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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 We have developed an approach to acquire compli- 

cated user optimization criteria and use them to guide 

iterative solution improvement. The effectiveness of 

the approach was tested on job shop scheduling prob- 

lems. The ill-structuredness of the domain and the 

desired optimization objectives in real-life problems, 

such as factory scheduling, makes the problems diffi- 

cult to formalize and costly to solve. Current opti- 

mization technology requires explicit global optimiza- 

tion criteria in order to control its search for the op- 

timal solution. But often, a user’s optimization pref- 

erences are state-dependent and cannot be expressed 

in terms of a single global optimization criterion. In 

our approach, the optimization preferences are rep- 

resented implicitly and extensionally in a case base. 

Experimental results in job shop scheduling problems 

support the hypotheses that our approach (1) is capa- 

ble of capturing diverse user optimization preferences 

and re-using them to guide solution quality improve- 

ment, (2) is robust in the sense that it improves solu- 

tion quality independent of the method of initial so- 

lution generation, and (3) produces high quality solu- 

tions, which are comparable with solutions generated 

by traditional iterative optimization techniques, such 

as simulated annealing, at much lower computational 

cost. 

Introduction 

We present an approach, implemented in the CAB- 

INS system, to demonstrate the capability of acquir- 

ing user context-dependent optimization preferences 

and reusing them to guide iterative solution opti- 

mization in ill-structured domains. This capability 

is very important for two main reasons. First, tra- 

ditional search methods, both Operations Research- 

based and AI-based, that are used in combinatorial 

optimization, need explicit representation of objec- 

tives in terms of a cost function to be optimized 
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(Reeves 1993). In many practical problems, such as 

scheduling and design, optimization criteria often in- 

volve context- and user-dependent tradeoffs which are 

impossible to realistically consolidate in a cost func- 

tion. Second, expert system approaches, while hav- 

ing the potential to capture context-dependent trade- 

offs in rules, require considerable knowledge acquisition 

effort (Prerau 1990). Our approach uses case-based 

reasoning (CBR) which has been successful in dealing 

with exceptional data (Golding & Rosenbloom 1991; 

Ruby & Kibler 1992), acquiring user knowledge in com- 

plex domains (Chaturvedi 1992; Mckay, Buzacott, & 

Safayeni 1988)) and expending less effort in knowledge 

acquisition compared with knowledge acquisition for 

rule-based systems (Lewis, Minior, & Brown 1991). 

CABINS acquires, stores and reuses two categories of 

concepts that reflect user preferences (1) what heuris- 

tic local optimization action to choose in a particular 

context, and (2) what combinations of effects of appli- 

cation of a particular local optimization action consti- 

tutes an acceptable or unacceptable outcome. These 

are recorded in the case base and are used by CABINS 

to guide iterative optimization and induce optimiza- 

tion tradeoffs to evaluate the current solution. The 

optimization criteria are not explicitly represented as 

case features or in terms of a cost function but are im- 

plicitly and extensionally represented in the case base. 

Previous case-based systems for incremental solu- 

tion revision (e.g. (Hammond 1989; Veloso 1992)) have 

been motivated only by concerns of computational ef- 

ficiency, preserving plan correctness rather than im- 

proving plan quality, and have assumed the existence 

of a strong domain model that provides feedback as 

to plan correctness. Case-based knowledge acquisition 

systems, (e.g. (Bareiss 1989)) require causal explana- 

tions from an expert teacher to acquire domain knowl- 

edge. In our approach neither the user nor the program 

are assumed to possess causal domain knowledge. The 

user’s expertise lies in his/ her ability to perform con- 

sistent evaluation of the results of problem solving and 

impart to the program cases of problem solving expe- 

riences and histories of evaluation tradeoffs. 

In this paper, we present initial experimental re- 
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sults to test three hypotheses. First, our CBR-based 

incremental revision methodology shows good poten- 

tial for capturing user optimization preferences in ill- 

structured domains, such as job shop scheduling, and 

re-using them to guide optimization. Second, the 

method is robust in the sense that it improves so- 

lution quality independent of the method of initial 

solution generation. Third, CABINS produces high 

quality solutions. To test this, we compared the so- 

lutions produced by CABINS with explicit optimiza- 

tion criteria, with solutions produced by simulated an- 

nealing (a well known iterative optimization technique 

(Johnson et al. 1991; Zweben, Deale, & Gargan 1990; 

Laarhoven, Aarts, & Lenstra 1992)) for the same crite- 

ria. Our investigation was conducted in the domain of 

job shop schedule optimization and the experimental 

results, shown in section confirmed these hypotheses. 

Job Shop Schedule Optimization 
ORDER1 

mm 
ORDER2 ORDER3 

The job shop scheduling problem is one of the most 

difficult NP-hard combinatorial optimization problems 

(French 1982). Job shop scheduling deals with alloca- 

tion of a limited set of resources to a number of activ- 

ities (operations) associated with a set of jobs so as to 

respect given temporal relations (e.g. precedence rela- 

tions among activities), temporal constraints (e.g. job 

release and due dates) and resource capacity restric- 

tions in order to optimize a set of objectives, such as 

minimize tardiness, minimize work in process inven- 

tory (WIP), maximize resource utilization etc. Due 

to the tight interactions among scheduling constraints 

and the often conflicting nature of optimization crite- 

ria, it is impossible to assess with any precision the 

extent of schedule revision or the impact of a schedul- 

ing decision on the global satisfaction of optimization 

criteria. For example, in figure 1 moving forward the 

last activity of ORDER3 creates downstream cascad- 

ing constraint violations. Therefore, a repair action 

must be applied and its repair outcome must be evalu- 

ated in terms of the resulting effects on scheduling ob- 

jectives. In addition, the evaluation itself of what is a 

“ high quality”  schedule is difficult because of the need 

to balance conflicting objectives and trade-off among 

them. Such tradeoffs typically reflect user preferences, 

which are difficult to express as a cost function. For 

example, WIP and weighted tardiness are not always 

compatible with each other. As shown in figure 2, 

there are situations where a repair action can reduce 

weighted tardiness, but WIP increases. Which is a 

better schedule depends on user preferences. 

Figure 1: Example of Tight Constraint Interac- 

tions 
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Figure 2: Example of Conflicting Objectives 

CABINS Overview 

CABINS is composed of three modules: (1) an ini- 

tial schedule builder, (2) an interactive schedule repair 

(case acquisition) module and (3) an automated sched- 

ule repair (case re-use) module. To generate an ini- 

tial schedule, CABINS can use any of several schedul- 

ing methods (e.g. traditional dispatching rules or a 

constraint-based scheduler). 

Case representation 

CABINS incrementally revises a complete but sub- In each repair iteration, CABINS focuses on one activ- 

optimal schedule to improve its quality, based on ity at a time, the focal-activity, and tries to repair it. 

flexible optimization tradeoffs. Revision-based ap- A case in CABINS describes the application of a par- 

proaches to scheduling have also been investigated by ticular modification to a focal-activity. Figure 3 shows 

(Minton et al. 1990; Zweben, Deale, & Gargan 1990; the information content of a case. Our assumption, 

Biefeld & Cooper 1991; Laarhoven, Aarts, & Lenstra borne out by the experimental results, is that despite 

1992). In those systems, the initial schedule is repaired the ill-structuredness of the domain, the global, local 

by several techniques, such as the min-conflict heuris- and repair history features express (in an approximate 

tic or simulated annealing, to minimize the number of 

constraint violations or optimize a simple cost function 

(e.g. make-span) of the schedule. The value of incor- 

porating context-dependent user preferences in oper- 

ational scheduling environments is becoming increas- 

ingly recognized (e.g. (Mckay, Buzacott, & Safayeni 

1988)) but adequate techniques are lacking. 
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1 
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Resource Constraint Propagation 

Precedence Constraint Propagation 
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manner) domain regularities. The global features re- 

flect an abstract characterization of potential repair 

flexibility for the whole schedule. High ‘Resource Uti- 

lization Average’, for example, often indicates a tight 

schedule without much repair flexibility. Associated 

with a focal-activity are local features that we have 

identified, based on those reported in (Ow, Smith, & 

Thiriez 1988), and which potentially are predictive of 

estimating the effects of applying a particular repair 

tactic to the schedule. For example, ‘Predictive Shift 

Gain’ predicts how much overall gain will be achieved 

by moving the current focal-activity earlier in its time 

horizon. In particular, it predicts the likely reduction 

of the focal-activity’s waiting time when moved to the 

left within the repair time horizon. 

CASE 

Resource Utilizat ion Deviat ion 

Figure 3: CABINS Case Representation 

The repair history records the sequence of applica- 

tions of successive repair tactics, the repair outcome 

and the effects. Repair effect values describe the im- 

pact of the application of a repair action on scheduling 

objectives (e.g. weighted tardiness, WIP). A repair 

outcome is the evaluation assigned to the set of effects 

of a repair action and takes values in the set [‘accept- 

able’, ‘unacceptable’]. Typically the outcome reflects 

tradeoffs among different objectives. If the applica- 

tion of a repair tactic results in a feasible schedule, the 

result is judged as either acceptable or unacceptable 

with respect to the repair objectives. An outcome is 

‘acceptable’ if the user accepts the tradeoffs involved 

in the set of effects for the current application of a re- 

pair action. Otherwise, it is ‘unacceptable’. The effect 

salience is assigned when the outcome is ‘unaccept- 

able’, and it indicates the significance of the effect to 

the repair outcome. This value is decided subjectively 

and interactively. The user’s judgment as to balancing 

favorable and unfavorable effects related to a particu- 

lar objective constitutes the explanation of the repair 

outcome. 

Case acquisition 

To gather cases, sample scheduling problems are solved 

by a scheduler. CABINS identifies jobs that must be 

repaired in the initial sub-optimal schedule. Those 

jobs are sorted according to the significance of defect, 

and repaired manually by a user according to this sort- 

ing. For example, if the user’s optimization criterion 

is to minimize order tardiness, the most tardy order 

is repaired first. The user selects a repair tactic to 

be applied. Tactic application consists of two parts: 

(a) identify the activities, resources and time intervals 

that will be involved in the repair, and (b) execute 

the repair by applying constraint-based scheduling to 

reschedule the activities identified in (a). Currently 

CABINS has 11 tactics and a flexible interface through 

which the user can define more. 

After tactic selection and application, the repair ef- 

fects are calculated and shown to the user who is asked 

to evaluate the outcome of the repair. If the user eval- 

uates the repair outcome as ‘acceptable’, CABINS pro- 

ceeds to repair another focal-activity and the process 

is repeated. If the user evaluates the repair outcome 

as ‘unacceptable’, s/ he is asked to supply an explana- 

tion in terms of rating the salience/ importance of each 

of the effects. The repair is undone and the user is 

asked to select another repair tactic for the same fo- 

cal-activity. The process continues until an acceptable 

outcome for the current focal-activity is reached, or the 

repair is given up. Repair is given up when there are no 

more tactics to be applied to the current focal-activity; 

in this situation, CABINS carries on repair of another 

activity. The sequence of applications of successive re- 

pair actions, the effects, the repair outcome, and the 

user’s explanation for failed application of a repair tac- 

tic are recorded in the repair history of the case. In 

this way, a number of cases are accumulated in the case 

base. 

Case re-use 

Once cases have been gathered, CABINS repairs sub- 

optimal schedules without user interaction. CABINS 

repairs the schedules by (1) recognizing schedule sub- 

optimalities, (2) focusing on a focal-activity to be re- 

paired in each repair cycle, (3) invoking CBR with the 

set of global and local features as indices to decide the 

most appropriate repair tactic to be used for each fo- 

cal-activity, (4) invoking CBR using the repair effect 

features (type, value and salience) as indices to evalu- 

ate the repair result, and (5) when the repair result is 

unacceptable, deciding which repair tactic to use next. 

Note that in contrast to traditional local iterative opti- 

mization approaches, (e.g. tabu search, simulated an- 

nealing) where the schedule generated in the current 

iteration as a result of local revision is directly com- 

pared (in terms of its associated cost function) with 

the current schedule, in CABINS, evaluation of the re- 
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vision is provided by the case base, thus obviating 

need for the presence of an explicit cost function. 

The similarity between i-th case and the curr 

problem is calculated as follows : 

the 

sent 

CFj”  -  PFj 

E-D; 12’ 
\J j=l J 

where SL”  is the salience of j-th feature of i-th case 

in the case- b ase, and its value has been heuristically 

defined by the user. CF; is the value of j-th feature of 

i-th case, PFj is the value of j-th feature in the current 

problem, E-Dj is the standard deviation of j-th feature 

value of all cases in the case-base. Feature values are 

normalized by division by a standard deviation of the 

feature value so that features of equal salience have 

equal weight in the similarity function. 

An Example 

We briefly illustrate the repair process with a very sim- 

ple example schedule to be repaired shown in figure 4. 

The example has ten jobs (Ji, . , , , Jro) and each job 

has five activities with linear precedence constraints. 

(e.g. Oy BEFORE 0;) . . . , 0; BEFORE OF). Re- 

sources RI and R2, R3 and Rg are substitutable; re- 

source Rq is a bottleneck. Suppose that the job un- 

der repair is Jg. This job has a weight of 2, a due 

date of 1250 and the scheduled end-time of its last 

activity is 1390. Hence it has a weighted tardiness 

of 2 x (1390 - 1250) = 280. Suppose the current fo- 

8 cal-activity is 0,. CBR is invoked with global features 

(weighted tardiness= 280, resource utilization aver- 

age=0.544, resource utilization deviation=0.032) plus 

the set of local features as indices and selects swap as 

a repair tactic. One can see from the figure that this 

is a good choice since the focal-activity is scheduled 

on machine Ra, which doesn’t have any substitutable 

machine and any idle time in the repair time horizon 

(time between the end of 0: and the end of 0.2). 

To apply swap, CABINS calculates the activity with 

which 0: will be swapped. To do this, CABINS selects 

the activity which, if swapped with O,S, will result in 

least amount of precedence constraint violations. In 

the example, activity 02 is selected as the activity to 

be swapped with the current focal-activity 0:. Job J4 

has weight 3 and weighted tardiness 3 x (1370- 1320) = 

150. The effect of applying the swap tactic is that 02 

and 0: are unscheduled on Rq and 02 is re-scheduled 

to start at time 1090 (the start time of activity 0: prior 

to the swap). The repair process resolves occurring 

constraint violations. The repaired schedule is shown 

in figure 5. 

The effects of repairing 0: are calculated. CABINS 

calculates the effects on Jg and J4, the jobs affected by 

the application of the swap on Oz. Machine utilization 

did not change but Jg had an estimated decrease in 

weighted-tardiness of 180 time units and an estimated 

decrease in WIP of 200 units, J4 had an increase in 

Figure 4: Original Schedule Results 

Figure 5: Schedule Results after Repair on 0: 

weighted-tardiness of 150 units and an increase in WIP 

of 750 units. CBR is invoked using these effect val- 

ues, weighted tardiness, WIP, as indices to determine 

whether this repair outcome is acceptable. The accept- 

ability or unacceptability of the repair will depend on 

the biases reflected in the case base. 

Evaluation of the Approach 

We conducted a set of experiments to test the hy- 

pothesis that (1) our CBR-based incremental modi- 

fication and re-use methodology could be effective in 

capturing user schedule optimization preferences and 

re-using them to control schedule optimization, (2) the 

approach is robust in that the schedules produced by 

CABINS consistently improve a schedule independent 

of the method used for initial schedule generation and 

(3) as an iterative optimization method, the approach 

produces schedules of high quality. These hypotheses 

are difficult to test since, due to the subjective and 

ill-defined nature of user preferences, it is not obvious 

how to correlate scheduling results with the captured 

preferences or how to define quality of a schedule whose 

evaluation is subjective. 

To address these issues, we had to devise a method 

to test the hypotheses in a consistent manner. To do 

that, it is necessary to know the optimization crite- 

rion that would be implicit in the case base, so that 

the experimental results can be evaluated. In the ex- 

periments reported here, we used two different explicit 

criteria (weighted tardiness; WIP+weighted tardiness) 

to reflect the user’s optimization criterion and built a 
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rule-based reasoner (RBR) that goes through a trial- 

and-error repair process to optimize a schedule. For 

each repair, the repair effects were calculated and, on 

this basis, since RBR had a predefined evaluation ob- 

jective, it could evaluate the repair outcome in a con- 

sistent manner. Thus, we used RBR with different 

rules each time to generate different case bases (each 

with 1,000 cases) 2 for different explicit optimization 

objectives. Naturally, an objective, though known to 

us, is not known to CABINS and is only implicitly and 

indirectly reflected in an extensional way in each case 

base. By designing an objective into the RBR so it 

could be reflected in the corresponding case base we 

got an experimental baseline against which to evaluate 

the schedules generated by CABINS. 

We evaluated the approach on a benchmark suite 

of 60 job shop scheduling problems where parameters, 

such as number of bottlenecks, range of due dates and 

activity durations were varied to cover a range of job 

shop scheduling problem instances with the following 

structure. Each problem class has 10 jobs of 5 opera- 

tions each and 5 machines. Two parameters were used 

to cover different scheduling conditions: a range pa- 

rameter controlled the distribution of job due dates and 

release dates, and a bottleneck parameter controlled 

the number of bottleneck resources. Six groups of 10 

problems each were randomly generated by considering 

three different values of the range parameter, and two 

values of the bottleneck configuration (1 and 2 bot- 

tleneck problems). These problems are variations of 

the problems originally reported in (Sadeh 1991). Our 

problem sets are, however, different in two respects: 

(a) we allow substitutable resources for non-bottleneck 

resources whereas the original problems did not, and 

(b) the due dates of jobs in our problems are tighter 

by 20 percents than in the original problems. We also 

tested the approach on another set of 60 problems of 

20 orders and 5 resources with similar results. 

A cross-validation method was used to evaluate the 

learning capability of CABINS. Each problem set in 

each class was divided in half. The training sample 

was repaired by RBR to gather cases. These cases were 

then used for case-based repair of the validation prob- 

lems. We repeated the above process by interchanging 

the training and test sets. Reported results are for the 

validation problem sets. 

Experimental Results 

Figures 6 show the performance of CABINS using 

“ weighted tardiness”  case base (labeled in the figures 

as CABINS( vs performance of CABINS using 

the “ weighted tardiness and WIP”  case base (labeled 

in the figures as CABINS(WT+WIP)). The cases con- 

stituted the only source of knowledge for CABINS. In 

2Since a case represents the application of one repair 

tactic to an activity, if, for example, 5 repair tactics are 

utilized in an attempt to successfully repair an activity, 

then 5 cases would be created. 
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Figure 6: Scheduling Results with Different Case Bases 

Wei.Tar. WIP Total CPU Sec. 

EDD 956.0 1284.6 2240.6 0.1 

CABINS 349.5 1311.2 1660.7 73.5 

SA 340.5 1333.4 1673.9 388.2 

WSPT 584.0 1241.0 1825.0 0.1 

CABINS 321.0 1254.9 1575.9 72.1 

SA 328.5 1320.4 1684.9 398.3 

R&M 556.0 1242.0 1798.0 0.1 

CABINS 305.3 1264.9 1570.2 84.9 

SA 330.1 1290.8 1620.9 450.5 * 

CBS 1173.0 1481.0 2654.0 17.4 

CABINS 405.3 1195.0 1600.3 296.5 

SA 11 395.5 1220.0 ) 1615.5 11 1380.0 1 

Table 1: Repair by CABINS and SA based on Different 

Methods of Initial Schedule Generation 

other words, there was no objective given to CAB- 

INS explicitly. The case-bases were used both as a 

source of suitable repairs, and also as a source of ad- 

vice regarding repair evaluation. From the results we 

observe that CABINS generated higher quality 

schedules with respect to minimizing weighted tar- 

diness than CABINS(WT+WIP). Conversely, CAB- 

INS(WT+WIP) g enerated higher quality schedules 

with respect to WIP, and weighted tardiness plus WIP 

than CABINS( Th ese results indicate that CAB- 

INS can acquire different and subjective user prefer- 

ences. 

In order to test the hypothesis that CABINS con- 

sistently improves schedule quality independent of the 

method of initial schedule generation, we generated ini- 

tial schedules for the benchmark suite of problems us- 

ing three different state-of-the-art dispatch scheduling 

heuristics (EDD, WSPT, R&M) (Morton 1992) and 

a constraint-based scheduler (CBS). The optimization 

objective was WT+WIP. Table 1 presents the aver- 

age of all 60 problems in the benchmark and shows 

that CABINS improved schedule quality independent 

of method to create the initial schedule. To test the 
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hypothesis that CABINS generates schedules of high 

quality, we compared the schedules generated by CAB- 

INS against schedules generated by simulated anneal- 

ing with the explicit objective of WT+WIP. Table 1 

shows that CABINS generated schedules of compara- 

ble quality but was on the average 4-5 times more ef- 

ficient than simulated annealing. 

Conclusions 

We have presented a case-based approach to acquire 

user optimization preferences and reuse them to guide 

iterative solution optimization in ill-structured do- 

mains. We demonstrated the effectiveness of the ap- 

proach in capturing user preferences and creating ef- 

ficiently high quality solutions on job shop scheduling 

problems. One crucial issue is how much effort should 

be spent to capture “ enough”  number of cases for “ suf- 

ficient”  solution quality improvement. This is an issue 

we are currently pursuing. Initial experiments to de- 

termine case base size versus quality improvement have 

shown that a case base of 800 cases gives on the av- 

erage 20% higher quality improvement at 15% lower 

computational cost than a case base of 400 cases. It 

seems that the effort expended to capture a big num- 

ber of cases can be amortized by future repeated use of 

the case base to get high quality schedules efficiently. 

More importantly, CABINS can acquire those cases 

from user’s interaction during the process of solution 

improvement, thus imposing low additional effort on 

the user but enhancing solution improvement. We be- 

lieve that CABINS has the potential for accommodat- 

ing acquisition of user preferences that change over 

time. Future work will investigate this issue. 
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