As we are

performing the cascading merge, we update the labels zod and zrd based on the

equations in the following lemma.

LEMMA 6.1. Let P, be an elemenr of U( v) and let Ii = Ic1lild (v) and w = rc1lild (v).

17ren we have tile following:

(9 )

(I 0)

{
max (zod(p" u), zod(pred (p" w), ",n

zod(p" 0) ~
max {zod(pred (p" u), u}, zod(p" "')}

d( ) {
max (zld(p" U), zod(pred (p" w), w)}

""t P- V =
-" zld(p" w)

ifp,E U(u),

ifp,E U(",),

ifp,E U(u),

ifp, E U(",).

Proof Consider (9). If p, E U(u), then every point that one-dominates Pi'S pred­

ecessor in U(w) also one-dominates p" since P,'S predecessor in U(w) is the point

with largest x-coordinate less than X(Pi) (or -00 if every point in U(w) has larger

x-coordinate than Pi)' Thus zod(p" v) is the maximum of zod(p" u) and

zod(pred (Pi, W), w) in this case. The case when p,E U(w) is similar. Next, consider

(10). We know that every point in U(w) has )'-coordinate greater than every point in

U(ul, by our construclion of T Therefore, if P, E U(u), then every point in U(w) that

one-dominales p,'s predecessor in U(w) must two-dominate Pi. Thus, zld(p" v) is the
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maximum or ::.(d(Pi, u) and =od{pred (Pr, w), wl_ On-the other hand, ir Pi E V(II'.l then

no point in V( II 1can two-dominate Pr; thus, zed (Pi, V) = ZEd (Pi, W). 0

We use these equations during the cascading merge [Q maintain the labels for

each point. By Lemma 6_1, when l' becomes full (and we have V(u), U(II'), and

U(u)U V(II') available), we can determine the labels for all the points in U(v) in

O(l) addilionaltime using IU(v)1 processors. Thus, the running time of the cascading

merge algorithm, even with these additional label computations, is still O(log Ii) using

11 processors. Moreover, after L··S parent becomes full we no longer need U(v), and

can deallocate the space it occupies. resulting in an O(n) space algorithm, as oUllined

in ~ 2. After we complete the merge, and have computed U(roor( T)), along with all

the labels forrhe poims in V(rool( T»), note that'a point Pi E V(root(T)) is a maximum

if and only if ztd (p" roOf( T) 1:;;;; =( p,) (there is no point that two-dominates Pi and has

:-coordinate greater lhan Z(Pi)). Thus, afler compleling the cascading merge we can

construct the set of maxima by compressing all the maximum points imo one comiguous

list using a simple parallel prefix compuration_ We summarize in the following theorem.

THEOREM 6.2. Given a sel \I ofn poinrs in ~ ) e , we carl construct tire sel M ofmaxima

poims i,1 V ill O(log n) time and O(n) space usillg II processors in rhe CREW PRAM

model, al/d (lIis is optimaL

Proof We have established the correctness and complexity bounds for parallel

three·dimensional maxima finding in the discussion above. Kung, Luccio, and Preparata

[20] have shown that this problem has an fi(n log n) sequemial lower bound (in the

comparison model). Thus, we can do no better than O(log n) time using II proc-

essors. 0

It is wonh nOEing thar we can use roughly the same method as that above as [he

basis step of a recursive procedure for solving the general k·dimensional maxima

problem. The resulting lime and space complexities are given in the following theorem.

We state the theorem for k ~ 3 (since the two·dimensional maxima problem can easily

be solved in O(log II) time and 0(,,) space by a soning step followed by a parallel

prefix step).



526 :-1 J A TALL.All. Ie cou,. AND M. T_ GOODRICH

Tlll:0REM 6.3. For J.:..:i;:J rite J..-dil1lellsiollal maxima PI'Oh!CIll call he sfllved ill

O( (log 1 I 1 ~ <l tillle IIsing /I pl'Ocesson ill II/(' CREW PRAM /1/odel.

rj"(J(~t: The method is a straightforward paralleliz<J.lion of the algorithm by Kung.

Luccio. and Prermrata [20). using a procedure very similar to that described above as

the basis for the recursion. We leave the dctails to the reader. 0

Next. we address the two-set dominance counting problem. We also show how

the multiple range-counling problem and the rectilinear segment intersection counting

problem can be reduced to two-set dominance problems eflicielHly in parallel.

6.2. The t w o ~ s e t dominance counting problem. In the tWO-sct dominance counting

problem we are given a set A = {ql, q ~ , . , .. q,.,} and a set B = {fl. r ~ . · ... TIl ofpoims

in the plane, and wish to know for each point T, in B the number of points in A that

are lwo-dominated by rio For simplicity, we assume that the points have distinct x

(respectively, yl coordinates. Our approach to this problem is similar to that of the

previous subsection, in that we will be performing a cascading merge procedure while

maintaining two labeling functions for each point. In this case the labels maintain for

each point p,tfrom A or B) how many points of A are one-dominated by Pi and also

how many points of A are two-dominmed by Pi. As in the previous solution. the first

label is used to mainlain the second, The details follow.

Let )/ = {Pl. P ~ . · ..• PI+,.,} be the union of A and B with the points lisled by

increasing y-coordinate, i,e...r( Pi) < .d. pi+1 l, We can construct Y in O(log n.l time

using 11 processors [13], where 11 = 1+ IIJ. Our method for solving the two-set dominance

counting problem is similar to the melhod used in the previous subsection. As before.

we let T be a complele binary tree with leaf nodes v., V ~ , · .. , v". in this order. and

in each leaf node v, we srore the list V ( L'i) = (-cc. p,) ( -cc still being a special symbol

such that x(-ro)<x(p,) and y(-OO)<Y(Pi) for all points Pi in )/L We then perform

a generalized cascading merge from the leaves of T as in Theorem 2.5. basing com­

parisons on increasing x-coordinates of the points (not their y-coordinates). We let

V(v) denote the sorted array of the points stored in the descendants of vE T sorted

by increasing x4coordinate. For each point P, in U(v) we store twO labels: Ilod(pi, v)

and 11/d(pi. v). The label lIod(p" v) is the number of points in U(v) that are in A and

are one-dominated by p" and the label md(p" v) is the number of points in U(v) that

are in A and are two-dominated by Pi. Initially, the nod and ,lfd labels are only defined

for the leaf nodes of T. That is. IIod ( Pi. v,) = nod (-00, ll,) = IIfd (p,. Vi) = md( -00, l',) =

O. For each PiE)/ we define the funclion XA(P,) as follows: XA(Pi)=l if p,EA, and

XA( P,) = 0 otherwise. (We also use pred (P.. l') to denOle the predecessor of P in U( v).

As we are performing the cascading merge. we update the labels /lod and /lTd based

on the equations in the following lemma (see Fig. 8).

LEMMA 6.4. Lei Pi be an elernelll of U(vl and ler u = Ichild (v) and II' = rchild (v).

TIl ell I\'e have rile following:

II I) {

lIod (p" uJ + nod (pred (PI' \1'), It') + x_,(pred (p" 1\'))

nod(pi'v)=
IIod (pred (p" It). It) + /1od (Pi, w) + XA(pred (p" Ii))

ifp, E U(u),

ifp,E U(w),

{

'l/d(Pi' u) i(p,E U(u).
(12) IItd(p"v)= .

IIod (pred (P.. ll), III + md (Pi, 1\') + XA(pred (Pi, u)) if p, E V( w).

Proof Consider (II). For any point P, E U( III the number ofpoims one-dominated

by p, is equal to the number of poinls in V(Il) that are in A and one-dominated by
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p" plus lhe number of poinls in U( w) thal are in A and one-dominated by pred( p" w J,_

plUS one if pred (p,. II') is in A (since the predecessor of Pi is one· dominated by pd.

Thus, we have the equation for the case when p,E U(ul. The case when PiE U{w) is

similar. Nexl, consider (12), By our construction, every point in U(u) has y-coordinate

less than the y-coordinate of every point in U(II'). So if P, EO U( II), then the number

of poims in U(vJ thal are in A and are two-dominated by Pi is precisely I1Id{p" u),

since p, cannot n....o-uominate any points in U(1I'1. If p,E U(w), on lhe other hand,

then the number of points in U( v) that are in A and two-dominated by P, is the number

of points in U(lI) that are in A and one-dominated by pred (Pi, U), plus lhe number

of poims in U(ll'l that are in A and two-dominated by p" plus one if pred (Pi, III is

in A This is exactly (12) in this case. D.

By Lemma 6.4, when v becomes full (and we have U (u l, U (I\' 1. and U( lO) = U (II) U

U(llr) availablel. we can determine the labels for all the points in U(v) in 0(1)

additional time using JU( v)1 processors. Thus, the running time of the cascading merge

algorilhm, even wilh lhese addilional label computalions, is still OClog /I) using 11

processors. After we complete the merge, and have computed U(root (TIL along with

all lhe labels for the poims in U(rool (T)), then we are done. We summarize in lhe

following lheorem.

TH EOREM 6.5. Givcm a set A oj I points i/I the plane alld a seT B 0./ 111 poi/liS ill tile

plane, we can compUle for each point p in B The number ofpoinr.'i in A Two-domina red by

pin O(log n) lime alld G(n) space using n processors ill rhe CREW PRAM model, where

" = I+ III, and fhis is oprimal.

Proof The correctness and complexity bounds should be apparent [rom lhe

discussion above. To prove the lower bound note Lhat the two-dimensional maxima

problem can be reduced LO dominance counting in O( I J lime using n processors (see

[17]). Since the maxima problem has an O( /I log /I) lower bound [20J in the comparison

model, we conclude thaI we can do no beuer lhan O(log /l ) time using /I processors

in the CREW PRAM model. 0

There are a number of mher problems that can be reduced [0 lwo-sel dominance

counting. We menlion lWO here, lbe firs[ being the multiple range-counting problem:
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given a set V of I points in the plane and a set R of TIl isothctic rectangles (ranges)

the multiple range-coullting problem is to compute the number of poinrs interior to

each rectangle.

COROLLARY 6.6. Given a SCI V of I poims in Ihe plallc alld a ser R of TIl ;sotJletic

rectallgles, we call solve Ihe mull;p!e rallge-coum;ng problem lor Vand R ill O(log II)

time alld O(n) space usillg /1 processors, where n = 1+ m.

Proof. Let d( p) be the number of points in V two·dominated by a poim p.

Edelsbrunner and Overmars [15] have shown that counting the number of points

interior to a rectangle can be reduced to dominance counting. That is, given a rectangle

r = (PI, P2, p), P4) (where vertices are listed in counterclockwise order starting with

the upper right· hand corner), the number of points in V interior to r is d( P.) - d( (2) +
d(p~)-d(P4)' Therefore, it suffices to solve the t w o ~ s e t dominance counting

problem. 0

Another problem that reduces to two-set dominance counting is rectilinear segment

imersection counting: given a set 5 of n recti linear line segments in the plane, determine

for each segment the number of other segments in 5 that intersect it.

COROLLARY 6.7. Giverl a .'lei 5 of n rectilinear line segments in the plalle, we Catl

delermirlC for each segment the number ofother segmems in 5 lhal intersect it ill O(log n)

time a"d O(n) . ~ p a c e using 11 processors in the CREW PRAM model.

Proof. Let VI (U2 ) be the set of left (right) endpoints of horizontal segments, and

·Iet dl(p) ( d ~ ( p ) ) denote the number or points in VI (V2 ) two-dominaled by p. For

any venical segmenl .'I, with upper endpoint p and lower endpoint q, the number of

horizomal segments that intersect s is d I (p) - d I (q) + d~(q) - d~( p). This is because

d l ( P ) ~ d l ( q ) (respectively, d ~ ( p ) - d ~ ( q ) ) counts the number of horizontal segments

with a left (right) endpoint to the lefl of 5 and y-coordinate in the interval [y(q),y(p)).

Thus, d . ( p ) - d l ( q ) - ( d ~ ( p ) - d ~ ( q ) ) counts the number of horizontal segments with

lefl endpoint to the lefl of .'I, right endpoint to the right of 5, and .v-coordinate in the

interval [y(q), yep)] (i.e., the set of horizontal segments that imersect 5). 0

TIle final problem we address at is visibility from a point.

6.3. The visibility from a point problem. Given a set of line segments 5 =

{5I, 52, ... , 5,,} in the plane that do not intersect, except possibly at endpoints, r.md a

point p, the visibility from a point problem is to determine the part of the plane that

is visible from p assuming every Sj is opaque. Intuitively, we can think or the point p

as a specular light source, the segments as walls, and the problem to determine all the

parts of the plane that are illuminated. We can use the cascading divide-and-conquer

technique to solve this problem in G(log n) time and O(n) space using n processors.

Without loss of generality, we assume that the point p is at negative infinity below all

the segmems. The algorithm is essentially the same if p is a finite point, except that

the notion of segment endpoints being ordered by x-coordinate is replaced by the

notion that they are ordered radially around p. In other words, it suffices lO compute

the lower ellvelope of the n segments to give a method for computing the visibility

from a point. For simplicity of expression, we also assume thar the x·coordinates of

the endpoints are distincr.

In the previous two subseclions the set of objecls consisted of poims, but in the

visibility problem we are dealing Wilh line segments. The method is slightly differenl

in this case. In this case, we SlOre the segmems in the leaves of a binary tree and

perform a cascading merge of the x·coordinates of intervals of the x-axis determined

by segmem endpoints. We maimain a single label for each interval which represents

the segment which is visible from -00 on that interval. The delails follow.
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Let T be a complele binary tree with leaf nodes VI, l . ' ~ , .... L"" ordered from left

10 rig.ht. We associate the segmenl Si with the leaf v, and al Vi store the list U(l") =

( -00, PI, fl2), where PI and P ~ arc the two endpoints of s" with x( PI) < x( p ~ ) , and -00

is defined such that x( -co) < x( p) and ,I'( -co) <.1"( p) for all points p. We then perform

a generalized cascading merge from the leaves of T as in Theorm 2.5, basing com­

parisons on increasing x-coordinates of the points. For each internal node V we let

U(v) denote an array of the points stored in the descendants of lIE T sorted by

increasing x-coordinates. For each point p, in U(v) we store a label vis(p" v) which

stores the segment with endpoints in V(v) that is visible in the interval- .
(:rep,), x(SUCC{Pi, u))), where SIICC(p" v) denotes [he successor of Pr in U(L') (based

on x-coordinates), Initially, the vis labels are only defined for the leaf nodes of T

That is, if U(v)=(-oo,PI.P:!), where S i = P I P ~ , then vis(-oo) = +00, v i s ( p d = , ~ " and

vise P2) = +00, We use pred (PI> v) to denote the predecessor of Pi in U (v). As we are

performing the cascading merge, we update the vis labels based on the equation in

the following lemma (see Fig. 9).

LEM MA 6.8. Le[ Pi be an eJemem of U( v) and leI U = Ichild (v) alld w = rellild (v).

77,cn we have the following (if [11'0 segments Si and Sj are comparable b,r lire "above"

Befme merge: U(u) and U(w)

. .

~
...
· . .
· . '.· . .· . ,.. ..

:.. --.

PI P2 P3 P, PS P6 P7 P' Po PlO PH PI2 P13

U ( u ) ~

pred(p"w) ~

After merge: U (v)

U(w).~
,

pred(Pi'u)~

"-', '" . .
:---..-; ~

...
· . .· . , .· . ., . . ,

. '.

PI P2 P3 p, ps P6 P7 p, Po PiO Pu P12 PI3

FIG, 9. All example of v i , ~ i b i l i r . 1 ' merging. TIre daIiled Sl'grnenrs corre.~pond 10 rile l'isfble reKiOlI for XI II)

and fhe solid segments correspond to fhe visible regl-onfor X( wi. For simp/icil_I'. "'1' store lire poimers pred (p" II)

ond pred ( p" II') in arron OIld denalI' each poior p, 1>.1' ils IIIde:r i, NOle Ihal POIllI! arc OCL'l!r rcmoved, I!l'l'n if

Ihe same segment defines rhe visible regioll for man_I' COl1H'ClIflvt! iorerL'uh (e.g., p ~ I/Jroligh p,).
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re/Q/irJII. "u'll 11'(' leI min {s" s,} dCl/ole ,lie IOIl·a (!(I!le fWo):

. { In in {vist P" 1/). l'is( pred ( p" \I' J, \l'l)
(JlS( I'" L') =

mill {vis(pred (P.. u), 1/). vis(p" 1I')}

!(p,E U(u),

~ ( P I E U(II·).

Proof If we reslrict our attenLion to the segments with an endpoinL In U(n).

then for 'Illy poilll p,': U(u) the segment visible (from -(0) on the interval

(x( Pi). X (Stlcc( P" v))) is the minimum of the segment visible on the interval (.\'( p,),

x{SUCC(Pi, II))) and the segment that is visible on the interval (x(pred (p" 11')1,

x(slIcc(pred (Pi. \1'). 11'))). This is because the inLerval (x(p;), X(SIlCC(Pi' u))) is exactly

the interseclion of the interval (X(Pi), X(SIlCc( p" (I)l) and the interval (x(pred (Pi. 11')),

x(sl/cc(pred (p" u'), \1'))), and there is no segment in Ufo) wilh ~ n endpoint interior

to Lhe inten'al (x( p,). X(SIICC( PI' e))). Thus, vis( Pi. v) is equal to minimum of vis( PI' 1/ l

and vis(pred(p;, 11'), 11'). The case when p,E U(v) is similar. 0

By Lemma 6.8. arLer merging the lists U(u) and U(Il'), we can determine the

labels for all the poims in U( v) in O( I) addi[ional time using IU(v)1 processors. Thus,

the running time of this generalized cascading merge algorithm is still O(log 1/) using

II processors. Aflcr we complete the merge and have compmed U(rool( Tll. along

with aillhe vis labcls for the poims in U(rnol( T)l, then we can compress am duplicatc

entries in the list (vis( PI, ro{)t( T)), vis ( p~. root( T)), . ... vis( P ~ , , , roof( T)l) using a

parallel prefix compUlatiorrto construct a compact represema[ion of the visible ponion

of the plane. We summarize in the following theorem.

THEOREM 6.9. Given a set 5 oJn IIollilllerseclitlg segmellls in the plane. we can_h'lld

fhe lower ellve/ope of5 ill OOog IJ) lime al/d O( II) space using" processors ill fhe CREW

PRAM model. and rhis is optimal.

Proof The correctness and complexity bounds follow from the discussion above.

Since we require that the poims in the description of the lower envelope be gi\·en by

increasing x-coordinales, we can r e d u ~ e sorting La this problem, and thus can do no

bener than OOog Il) time using II processors. 0

7. EREW PRAM implementations. In this section we briefly note that the same

techniques as employed by Cole in [ L ~ ] [Q implement his merging procedure in the

EREW PRAM model (no simultaneous reads) can be applied to our algorithms for

generalized merging. fractional cascading, constructing the plane-sweep tree. three­

dimensional maxima. two-set dominance counting, and visibility from a point, resulting

in EREW PRAM algorithms for these problems. Apparently. we cannot apply his

techniques to our algorithms for trapezoidal decomposition and segment intersection

detection, however. since our algorithms for these problems explicitly use concurrent

reads (in the multilocation steps).

Applying his techniques to our algorithms results in EREW PRAM algorithms

with the same asymplotic bounds as [he ones presemed in this paper, except that the

space bounds for the problems addressed in § 6 all become 0(" log n). The reason

that his techniques increase the space complexity of these problems is because of our

use of labeling funclions. Specifically, it is not clear how to perform the merges on·line

and still update the labels in O( I) Lime after a node becomes full. This is because a

label whose value changes on level I may have LO be broadcasted to many elemems

in level I -I to update their labels, which would require !1(1og t1) time in this model

if there were 0(11) such elements.

We can get around the problem arising from [he labeling functions, however. For

the three-dimensional maxima problem and the two-set dominance counting problem,
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we sepa rale lhe complll<uion of the U ( I') lists and compUI:Hion of the labeling. functions

into two separate steps, ralher than "dovelailing" lhe lWO COmplll<HIOnS as berore.

Each of lhe labeling functions we used for lhese rwo problems can be redefined so as

to be EREW-computablc. Specifically, rhe label for an elemem fl in U( [ll, on level I,

can be expressed in lerms of a label prel( p, l'l <lnd a label uflt p, vI, where prel( p, v J

can be computed by performing a parallel prefix compulalion [21], [22] in U(l'l and

IIfl(P, vJ can be defined In lerms of prellpred (p, lchild (vll,lchild (L'll,

pref( pred (p, rchild h .. l), rchild (vJl, and llle up label p had on level 1+ I (say, in

U(rcIJild (v)l if pE U(rchild (vll)' In particular, for the three-dimensional maxima

problem pref(p, v) = =()d( p, vl and up(p, v) = =ld(p, L'!. and forthe two-sel dominance

counting problem prcf( p, L') = "od (p, I') and IIp( p, L') = nrd (p, v), We can compute

aillhe pref( p, v) labels in O(log 11) lime using II processors by assigning rI U(vll/log 111

processors lO each node L' (21). \"ie c<ln then broadcasl each prefCp, v) label La lhe

successor of L' in sihlillg(vl. which takes O(log 11) time using" processors by assigning

r1U(.vll/loglll processors lO each node v, Finally, we can compure all the up(p, vl

labels in D(1og /1 l additional lime by assigning: a single processor to each poinl p and

lracing the palh in the tree from the leaf node thal comains p up ra the rool. This is

an EREW operalion because compUling aU the up(p, v) labels only depends upon

accessing memory locations associated wilh rhe point p.

The ERE\V solUlion lO lhe visibilily from a point problem requires D(nlogn)

space ror a different reason, namely, because we can solve it by construcring the

pl<lne-sweep tree for the segmenrs (we need not have rhe Cover( v)'s in soned order,

however), computing the lowesl segment in each Cover( v 1. and then performing a

rap·down parallel mill-finding compUlalion ra find the segment visible on each inlerval

(Pi, PI' I l, Since these are all slraightforward compu13tions, given the discussion presen­

red earlier in this paper, we leave lhe delails to lhe reader.

8. Conclusion. In this paper we ga\'e several general techniques for soh-jng prob­

lems efficiemly using parallel divide-and-conquer. Our techniques arc based on non­

trivial generalizalions of the merge-sorting approach of Cole [13]. It is interesling to

nore that Cole"s algorirhm improved rhe previous resulls by a constanr facrar, whereas

our algorithms improve the previous results asymptotically.

Two of our techniques involved melhods for performing fractional cascading and

a generalized version of the merge-sorting problem optimally in parallel. Our method

for doing fraclional cascading runs in O(log 11\ time using r"/log 111 processors, and,

if implememed as a sequential algorirhm, results in a sequenlial alternative 10 the

method or Chazelle and Guibas [I:!] for fractional cascading,

We also showed how 10 apply lhe generalized merging procedure and fractional

cascading to efficiently solve several problems by "cascading" the d i v i d e ~ a n d - c o n q u e r

paradigm, For lhree of the problems-trapezoidal decomposition, planar point loca­

tion, and segmem imerseclion delection-lhe method involved merging in the line

segmenr panial order, and required considerable care ro avoid siLUalions in which the

algorithm would hah because it attempted 10 compare two incomparable segmems.

All three of lhese algorilhms ran in O(log Il) time using 11 processors, which is optimal

for all but the poin! location problem. In addition, since our algorithm for doing planar

poinr localion resulls in a query lime of O(log n), our result immediately implies an

O ( l o g ~ 11) time, 11 processorsolUlion lO rhe problem of consrructing the Voronoi diagram

of II planar points, using lhe algorithm of Aggarwal et al. [I).

We showed how to apply the cascading divide-and-conquer lechnique [Q problems

thal can be solved by merging wilh labeling funclions. v..:e used this approach lO solve
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the three-dimensional maxima problem, the two-set dominance counting problem, the

rectilinear segment intersection counting problem, and (he vi:-ibililY from a point

problem. Our <llgorithms for these problems all ran in O(log,,) time using n proceSSOrs ,
which i!i optimal.
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