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HORIZONS
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Diel vertical migration is widespread across diverse taxa in the world’s lakes and
seas, yet its biogeochemical consequences are still poorly understood. The biologi-
cally mediated vertical flux of material in the ocean (also known as the “biological
pump”) is a matter of major interest and concern, as it is thought to play an
important role in regulating ocean carbon storage, and by extension, the global
carbon cycle. Recent studies spanning multiple trophic levels from fish to dinofla-
gellates have led us to a concept of coupled vertical migrations that we refer to as
“cascading migrations”. That is, migrations that occur at one trophic level can affect
the vertical migration of the next lower trophic level, and so on throughout the
food web (e.g. carnivores affect the migrations of herbivores, which in turn affect
the migrations of motile phytoplankton). Here we hypothesize that greater trophic
complexity in the water column leads to enhanced cascading vertical migrations
that in turn increase the vertical fluxes of materials and energy through the water
column, both upwards and downwards. We recommend that a combination of
observational, experimental and modeling approaches be employed to explicitly
test this hypothesis.

KEYWORDS: cascading; plankton; diel; vertical; migration

I N T RO D U C T I O N

Diel vertical migration (DVM) is amongst the most
common and conspicuous migrations on Earth. While
this behavior is thought to have a variety of both proxi-
mate and ultimate causes (i.e. immediate cues and
adaptive significances, respectively), for mesozooplank-
ton such as copepods and cladocerans, it is now widely
held that predator evasion often plays a critical role

(Bollens and Frost, 1989a,b; Lampert, 1989; Hays,
2003), although non-biological factors such as light and
transparency can also have important effects (Forward,
1988; Ringelberg, 2010; C.E. Williamson, in prep-
aration). Dinoflagellate DVM has also been well docu-
mented (Eppley et al., 1968; Blasco, 1978; Cullen and
Horrigan, 1981; Schofield et al., 2006; Jephson and
Carlsson, 2009), although in a pattern that is usually
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opposite or reverse that of most zooplankton, namely,
near the surface during the day and at depth during
night. We have recently observed that the vertical distri-
bution and migration pattern of the phototrophic dino-
flagellate Akashiwo sanguinea (previously Gymnodinium

sanguineum and a well-studied vertical migrator) are
altered by the presence of their copepod predators
(Quenette, 2010).

These and other studies have led us to put forward
the concept of “cascading migrations”, whereby zooplankti-
vores such as fish or large invertebrates trigger DVM in
mesozooplankton such as copepods, which in turn
affect the opposite (or reverse) migrations in their dino-
flagellate prey. Again, abiotic factors (e.g. light, nutri-
ents) will also play a role in vertical migrations, but
predator–prey interactions primarily drive the mesozoo-
plankton (copepod) migrations, which cascade into
effects on dinoflagellate migrations.

What is far less clear, however, is the importance of
vertical migrations to the vertical fluxes of material
through the water column. The biologically mediated
vertical flux of material in the ocean (also known as the
“biological pump”) is a matter of major interest and
concern, as it is thought to play an important role in
regulating ocean carbon storage, and by extension, the
global carbon cycle. The biological pump has primarily
been understood to affect the downward flux of
material; however, the involvement of vertical migrators
opens the possibility for a bidirectional flux.
Quantifying and predicting vertical fluxes becomes even
more important in an era of continued global climate
change, which is expected to result in both increased
CO2 entering the ocean and increased stratification
(vertical heterogeneity) as a result of global warming
(Palacios et al., 2004). Thus knowing how vertical
migrations and vertical fluxes interact is of broad
oceanographic relevance and importance.

Our concept of “cascading migrations”, combined
with the brief review below of the role of DVM in mod-
ulating vertical fluxes, leads us to the following specific
and testable hypothesis. Namely, that greater trophic
complexity (i.e. an increase in the number of trophic
levels) in the water column leads to enhanced (i.e. more
numerous) cascading vertical migrations that in turn
repackage and redistribute materials and energy
through the water column. As a result, vertical fluxes of
materials and energy are increased, both downwards
and upwards. (An alternative hypothesis is that greater
trophic complexity would lead to weaker trophic inter-
actions, and thus weaker vertical migrations and
reduced vertical fluxes.) Near the end of this paper, we
make specific recommendations for how this and
related topics might be most fruitfully investigated.

The specific objectives of this paper are to: (i) present
the concept of “cascading migrations”, (ii) briefly review
the role of DVM in modulating vertical fluxes in pelagic
ecosystems and (iii) suggest some directions for future
research.

CA S CA D I N G M I G R AT I O N S

For zooplankton such as copepods and cladocerans,
there are now literally hundreds of well-documented
cases of DVM (see reviews by Cushing, 1951; Lampert,
1989; Hays, 2003; Pearre, 2003; Ringelberg, 2010;
C.E. Williamson, in preparation). These migrations
usually manifest themselves as organisms residing at the
surface at night and at depth during the day, although
the “reverse” pattern is also sometimes possible for
smaller zooplankton (e.g. Ohman et al., 1983; Frost and
Bollens, 1992). Rather than always being “hard wired”
and inflexible, DVM sometimes reflects individual be-
havioral flexibility (e.g. Bollens and Frost, 1991a, b) and
variable body condition (Hays et al., 2001), including
the possibility of making multiple, short-term vertical
forays and feeding bouts into and out of vertical layers
of food (Bochdansky and Bollens, 2004; Leising et al.,
2005; Pierson et al., 2009). While different zooplankton
species, and even individuals within a given species, can
exhibit enormous variability in the timing and magni-
tude of their migrations, depending on the exact
environmental conditions at the time, there is broad
consensus that avoidance of predators such as visually
orienting planktivorous fish and/or carnivorous invert-
ebrates is the primary driver of DVM in zooplankton
(Lampert, 1989; Bollens and Frost, 1989a,b; Hays,
2003).

Many species of dinoflagellates have also been
observed to undertake vertical migration in a wide
range of coastal and open ocean habitats, often residing
at the surface during the day and residing at depth at
night (Eppley et al., 1968; Blasco, 1978; Villarino et al.,
1995; Kamykowski et al., 1998; Ault, 2000; Park et al.,
2001; Merzouk et al., 2004; Lee et al., 2005; Moorthi
et al., 2006; Schofield et al., 2006; Ryan et al., 2009).
Some of these taxa are considered toxic or otherwise
harmful, and are therefore of particular interest and
concern. Both light (from the surface) and nutrients
(often at depth, in stratified waters) have been shown to
play central roles as drivers of dinoflagellate DVM in
laboratory studies (Heaney and Furnass, 1980; Cullen
and Horrigan, 1981; Kamykowski, 1981; MacIntyre
et al., 1997; Kamykowski et al., 1999; Erga et al., 2003;
Doblin et al., 2006; Jephson and Carlsson, 2009;
Schaeffer et al., 2009).
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However, our recent experiments have shown that for
one common coastal dinoflagellate, A. sanguinea, vertical
distribution and migration is influenced not only by
light and nutrients, but also by copepod grazers
(Quenette, 2010). This is similar but different to the
now well-known phenomenon of carnivorous predators
inducing vertical migrations in zooplankton (Bollens
and Frost, 1989a, 1991a, b; Lampert, 1989; Bollens
et al., 1993; Hays, 2003), where the strength of the
migration can increase with intensity of exposure to
the carnivore (Bollens and Frost, 1989b; Bollens
et al., 1992b; Frost and Bollens, 1992). While we are still
investigating the mechanisms underlying this dinoflagel-
late–copepod interaction, in terms of both predator
cues and prey responses, it is already clear that A. san-

guinea and its copepod predator [Acartia (Acartiura) sp.]
exhibit opposite (or out of phase) migration patterns;
the copepod undertakes a normal DVM (up at night,
down during the day), whereas the dinoflagellate under-
takes a reverse DVM (down at night, up during the
day). More specifically, in the presence of the copepod
predator (grazer), A. sanguinea seems to move to a depth
with fewer predators (Quenette, 2010). Again, while
light and nutrients play critical roles in DVM in dinofla-
gellates (see references above), the role of predators such
as copepods must now be considered as well.

These recent findings have led us to a broader
concept of coupled vertical migrations that we refer to
as “cascading migrations”. That is, migrations that occur at
one trophic level can affect the vertical migration of the
next lower trophic level, and so on throughout the food
web (e.g. carnivores affect the migration of herbivores,
which in turn affect the migrations of motile phyto-
plankton). We have coined the phrase “cascading
migrations” after the well-known concept of “trophic
cascades” developed within aquatic ecology (e.g.
Carpenter et al., 1985; Carpenter and Kitchell, 1989;
Persson, 1999). Our concept of “cascading migrations”
should not be confused with Vinogradov’s (Vinogradov,
1962) concept of a “ladder of migrations” (or simply
“Vinogradov’s ladder”) consisting of a series of spatially
separated but slightly overlapping migrations extending
from the epipelagia downward through the
mesopelagia.

We briefly present one other well-known example of
such cascading migrations, although this term per se has
not to our knowledge been used previously. This
example concerns the zooplankton assemblage in
Dabob Bay, WA, USA, in which several of the larger
carnivorous zooplankton taxa undertake normal DVM,
such as the copepod Euchaeta elongata (Bollens and Frost,
1991b), the euphausiid Euphausia pacifica (Bollens et al.,
1992a) and the chaetognath Sagitta elegans (Fulmer and

Bollens, 2005), whereas the smaller, herbivorous cope-
pods Pseudocalanus spp., which are preyed upon by the
larger carnivorous taxa, often undertake “reverse”
DVM (Ohman et al., 1983; Frost and Bollens, 1992).
Again, the concept is that DVM that occurs at one
trophic level cascades and can cause opposite (or out of
phase) migrations at the next lower trophic level.

We strongly suspect that such cascading migrations
are common in trophically complex water columns, but
rarely are there sufficiently detailed and vertically well-
resolved field observations (or experiments) spanning
multiple trophic levels to test this hypothesis. We return
to this issue below under “Future directions”.

I M P L I CAT I O N S FO R V E RT I CA L
F LU X E S

Vertically migrating organisms that feed or photosynthe-
size at one depth and then move to a greater or lesser
depth to respire, excrete, defecate or be preyed upon
serve to actively transport material and energy through
the water column. This has been examined in a range
of field and modeling studies, resulting in widely
varying estimates of the quantitative importance of
DVM to total water-column fluxes. For instance, there
have been several major oceanographic field studies that
have investigated vertical fluxes generally, and the role
of vertical migrants specifically, e.g. JGOFS (Morales,
1999), BATS (Steinberg et al., 2000, 2002), HOTS
(Al-Mutairi and Landry, 2001; Hannides et al., 2009),
the Arabian Sea (Mincks et al., 2000), E-FLUX III
(Landry et al., 2008) and VERTIGO (Kobari et al.,
2008).

These field results, which span most of the world’s
oceans, and are corroborated by several modeling
studies (Longhurst and Harrison, 1988; Longhurst and
Williams, 1992; Legendre and Rivkin, 2002; Putzeys
and Hernández-León, 2005), are in general agreement
on two points. First, that the fraction of the total vertical
flux of C and N out of the surface layer attributable to
DVM is substantial, i.e. up to 10–50% of the total flux.
Secondly, that quantifying the absolute magnitude of
this DVM-mediated flux in the field is difficult and
imprecise (note the 5-fold range in the estimates just
mentioned).

Laboratory studies, which offer the potential for
much greater control and replication (and thus pre-
cision) than field studies, have rarely been applied to
this problem. Recently, however, Bochdansky et al.
(Bochdansky et al., 2010) established tightly controlled
environmental conditions and monitored the
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redistribution of particulate organic (POC), dissolved
organic (DOC) and inorganic (DIC) carbon from layers
of Isochrysis galbana in both the presence and absence of
two mobile grazers (the protist Oxyrrhis marina and the
copepod Acartia tonsa). These grazers had significant
grazing impact on the phytoplankton layers despite the
fact that their population maxima were observed
outside the layers. Both grazers exported carbon from
the phytoplankton layer as body burden (i.e. incorpor-
ated into cell tissue) and through release of DOC and
DIC into the environment above and below the layers,
albeit at different rates. The copepods released larger
amounts of DIC and DOC within the phytoplankton
layer, while the protist grazer exported more dissolved
carbon (in terms of both DOC and DIC) from the phy-
toplankton layers. In the copepod treatments, a net
increase in DIC was observed inside the phytoplankton
layer (as a result of increased respiration during feeding)
and into the atmosphere above the water column due to
their vertical migration between the thin layer and the
water surface (i.e. an upward or “reverse” biological
pump; see Singler and Villareal 2005 for another, very
different example). This study (Bochdansky et al., 2010)
points not only to the importance of migration behavior
in modulating vertical fluxes, both downwards and
upwards, but also to the power of well controlled, repli-
cated experiments.

Vertically migrating organisms can also affect the
quality, as well as the quantity, of materials in the water
column. Through selective uptake and release, and vari-
able turnover rates among various elements, organisms
dictate how elemental nutrients are redistributed relative
to each other. Over sufficiently long temporal scales,
this leads to a reshuffling of elemental ratios in the
environment much in the spirit of Redfield. In addition,
the fraction in which carbon appears after passing
through an organism, whether inorganic or organic,
dissolved or particulate, will have major effects on
whether carbon is subsequently available for auto-
trophic or heterotrophic processes.

F U T U R E D I R E C T I O N S

We make three specific recommendations for the direc-
tion of future research into cascading migrations and
variable vertical fluxes. The first concerns the causes of
cascading migrations. The ultimate causes, or adaptive
significances, of DVM for zooplankton (e.g. predator
evasion) and dinoflagellates (e.g. maximizing photosyn-
thesis, but with an additional role now suspected for
predator evasion) have already been touched upon
above. The proximate cause, or the specific cues that

trigger migrations, is another area that warrants
additional research. For instance, while much has been
done in recent years regarding predator-released kairo-
mones or chemical cues (Dodson, 1988; Neill, 1990;
Lass and Spaak, 2003; see also the review in C.E.
Williamson, in preparation), much less is known about
predator-mediated mechanical or visual cues in eliciting
migrations (but see Woodson et al., 2007). Additionally,
as noted above, there is clearly an important role for
non-biological (i.e. physical and chemical) processes in
eliciting DVM [e.g. light for zooplankton (Forward,
1988), and light and nutrients for dinoflagellates (see
references above)], and these too should continue to be
examined, especially in combination with biologically
mediated cues (e.g. predator � light interaction effects
on prey behavior).

Our second major recommendation is that more
attention be paid to investigating the consequences of cas-
cading migrations. These include physiological conse-
quences to individual migrators (e.g. the effects of
temperature, salinity and pressure changes) as well as
the demographic consequences to populations (e.g. vari-
able birth, death and growth rates that are affected by
vertical heterogeneity of physicochemical and preda-
tor–prey conditions in the water column). However, in
particular, we recommend that more attention be paid
to the effects of cascading migrations on vertical trans-
port of material (carbon and nutrients) and energy
through the water column. Understanding the role of
the migration-driven biological pump in carbon cycling
is becoming all the more urgent given continuing global
climate-induced changes such as increased atmospheric
CO2, surface warming, ocean acidification and
enhanced vertical stratification of the oceans.

Finally, we recommend that several different approaches

be applied to future studies of cascading migrations and
variable vertical fluxes, including field observations, lab-
oratory experiments and modeling. Field observations
should include concurrent sampling of the vertical dis-
tributions and diel migrations of taxa spanning multiple
trophic levels (e.g. primary producers, primary consu-
mers, secondary consumers, etc.). Indeed, upper-level
predators have recently been documented to undertake
DVM (Sims et al., 2005; Hays et al., 2009; Sims et al.,
2009). The spatial scales involved will often be different
(i.e. generally greater for larger, higher trophic level
taxa), but in any event should be sufficiently well
resolved to provide the necessary precision and accu-
racy to confidently determine migration patterns. In
addition, more emphasis needs to be paid to actual
rates of migration rather than the mere observation of
changing population peaks in the environment. This is
important because the relative distribution of
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populations in the water column is not necessarily
representative of the actual migrations undertaken by
individual organisms (e.g. Hays et al., 2008).
Experimental manipulation, heretofore underutilized in
this context, is recommended because only in this way
can the potentially confounding effects of multiple
factors present in the field be isolated, controlled and
unambiguously evaluated (Hairston, 1989). Moreover,
rate processes are often extremely difficult (or imposs-
ible) to measure in the field. Laboratory experiments
will therefore be essential, either for measuring specific
biogeochemical, physiological or demographic pro-
cesses, or through the use of micro- or mesocosms to
examine system-wide dynamics (i.e. multiple trophic
levels and their consequences for vertical fluxes, e.g.
Bochdansky et al., 2010). Field enclosures (i.e. meso-
cosms or limnocorrals) might be another fruitful
approach to experimental manipulation. Finally, model-
ing will continue to be an important approach to
addressing these research questions, as it is practically
impossible to directly and concurrently measure all
physical and biological rate processes that affect vertical
fluxes. Thus, models will to some degree be necessary
to integrate the various observational and experimental
results, and to help test specific hypotheses (as well as
generate new hypotheses for future testing).
Individual-based models of DVM (e.g. Leising et al.,
2005; Ji and Franks, 2007; Ralston et al., 2007), perhaps
coupled with NPZ models of bulk carbon and nutrient
transport (e.g. Batchelder et al., 2002), might be a par-
ticularly fruitful modeling approach.

There would appear to be an obvious role for combin-
ing these three approaches. Unfortunately, this rarely
occurs in practice. Two other recent Journal of Plankton

Research “Horizons” articles point to the lack of coordi-
nation and integration between modelers on the one
hand and observationalists and experimentalists on the
other hand (Flynn, 2005; Franks, 2009). We concur and
add that in biological oceanography, observationalists
and experimentalists also do not often collaborate closely
enough. We recommend that all three approaches,
observation, experimental manipulation and modeling,
be applied (preferably in an integrated and coordinated
manner) to the complex challenge of understanding and
predicting cascading migrations and their role in modu-
lating vertical fluxes in pelagic ecosystems.
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