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In this paper we study a simple cascading process in a structured heterogeneous population,
namely, a network composed of two loosely coupled communities. We demonstrate that under certain
conditions the cascading dynamics in such a network has a two–tiered structure that characterizes
activity spreading at different rates in the communities. We study the dynamics of the model using
both simulations and an analytical approach based on annealed approximation, and obtain good
agreement between the two. Our results suggest that network modularity might have implications
in various applications, such as epidemiology and viral marketing.

PACS numbers:

I. INTRODUCTION

Networks are useful paradigm for studying complex
systems composed of large numbers of interconnected
components [1–3]. There has been a growing interest
in applying network analysis to examine various bio-
logical [4, 5], ecological [6–8], technological [9–11], and
even political [12] systems. Research on various statis-
tical properties of such networks has revealed many in-
teresting phenomena. For instance, the scale–free de-
gree distributions observed in many real–world networks
have significant implications for various dynamical pro-
cesses on such networks. In particular, the dynamics of
SIR (susceptible–infected–removed) epidemic processes
in certain scale–free networks are characterized by van-
ishing threshold for epidemics [13], in sharp contrast with
results for the random Erdos-Renyi networks.

Another interesting property of networks is modular-
ity, the tendency of nodes to partition themselves into
communities [14, 15]. Loosely speaking, a community is
a group of nodes for which the density of links within a
group is higher than across the groups. Much recent re-
search has focused on methods for detecting and analyz-
ing community structure in networks (for a recent review
of existing approaches see [16] and references therein).
However, the dynamical properties of modular networks
have received relatively little attention despite the po-
tential importance of the subject to problems such as
epidemiology, viral marketing, and so on. Consider, for
instance, word–of–mouth (or viral) marketing of a new
product. If different consumer groups have different rat-
ing criteria for the product, or different reaction to mar-
keting strategies, then one needs to model how influ-
ence propagates within and across communities to pre-
dict whether the product will be a hit, or confined to
a small subset of consumers. A similar argument holds
for epidemic models where nodes are heterogeneous with
respect to their susceptibilities and/or interactions pat-
terns [17–19]. For instance, Gupta et. al. showed that
the transient dynamics of sexually transmitted infection

can be very different, depending on whether the network
of sexual contacts is assortative or disassortative [17].
More recent work has addressed the role of the modu-
larity on dynamics of cascading failures in scale free net-
works [20], and synchronization patterns of networked os-
cillators [21]. In particular, Ref. [21] demonstrated that
the modularity of networks is strongly reflected in their
synchronization dynamics, so that communities emerge
as connected groups of synchronized oscillators.

The goal of this paper is to further improve our under-
standing of the connection between network modularity
and its dynamics. Specifically, we examine the effects
of modularity on a simple, threshold–based activation
process on networks. Starting with a modified version
of Watts’ cascading model [22], we study its dynamical
properties for networks composed of two loosely coupled
communities. Our main observation is that if the initially
active nodes (seeds) are contained in one of the communi-
ties, then under certain conditions the cascading process
has a two–tiered structure, that is, the peaks of the acti-
vation dynamics in each community are well separated in
time. We present results of simulations as well as analyti-
cal results based on annealed approximation, and observe
a good agreement between the two.

II. MODEL

Let us consider a network where each node is in one of
two states: passive and active. Initially, all but a small
fraction of seed nodes are passive. During the cascade
process, a passive node will be activated with probability
that depends on the state of its neighborhs. In Watt’s
original model [22] this probability is p = Θ(hi/ki − φ),
where Θ is the step function, hi and ki are the number of
active neighbors and the total number of the neighboring
nodes, respectively, and φi is the activation threshold for
the i–th node. Here we consider a slight modification of
the original model by using a threshold condition on the
number of active neighbors rather than their fraction:
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p = τ−1Θ(hi − Hi), where τ determines the time–scale
of the activation process. For the sake of simplicity, we
assume that all nodes have the same activation threshold,
Hi = H for all i.

Clearly, the dynamics of the cascade process will de-
pend on both network structure and the threshold pa-
rameter H. Here we are interested in the case when the
network is composed of two loosely coupled communi-
ties. Namely, we consider a random graph consisting of
N = Na + Nb nodes of two different type, a and b. The
probabilities of edges between nodes of different types are
γaa, γbb and γab = γba, and the average connectivity be-
tween nodes of the respective types are then zaa = γaaNa,
zbb = γbbNb, zab = γabNb and zba = γabNa. We want to
find out how the modularity of the network, as described
by the coupling between the groups, affects the cascading
process.

Let ρ0
a and ρ0

b be the fraction of seed nodes in each pop-
ulation. Further, let Pa(h; t) and Pb(h; t) be the proba-
bility distribution that a randomly chosen node of corre-
sponding type is connected with exactly h active nodes at
time t. It is easy to see that Pa(h; t = 0) and Pb(h; t = 0)
are Poisson distributions with means zaaρ0

a + zabρ
0
b and

zbbρ
0
b + zbaρ0

a, respectively. To study the dynamics of
the process, we need to estimate these distributions for
later times. This is particularly straightforward to do
within the annealed approximation, e.g., by “rewiring”
the network after each iteration [23]. Indeed, since all
edges of corresponding type are equally likely, it is easy
to see that Pa(h; t) and Pb(h; t) are still given by Pois-
son distribution, with the means that now depend on
the fraction of active nodes ρa(t) and ρb(t): Pa,b(h; t) =
Poisson(λa,b(t)), where λa = zaaρa(t) + zabρb(t) and
λb = zbbρb(t) + zbaρa(t).

On the first step of the cascading process, the
fraction of activated nodes of each type is given by
τ−1

∑
h≥H Pa,b(h; t = 0). In later iterations, we can cal-

culate the fraction of active nodes as follows. Let us con-
sider, for instance, a nodes. There are Na(1−ρa(t)) pas-
sive nodes at time t, and each one of these nodes will be
activated with the rate τ−1

∑
h≥H Pa(h; t). Also, due to

the rewiring, some of the Na(ρa(t)−ρ0
a) active nodes will

switch to passive state with the rate τ−1
∑

h<H Pa(h; t).
We note that the seed nodes never de–activate. Combin-
ing these together, and using the normalization condition∑∞

h=0 Pa,b(h; t) = 1, we obtain the in the continuos time
limit

τ
dρa,b

dt
= 1− ρa,b − (1− ρ0

a,b)Q(H;λa,b) (1)

where Q(n, x) =
∑

k<n e−xxk/k! is the regularized
gamma function.

Equations 1 determine the time evolution of the cas-
cading process in each group. Let ρ(t) = αρa(t) + (1 −
α)ρb(t), α = Na/(Na + Nb), be the fraction of active
nodes in the whole network. In Figure 1 we compare
the solutions obtained from Equations 1 with the re-
sults of simulations on randomly generated graphs for the

(a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Time

ρ(
t)

H=2
H=4

(b)

0 20 40 60 80
0

0.01

0.02

0.03

0.04

Time

dρ
/d

t H=4

FIG. 1: Analytical (solid lines) and simulation (circles) results
for the activation dynamics. The upper panel shows the frac-
tion of active nodes vs time for threshold parameter H = 2
and H = 4. The lower panel shows the activation rate dρ/dt
vs time for H = 4.

same network parameters but two different values of the
threshold parameter. The parameters of the network are
Na = 5000, Nb = 15000, zaa = zbb = 15, zab = 4. The
fraction of seed nodes is ρ0

a = 0.1, and τ−1 = 0.1. The
simulations are averaged over 100 random realizations.

The agreement between the analytical prediction and
results of the simulations is quite good. The network
settles to the same steady state for both values of the
threshold parameter H: that is, all of the nodes are acti-
vated at the end of the cascading process. However, the
transient dynamics depend on the threshold parameter
H. For H = 2, activation spreads very quickly through
both communities and after a short interval all of the
nodes are activate. For H = 4, on the other hand, the
fraction of active nodes seems to saturate, then, in later
iterations, ρ(t) increases rapidly and eventually all the
nodes become active. In Figure 1(b) we plot the rate of
activation process dρ/dt vs time for H = 4. Apparently,
the peak rates of activation in the two communities are
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separated in time. We call this phenomenon two-tiered
dynamics. We would like to note that previously such
a multi–peak structure has been observed in Ref. [17],
where the authors studied the impact of different mixing
patterns on the spread of sexually transmitted infection.

To better understand how two–tiered dynamics arises,
we will examine a simplified scenario. Let us assume
that seed nodes are chosen among a–nodes only, so that
ρ0

b = 0. Further, let us assume that the coupling between
two populations is not very strong, so that the cascad-
ing process among a–nodes is not affected by cross-group
links. Hence, the fraction of active a nodes evolves ac-
cording to the following equation

τ
dρa

dt
= −ρa + ga(zaaρa) (2)

where we have defined

ga(x) = 1− (1− ρ0
a,b)Q(H,x) (3)

The fraction of the population that will be activated at
the end of the cascading process is determined from the
following equation:

ρs
a = ga(zaaρs

a) (4)

Note that for sufficiently dense networks (i.e., the con-
nectivity of all nodes is greater than the threshold H)
ρs

a = 1 is always a solution. However, it is not always
the only solution. This is shown graphically in Figure 2,
where we plot both sides of Equation 4 as a function of
ρs

a for two different connectivities. For a given fraction
of seed nodes the steady–state fraction of active nodes
is determined by the connectivity zaa. In particular, for
sufficiently large values of zaa, the only intersection of the
curve with the line happens at ρ ≈ 1, aside from exponen-
tially small correction of order ∼ zH−1e−zaa , indicating
that the activation will spread globally. If one decreases
zaa, however, other solutions appear as shown by the
two intersections of ρa and ga(zaaρa) in Figure 2. Specif-
ically, there is a critical value zc

aa so that for zaa < zc
aa

the cascading dynamics dies out, while for zaa > zc
aa it

spreads throughout the system. Let us define x = zaaρs
a,

and rewrite Equation 4 as z−1
aa x = g(x). At the criti-

cal point, the line z−1
aa x must be tangential to g(x). It

is then straightforward to demonstrate that the critical
connectivity is given by

zc
aa = [g′a(x0)]−1 ≡

[
(1− ρ0

a)e−x0
xH−1

0

(H − 1)!

]−1

(5)

where x0 satisfies the following equation:

x0g
′
a(x0) = ga(x0) (6)

Equations 5 and 6 determine that critical connectiv-
ity needed to cause a global cascade among a nodes for a
given fraction of seed nodes and the threshold parameter
H. In Figure 3 we compare the analytical prediction with
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FIG. 2: Graphical representation of the Equation 4. Plotted
are the straight line y = ρs

a, and the function y = ga(zaaρs
a)

for two different values of zaa

simulation results for H = 2. The simulations were done
for a graph with 5×104 nodes, and for 100 random trials.
Each parameter pair (ρ0

a, zaa) was considered to be above
the critical line if a global cascade was observed in the
majority of trials for that parameters. Again, the agree-
ment of analytical prediction and the simulation results
are excellent.

Let us examine the behavior of the critical connectivity
in the limit of small ρ0

a. The equation 6 can be rewritten
as

e−x0

(
xH

0

(H − 1)!
+

H−1∑
k=0

xk
0

k!

)
=

ρa
0

1− ρa
0

(7)

Assuming ρ0
a, x0 � 1 we obtain in the leading order

x0 ≈
[

H!
H − 1

ρ0
a

] 1
H

(8)

Finally, using Equation 5 we obtain the following scaling
behavior

zc
aa ∝ (ρ0

a)−
H−1

H . (9)

which is demonstrated in the inset of Figure 3. We also
note that at the critical point the convergence time di-
verges as Tconv ∝ (z − zc

aa)−1/2.
Now consider the cascading dynamics in the second

group. Initially, there are no active nodes in this group.
As more and more a nodes are activated, the activation
will spread to the b nodes for sufficiently large across–
group connectivity zba. The activation dynamics is again
governed by an equation similar to the Equation. 2. In
particular, the steady state fraction of active b nodes sat-
isfies the following equation:

ρ0
b = 1−Q(H, zbbρ

0
b + λ) ≡ gb(zbbρ

0
b + λ). (10)

where λ = zbaρ0
a. Clearly, if λ is sufficiently large, then

the cascade will propagate among b nodes independent
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FIG. 3: (Color online) The critical connectivity vs fraction of
seed nodes for threshold parameter H = 2. The inset shows
the scaling behavior of zc

aa for different H (the numbers in
parenthesis are the slopes of corresponding lines).

of the within–group connectivity zbb. And vise versa,
however large the connectivity zbb, there is a critical value
of λc

a so that for λ < λc there will be no cascade among
the b nodes. Let us define x = zbbρ

0
b + λ and rewrite the

steady state equation as follows:

x− λ

zbb
= gb(x) (11)

Using the same reasoning as for the a nodes, it is easy to
show that the critical point is given by

λc = x0 − zbbgb(x0) (12)

where x0 is the smaller of the roots of the following equa-
tion:

g′b(x0) =
1

zbb
(13)

Note that for ρ0
a = 1 λc is simply the critical across–group

connectivity zc
ab(zbb) for which the cascade will spread to

b nodes, assuming that all a nodes have already been acti-
vated. Hence, equations 12 and 13 implicitly define a crit-
ical line zc

bb(zba) on the zbb−zba plane. Note that on this
critical line the convergence time of the cascading process
among the b-nodes, and consequently the separation of
two activity peaks, is infinite. For a fixed within–group

connectivity zbb the two–tiered structure will be present
provided that zba is only slightly above the critical line.
To be more precise, let ρmax

a be the fraction of active a
nodes that corresponds to the maximum activation rate
among a nodes. This can be found from Equation 2 by
differentiating the right hand side with respect to ρa and
setting it to zero, which yields zaag′a(zaaρmax

a ) = 1. If
the across—group connectivity is smaller than λc/ρmax

a ,
then the cascade will not spread to b–nodes until the rate
of activation spreading among a nodes starts to decline
from its peak. Consequently, the two–tiered pattern will
be present for the range λc < zba < λc/ρmax

a .

III. SUMMARY

To summarize, we have considered a simple cascading
model on a random network consisting of two–loosely
coupled communities. For a sufficiently weak coupling
between two communities the dynamics of the activity
spreading demonstrates two–tiered structure, that is, the
peak rates of the cascading processes in two communi-
ties are separated in time. This pattern is reminiscent
of multi–peak structure of sexually transmitted infection
dynamics, previously reported in Ref. [17]. We stud-
ied this phenomenon both experimentally and theoreti-
cally using annealed approximation, and obtained a good
agreement between analytical results and simulations.
Although our model is for undirected binary graphs,
generalizations to directed and/or weighted graphs is
straightforward. Directed models can be relevant if the
interactions between two nodes are not symmetric.

The results presented here might have implications in
problems such as epidemiology, viral marketing, and so
on. Consider, for example, the problem of minimizing the
number of seed nodes that will cause a global cascade in
a given network, or more generally, the problem of max-
imizing a certain utility function f(N0, N

s), where N0 is
the number of seed nodes, and Ns is the expected size of
the cascade. Our results suggest that simple strategies
that are suitable for homogenous networks (e.g., choos-
ing nodes with high connectivity, or at random), might
lead to a sub–optimal solution for networks with strongly
modular structure. We note, however, that in order to
assess the implication of our findings in real world prob-
lems, one needs to generalize the approach developed here
to more complex networks.
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