
Case-based Acquisition of User Preferences for Solution

Improvement in Ill-Structured Domains

Katia Sycara zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

katia@cs.cmu.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 We have developed an approach to acquire compli-

cated user optimization criteria and use them to guide

iterative solution improvement. The effectiveness of

the approach was tested on job shop scheduling prob-

lems. The ill-structuredness of the domain and the

desired optimization objectives in real-life problems,

such as factory scheduling, makes the problems diffi-

cult to formalize and costly to solve. Current opti-

mization technology requires explicit global optimiza-

tion criteria in order to control its search for the op-

timal solution. But often, a user’s optimization pref-

erences are state-dependent and cannot be expressed

in terms of a single global optimization criterion. In

our approach, the optimization preferences are rep-

resented implicitly and extensionally in a case base.

Experimental results in job shop scheduling problems

support the hypotheses that our approach (1) is capa-

ble of capturing diverse user optimization preferences

and re-using them to guide solution quality improve-

ment, (2) is robust in the sense that it improves solu-

tion quality independent of the method of initial so-

lution generation, and (3) produces high quality solu-

tions, which are comparable with solutions generated

by traditional iterative optimization techniques, such

as simulated annealing, at much lower computational

cost.

Introduction

We present an approach, implemented in the CAB-

INS system, to demonstrate the capability of acquir-

ing user context-dependent optimization preferences

and reusing them to guide iterative solution opti-

mization in ill-structured domains. This capability

is very important for two main reasons. First, tra-

ditional search methods, both Operations Research-

based and AI-based, that are used in combinatorial

optimization, need explicit representation of objec-

tives in terms of a cost function to be optimized

‘This research was partially supported by the De-

fense Advance Research Projects Agency under contract

#F30602-88-C-0001. Most of the work was performed

when the second author was a visiting scientist at the

Robotics Institute at Carnegie Mellon University under the

support of Matsushita Electric Industrial Co.

44 The Arts

Kazuo Miyashita
Production Engineering Division

Matsushita Electric Industrial Co.

Kadoma, Osaka 571, Japan

miyasita@mcec.ped.mei.co.jp

(Reeves 1993). In many practical problems, such as

scheduling and design, optimization criteria often in-

volve context- and user-dependent tradeoffs which are

impossible to realistically consolidate in a cost func-

tion. Second, expert system approaches, while hav-

ing the potential to capture context-dependent trade-

offs in rules, require considerable knowledge acquisition

effort (Prerau 1990). Our approach uses case-based

reasoning (CBR) which has been successful in dealing

with exceptional data (Golding & Rosenbloom 1991;

Ruby & Kibler 1992), acquiring user knowledge in com-

plex domains (Chaturvedi 1992; Mckay, Buzacott, &

Safayeni 1988)) and expending less effort in knowledge

acquisition compared with knowledge acquisition for

rule-based systems (Lewis, Minior, & Brown 1991).

CABINS acquires, stores and reuses two categories of

concepts that reflect user preferences (1) what heuris-

tic local optimization action to choose in a particular

context, and (2) what combinations of effects of appli-

cation of a particular local optimization action consti-

tutes an acceptable or unacceptable outcome. These

are recorded in the case base and are used by CABINS

to guide iterative optimization and induce optimiza-

tion tradeoffs to evaluate the current solution. The

optimization criteria are not explicitly represented as

case features or in terms of a cost function but are im-

plicitly and extensionally represented in the case base.

Previous case-based systems for incremental solu-

tion revision (e.g. (Hammond 1989; Veloso 1992)) have

been motivated only by concerns of computational ef-

ficiency, preserving plan correctness rather than im-

proving plan quality, and have assumed the existence

of a strong domain model that provides feedback as

to plan correctness. Case-based knowledge acquisition

systems, (e.g. (Bareiss 1989)) require causal explana-

tions from an expert teacher to acquire domain knowl-

edge. In our approach neither the user nor the program

are assumed to possess causal domain knowledge. The

user’s expertise lies in his/ her ability to perform con-

sistent evaluation of the results of problem solving and

impart to the program cases of problem solving expe-

riences and histories of evaluation tradeoffs.

In this paper, we present initial experimental re-

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

sults to test three hypotheses. First, our CBR-based

incremental revision methodology shows good poten-

tial for capturing user optimization preferences in ill-

structured domains, such as job shop scheduling, and

re-using them to guide optimization. Second, the

method is robust in the sense that it improves so-

lution quality independent of the method of initial

solution generation. Third, CABINS produces high

quality solutions. To test this, we compared the so-

lutions produced by CABINS with explicit optimiza-

tion criteria, with solutions produced by simulated an-

nealing (a well known iterative optimization technique

(Johnson et al. 1991; Zweben, Deale, & Gargan 1990;

Laarhoven, Aarts, & Lenstra 1992)) for the same crite-

ria. Our investigation was conducted in the domain of

job shop schedule optimization and the experimental

results, shown in section confirmed these hypotheses.

Job Shop Schedule Optimization
ORDER1

mm
ORDER2 ORDER3

The job shop scheduling problem is one of the most

difficult NP-hard combinatorial optimization problems

(French 1982). Job shop scheduling deals with alloca-

tion of a limited set of resources to a number of activ-

ities (operations) associated with a set of jobs so as to

respect given temporal relations (e.g. precedence rela-

tions among activities), temporal constraints (e.g. job

release and due dates) and resource capacity restric-

tions in order to optimize a set of objectives, such as

minimize tardiness, minimize work in process inven-

tory (WIP), maximize resource utilization etc. Due

to the tight interactions among scheduling constraints

and the often conflicting nature of optimization crite-

ria, it is impossible to assess with any precision the

extent of schedule revision or the impact of a schedul-

ing decision on the global satisfaction of optimization

criteria. For example, in figure 1 moving forward the

last activity of ORDER3 creates downstream cascad-

ing constraint violations. Therefore, a repair action

must be applied and its repair outcome must be evalu-

ated in terms of the resulting effects on scheduling ob-

jectives. In addition, the evaluation itself of what is a

“ high quality” schedule is difficult because of the need

to balance conflicting objectives and trade-off among

them. Such tradeoffs typically reflect user preferences,

which are difficult to express as a cost function. For

example, WIP and weighted tardiness are not always

compatible with each other. As shown in figure 2,

there are situations where a repair action can reduce

weighted tardiness, but WIP increases. Which is a

better schedule depends on user preferences.

Figure 1: Example of Tight Constraint Interac-

tions

Rshsr Dale ,A and Hj

Schedule-l

WIP @Order A

Schedule-2

WIP o/Order R

za

Time Horizon

Figure 2: Example of Conflicting Objectives

CABINS Overview

CABINS is composed of three modules: (1) an ini-

tial schedule builder, (2) an interactive schedule repair

(case acquisition) module and (3) an automated sched-

ule repair (case re-use) module. To generate an ini-

tial schedule, CABINS can use any of several schedul-

ing methods (e.g. traditional dispatching rules or a

constraint-based scheduler).

Case representation

CABINS incrementally revises a complete but sub- In each repair iteration, CABINS focuses on one activ-

optimal schedule to improve its quality, based on ity at a time, the focal-activity, and tries to repair it.

flexible optimization tradeoffs. Revision-based ap- A case in CABINS describes the application of a par-

proaches to scheduling have also been investigated by ticular modification to a focal-activity. Figure 3 shows

(Minton et al. 1990; Zweben, Deale, & Gargan 1990; the information content of a case. Our assumption,

Biefeld & Cooper 1991; Laarhoven, Aarts, & Lenstra borne out by the experimental results, is that despite

1992). In those systems, the initial schedule is repaired the ill-structuredness of the domain, the global, local

by several techniques, such as the min-conflict heuris- and repair history features express (in an approximate

tic or simulated annealing, to minimize the number of

constraint violations or optimize a simple cost function

(e.g. make-span) of the schedule. The value of incor-

porating context-dependent user preferences in oper-

ational scheduling environments is becoming increas-

ingly recognized (e.g. (Mckay, Buzacott, & Safayeni

1988)) but adequate techniques are lacking.

Machme
1

Machme
2

Machme
3

Resource Constraint Propagation

Precedence Constraint Propagation

Case-Based Reasoning 45

manner) domain regularities. The global features re-

flect an abstract characterization of potential repair

flexibility for the whole schedule. High ‘Resource Uti-

lization Average’, for example, often indicates a tight

schedule without much repair flexibility. Associated

with a focal-activity are local features that we have

identified, based on those reported in (Ow, Smith, &

Thiriez 1988), and which potentially are predictive of

estimating the effects of applying a particular repair

tactic to the schedule. For example, ‘Predictive Shift

Gain’ predicts how much overall gain will be achieved

by moving the current focal-activity earlier in its time

horizon. In particular, it predicts the likely reduction

of the focal-activity’s waiting time when moved to the

left within the repair time horizon.

CASE

Resource Utilizat ion Deviat ion

Figure 3: CABINS Case Representation

The repair history records the sequence of applica-

tions of successive repair tactics, the repair outcome

and the effects. Repair effect values describe the im-

pact of the application of a repair action on scheduling

objectives (e.g. weighted tardiness, WIP). A repair

outcome is the evaluation assigned to the set of effects

of a repair action and takes values in the set [‘accept-

able’, ‘unacceptable’]. Typically the outcome reflects

tradeoffs among different objectives. If the applica-

tion of a repair tactic results in a feasible schedule, the

result is judged as either acceptable or unacceptable

with respect to the repair objectives. An outcome is

‘acceptable’ if the user accepts the tradeoffs involved

in the set of effects for the current application of a re-

pair action. Otherwise, it is ‘unacceptable’. The effect

salience is assigned when the outcome is ‘unaccept-

able’, and it indicates the significance of the effect to

the repair outcome. This value is decided subjectively

and interactively. The user’s judgment as to balancing

favorable and unfavorable effects related to a particu-

lar objective constitutes the explanation of the repair

outcome.

Case acquisition

To gather cases, sample scheduling problems are solved

by a scheduler. CABINS identifies jobs that must be

repaired in the initial sub-optimal schedule. Those

jobs are sorted according to the significance of defect,

and repaired manually by a user according to this sort-

ing. For example, if the user’s optimization criterion

is to minimize order tardiness, the most tardy order

is repaired first. The user selects a repair tactic to

be applied. Tactic application consists of two parts:

(a) identify the activities, resources and time intervals

that will be involved in the repair, and (b) execute

the repair by applying constraint-based scheduling to

reschedule the activities identified in (a). Currently

CABINS has 11 tactics and a flexible interface through

which the user can define more.

After tactic selection and application, the repair ef-

fects are calculated and shown to the user who is asked

to evaluate the outcome of the repair. If the user eval-

uates the repair outcome as ‘acceptable’, CABINS pro-

ceeds to repair another focal-activity and the process

is repeated. If the user evaluates the repair outcome

as ‘unacceptable’, s/ he is asked to supply an explana-

tion in terms of rating the salience/ importance of each

of the effects. The repair is undone and the user is

asked to select another repair tactic for the same fo-

cal-activity. The process continues until an acceptable

outcome for the current focal-activity is reached, or the

repair is given up. Repair is given up when there are no

more tactics to be applied to the current focal-activity;

in this situation, CABINS carries on repair of another

activity. The sequence of applications of successive re-

pair actions, the effects, the repair outcome, and the

user’s explanation for failed application of a repair tac-

tic are recorded in the repair history of the case. In

this way, a number of cases are accumulated in the case

base.

Case re-use

Once cases have been gathered, CABINS repairs sub-

optimal schedules without user interaction. CABINS

repairs the schedules by (1) recognizing schedule sub-

optimalities, (2) focusing on a focal-activity to be re-

paired in each repair cycle, (3) invoking CBR with the

set of global and local features as indices to decide the

most appropriate repair tactic to be used for each fo-

cal-activity, (4) invoking CBR using the repair effect

features (type, value and salience) as indices to evalu-

ate the repair result, and (5) when the repair result is

unacceptable, deciding which repair tactic to use next.

Note that in contrast to traditional local iterative opti-

mization approaches, (e.g. tabu search, simulated an-

nealing) where the schedule generated in the current

iteration as a result of local revision is directly com-

pared (in terms of its associated cost function) with

the current schedule, in CABINS, evaluation of the re-

46 The Arts

vision is provided by the case base, thus obviating

need for the presence of an explicit cost function.

The similarity between i-th case and the curr

problem is calculated as follows :

the

sent

CFj” - PFj

E-D; 12’
\J j=l J

where SL” is the salience of j-th feature of i-th case

in the case- b ase, and its value has been heuristically

defined by the user. CF; is the value of j-th feature of

i-th case, PFj is the value of j-th feature in the current

problem, E-Dj is the standard deviation of j-th feature

value of all cases in the case-base. Feature values are

normalized by division by a standard deviation of the

feature value so that features of equal salience have

equal weight in the similarity function.

An Example

We briefly illustrate the repair process with a very sim-

ple example schedule to be repaired shown in figure 4.

The example has ten jobs (Ji, . , , , Jro) and each job

has five activities with linear precedence constraints.

(e.g. Oy BEFORE 0;) . . . , 0; BEFORE OF). Re-

sources RI and R2, R3 and Rg are substitutable; re-

source Rq is a bottleneck. Suppose that the job un-

der repair is Jg. This job has a weight of 2, a due

date of 1250 and the scheduled end-time of its last

activity is 1390. Hence it has a weighted tardiness

of 2 x (1390 - 1250) = 280. Suppose the current fo-

8 cal-activity is 0,. CBR is invoked with global features

(weighted tardiness= 280, resource utilization aver-

age=0.544, resource utilization deviation=0.032) plus

the set of local features as indices and selects swap as

a repair tactic. One can see from the figure that this

is a good choice since the focal-activity is scheduled

on machine Ra, which doesn’t have any substitutable

machine and any idle time in the repair time horizon

(time between the end of 0: and the end of 0.2).

To apply swap, CABINS calculates the activity with

which 0: will be swapped. To do this, CABINS selects

the activity which, if swapped with O,S, will result in

least amount of precedence constraint violations. In

the example, activity 02 is selected as the activity to

be swapped with the current focal-activity 0:. Job J4

has weight 3 and weighted tardiness 3 x (1370- 1320) =

150. The effect of applying the swap tactic is that 02

and 0: are unscheduled on Rq and 02 is re-scheduled

to start at time 1090 (the start time of activity 0: prior

to the swap). The repair process resolves occurring

constraint violations. The repaired schedule is shown

in figure 5.

The effects of repairing 0: are calculated. CABINS

calculates the effects on Jg and J4, the jobs affected by

the application of the swap on Oz. Machine utilization

did not change but Jg had an estimated decrease in

weighted-tardiness of 180 time units and an estimated

decrease in WIP of 200 units, J4 had an increase in

Figure 4: Original Schedule Results

Figure 5: Schedule Results after Repair on 0:

weighted-tardiness of 150 units and an increase in WIP

of 750 units. CBR is invoked using these effect val-

ues, weighted tardiness, WIP, as indices to determine

whether this repair outcome is acceptable. The accept-

ability or unacceptability of the repair will depend on

the biases reflected in the case base.

Evaluation of the Approach

We conducted a set of experiments to test the hy-

pothesis that (1) our CBR-based incremental modi-

fication and re-use methodology could be effective in

capturing user schedule optimization preferences and

re-using them to control schedule optimization, (2) the

approach is robust in that the schedules produced by

CABINS consistently improve a schedule independent

of the method used for initial schedule generation and

(3) as an iterative optimization method, the approach

produces schedules of high quality. These hypotheses

are difficult to test since, due to the subjective and

ill-defined nature of user preferences, it is not obvious

how to correlate scheduling results with the captured

preferences or how to define quality of a schedule whose

evaluation is subjective.

To address these issues, we had to devise a method

to test the hypotheses in a consistent manner. To do

that, it is necessary to know the optimization crite-

rion that would be implicit in the case base, so that

the experimental results can be evaluated. In the ex-

periments reported here, we used two different explicit

criteria (weighted tardiness; WIP+weighted tardiness)

to reflect the user’s optimization criterion and built a

Case-Based Reasoning 47

rule-based reasoner (RBR) that goes through a trial-

and-error repair process to optimize a schedule. For

each repair, the repair effects were calculated and, on

this basis, since RBR had a predefined evaluation ob-

jective, it could evaluate the repair outcome in a con-

sistent manner. Thus, we used RBR with different

rules each time to generate different case bases (each

with 1,000 cases) 2 for different explicit optimization

objectives. Naturally, an objective, though known to

us, is not known to CABINS and is only implicitly and

indirectly reflected in an extensional way in each case

base. By designing an objective into the RBR so it

could be reflected in the corresponding case base we

got an experimental baseline against which to evaluate

the schedules generated by CABINS.

We evaluated the approach on a benchmark suite

of 60 job shop scheduling problems where parameters,

such as number of bottlenecks, range of due dates and

activity durations were varied to cover a range of job

shop scheduling problem instances with the following

structure. Each problem class has 10 jobs of 5 opera-

tions each and 5 machines. Two parameters were used

to cover different scheduling conditions: a range pa-

rameter controlled the distribution of job due dates and

release dates, and a bottleneck parameter controlled

the number of bottleneck resources. Six groups of 10

problems each were randomly generated by considering

three different values of the range parameter, and two

values of the bottleneck configuration (1 and 2 bot-

tleneck problems). These problems are variations of

the problems originally reported in (Sadeh 1991). Our

problem sets are, however, different in two respects:

(a) we allow substitutable resources for non-bottleneck

resources whereas the original problems did not, and

(b) the due dates of jobs in our problems are tighter

by 20 percents than in the original problems. We also

tested the approach on another set of 60 problems of

20 orders and 5 resources with similar results.

A cross-validation method was used to evaluate the

learning capability of CABINS. Each problem set in

each class was divided in half. The training sample

was repaired by RBR to gather cases. These cases were

then used for case-based repair of the validation prob-

lems. We repeated the above process by interchanging

the training and test sets. Reported results are for the

validation problem sets.

Experimental Results

Figures 6 show the performance of CABINS using

“ weighted tardiness” case base (labeled in the figures

as CABINS(vs performance of CABINS using

the “ weighted tardiness and WIP” case base (labeled

in the figures as CABINS(WT+WIP)). The cases con-

stituted the only source of knowledge for CABINS. In

2Since a case represents the application of one repair

tactic to an activity, if, for example, 5 repair tactics are

utilized in an attempt to successfully repair an activity,

then 5 cases would be created.

g3600-

E3400’

;3200.

;3000’

F2800’

I--m2600’

%2400’

i&200

g2000.

1800’

1600.

1400.

1200’

0 1 2 3 4 5
Problem Se16

0 1 2 3 4 5
Problem Set6

Figure 6: Scheduling Results with Different Case Bases

Wei.Tar. WIP Total CPU Sec.

EDD 956.0 1284.6 2240.6 0.1

CABINS 349.5 1311.2 1660.7 73.5

SA 340.5 1333.4 1673.9 388.2

WSPT 584.0 1241.0 1825.0 0.1

CABINS 321.0 1254.9 1575.9 72.1

SA 328.5 1320.4 1684.9 398.3

R&M 556.0 1242.0 1798.0 0.1

CABINS 305.3 1264.9 1570.2 84.9

SA 330.1 1290.8 1620.9 450.5 *

CBS 1173.0 1481.0 2654.0 17.4

CABINS 405.3 1195.0 1600.3 296.5

SA 11 395.5 1220.0) 1615.5 11 1380.0 1

Table 1: Repair by CABINS and SA based on Different

Methods of Initial Schedule Generation

other words, there was no objective given to CAB-

INS explicitly. The case-bases were used both as a

source of suitable repairs, and also as a source of ad-

vice regarding repair evaluation. From the results we

observe that CABINS generated higher quality

schedules with respect to minimizing weighted tar-

diness than CABINS(WT+WIP). Conversely, CAB-

INS(WT+WIP) g enerated higher quality schedules

with respect to WIP, and weighted tardiness plus WIP

than CABINS(Th ese results indicate that CAB-

INS can acquire different and subjective user prefer-

ences.

In order to test the hypothesis that CABINS con-

sistently improves schedule quality independent of the

method of initial schedule generation, we generated ini-

tial schedules for the benchmark suite of problems us-

ing three different state-of-the-art dispatch scheduling

heuristics (EDD, WSPT, R&M) (Morton 1992) and

a constraint-based scheduler (CBS). The optimization

objective was WT+WIP. Table 1 presents the aver-

age of all 60 problems in the benchmark and shows

that CABINS improved schedule quality independent

of method to create the initial schedule. To test the

48 The Arts

hypothesis that CABINS generates schedules of high

quality, we compared the schedules generated by CAB-

INS against schedules generated by simulated anneal-

ing with the explicit objective of WT+WIP. Table 1

shows that CABINS generated schedules of compara-

ble quality but was on the average 4-5 times more ef-

ficient than simulated annealing.

Conclusions

We have presented a case-based approach to acquire

user optimization preferences and reuse them to guide

iterative solution optimization in ill-structured do-

mains. We demonstrated the effectiveness of the ap-

proach in capturing user preferences and creating ef-

ficiently high quality solutions on job shop scheduling

problems. One crucial issue is how much effort should

be spent to capture “ enough” number of cases for “ suf-

ficient” solution quality improvement. This is an issue

we are currently pursuing. Initial experiments to de-

termine case base size versus quality improvement have

shown that a case base of 800 cases gives on the av-

erage 20% higher quality improvement at 15% lower

computational cost than a case base of 400 cases. It

seems that the effort expended to capture a big num-

ber of cases can be amortized by future repeated use of

the case base to get high quality schedules efficiently.

More importantly, CABINS can acquire those cases

from user’s interaction during the process of solution

improvement, thus imposing low additional effort on

the user but enhancing solution improvement. We be-

lieve that CABINS has the potential for accommodat-

ing acquisition of user preferences that change over

time. Future work will investigate this issue.

References

Bareiss, R. 1989. Exemplar-based knowledge acquisi-

tion : a unified approach to concept regression, clas-

sification, and learning. New York, NY: Academic

Press.

Biefeld, E., and Cooper, L. 1991. Bottleneck identi-

fication using process chronologies. In Proceedings of

the 12th International Joint Conference on Artificial

Intelligence (IJCAI-91).

Chaturvedi, A. 1992. Acquiring Implicit Knowledge

in a Complex Domain. Expert Systems with Applica-

tions.

French, S. 1982. Sequencing and Scheduling: An In-

troduction to the Mathematics of the Job-Shop. New

York, NY: Ellis Horwood.

Golding, A. R., and Rosenbloom, P. S. 1991. Improv-

ing Rule-Based Systems Through Case-Based Rea-

soning . In Proceedings of the Ninth National Con-

ference on Artificial Intelligence, 22-27. AAAI.

Hammond, K. J. 1989. Case-Based Planning : View-

ing Planning as a Memory Task. New York, NY:

Academic Press.

Johnson, D.; Aragon, C.; McGeoch, L.; and Schevon,

C. 1991. Optimization By Simulated Annealing: An

Experimental Evaluation, Part II (Graph Coloring

and Number Partitioning). Operations Research.

Laarhoven, P. J. M. V.; Aarts, E. H. L.; and Lenstra,

J. K. 1992. Job shop scheduling by simulated anneal-

ing. Operations Research 40(1):113-125.

Lewis, L.; Minior, D.; and Brown, S. 1991. A Case-

Based Reasoning Solution to the Problem of Redun-

dant Engineering in Large Scale Manufacturing. In-

ternational Journal of Expert Systems 4(2):189-201.

Mckay, K.; Buzacott, J.; and Safayeni, F. 1988. The

scheduler’s knowledge of uncertainty: The missing

link. In Proceedings of IFIP W orking Conference on

Knowledge Based Production Management Systems.

Minton, S.; Johnston, M. D.; Philips, A. B.; and

Laird, P. 1990. Solving large-scale constraint satisfac-

tion and scheduling problems using a heuristic repair

method. In Proceedings, Eighth National Conference

on Artificial Intelligence, 17-24. Boston, MA.: AAAI.

Morton, T. E. 1992. HEURISTIC SCHEDULING

SYSTEMS: W ith Application to Production Systems

and Product Management. Pittsburgh, PA.: GSIA,

Carnegie Mellon University. Course Textbook.

Ow, P. S.; Smith, S. F.; and Thiriez, A. 1988. Re-

active plan revision. In Proceedings of the Seventh

National Conference on Artificial Intelligence, 77-82.

St-Paul, Minnesota: AAAI.

Prerau, D. S. 1990. Developing and Managing Expert

Systems: Proven Techniques for Business and Indus-

try. Reading, MA: Addison-Wesley.

Reeves, C., ed. 1993. Modern Heuristic Techniques

for Combinatorial Problems. New York: Halsted ’

Press.

Ruby, D., and Kibler, D. 1992. Learning Episodes for

Optimization. In Machine Learning : proceedings of

the Ninth International W orkshop (ML92), 379-384.

Sadeh, N. 1991. Look-Ahead Techniques for Micro-

Opportunistic Job Shop Scheduling. Ph.D. Disserta-

tion, School of Computer Science, Carnegie Mellon

University.

Veloso, M. M. 1992. Learning by Analogical Reason-

ing in General Problem Solving. Ph.D. Dissertation,

School of Computer Science, Carnegie Mellon Univer-

sity.

Zweben, M.; Deale, M.; and Gargan, M. 1990. Any-

time rescheduling. In Proceedings of the DARPA

W orkshop on Innovative Approaches to Planning,

Scheduling and Control, 251-259. San Diego, CA.:

DARPA.

Case-Based Reasoning 49

