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Abstract 
Many critical infrastructures are interdependent networks in which the behavior of one network impacts those 
of the others. Despite the fact that interdependencies are essential for the operation of critical infrastructures, 
such interdependencies can negatively affect the reliability and fuel the cascade of failures within and across the 
networks. In this paper, a novel interdependent Markov-chain framework is proposed that enables capturing 
interdependencies between two critical infrastructures with the ultimate goal of predicting their resilience to 
cascading failures and characterizing the effects of interdependencies on system reliability. The framework is 
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sufficiently general to model cascading failures in any interdependent networks; however, this paper focuses on 
the electric-cyber infrastructure as an example. Using this framework it is shown that interdependencies among 
reliable systems, i.e., systems with exponentially distributed failure sizes, can make the individually reliable 
systems behave unreliably as a whole with power-law failure-size distributions. 

SECTION I. Introduction 
Critical infrastructures such as electricity, communication, transportation, gas and water networks use services 
from one another and influence each other due to their interdependencies. Although many interdependencies 
are essential for the operation of infrastructures, negative interdependencies affect the reliability of 
interdependent networks and can fuel cascade of failures within and across the networks. For instance, in the 
2003 blackout in Italy, unplanned shutdown of a power station led to failures of communication network nodes 
and the supervisory control and data acquisition (SCADA) system of the power grid. This event, in turn, led to 
further failures in the power grid resulting in a large cascading failure in the system [1]. Another example of such 
interdependency is observable in the 2003 blackout in the Northeast United States, where the combination of 
power-component failures as well as computer and human events contributed to the cascading failures that 
ultimately led to the large blackout. In light of the above, interdependencies and extensive integration of critical 
infrastructures, such as the power grid and the communication network, mandate that they should be studied as 
a single coupled system specially when the reliability is of concern. 

Here, we present an Inter-Dependent Markov Chain (IDMC) model, which provides a probabilistic framework to 
capture the effects of interdependencies among physical networks on the stochastic dynamics of cascading 
failures in an abstract setting. The idea of this approach is to build an integrated probabilistic framework 
consisting of a system of interdependent heterogeneous Markov chains (MCs)–one chain for each physical 
system. The interdependencies are captured such that a transition in a MC affects the transition probabilities of 
other MCs. We consider discrete-time MCs and model the interaction between interdependent systems by 
characterizing the transition probabilities of the IDMC based on individual chains and their interdependencies. In 
this paper, we first present the general IDMC framework and then we derive an IDMC model for cascading 
failures in electric-cyber infrastructure. 

A naïve approach for coupling MCs would rely on the generation of the Cartesian product of the individual state 
spaces, which results in state-space explosion, deeming the approach to be intractable. Another shortcoming of 
the latter approach is that the new transition probabilities among the states of the coupled MC cannot be 
readily derived from the transition probabilities of the individual MCs. An even more serious flaw of the naïve 
approach is that it is based on the false and built-in assumption that combining MCs results in a new MC. In 
general, the interdependencies between MCs will result in memory in the combined process, which prevents the 
combined chain from being Markov. The proposed IDMC approach alleviates the flaws associated with the naïve 
approach for combining MCs and provides a minimal MC framework that encompasses the individual chains 
while capturing the interdependencies. Moreover, based on the IDMC framework, we introduce metrics to 
quantify the strength of interdependency between systems. 

The presented IDMC framework enables system-level prediction of the behavior of the interdependent systems 
while overcoming the complexity of tracking the details of the system by means of meaningful abstractions. 
Here, by abstraction we mean identifying few key variables and parameters to represent the fine-grained states 
of the system with less complexity while implicitly capturing the effects of the rest of the parameters in the 
parameters and variables of the IDMC framework to approximate the behavior of the whole system. 

A key insight obtained from the application of the IDMC model to the electric-cyber infrastructure is that 
interdependencies among reliable systems, i.e., systems with exponentially distributed failure sizes, can make 



them behave unreliably as a whole, as evidenced by power-law distributions for the size of the failures within 
each system. 

SECTION II. Related Work 
The majority of research in cascading failures in critical infrastructures has been focused on single, non-
interacting systems. Among such works is the category of probabilistic models, which, for instance, include 
models based on branching processes [3], Markov chains [4], [5], regeneration theory [6], and so forth. For 
instance, in [6] we developed a scalable probabilistic approach based on regeneration theory and a reduced 
state space of the power grid to model the dynamics of cascading failures in time. The transition rates among 
the states of the model are defined to be state and age dependent, and their functional forms are calculated 
empirically from power-system simulations. The regeneration-based approach can collapse to a Markov process 
when the time between successive events are independent and exponentially distributed. However, the model 
can also capture the stochastic events when the underlying events are non-Markovian. We also developed a 
scalable probabilistic model for cascading failures based on a continuous-time MC in [5] that captures key 
physical attributes of the power grid through parametric transition rates. 

Aside from efforts aiming to study the reliability of single systems, there has been great interest in 
understanding the behavior of interdependent systems. The general concepts of interdependent infrastructures 
and the challenges in modeling such systems have been discussed in [7] and [8]. Graph-based analyses of 
interdependent networks have also emerged. For instance, the work of Buldyrev et al. [9] considers a graph-
based approach that utilizes percolation theory for modeling cascading failures in interdependent networks and 
provides an analytical formulation of the percentage of failed nodes in the steady state while identifying the role 
of the coupling between the networks. Another problem that has been considered in evaluating the reliability of 
interdependent networks is the characterization of the minimum number of nodes/links whose removals will 
disrupt the functionality of the entire network [1], [10]. Probabilistic models for studying interdependent 
networks has also been proposed. For instance, models based on the theory of branching processes and mean-
field theory have been presented in [11] and [12] to model cascading failures in coupled infrastructure systems 
in an abstract setting. 

It is also important to clarify that the IDMC model, presented in this paper, is different from the influence 
model [13]. In the latter model, a MC is associated with each node of the network and the evolution of each 
chain can be influenced both by nodes’ internal dynamics as well as the evolution of the chains at their 
neighboring sites. While the idea of the current paper (that transitions in one MC is affected by transitions in 
other MCs) is similar to that of the influence model, the focus of the influence model is on the effects of network 
topology on the overall stochastic dynamics based on linear interactions among large number of network nodes; 
on the other hand, the IDMC framework focuses on the stochastic dynamics of systems, instead of individual 
nodes, by associating a MC to each system and allowing for linear and non-linear interactions of few non-
networked (but interdependent) MCs. 

SECTION III. Review of MC Model for Cascading Failures 
Due to its relevance to the IDMC development, we begin by reviewing germane aspects of a MC model for 
cascading failures that was introduced in our earlier work [5]. This MC has state-dependent transition 
probabilities that are parameterized by certain physical and operating characteristics of the system. Although 
the model in [5] was presented in the context of power grids, we believe this model is sufficiently general to 
model epidemic spread and cascading failures in a high-level setting in various complex systems beyond power 
systems. In its simplified form considered in this paper, the state space of the MC aggregately represents the 
state of a physical system (e.g., a power grid) using two state variables: number of failures in the system, 𝐹𝐹 , and 



the susceptibility (alternatively, stability) of the system to further failures, 𝐼𝐼 . We term the latter binary state 
variable the cascade-stability variable, where 𝐼𝐼 = 1 indicates a cascade-stable state and 𝐼𝐼 = 0 indicates 
otherwise. The state variable 𝐼𝐼 can collectively capture various physical attributes of the system affecting 
cascading failures beyond the number of failures. For instance, in a power grid the physical and control 
attributes of the system specify whether a power-grid state is cascade-stable or not. The state variable 𝐼𝐼 also 
serves to specify the absorbing (𝐼𝐼 = 1 ) and non-absorbing (or transitory) (I=0 ) states of the MC. Presence of 
multiple absorbing states in the MC enables the modeling of various sizes of failures. Here, cascading failures are 
thought of as sequences of transitions in the state of the system, each due to a single failure. The single-failure-
per-transition assumption is justified whenever time is divided into small intervals each allowing at most a single 
failure event. 

Of particular importance is the assumption that the transition probabilities of the MC are state dependent. This 
enables modeling various operating scenarios for the system when failures accumulate; it also facilitates 
capturing different phases of cascading failures such as the escalation and onset phases with different rates of 
failures. Specifically, we define the cascade-stop probability, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , as the probability of transiting from a state 
with 𝐹𝐹𝑖𝑖 failures and 𝐼𝐼 = 0 to a state with the same number of failures and 𝐼𝐼 = 1 . The cascade-stop probability is 
a function of 𝐹𝐹𝑖𝑖 , i.e., 𝑃𝑃stop(𝐹𝐹𝑖𝑖), and it completely characterizes the MC and the cascading-failure behavior of the 
system. In [5], we estimated 𝑃𝑃stop(𝐹𝐹𝑖𝑖) using power-system simulations. In Fig. 1, we show the structure of the 
MCs for each of the two interdependent systems.  

 

 

Fig. 1. Two MCs representing the stochastic dynamics of cascading failures in each of the interdependent 
systems and the coupling effect between MCs. 
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SECTION IV. Interdependent Markov Chains (IDMC) 
For simplicity, we describe the IDMC approach using two interdependent systems, 𝐴𝐴 and 𝐵𝐵 , with the 
understanding that the same approach can be applied to any finite number of interdependent systems. We 
assume that the stochastic dynamics of cascading failures in each of the systems is modeled by a MC similar to 
that described in Section III and shown in Fig. 1. In these MCs, the state of each system at discrete time 𝑛𝑛 ≥ 0 is 
denoted by the number of failures and the stability variable, e.g., 𝑆𝑆𝑛𝑛𝐴𝐴 = (𝐹𝐹𝑛𝑛𝐴𝐴, 𝐼𝐼𝑛𝑛𝐴𝐴) for system 𝐴𝐴 . The state-space 
of the MC for system 𝐴𝐴 is denoted by 𝒮𝒮𝐴𝐴, where 𝒮𝒮𝐴𝐴 = {1, … ,𝑚𝑚𝐴𝐴} × {absorbing,non-absorbing} and 𝑚𝑚𝐴𝐴 is the 
number of components in system 𝐴𝐴 . For simplicity, the state space of the MC for system 𝐵𝐵 is assumed to have 
the same structure as that for system 𝐴𝐴 ; however, in general the state spaces of the individual MCs can be 
different. The random processes 𝑋𝑋𝑛𝑛 and 𝑌𝑌𝑛𝑛 represent the state of the systems 𝐴𝐴 and 𝐵𝐵 , respectively, at discrete 
time 𝑛𝑛 ≥ 0 . 

As alluded to in the Introduction Section, a naïve and incorrect way to couple two MCs is to develop a combined 
MC with a state space 𝒮𝒮𝐶𝐶 formed by the Cartesian product of the state spaces of the MCs associated with the 
individual systems, namely 𝒮𝒮𝐶𝐶 = 𝒮𝒮𝐴𝐴 × 𝒮𝒮𝐵𝐵. The shortcoming of this construction is that the transition 
probabilities among the states in 𝒮𝒮𝐶𝐶 are not determined solely by the transition probabilities of the individual 
MCs, and the combined process is not guaranteed to be a MC as seen from the following example. 
Let 𝑋𝑋1,𝑋𝑋2, … be an independent and identically distributed (i.i.d.) sequence, and let the process 𝑌𝑌𝑛𝑛 be defined 
as 𝑌𝑌𝑛𝑛 = 𝑋𝑋𝑛𝑛−1 + 𝑋𝑋𝑛𝑛−2 for 𝑛𝑛 > 2 and 𝑌𝑌2 = 𝑌𝑌1 = 𝑋𝑋1 . The process 𝑌𝑌𝑛𝑛 is Markov because 

P{𝑌𝑌𝑛𝑛|𝑌𝑌𝑛𝑛−1, … ,𝑌𝑌1} = P{𝑋𝑋𝑛𝑛−1 + 𝑋𝑋𝑛𝑛−2|𝑋𝑋𝑛𝑛−2 + 𝑋𝑋𝑛𝑛−3, … ,𝑋𝑋1}
= P{𝑋𝑋𝑛𝑛−1 + 𝑋𝑋𝑛𝑛−2|𝑋𝑋𝑛𝑛−2 + 𝑋𝑋𝑛𝑛−3} = P{𝑌𝑌𝑛𝑛|𝑌𝑌𝑛𝑛−1}.  (1) 

However, the process (𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛) is not Markovian because 

P{𝑌𝑌𝑛𝑛,𝑋𝑋𝑛𝑛|𝑌𝑌𝑛𝑛−1, … ,𝑌𝑌1,𝑋𝑋𝑛𝑛−1, … ,𝑋𝑋1}
= P{𝑋𝑋𝑛𝑛−1 + 𝑋𝑋𝑛𝑛−2,𝑋𝑋𝑛𝑛|𝑋𝑋𝑛𝑛−2 + 𝑋𝑋𝑛𝑛−3, … ,𝑋𝑋1,𝑋𝑋𝑛𝑛−1, … ,𝑋𝑋1}
= P{𝑌𝑌𝑛𝑛,𝑋𝑋𝑛𝑛|𝑌𝑌𝑛𝑛−1,𝑋𝑋𝑛𝑛−1,𝑋𝑋𝑛𝑛−2}.

 (2) 

The extra term 𝑋𝑋𝑛𝑛−2 in the last line cannot be dropped, since 𝑌𝑌𝑛𝑛 is not independent of 𝑋𝑋𝑛𝑛−1, 𝑋𝑋𝑛𝑛−2 and 𝑌𝑌𝑛𝑛−1 due 
to their common terms. In particular, the process (𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛) is not Markov because of the interdependency 
between the individual processes. This means that even if we are able to model systems 𝐴𝐴 and 𝐵𝐵 individually by 
MCs, the interdependencies between the two systems can result in memory in the combined process, which 
prevents the combined chain from being Markov. Putting this observation in the context of interdependent 
systems, we observe that the stochastic dynamics of one system is affected by the dynamics of the other 
system, and as such, the one-step transitions in the whole system can be generally dependent on multiple 
previous transitions of its constituent subsystems. As a result, defining the new state space simply by the 
Cartesian product of the state spaces does not provide sufficient information to fully capture the 
interdependency between the systems and to characterize the transition probabilities of the combined process. 
The challenge in combining MCs to represent interdependent systems is to incorporate sufficient memory in 
each MC while keeping the complexity of the combined chain to a minimum. 

A. State Space and Transition Probabilities 
Based on the discussion in the previous subsection, where we pointed out that the interdependencies between 
two systems generally depend on the history of their dynamics, the stochastic dynamics of system 𝐴𝐴 may in 
general depend on 𝑀𝑀1 -step memory of system 𝐵𝐵 and similarly system 𝐵𝐵 may in general depend on 𝑀𝑀2 -step 
memory of system 𝐴𝐴 . For simplicity of notation and without loss of generality, we assume that 𝑀𝑀1 = 𝑀𝑀2 = 𝑀𝑀 . 



To capture the effects of the 𝑀𝑀 -step memory in each of the systems, the transition probability function must be 
of the form 𝑓𝑓: (𝒮𝒮𝐶𝐶)𝑀𝑀 × 𝒮𝒮𝐶𝐶 → [0,1], where (𝒮𝒮𝐶𝐶)𝑀𝑀 captures the information from the current state (1-step 
memory) as well as the previous 𝑀𝑀 -1 states. The last 𝒮𝒮𝐶𝐶 in the domain of transition probability 
function 𝑓𝑓 captures the destination space of transitions. To build the equivalent MC for the finite state machine 
with the state space 𝒮𝒮𝐶𝐶 and transition probabilities that are functions of the previous 𝑀𝑀 − 1 states of the 
system, we need to extend the state space 𝒮𝒮𝐶𝐶 to incorporate the memory, i.e., 𝒮𝒮𝐼𝐼 = (𝒮𝒮𝐴𝐴 × 𝒮𝒮𝐵𝐵)𝑀𝑀 . Due to the 
embedded memory in the definition of the states the size of the state space 𝒮𝒮𝐼𝐼 can become prohibitively large in 
general. In the next subsection, we introduce a quantization approach to reduce the size of the state space of 
an 𝑀𝑀 -step MC while capturing only the necessary memory. 

B. Memory Quantization 
We introduce a memory quantization approach for reducing the size of the state space of the IDMC by defining 
equivalence classes of behaviors for the dynamics of the systems denoted by ℋ𝐼𝐼. For instance, if we can deduce 
that a system is stable or unstable based on the history of its dynamics then we can categorize the history of the 
dynamics of the system into two classes of behaviors, i.e., ℋ𝐼𝐼 = {stable, unstable} . We define a quantization 
function, 𝑔𝑔: (𝒮𝒮𝐴𝐴 × 𝒮𝒮𝐵𝐵)𝑀𝑀 → ℋ𝐼𝐼, where ℋ𝐼𝐼 is a low-cardinality set comprising the equivalent classes of past 
behavior. Hence, the function 𝑔𝑔 compresses the memory from the past into a small number of equivalence 
classes. With such quantization of memory, we can compressively represent the state space of the IDMC by 𝒮𝒮𝐼𝐼 =
ℋ𝐼𝐼 × (𝒮𝒮𝐴𝐴 × 𝒮𝒮𝐵𝐵) . 

C. Capturing the Impact of Interdependencies 
Up to this point, we have discussed capturing the knowledge of the state and memory of the system in an IDMC 
state in a compressive fashion. The next step is to propose a simple method for describing how a specific 
behavior of one system affects the behavior of the other system. At a coarse level, the effects of the behavior of 
one system on another system can be divided into: (1) improve, (2) worsen, and (3) do not change, where the 
precise meaning of these terms in the MC framework, can be identified with: (1) reducing the probability of an 
extra failure, (2) increasing the probability of an extra failure, and (3) not changing the probability of an extra 
failure. Hence, the impact of interdependencies can be captured in the transition probabilities by enforcing the 
mentioned effects based on the state of the system and the compressed history. 

D. Interdependency Strength 
We define the strength of interdependency between two systems based on two factors: (1) how much the 
knowledge of the behavior of a system affects the dynamics of the other system (e.g., the relative change in 
transition probabilities), and (2) how much memory is required to capture the interdependency effects. One way 
to quantify the first factor is presented in (3), which characterizes the maximum influence of system 𝐵𝐵 with 
variable 𝑌𝑌 on system 𝐴𝐴 with variable 𝑋𝑋 and memory 𝑀𝑀 . 

𝛿𝛿𝑋𝑋
(𝑀𝑀)(𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑠𝑠

𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖+1∈𝒮𝒮𝐴𝐴,𝑦𝑦𝑗𝑗∈𝒮𝒮𝐵𝐵,𝑖𝑖−𝑀𝑀+1≤𝑗𝑗≤𝑖𝑖
{|P{𝑋𝑋𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+1|𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖}

−P{𝑋𝑋𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+1|𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,𝑌𝑌𝑖𝑖 = 𝑦𝑦𝑖𝑖 , … ,𝑌𝑌𝑖𝑖−𝑀𝑀+1 = 𝑌𝑌𝑖𝑖−𝑀𝑀+1}|}. .( 3) 

Note that when 𝛿𝛿 is large the dependency is strong and when it is zero then system 𝐴𝐴 is independent of 
system 𝐵𝐵 . We define the strength of the interdependency based on the first measure to 
be 𝑚𝑚𝑚𝑚𝑥𝑥(𝛿𝛿𝑋𝑋

(𝑀𝑀)(𝑌𝑌), 𝛿𝛿𝑌𝑌
(𝑀𝑀)(𝑋𝑋)) . To quantify the second factor, we introduce the quantity 𝒦𝒦𝑋𝑋

𝜖𝜖(𝑌𝑌)as the smallest 

integer 𝑀𝑀 such that for all 𝑖𝑖, 𝑗𝑗 > 𝑀𝑀, |𝛿𝛿𝑋𝑋
(𝑖𝑖)(𝑌𝑌) − 𝛿𝛿𝑋𝑋

(𝑗𝑗)(𝑌𝑌)| < 𝜖𝜖, where ϵ is a small positive number representing the 
sensitivity threshold for interdependency. Thus, for a fixed pre-specified ϵ , 𝒦𝒦𝑋𝑋

𝜖𝜖(𝑌𝑌) is the minimum memory 



required to be considered for system 𝐴𝐴 to capture its dependency on system 𝐵𝐵 . We can simply define the 

interdependency between the two systems by the quantity 𝒦𝒦𝜖𝜖 =Δ 𝑚𝑚𝑚𝑚𝑥𝑥(𝒦𝒦𝑋𝑋
𝜖𝜖(𝑌𝑌),𝒦𝒦𝑌𝑌

𝜖𝜖(𝑋𝑋)). Note that when 𝒦𝒦𝜖𝜖 is 
large the interdependency is strong and 𝒦𝒦𝜖𝜖 = 0 means that the knowledge of the current state of 
system 𝐴𝐴 and 𝐵𝐵 would be enough in modeling the interdependencies. However, the latter does not imply that 
the two systems are independent. 

E. Interleaving Approach 
In this subsection, we present a refinement to the IDMC framework, termed the interleaving framework, which 
enables us to directly capture the “cause-and-effect” attributes in interactions between the two systems. The 
interleaving approach simplifies the modeling of interdependencies between the systems by capturing the 
immediate effects of each transition on the other system. In particular, in the interleaving approach we assume 
that the two systems take turns in changing their states. We call this approach interleaving as it interleaves the 
transitions in system 𝐴𝐴 and 𝐵𝐵 in this specific order. The interleaving approach adds an extra level of detail to the 
basic IDMC model. For example, consider a basic two-step memory IDMC, which is partially shown in Fig. 2. In 
this example we observe that in the sequence of transitions, a failure in system 𝐴𝐴 and 𝐵𝐵 is followed by two 
failures in system 𝐵𝐵 and then a failure in system 𝐴𝐴 again. Here, the effects of individual failures in system 𝐵𝐵 on 
system 𝐴𝐴 are not clear. For instance, it is possible that the first failure caused system 𝐴𝐴 to become vulnerable 
while the second and third failure in system 𝐵𝐵 added to this vulnerability, and therefore resulted in the failure in 
system 𝐴𝐴 two steps down the line. Meanwhile, one can also conjecture that the first and second failures did not 
have any effect on system 𝐴𝐴 but instead it was the third failure (in system 𝐵𝐵 ) that triggered the failure in 
system 𝐴𝐴 . Note that the basic IDMC model cannot resolve such granularity; however, the interleaving approach 
allows us to access the scenarios described earlier by breaking the combined effects into a cause-and-effect 
scenarios, and hence, it is more informative. Note that any interleaving model can be reduced to a basic IDMC 
model. All the definitions for the IDMC model presented in Section IV are valid for the interleaving framework. 
However, to keep track of the transitions we use an auxiliary variable to describe which system is undergoing a 
transition at any given time (e.g., a binary variable for two interdependent systems). 

 
Fig. 2. An example of sequence of transitions in an IDMC model with two-step memory. In this example, we have 
only considered non-absorbing states. 

SECTION V. An IDMC Model for Cascading Failures in Electric-Cyber 
Infrastructures 
In this section, we develop an IDMC model using the interleaving approach, for the electric-cyber infrastructure 
with a focus on the interdependencies that fuel the propagation of failures. We refer to the power system by 
system 𝐴𝐴 and the communication system by system 𝐵𝐵 . To simplify the notation, we represent the number of 
failures in the power grid and in the communication system by the variables 𝑥𝑥 and 𝑦𝑦 , respectively. Further, we 
denote the probability of transiting to a stable power-grid state in the MC by 𝑠𝑠(𝑥𝑥) (i.e., 𝑠𝑠(𝑥𝑥) = 𝑃𝑃stop(𝑥𝑥) if we 
use the terminology of Section III). Also, in the MC representing the communication system, we denote the 
probability of transiting to a state with an extra failure by 𝑞𝑞(𝑦𝑦). Considering probabilistic failures in the 
interdependent communication network is specifically important to account for cases that failures in the power 
grid does not necessarily result in failures in the communication network (e.g., when islands form in the grid or 
the communication system has additional power supplies). Without loss of generality, we assume that the first 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5165411/7494755/7438924/rahna2-2539823-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/5165411/7494755/7438924/rahna2-2539823-large.gif


failure occurs in the power grid and that cascading failures terminate only when the power grid enters a stable 
state (only the power-grid MC has the absorbing states). 

A. State Space 
To define the IDMC state space we need to understand how much memory of dynamics we need to track. We 
assume that when the communication system becomes less stable, by experiencing a new failure, then the 
power-grid becomes vulnerable to extra failures. Also, we assume that when the power grid experiences a new 
failure, then this may trigger a failure in the communication system according to probability 𝑞𝑞 . Hence, we need 
to capture at least the last state of the combined MC, beyond the current state, to capture the effect of 
interdependencies on the next transition. Therefore, we assume that the minimum memory required to capture 
the dynamic behavior of the system is two, i.e., 𝑀𝑀 = 2 and 𝒮𝒮𝐼𝐼 = (𝒮𝒮𝐴𝐴 × 𝒮𝒮𝐵𝐵)2. However, since we are assuming a 
single failure per transition, many states in 𝒮𝒮𝐼𝐼 are not valid; thus, a small subset of 𝒮𝒮𝐼𝐼 is actually needed. For 
example, for every number of failures at time 𝑛𝑛 , there are only two possibilities for the number of failures at 
time 𝑛𝑛 − 1 . As such, the size of the state-space without the disallowed states is 4(𝒩𝒩𝐴𝐴𝒩𝒩𝐵𝐵) , 
where 𝒩𝒩𝐴𝐴 and 𝒩𝒩𝐵𝐵 represent the cardinality of the state space of systems 𝐴𝐴 and 𝐵𝐵 , respectively. Finally, as we 
described in Section IV-E, we also need an auxiliary variable to keep track of the transitions in 
systems 𝐴𝐴 and 𝐵𝐵 as they take turns. This will cause the size of the state space to be 𝒮𝒮𝐼𝐼 = 8(𝒩𝒩𝐴𝐴𝒩𝒩𝐵𝐵). The concept 
of interleaving MC for this system based on the above assumptions is depicted in Fig. 3. 

 

 

Fig. 3. The concept of the interleaving approach for coupling the MCs of the power grid and the communication 
system as described in Section V is depicted by interleaving the communication states among power-grid states. 
 

Next, we define the state of the IDMC at discrete time 𝑛𝑛 by 𝑆𝑆𝑛𝑛 = (𝑋𝑋𝑛𝑛, 𝐼𝐼𝑛𝑛,𝑌𝑌𝑛𝑛,𝐿𝐿𝑛𝑛,𝐾𝐾𝑛𝑛), where 𝑋𝑋𝑛𝑛 and 𝐼𝐼𝑛𝑛 are the 
state variables of the power grid (respectively representing the number of failures and cascade stability 
indicator), and 𝑌𝑌𝑛𝑛 is the state of the communication system (number of failures). The variables 𝐿𝐿𝑛𝑛 is the auxiliary 
variable that captures the ‘transition turn’ In the interleaving framework; specifically, 𝐿𝐿𝑛𝑛 = 0 indicates that the 
last transition occurred in the power grid and and 𝐿𝐿𝑛𝑛 = 1 indicates that the last transition occurred the 
communication system. Lastly, the binary variable 𝐾𝐾𝑛𝑛 captures the memory of the dynamics by indicating 
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whether any component failed in the last transition (𝐾𝐾𝑛𝑛 = 1 means a failure occurred at time 𝑛𝑛 − 1). Here, the 
memory quantization function 𝑔𝑔 maps the history to ℋ ={new failure, no new failure}. Although the size of 𝒮𝒮𝐼𝐼 in 
this example is in the order of the size of the Cartesian product of the state-spaces we can analyze the steady-
state behavior of this IDMC efficiently using difference equations as presented in Section V-D. 

B. Transition Probabilities 
Here, we characterize the transition probabilities of the IDMC for the electric-cyber infrastructure based on the 
transition probabilities of the individual MCs and the interdependencies between the two systems, as described 
next. In general, different power-dependency-on-communication functions and communication-dependency-
on-power functions can be considered. In this paper, we consider the following dependency functions to model 
the interactions between the two systems. 

First, we define a power-dependency-on-communication function by 𝑑𝑑: {0,1,2, … ,𝑚𝑚𝐵𝐵} → [0,1], 
where 𝑚𝑚𝐵𝐵 denotes the number of components in the communication system. The function 𝑑𝑑 describes the 
dependence of the reliability of the power system on the state of the communication system. Specifically, 
depending on the number of failed components in the communication system (where components in 
communication system include routers, switches and communication links) the reliability of the power system 
will be reduced. As an example, if 𝑑𝑑(𝑦𝑦𝑛𝑛) = 0.5 then the probability that the cascading failures stops in the 
power grid in the next transition will be reduced to half. The function 𝑑𝑑 modifies the transition probabilities for 
the power grid based on the dynamics of the communication MC as shown in (4). There are two extreme values 
for d . If the failure in the communication system does not affect the power grid then 𝑑𝑑 = 1 ; on the other hand, 
when the failure of a communication component results in a failure in the power grid deterministically then 𝑑𝑑 =
0 . In general, the closer the value of 𝑑𝑑 is to zero the more reduction occurs in the reliability of the power grid. 
Note that function 𝑑𝑑 can also depend on the state of the power grid. Similarly, to capture the communication-
dependency-on-power we consider a function based on the assumption mentioned in Section V-A, which 
specifies that the transitions in the communication system depend probabilistically on whether or not there was 
a failure in the power grid in the last transition. This assumption leads to the binary dependency 
function, ℐ: {0,1} → {0,1}, which means that the transition probabilities in the communication network will be 
modified to ℐ(𝐾𝐾𝑛𝑛)𝑞𝑞(𝑌𝑌𝑛𝑛) and ℐ(𝐾𝐾𝑛𝑛)(1 − 𝑞𝑞(𝑌𝑌𝑛𝑛)) + (1 − ℐ(𝐾𝐾𝑛𝑛)) corresponding to the cases of having an extra 
failure and not having an extra failure, respectively. For instance, if ℐ(𝐾𝐾𝑛𝑛) = 1 then the probability of having 
extra failure in the communication system is 𝑞𝑞(𝑌𝑌𝑛𝑛) and zero otherwise. As such, the transition probabilities of 
the IDMC for the electric-cyber infrastructure from an state 𝑆𝑆𝑛𝑛 = (𝑥𝑥𝑛𝑛, 𝑖𝑖𝑛𝑛,𝑦𝑦𝑛𝑛, ℓ𝑛𝑛,𝑘𝑘𝑛𝑛) to state 𝑆𝑆𝑛𝑛+1 =
(𝑥𝑥𝑛𝑛+1, 𝑖𝑖𝑛𝑛+1,𝑦𝑦𝑛𝑛+1,ℓ𝑛𝑛+1,𝑘𝑘𝑛𝑛+1) are presented in (4). 
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𝑓𝑓(𝑆𝑆𝑛𝑛+1|𝑆𝑆𝑛𝑛) =
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⎪
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⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
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⎪
⎪
⎧

ℓ𝑛𝑛+1 ≠ ℓ𝑛𝑛,𝑦𝑦𝑛𝑛+1 ≠ 𝑦𝑦𝑛𝑛
1 (I): 𝑖𝑖𝑛𝑛 = 1, 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛,

ℓ𝑛𝑛+1 = ℓ𝑛𝑛,𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛
𝑞𝑞(𝑦𝑦𝑛𝑛) (II.𝑚𝑚): 𝑖𝑖𝑛𝑛 = 𝑖𝑖𝑛𝑛+1 = 0,

ℓ𝑛𝑛 = 0, 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + 1,

1 − 𝑞𝑞(𝑦𝑦𝑛𝑛) (II. 𝑏𝑏): 𝑖𝑖𝑛𝑛 = 𝑖𝑖𝑛𝑛+1 = 0,
ℓ𝑛𝑛 = 0, 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 ,

1 − 𝑠𝑠(𝑥𝑥𝑛𝑛)𝑑𝑑(𝑦𝑦𝑛𝑛)
𝑘𝑘𝑛𝑛+𝑑𝑑(𝑦𝑦𝑛𝑛)(1−𝑘𝑘𝑛𝑛)

(III.𝑚𝑚): 𝑖𝑖𝑛𝑛 = 𝑖𝑖𝑛𝑛+1 = 0,
ℓ𝑛𝑛 = 1,𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛,
𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 1

𝑠𝑠(𝑥𝑥𝑛𝑛)𝑑𝑑(𝑦𝑦𝑛𝑛)
𝑘𝑘𝑛𝑛+𝑑𝑑(𝑦𝑦𝑛𝑛)(1−𝑘𝑘𝑛𝑛)

(III.𝑏𝑏): 𝑖𝑖𝑛𝑛 = 0, 𝑖𝑖𝑛𝑛+1 = 1
ℓ𝑛𝑛 = 1,𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛,
𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛

0 (IV):otherwise.

 (4) 

 

Next, we explain the elements of (4) individually. 

• Group I condition implies that the IDMC is in an absorbing state because 𝑖𝑖𝑛𝑛 = 1. When a system enters 
an absorbing state it never leaves it with probability 1. 

• Group II conditions address the cases for which the next transition is in the communication network 
(as ℓ𝑛𝑛 = 0). 

o Condition II.a implies that in the previous transition there was a failure in the power system 
(as 𝑘𝑘𝑛𝑛 = 1). Hence, the probability of a new communication failure (i.e., ℐ(𝑘𝑘𝑛𝑛)𝑞𝑞(𝑦𝑦𝑛𝑛)) simplifies 
to 𝑞𝑞(𝑦𝑦𝑛𝑛). 

o Condition II.b is the complement of Condition II.a (no communication failure occurs in the next 
transition). 

• Group III conditions address cases for which the next transition is in the power grid (as ℓ𝑛𝑛 = 1). 
o Condition III.a specifies the probability of having a failure in the power grid depending on the 

value of 𝑘𝑘𝑛𝑛 (if there was a failure in the communication network or not). If 𝑘𝑘𝑛𝑛 = 1 then the 
transition probability is 1 − 𝑠𝑠(𝑥𝑥𝑛𝑛)𝑑𝑑(𝑦𝑦𝑛𝑛) and if 𝑘𝑘𝑛𝑛 = 0then the transition probability is 1 −
𝑠𝑠(𝑥𝑥𝑛𝑛). 
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o Condition III.b addresses the case in which the next transition causes the system to enter an 
absorbing state. Similarly to Condition III.a, the probability of a transition to the stable state 
depends on the value of 𝑘𝑘𝑛𝑛. 

• Group IV conditions captures transitions that are disallowed. Examples are having more than one failure 
in one transition or transitions between states with ℓ𝑛𝑛+1 = ℓ𝑛𝑛 and 𝑖𝑖𝑛𝑛 ≠ 1 (based on the interleaving 
assumption). 

In this setting, the strength of dependency of the power system on the communication system is 𝛿𝛿𝑋𝑋
(2)(𝑌𝑌) =

𝑚𝑚𝑚𝑚𝑥𝑥
𝑥𝑥𝑛𝑛∈𝒮𝒮𝐴𝐴,𝑦𝑦𝑛𝑛∈𝒮𝒮𝐵𝐵

𝑠𝑠(𝑥𝑥𝑛𝑛)(1− 𝑑𝑑(𝑦𝑦𝑛𝑛)). Similarly, the strength of dependency of the communication system on the power 

system is 𝛿𝛿𝑌𝑌
(2)(𝑋𝑋) = 𝑚𝑚𝑚𝑚𝑥𝑥

𝑦𝑦𝑛𝑛
𝑞𝑞(𝑦𝑦𝑛𝑛). To illustrate the IDMC model for the electric-cyber infrastructure, a portion of 

the MC with its transition probabilities among the states is shown in Fig. 4. 

 
Fig. 4. Portion of the IDMC model for the power and communication system with transition probabilities among 
the states. 

C. Steady-State Solution 
In this section, we derive a system of difference equations describing the steady-state solution of the IDMC for 
the electric-cyber infrastructure. We begin by introducing 𝒫𝒫𝑠𝑠𝑖𝑖(𝑠𝑠) as the asymptotic probability of reaching 
state 𝑠𝑠 ∈ 𝒮𝒮𝐼𝐼 from the initial state 𝑠𝑠𝑖𝑖 = (𝑥𝑥0, 0,𝑦𝑦0, 0,1); that is, the initial state has 𝑥𝑥0 failures in the power grid 
and 𝑦𝑦0 failures in the communication network and the last failure is assumed to be in the power grid. We further 
assume that 𝑦𝑦0 ≤ 𝑥𝑥0. We are particularly interested in the probability of reaching the stable states in the power 
grid in which cascading failures terminate; these states have the form 𝑠𝑠

~
= (𝑥𝑥, 1,𝑦𝑦, 0,0) and it would be 

convenient to denote 𝒫𝒫𝑠𝑠𝑖𝑖(𝑠𝑠
~

) by ℱ(𝑥𝑥,𝑦𝑦). Similarly, for transient power-grid states, i.e., 𝑠𝑠
^

= (𝑥𝑥, 0,𝑦𝑦, 0,1), we 

denote the probability of reaching the transient power grid state 𝒫𝒫𝑠𝑠𝑖𝑖(𝑠𝑠
^
) by 𝒢𝒢(𝑥𝑥,𝑦𝑦). Next, we present a 

characterization of ℱ(𝑥𝑥,𝑦𝑦) and 𝒢𝒢(𝑥𝑥,𝑦𝑦). 

Theorem 1: 
Suppose that the initial state of the coupled system is 𝑠𝑠𝑖𝑖 = (𝑥𝑥0, 0,𝑦𝑦0, 0,1). For 𝑥𝑥0 ≤ 𝑥𝑥 ≤ 𝑚𝑚𝐴𝐴, 𝑦𝑦0 ≤ 𝑦𝑦 ≤
𝑚𝑚𝐵𝐵, 𝑦𝑦0 ≤ 𝑥𝑥0, and nonzero functions 𝑠𝑠(. ), 𝑞𝑞(. ) and 𝑑𝑑(. ), the following recursions hold: 

ℱ(𝑥𝑥,𝑦𝑦) = 𝛼𝛼1(𝑥𝑥, 𝑦𝑦)ℱ(𝑥𝑥 − 1,𝑦𝑦) + 𝛼𝛼2(𝑥𝑥, 𝑦𝑦)ℱ(𝑥𝑥 − 1,𝑦𝑦 − 1)
+𝛼𝛼3(𝑥𝑥,𝑦𝑦)𝒢𝒢(𝑥𝑥 − 1,𝑦𝑦 − 1),and

𝒢𝒢(𝑥𝑥,𝑦𝑦) = 𝛼𝛼4(𝑥𝑥, 𝑦𝑦)ℱ(𝑥𝑥 − 1,𝑦𝑦) + 𝛼𝛼5(𝑥𝑥, 𝑦𝑦)𝒢𝒢(𝑥𝑥 − 1,𝑦𝑦 − 1),
 (5) 

where the coefficients are given by 
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𝛼𝛼1(𝑥𝑥,𝑦𝑦) = 𝑠𝑠(𝑥𝑥)(1−𝑞𝑞(𝑦𝑦))(1−𝑠𝑠(𝑥𝑥−1))
𝑠𝑠(𝑥𝑥−1)

,

𝛼𝛼2(𝑥𝑥,𝑦𝑦) = 𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦−1)(1−𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦−1))
𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦−1)

,

𝛼𝛼3(𝑥𝑥,𝑦𝑦) = (1 − 𝑞𝑞(𝑦𝑦 − 1))𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦 − 1)
�(1 − 𝑠𝑠(𝑥𝑥 − 1))− (1−𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦−1))

𝑑𝑑(𝑦𝑦−1)
�

+𝑞𝑞(𝑦𝑦 − 1)𝑠𝑠(𝑥𝑥)(1 − 𝑞𝑞(𝑦𝑦))(1− 𝑑𝑑(𝑦𝑦)),
𝛼𝛼4(𝑥𝑥,𝑦𝑦) = (1−𝑠𝑠(𝑥𝑥−1))

𝑠𝑠(𝑥𝑥−1)
,and

𝛼𝛼5(𝑥𝑥,𝑦𝑦) = 𝑞𝑞(𝑦𝑦 − 1)(((1− 𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦)))
−𝑑𝑑(𝑦𝑦)𝑠𝑠(𝑥𝑥−1)(1−𝑠𝑠(𝑥𝑥−1))

𝑠𝑠(𝑥𝑥−1)
),

 (6) 

and where the boundary conditions are given by 

ℱ(𝑥𝑥0,𝑦𝑦0) = (1 − 𝑞𝑞(𝑦𝑦0))𝑠𝑠(𝑥𝑥0),
ℱ(𝑥𝑥0,𝑦𝑦0 + 1) = 𝑞𝑞(𝑦𝑦0)𝑠𝑠(𝑥𝑥0)𝑑𝑑(𝑦𝑦0 + 1),and𝒢𝒢(𝑥𝑥0,𝑦𝑦0) = 1. (7) 

Proof of the theorem is presented in the Appendix. 

Remark: 
The coefficients in (6) can be simplified in three special cases as follows. 

1. 𝛼𝛼1 and 𝛼𝛼4 are the same as (6) but 

𝛼𝛼2(𝑥𝑥,𝑦𝑦) = 𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦−1)(1−𝑠𝑠(𝑥𝑥−1))
𝑠𝑠(𝑥𝑥−1)

,

𝛼𝛼3(𝑥𝑥,𝑦𝑦) = 𝑞𝑞(𝑦𝑦 − 1)𝑠𝑠(𝑥𝑥)�1− 𝑞𝑞(𝑦𝑦)��1− 𝑑𝑑(𝑦𝑦)�, and
𝛼𝛼5(𝑥𝑥,𝑦𝑦) = 0.

 (8) 

2. all 𝛼𝛼 values are zero except for 𝛼𝛼2, which is given by 

𝛼𝛼2(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦)𝑠𝑠(𝑥𝑥)𝑞𝑞(𝑦𝑦−1)(1−𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦−1))
𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦−1)

.  (9) 

3. the coefficients are given by 

𝛼𝛼1(𝑥𝑥,𝑦𝑦) = 𝑠𝑠(𝑥𝑥)(1−𝑞𝑞(𝑦𝑦))(1−𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦))
𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦)

,

𝛼𝛼2(𝑥𝑥,𝑦𝑦) = 𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦−1)
𝑠𝑠(𝑥𝑥−1)𝑑𝑑(𝑦𝑦−1)

,

𝛼𝛼3(𝑥𝑥,𝑦𝑦) = (1 − 𝑞𝑞(𝑦𝑦 − 1))𝑑𝑑(𝑦𝑦)𝑠𝑠(𝑥𝑥)𝑞𝑞(𝑦𝑦 − 1)
× �(1 − 𝑠𝑠(𝑥𝑥 − 1)) − 1

𝑑𝑑(𝑦𝑦−1)
)� ,

𝛼𝛼4(𝑥𝑥,𝑦𝑦) = (1−𝑠𝑠(𝑥𝑥−1))
𝑠𝑠(𝑥𝑥−1)

, and

𝛼𝛼5(𝑥𝑥,𝑦𝑦) = (1 − 𝑑𝑑(𝑦𝑦))𝑞𝑞(𝑦𝑦 − 1).

 (10) 
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Theorem 1 enables the direct calculation of the probability of cascade size in each system. Specifically, note 
that ℛ𝑠𝑠(𝑥𝑥) = ∑ ℱ𝑦𝑦:0≤𝑦𝑦≤𝑥𝑥 (𝑥𝑥,𝑦𝑦) and ℛ𝑐𝑐(𝑦𝑦) = ∑ ℱ𝑥𝑥:𝑦𝑦≤𝑥𝑥≤𝑁𝑁1 (𝑥𝑥, 𝑦𝑦) are the probabilities of the cascade 
with 𝑥𝑥 terminal failures in the power grid and 𝑦𝑦 terminal failures in the communication system, respectively. The 
time complexity of the numerical calculations of (5) is in the order of the number of components in the system, 
which makes the model scalable to large systems even though the analytical state space of the problem is large. 
We wish to emphasize that to apply this framework to real-world systems such as power grids, one can study 
historical data and simulations to extract and estimate the parameters of the model, in particular, the transition 
probabilities of the individual MCs and the dependencies between the systems. By estimating such parameters, 
the presented framework will provide reliability evaluations based on the features of the systems under study. 
Similar studies have been presented in Section V-D and [5]. 

D. Results 
Here, we present numerical results for ℛ𝑠𝑠(𝑥𝑥) and ℛ𝑐𝑐(𝑦𝑦) and identify a function 𝑑𝑑 that leads to unreliable behavior in the 
coupled systems. Before presenting our results, let us introduce our definition of reliable and unreliable systems. 

1) Reliable and Unreliable Systems: 
We term a system for which the probability distribution of the cascade size follows an exponential distribution 
a reliable system since the probability of large cascades is small compared to heavy-tail distributions. We term a system 
with a heavy-tail distribution of the cascade size an unreliable system. Particularly, we consider two types of unreliable 
systems: (type i ) a system for which the probability mass function (PMF) of the cascade size follows power-law distribution, 
and (type ii ) a system for which the PMF of the cascade size has a hump at the tail. Next, we introduce these systems in 
more details. Consider the MC of system 𝐴𝐴 in Fig. 1. Let 𝐵𝐵(𝑛𝑛|𝑆𝑆𝑖𝑖) represent the probability of a cascade size n , conditional 
on the initial state of the system. A recursion for 𝐵𝐵(𝑛𝑛|𝑆𝑆𝑖𝑖) is given by: 

𝐵𝐵(𝑛𝑛|𝑆𝑆𝑖𝑖) = 𝑃𝑃stop(𝑛𝑛)(1−𝑃𝑃stop(𝑛𝑛−1))
𝑃𝑃stop(𝑛𝑛−1)

𝐵𝐵(𝑛𝑛 − 1|𝑆𝑆𝑖𝑖). (11) 

If we assume that the initial state of the power grid has one failure with 𝐼𝐼 = 0, i.e., 𝑆𝑆0 = (1,0), then the boundary condition 
for (11) is 𝐵𝐵(1|𝑆𝑆0) = 𝑃𝑃stop(1). Based on (11), if the transition probabilities of the MC were constant then standard analysis 
of the recursion tells us that the PMF of the blackout size follows an exponential distribution. Therefore, our definition of 
reliable systems implies that they have constant transition probabilities. Similarly, using (11) it can be shown that in an 
unreliable system of type ifor which the stochastic dynamics of cascading failures are modeled by the MC in Fig. 1, the PMF 
of the cascade size will follow the Zipf’s law (a discrete power-law distribution) whenever the transition probabilities follow 
specific bowl-shape forms represented in Fig. 5-a. The PMF of Zipf’s law distribution is given by 𝑃𝑃(𝑥𝑥, 𝑠𝑠, 𝑘𝑘) =
1/�∑ 𝑖𝑖−𝑠𝑠𝑘𝑘

𝑖𝑖=1 �𝑥𝑥−𝑠𝑠, where s is a free parameter of the distribution and k is the total number of components in the system. 
The details of derivation of the bowl-shape functions have been discussed in [16] and [17]. 
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Fig. 5. (a) The bowl-shape forms for the transition probabilities of the MC in Fig. 1, i.e., 𝑃𝑃stop(𝐹𝐹𝑖𝑖) functions, which 
result in the Zipf’s law PMF of the cascade size for various 𝑠𝑠 ; (b) the bowl-shape forms for 𝑃𝑃stop(𝐹𝐹𝑖𝑖) based on the 
power-system simulations adopted from [5], which result in a hump in the tail of the distribution. 
 

Further, using (11) we can show that an unreliable system of type ii for which the stochastic dynamics of cascading failures 
are modeled by the MC in Fig. 1 has the following property. If the transition probabilities follow the bowl-shape functions 
obtained using the power-system simulations then the PMF of the cascade size will have a hump at the tail, as shown in [5, 
Fig. 11]. The simulations are based on quasi-static simulation of the power grid using MATPOWER [15] and the results are 
depicted in Fig. 5-b for 𝑃𝑃stop(𝑛𝑛). The described hump at the tail of PMF represents stress over the system, which leads to 
shift of the probability mass to the tail of the distribution. Particularly, the size of the hump and the behavior of the bowl-
shape function depend on the operating characteristics of the grid. In [5], we introduced the loading level on the power 
system, load-shedding constraints and the transmission line-tripping threshold as examples of such operating 
characteristics. For instance, the load-shedding constraints, defined as the ratio of the uncontrollable loads (loads that do 
not participate in load shedding) to the total load in the power grid, affect 𝑃𝑃stop(𝑛𝑛) as shown in three plots for three 
scenarios in Fig. 5-b. Certain operating settings for the system can be associated with high-level of stress, for instance, the 
scenarios associated with the blue plot in Fig. 5-b. For a discussion on the properties of simulation-based bowl-shape 
functions for 𝑃𝑃stop(𝑛𝑛) refer to [16] and [17]. 

2) Impact of Interdependency on the Probability Distribution of the Cascade Size: 
We consider 186 components in the power grid and in the communication system (number of links in IEEE 118 case). We 
only focus on the number of components and do not directly use the topological and system information in cascading 
failures; however, the latter information is automatically captured in the transition probabilities through the 
parameters [5]. The PMFs of the cascade size in the power grid for an unreliable system of type i and a reliable system are 
shown in Fig. 6-a as solid red and dashed lines, respectively. 

 

 

Fig. 6. PMF of the failure size (a) in the power-grid, ℛ𝑠𝑠, for a reliable power system (the dashed line), an unreliable power 
grid of type 𝑖𝑖 (solid line) and a reliable IDMC with constant 𝑠𝑠 , 𝑞𝑞 , and 𝑑𝑑 in (green line); (b) in the power-grid, ℛ𝑠𝑠, in an IDMC 
model for various scenarios of unreliable systems of type 𝑖𝑖 , in a log-log scale. 
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In order to show that the interdependencies between two systems affect the PMF of cascade size, we use the IDMC model 
with constant 𝑠𝑠 , 𝑞𝑞 and 𝑑𝑑 , which imply that the communication system and the power grid are assumed to be reliable 
systems individually. The PMF of the cascade size in the power grid, i.e., ℛ𝑠𝑠 , for such an interdependent system is depicted 
in Fig. 6-a with a green line. Based on this result we observe that although both the single MC for the power grid and the 
IDMC model result in an exponential cascading behavior in the power grid, the probability of large cascades in the power 
grid intensifies in the IDMC model due to the interdependencies between the two systems. 

Next, we assume that we have two interdependent systems, for which either one or both of the systems are unreliable. 
Recall that in Fig. 6-a we observed that an individual unreliable system of type 𝑖𝑖 will have a power-law distribution 
represented by a solid red line. We have re-plotted the red solid line from Fig. 6-a in Fig. 6-b as a benchmark to evaluate the 
effects of interdependencies. We begin by assuming that the power grid is an unreliable system of type i and the 
communication system is a reliable system with constant 𝑞𝑞 . Next, the distribution of the blackout size in the power grid, 
i.e., ℛ𝑠𝑠 , is calculated using (5) and the results are shown in Fig. 6-b. The results suggest that due to the interdependencies 
the probability of large cascades in the IDMC case is elevated compared to a single MC while the heavy tail characteristic of 
the PMF is preserved except at the end (criticality of interdependencies). 

Next, we assume that the power grid and the communication system are both unreliable systems of type 𝑖𝑖 . In particular, 
for the communication system we consider a bowl-shape function from Fig. 5-a for (1 − 𝑞𝑞(𝑦𝑦)). The results are shown by 
the dashed line in Fig. 6-b, and they suggest that the impact of an unreliable communication system is severe on the 
reliability of the whole system. In both of the interdependent examples presented here, the function 𝑑𝑑 is assumed to be 
constant and equal to 0.4. Similarly to the results in Fig. 6-b, in Fig. 7-a we present the distribution of the failure size in the 
communication system, i.e., ℛ𝑐𝑐  . These results also suggest that unreliable behavior of one or both of the systems 
intensifies the probability of large cascade sizes in the whole system. 

 

 

Fig. 7. PMF of the failure size, i.e., (a) ℛ𝑐𝑐, in an IDMC model for various scenarios of unreliable systems of type 𝑖𝑖 ; (b) ℛ𝑠𝑠, for 
an IDMC model with unreliable power grid of type 𝑖𝑖𝑖𝑖, in a log-log scale. 

In Fig. 7-b, we assume that the power grid is an unreliable system of type 𝑖𝑖𝑖𝑖, while the communication system is a reliable 
system with constant 𝑞𝑞 . The results show that the interdependency between the two systems preserves and increases the 
size of the hump at the tail of the distribution as the reliability of the communication system changes through variable 𝑞𝑞 . 
The results shown in Fig. 7-b generalize the results of our earlier work [5] (for a power system) to interdependent systems. 

3) Individually Reliable Systems Can Behave Unreliably When Coupled: 
We assume that we have two reliable systems with constant 𝑠𝑠(𝑥𝑥) and 𝑞𝑞(𝑦𝑦) . We couple the two reliable systems using the 
IDMC framework. Recall that based on the green line in Fig. 6-a, two reliable systems with constant function d result in a 
reliable system with exponential PMF of the cascade size; however, this is not always true if function 𝑑𝑑 is not constant. In 
this study, we want to answer the following critical question: can two coupled reliable systems form a single unreliable 
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system? To answer this question, we use (5) to find a function 𝑑𝑑(𝑦𝑦) such that the two reliable power and communication 
systems behave unreliable and result in an unreliable system, say of type i . To find such 𝑑𝑑(𝑦𝑦) , we set ℛ𝑠𝑠(𝑥𝑥) = 𝑃𝑃(𝑥𝑥, 𝑠𝑠,𝑚𝑚𝐴𝐴), 
where 𝑃𝑃 denotes the Zipf’s law distribution with 𝑠𝑠 = 1.1 and 𝑚𝑚𝐴𝐴 is the total number of components in the system. The 
above equality means that we want that the PMF of the cascade size for the power grid follows the Zipf’s law distribution 
for every value of 𝑥𝑥 ∈ {1, … ,𝑚𝑚𝐴𝐴}. This results in 𝑚𝑚𝐴𝐴 non-linear equations for 𝑑𝑑(𝑦𝑦) . We have solved this system of non-
linear equations numerically using an optimization approach, which minimizes the distance between ℛ𝑠𝑠(𝑥𝑥) and the 
cascade size distribution resulted from the system of difference equations with the constraint 0 ≤ 𝑑𝑑(⋅) ≤ 1. In Fig. 8-a, we 
have shown the result of the distribution of the cascade size in a system, say the power grid, with 20 components when the 
individual systems are reliable but the distribution of the failure size in the coupled power grid approximates the power-law 
distribution. This result is represented by a dashed line in Fig. 8-a. We have also represented the distribution of the failure 
size when function 𝑑𝑑 is constant and equal to 0.27 in the blue solid line, which results in exponential distribution. 
The 𝑑𝑑(𝑦𝑦) values that result in the unreliable behavior for the two reliable systems are presented in Fig. 8-b. Note that the 
mean of these values is also equal to 0.27, which implies that not only the values of 𝑑𝑑 but also their distribution in the 
function affect the reliability of the interdependent system. The key results in Fig. 8-a show that two individually reliable 
systems may behave unreliably when coupled due to interdependencies. 

 

 

Fig. 8. (a) PMF of the failure size in the power grid, ℛ𝑠𝑠, in an IDMC model, when two reliable systems are coupled; 
(b) 𝑑𝑑(𝑦𝑦) values resulting in an unreliable behavior (power-law) for the two coupled reliable systems. 

SECTION VI. Conclusion 
We presented a novel IDMC framework for modeling cascading failures in interdependent infrastructures by 
developing a minimal MC that encompasses the individual MC for each physical system and their 
interdependencies. We presented the IDMC framework in a general setting and then, as a specific example, 
constructed an IDMC model for cascading failures in electric-cyber infrastructures. We studied various scenarios 
of reliable and unreliable systems to characterize the distribution of the failure size in coupled systems. A key 
insight obtained from the IDMC model is that interdependencies between two systems can make two reliable 
systems, i.e., systems with exponentially distributed failure sizes, behave unreliably with power-law failure-size 
distributions when put together. 

Appendix Proof of Theorem 1 
For simplicity of notation, we denote the asymptotic probability of reaching a state, say 𝑠𝑠 = (𝑥𝑥, 𝑖𝑖,𝑦𝑦, ℓ,𝑘𝑘), from 
the initial state 𝑠𝑠𝑖𝑖  by 𝒫𝒫(𝑥𝑥, 𝑖𝑖,𝑦𝑦, ℓ,𝑘𝑘). 

Based on the structure of the IDMC model introduced in Section V, which is partially shown in Fig. 4, as well as 
the transition probabilities introduced in (4), we write 𝒫𝒫(𝑥𝑥, 1,𝑦𝑦, 0,0) as 
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𝒫𝒫(𝑥𝑥, 1,𝑦𝑦, 0,0) = 𝑠𝑠(𝑥𝑥)𝒫𝒫(𝑥𝑥, 0,𝑦𝑦, 1,0) + 𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝒫𝒫(𝑥𝑥, 0,𝑦𝑦, 1,1)
= 𝑠𝑠(𝑥𝑥)(1− 𝑞𝑞(𝑦𝑦))𝒫𝒫(𝑥𝑥, 0,𝑦𝑦, 0,1) + 𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦)𝒫𝒫(𝑥𝑥, 0,𝑦𝑦 − 1,0,1)
= 𝑠𝑠(𝑥𝑥)(1− 𝑞𝑞(𝑦𝑦))((1 − 𝑠𝑠(𝑥𝑥 − 1))𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦, 1,0)
+(1 − 𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦, 1,1)))
+𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦)((1− 𝑠𝑠(𝑥𝑥 − 1))𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,0)
+(1 − 𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦 − 1))𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,1)),

 (12) 

where in the first line 𝒫𝒫(𝑥𝑥, 1,𝑦𝑦, 0,0) has been written based on the asymptotic probability of reaching to the 
two possible previous states and the second line is derived by repeating the previous step. We also know that 

𝒫𝒫(𝑥𝑥 − 1,1,𝑦𝑦, 0,0) = 𝑠𝑠(𝑥𝑥 − 1)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦, 1,0)
+𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦, 1,1), (13) 

and similarly, 

𝒫𝒫(𝑥𝑥 − 1,1,𝑦𝑦 − 1,0,0) = 𝑠𝑠(𝑥𝑥 − 1)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,0)
+𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦 − 1)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,1). (14) 

Now, if we substitute (13) and (14) in (12) then we have 

𝒫𝒫(𝑥𝑥, 1,𝑦𝑦, 0,0) = 𝑠𝑠(𝑥𝑥)(1 − 𝑞𝑞(𝑦𝑦))((1− 𝑠𝑠(𝑥𝑥 − 1))(𝒫𝒫(𝑥𝑥 − 1,1,𝑦𝑦, 0,1)
−𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦, 1,1))/𝑠𝑠(𝑥𝑥)
+(1 − 𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦, 1,1)))
+𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦)𝑞𝑞(𝑦𝑦)((1− 𝑠𝑠(𝑥𝑥 − 1))𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,0)
+(1 − 𝑠𝑠(𝑥𝑥 − 1)𝑑𝑑(𝑦𝑦 − 1))(𝒫𝒫(𝑥𝑥 − 1,1,𝑦𝑦 − 1,0,1)
−𝑠𝑠(𝑥𝑥 − 1)𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,0))/(𝑠𝑠(𝑥𝑥)𝑑𝑑(𝑦𝑦 − 1))).

 (15) 

Next, we simplify (15) and substitute the definition of 𝒫𝒫(𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,0) and 𝑃𝑃(𝑥𝑥 − 1,0,𝑦𝑦, 1,1) based 
on 𝑃𝑃(𝑥𝑥 − 1,0,𝑦𝑦 − 1,0,1) in (15). As mentioned earlier, we 
denote 𝑃𝑃(𝑥𝑥, 1,𝑦𝑦, 0,0) by 𝐹𝐹(𝑥𝑥, 𝑦𝑦) and 𝑃𝑃(𝑥𝑥, 0,𝑦𝑦, 0,1) by 𝐺𝐺(𝑥𝑥,𝑦𝑦) . A such, after the simplifications of (15) we can 
write 

ℱ(𝑥𝑥,𝑦𝑦) = 𝛼𝛼1(𝑥𝑥,𝑦𝑦)ℱ(𝑥𝑥 − 1,𝑦𝑦) + 𝛼𝛼2(𝑥𝑥,𝑦𝑦)ℱ(𝑥𝑥 − 1,𝑦𝑦 − 1)
+𝛼𝛼3(𝑥𝑥,𝑦𝑦)𝒢𝒢(𝑥𝑥 − 1,𝑦𝑦 − 1),

𝒢𝒢(𝑥𝑥, 𝑦𝑦) = 𝛼𝛼4(𝑥𝑥, 𝑦𝑦)ℱ(𝑥𝑥 − 1,𝑦𝑦) + 𝛼𝛼5(𝑥𝑥, 𝑦𝑦)𝒢𝒢(𝑥𝑥 − 1,𝑦𝑦 − 1),
 (16) 

where its coefficients are functions of 𝑠𝑠(. ) , 𝑞𝑞(. ) and 𝑑𝑑(. ) . This proves the general case in Theorem 1. Based on 
the structure of the presented IDMC model, there are three special cases that the coefficients do not follow the 
general case presented in (6). This is because certain states do not have all the previous states that we used in 
the derivation of the above difference equations. For instance, when 𝑦𝑦 = 1 the state 𝑠𝑠 = (𝑥𝑥 − 1,0,𝑦𝑦 − 1,1,1) in 
the above equations does not have any previous states. Similarly, the cases where 𝑦𝑦 = 𝑥𝑥 and 𝑦𝑦 = 𝑥𝑥 − 1 need to 
be considered as special cases due to the assumption that communication failures are triggered by power 
failures and thus certain states are not possible as previous states. This is because we cannot have more 
communication failures than power-grid failures in the system based on the assumptions of the model. The 

https://ieeexplore.ieee.org/document/#deqn13
https://ieeexplore.ieee.org/document/#deqn14
https://ieeexplore.ieee.org/document/#deqn12
https://ieeexplore.ieee.org/document/#deqn15
https://ieeexplore.ieee.org/document/#deqn15
https://ieeexplore.ieee.org/document/#deqn15
https://ieeexplore.ieee.org/document/#deqn6


derivation of the difference equations for special cases is similar to the general case and thus have been omitted 
here. 
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