
intelligent artifacts,
machines that can
perform useful tasks.
They want to devel-
op the technology
of intelligence. They
want to be able to
design and build
computer programs
that can solve prob-
lems and adapt to
new situations. 

In this article, I
discuss case-based
reasoning, an AI
paradigm that
addresses both
research agendas.
Case-based reasoning
is a psychological
theory of human
cognition. It address-
es issues in memory,

learning, planning, and problem solving.
Case-based reasoning also provides a
foundation for a new technology of intelli-
gent computer systems that can solve prob-
lems and adapt to new situations. I first
review the underlying psychological model of
case-based reasoning. I then examine several

“I have but one
lamp by which my
feet are guided, and
that is the lamp of
experience. I know
no way of judging
of the future but by
the past.”
—Patrick Henry 

Speech in Virginia
Convention, Rich-
mond

March 23, 1775
There are two broad
research agendas in
AI. The first is scien-
tific. AI researchers
seek to understand
the nature of intelli-
gence and human
thought. They
examine a range of
human cognitive
behavior, including memory, learning, plan-
ning, and problem solving and look for prin-
ciples that play general descriptive and
explanatory roles. AI shares these scientific
ambitions with other cognitive science disci-
plines. The second agenda for AI research is
technological. Researchers seek to create
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Case-Based Reasoning: 
A Research Paradigm

Stephen Slade

Expertise comprises experience. In solving a new
problem, we rely on past episodes. We need to
remember what plans succeed and what plans
fail. We need to know how to modify an old
plan to fit a new situation. Case-based reason-
ing is a general paradigm for reasoning from
experience. It assumes a memory model for rep-
resenting, indexing, and organizing past cases
and a process model for retrieving and modifying
old cases and assimilating new ones. Case-
based reasoning provides a scientific cognitive
model. The research issues for case-based rea-
soning include the representation of episodic
knowledge, memory organization, indexing, case
modification, and learning. In addition, comput-
er implementations of case-based reasoning
address many of the technological shortcomings
of standard rule-based expert systems. These
engineering concerns include knowledge acquisi-
tion and robustness. In this article, I review the
history of case-based reasoning, including
research conducted at the Yale AI Project and
elsewhere.
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computer models that embody the principles
of case-based reasoning, contrasting the case-
based approach with the rule-based expert
system paradigm.

Models of Memory
An intelligent being requires knowledge about
the world. Knowledge allows a person to plan
and solve problems. Knowledge is a resource,
a commodity. Memory is the repository of
knowledge. The question for the psychologist
has been what theory of memory accounts for
observed cognitive behaviors. The question
for the AI researcher has been how to repre-
sent knowledge in a computer program and
apply it to perform specific tasks.

Semantic and Episodic Memory

These questions converged as AI researchers
attempted to create computer programs that
model cognitive processes. A leading theory
has been the semantic network memory
model. Psychologists have devoted much
attention to this theory (Collins and Quillian
1969; Rumelhart, Lindsay, and Norman 1972;
Kintsch 1972) as have AI researchers (Quillian
1968; Woods 1975).

Semantic networks typically represent static
facts about the world, such as Fido is a dog, a
dog is a mammal, and mammals have hair. In
general, this type of knowledge does not change
over time. Psychologists and AI researchers
realized that semantic networks did not account
for all the data. First, not all knowledge is in
small, static chunks. Memories are variable in
size and malleable in content. For example,
the memory of what I had for lunch today
might vary from nothing to a seven-course
meal. Second, the semantic network theory
does not explain how knowledge is incorpo-
rated into memory. Where does the informa-
tion come from? It is clear that we are not
born with an innate knowledge of the world.
At the least, we did not arrive here with
advanced knowledge of all our luncheon
menus.

To address these and other questions, Tulving
(1972, 1983) proposed a theory of episodic
memory as an adjunct to semantic memory.
Tulving described semantic and episodic
memory as two complementary information-
processing systems, both of which receive
information from perceptual and cognitive
systems, process portions of the information,
and communicate information to other
behavioral and cognitive systems.

Semantic and episodic memory, according
to Tulving, differ in the type of information

stored, autobiographical reference versus 
cognitive reference, retrieval conditions and
consequences, the volatility of stored infor-
mation; and interdependence.
More specifically,

Episodic memory receives and stores
information about temporally dated
episodes or events, and temporal-spatial
relations among these events. A perceptu-
al event can be stored in the episodic
system solely in terms of its perceptible
properties or attributes, and it is always
stored in terms of its autobiographical
reference to the already existing contents
of the episodic memory store. The act of
retrieval of information from the episodic
store, in addition to making the retrieval
contents accessible to inspection, also
serves as a special type of input into
episodic memory and thus changes the
contents of the episodic memory store.
(Tulving 1972, pp. 385–386)
Episodic memory provides an account of

representing and recalling larger chunks of
temporally related information—events,
scenes, occurrences, and stories. By contrast,
“semantic memory is the memory necessary
for the use of language. It is mental the-
saurus” (Tulving 1972, p. 386).

Conceptual Memory

In parallel with the identification of episodic
memory by psychologists, AI researchers
arrived at a similar theory for language-under-
standing tasks. Schank (1972, 1975a) and his
students developed natural language systems
for representing concepts and understanding
single sentences. A sentence such as “John ate
a hamburger” could be processed, paraphrased,
and translated to another language. The next
step was to process connected text—paragraphs
and stories. For this task, Schank (1975b) pro-
posed a conceptual memory that combined
semantic memory with Tulving’s episodic
memory:

The distinction between semantic
memory and episodic memory is a false
one. We shall argue that what must be
present is a lexical memory which con-
tains all of the information about words,
idioms, common expressions etc., and
which links these to nodes in a conceptu-
al memory, which is language free. We
believe that it is semantic memory rather
than episodic memory which is the mis-
leading notion. Once we change seman-
tic memory by separating out lexical
memory, we are left with a set of associa-
tions and other relations between con-

Case-based
reasoning is a
psychological
theory of
human 
cognition.
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cepts that could only have been acquired
by personal experience. We claim that
conceptual memory, therefore, is episod-
ic in nature. (Schank 1975b, pp.
255–256)
A key feature of Schank’s conceptual

memory is the notion that information is
derived from experience. Knowledge is not
innate. A theory of memory must account for
the acquisition of knowledge.

Scripts, Memory Organization Packets,
and Reminding

Schank and Abelson (1975, 1977) proposed
knowledge structures for representing episod-
ic information. Their primary knowledge
structure was the script. Scripts accounted for
information about stereotypical events, such
as going to a restaurant, taking a bus, or visit-
ing the dentist. In such common situations, a
person has a set of expectations concerning
the default setting, goals, props, and behaviors
of the other people involved. Scripts are anal-
ogous to Minsky’s (1975) frames, which were
proposed in the context of visual processing.
It is important to note that scripts are directly
related to autobiographical events. Scripts are
inherently episodic in origin and use. That is,
scripts arise from experience and are applied
to understand new events.

Scripts were proposed as a knowledge struc-
ture for a conceptual memory. The acquisi-
tion of scripts is the result of repeated
exposure to a given situation. For example,
children learn the restaurant script by going
to restaurants over and over again. As a psy-
chological theory of memory, scripts suggest-
ed that people would remember an event in
terms of its associated script. However, an
experiment by Bower, Black, and Turner
(1979) showed that subjects often confused
events that had similar scripts. For example, a
subject might mix up waiting room scenes
from a visit to a doctor’s office with a visit to
a dentist’s office.

These data required a revision in script
theory. What knowledge structures would
allow for such confusion? What was the
underlying process of remembering?

Schank (1979, 1980, 1982) postulated a
more general knowledge structure to account
for the diverse and heterogeneous nature of
episodic knowledge. This new structure was
the memory organization packet (MOP). MOPs
can be viewed as metascripts. For example,
instead of a dentist script or a doctor script,
there might be a professional-office-visit MOP

that can be instantiated and specified for
both the doctor and the dentist. This MOP

would contain a generic waiting room scene,
thus providing the basis for confusion
between doctor and dentist episodes.

More important than the MOP knowledge
structure was the new emphasis on the basic
memory processes of reminding and learning.
The early work of Bartlett (1932) on remem-
bering influenced the original design of scripts
for story comprehension (Schank 1975b). The
new focus on reminding raised additional
questions about how memory was organized
and indexed. Schank illustrated this phe-
nomenon with sample remindings, such as
the following, which were informally gathered
from colleagues and students:

The steak and the haircut.
X described how his wife would

never make his steak as rare as he liked it.
When this was told to Y, it reminded Y of
a time, 30 years earlier, when he tried to
get his hair cut in a short style in Eng-
land, and the barber would not cut it as
short as he wanted it.

The sand dollars and the drunk.
X’s daughter was diving for sand dol-

lars. X pointed out where there were a
great many sand dollars, but X’s daughter
continued to dive where she was. X asked
why. She said that the water was shallow-
er where she was diving. This reminded
X of the joke about the drunk who was
searching for his ring under the lamppost
because the light was better there even
though he had lost the ring elsewhere.
(Schank 1982, p. 47)
The remindings in these two stories have

little to do with the surface features of the
episodes. Cooking a steak and cutting hair are
hardly similar events, yet the stories are relat-
ed. These examples illustrate the fact that
memory has a complex structure and index-
ing that allows people to relate a new episode
to prior cases through thematic and abstract
categories.

Given this richly indexed structure, Schank
proposed a theory of learning based on
reminding. If we assume that new situations
or experiences will remind us of previous
cases and events, we can classify a new

Scripts were proposed as a
knowledge structure for a
conceptual memory.



episode in terms of past cases. The knowledge
of the past case, like a script, can guide our
behavior. We can rely on the past episode to
help us understand a new situation. For
example, the second time we ride in an air-
plane, we will be reminded of our first air-
plane trip. We can use this experience to
remind us to get a boarding pass, find our
seat, stow our luggage, fasten the seatbelt,
take some Dramamine, and so on.

However, when the new situation does not
conform to the prior case, we have a failure.
That is, we had an expectation based on a
prior event that did not occur in the new situ-
ation. Thus, we must classify this new situa-
tion as different from the previous episode.
We must remember this new experience. We
must learn. Schank (1981) termed this process
failure-driven learning. Returning to the air-
plane example, if we have flown several times
but then take the air shuttle for the first time,
we will have some surprises. The expectations
of having an assigned seat and buying our
ticket ahead of time fail. We must recognize
these discrepancies and account for them. We
must modify our knowledge structure for air-
plane rides so that the next time we take the
air shuttle, we will know better what to expect.

When we observe a discrepancy between
our predictions and some event, we have
something to learn. We need to revise our
knowledge structure. The mechanism for
updating our knowledge often requires expla-
nation. Schank (1986) noted that explanation
plays a central role in learning and intelli-
gence. He proposed an explicit knowledge
structure, explanation patterns (XPs), that is
used to generate, index, and test explanations
in conjunction with an episodic memory.

Process Model
I began with the intent of representing knowl-
edge, thus deriving a theory of memory to
account for episodic information. Scripts and
MOPs were postulated as knowledge structures
for representing experience. However, the
knowledge structures provide only part of the
answer. We must also specify the processes
involved in acquiring and accessing these
structures. We need a process model.

In figure 1 (after Riesbeck and Bain [1987]),
I present a flowchart that illustrates the basic
process of case-based reasoning and learning.
Boxes represent processes, and ovals represent
knowledge structures. The process of inter-
preting and assimilating a new event breaks
down into the following steps, starting with
an input event, as shown at the top of the
flowchart:

1. Assign Indexes: Features of the new
event are assigned as indexes characterizing
the event. For example, our first air shuttle
flight might be characterized as an airplane
flight.

2. Retrieve: The indexes are used to retrieve
a similar past case from memory. The past
case contains the prior solution. In our exam-
ple, we might be reminded of a previous air-
plane trip.

3. Modify: The old solution is modified to
conform to the new situation, resulting in a
proposed solution. For our airplane case, we
would make appropriate modifications to
account for changes in various features such
as destination, price, purpose of the trip,
departure and arrival times, weather, and so on.

4. Test: The proposed solution is tried out.
It either succeeds or fails. Our airplane remind-
ing generates certain expectations, not all of
which can be met.

5. Assign and Store: If the solution succeeds,
then assign indexes and store a working solu-
tion. The successful plan is then incorporated
into the case memory. For a typical airplane
trip, there will be few expectation failures
and, therefore, little to make this new trip
memorable. It will be just one more instance
of the airplane script.

6. Explain, Repair, and Test: If the solution
fails, then explain the failure, repair the work-
ing solution, and test again. The explanation
process identifies the source of the problem.
The predictive features of the problem are
incorporated into the indexing rules to antici-
pate this problem in the future. The failed
plan is repaired to fix the problem, and the
revised solution is then tested. For our air
shuttle example, we realize that certain expec-
tations fail. We learn that we do not get an
assigned seat and that we do not have to pay
ahead of time. We might decide that taking
the air shuttle is more like riding on a train.
We can then create a new case in memory to
handle this new situation and identify predic-
tive features so that we will be reminded of
this episode the next time we take the shuttle.

In support of this process are the following
types of knowledge structures, represented by
ovals in the figure:

Indexing Rules: Indexing rules identify the
predictive features in the input that provide
appropriate indexes into the case memory.
Determining the significant input features is 
a persistent problem (Schank, Collins, and
Hunter 1986).

Case Memory: Case memory is the episodic
memory, which comprises the database of
experience.

Articles

SPRING 1991    45



Articles

46 AI MAGAZINE

Similarity Metrics: If more than one case is
retrieved from episodic memory, the similarity
metrics can be used to decide which case is
more like the current situation. For example,
in the air shuttle case, we might be reminded
of both airplane rides and train rides. The
similarity rules might initially suggest that we
rely on the airplane case.

Modification Rules: No old case is going to
be an exact match for a new situation. The
old case must be modified to fit. We require

knowledge about what kinds of factors can be
changed and how to change them. For the
airplane ride, it is acceptable to ride in a dif-
ferent seat, but it is usually not advisable to
change roles from passenger to pilot.

Repair Rules: Once we identify and explain
an expectation failure, we must try to alter our
plan to fit the new situation. Again, we have
rules for what kinds of changes are permissible.
For the air shuttle, we recognize that paying
for the ticket on the plane is an acceptable
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Figure 1. Case-Based Reasoning Flowchart.



change. We can generate an explanation that
recognizes an airplane ride as a type of com-
mercial transaction and suggests that there
are alternative acceptable means of paying for
services.

Psychological Issues
The process model depicted in figure 1 is not
meant to stipulate the necessary and sufficient
conditions for simulating cognitive behavior.
Rather, it illustrates a variety of salient issues
in case-based reasoning.

I can summarize the psychological assump-
tions of the case-based reasoning paradigm as
follows:

First, memory is predominantly episodic.
The primary content of memory is experience.

Second, memory is richly indexed. Experi-
ences are related to each other in many com-
plex and abstract ways.

Third, memory is dynamic. The organization
and structure of memory changes over time.

Fourth, experience guides reasoning. We
interpret and understand new situations in
terms of prior experience.

Fifth, learning is triggered by failure. When
an expectation from a previous case fails to
predict a new situation, we learn by incorpo-
rating the new episode into memory.

Similarly, we can present the research ques-
tions that arise from these respective assump-
tions:

First, what makes up a case? What is the
content and structure of an episode in
memory? What is the relationship between
episodic memory and other types of knowl-
edge? How can we represent case memory?

Second, how is memory organized? What
set of indexes is appropriate for classifying
cases? What search algorithms complement
the structure of memory? What are the index-
ing rules?

Third, how does memory change? What
leads to forgetting? How does the memory of
cases and stories degrade? How do the case
memory and indexing rules change over time?

Fourth, how can we adapt old solutions to
new problems? How can we recognize a new
situation as similar to a previous episode?
What are the similarity metrics and modifica-
tion rules?

Fifth, what leads us to reject or accept a
new case that is in conflict with a previous
case? How do we explain the differences
between episodes? How can we learn from
mistakes? What are the repair rules?

It might seem that I present more questions
than answers. However, my basic premise is
that case-based reasoning provides a founda-
tion for a broad range of research. It is appro-

priate and, indeed, desirable to stimulate
research through the principled identification
and examination of cognitive phenomena. I
now review the history of case-based reason-
ing in AI research.

Computer Models
Many of the principles of case-based reason-
ing can be found in Sussman’s (1975) HACKER

program. HACKER’s answer library was similar
to a case memory, and its debugging process
was analogous to plan repair. Furthermore,
the underlying cognitive premise of the
HACKER model was learning through experi-
ence, clearly at the heart of the case-based
reasoning paradigm. The episodes for HACKER

were restricted to computer programs rather
than more general human experiences.

The first computer programs to use scripts
were SAM (script applier mechanism) (Culling-
ford 1978) and FRUMP (fast reading under-
standing memory program) (DeJong 1979).
These programs read newspaper stories and
performed various language tasks, such as
translation, summarization, and question
answering. These programs contained static
knowledge structures that were used in pro-
cessing stories. The content of the programs’
memory did not change as a result of process-
ing—in spite of the memory in FRUMP’s name.

These programs were a successful demon-
stration of the natural language processing of
stories and of scripts as a knowledge structure.
Understanding a story entailed processing an
episode or event. Scripts provided a feasible
means for representing such episodic knowl-
edge. However, the programs failed to demon-
strate knowledge acquisition. The scripts of
SAM and FRUMP were innate, as it were, having
been written by programmers. The programs
used the scripts to guide the processing of sto-
ries, but the programs did not learn their
scripts through experience.

Furthermore, the programs did not remem-
ber anything. SAM and FRUMP could read the
same story 20 times in a row and not recog-
nize that they previously saw this story. Clear-
ly, a program that modeled human memory
should remember its own experience.

Two programs that addressed the issue of
memory organization for episodic knowledge
were CYRUS and IPP. CYRUS (Kolodner 1980;
Schank and Kolodner 1979; Kolodner 1984;
Kolodner and Cullingford 1986) simulated an
episodic memory of events relating to former
Secretary of State Cyrus Vance. The program
answered questions about a range of autobio-
graphical episodes, such as meetings, diplo-
matic trips, and state dinners. CYRUS was the
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Expert Systems: Rules versus Cases

The programs from the late 1970s that mod-
eled episodic memory were largely natural
language–processing programs. By this time,
another topic of AI research had developed
into a primary application area, namely, rule-
based expert systems. Early programs such as
DENDRAL (Buchanan, Sutherland, and Feigen-
baum 1969) and MYCIN (Shortliffe 1976)
demonstrated the possibility of simulating
the problem-solving ability of human experts,
such as chemists or physicians. The success of
these and other programs stimulated interest
in developing expert systems for a vast number
of technical applications.

The basic unit of knowledge in these expert
systems was the rule. A rule comprised a con-
ditional test-action pair, for example, if con-
dition, then action. Several hundred rules
might be required for a typical diagnostic or
repair task.

Building rule-based or production systems
became a popular enterprise. As experience
with expert systems increased, so did aware-
ness of some basic shortcomings of the rule-
based system paradigm.

The first problem was knowledge acquisition.
To build an expert system, a computer pro-
grammer (or knowledge engineer) had to sit
with the human expert to determine what
rules were appropriate for the given domain.
This knowledge was difficult to uncover. The
human expert could not simply make a list of
the hundreds of rules s/he used to solve prob-
lems. Often, the informant articulated a set of
rules that in fact did not accurately reflect
his(her) own problem-solving behavior. For
these reasons, this difficult knowledge-acqui-
sition process became known as a bottleneck
in constructing rule-based expert systems
(Hayes-Roth, Waterman, and Lenat 1983).

Second, the rule-based systems did not
have a memory. That is, just as SAM and FRUMP

would not remember news stories that they
had already read, rule-based systems would
not remember problems that they had
already solved. For example, if a medical
diagnosis program were presented with a
patient with a certain set of symptoms, the
program might have fired dozens or hun-

first program to model episodic storage and
retrieval strategies. Although the focus of
CYRUS was on memory organization and
indexing, an attempt was made to integrate
CYRUS with the FRUMP newswire program to
provide an automatic update for CYRUS’s
memory (Schank, Kolodner, and DeJong
1980). The combined system, Cyfr, read news
stories about the secretary of state and inte-
grated the events into CYRUS’s episodic
memory.

IPP (Lebowitz 1980) was a prototype case-
based reasoning and learning program. IPP

read news stories about terrorist acts, such as
bombings, kidnappings, and shootings. The
program started with generic knowledge
about such acts and, after reading hundreds
of stories, developed its own set of generaliza-
tions about terrorism that it could apply to
understanding new stories. For example, IPP

read the following two stories about terrorism
by the Irish Republican Army (IRA) in North-
ern Ireland:

Story: XX1 (4 12 79) Northern-Ireland
(Irish Republican Army guerillas ambushed
a military patrol in West Belfast yesterday
killing one British soldier and badly
wounding another Army headquarters
reported) 

Story: XX2 (11 11 79) Northern-Ireland
(A suspected Irish Republican Army gunman
killed a 50-year-old unarmed security guard
in East Belfast early today the police said)
The program noticed that in each case, the

victims were establishment, authority figures
(policemen and soldiers) and that the terror-
ists were IRA members. IPP formed a general-
ization based on this similarity. It then read
the following story about another shooting
in Northern Ireland:

Story: XX3 (1 12 80) Northern-Ireland
(A gunman shot and killed a part-time
policeman at a soccer match Saturday
and escaped through the crowd to a wait-
ing getaway car ^comma^ police said.
Based on its prior experience, IPP inferred

that the unidentified gunman in story XX3 is
an IRA member. This inference might or might
not be correct, but it demonstrates the ability
to relate previous episodes to new situations.
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dreds or thousands of rules to come up with a
diagnosis or treatment. Subsequently, if the
program were presented with another patient
displaying the same set of symptoms, the pro-
gram fired the same set of rules. The program
did not remember having previously seen a
similar patient. One might state that this
observation is of little consequence beyond
some argument for computational efficiency.
However, efficiency can be a significant con-
cern in many situations. Moreover, a program
without a memory cannot remember its mis-
takes and, thus, is destined to repeat them.
Thus, accuracy and efficiency are related
problems for a system without a memory.

Third, rule-based systems were not robust.
If a problem were presented to the system
that did not match any of the rules, the pro-
gram could not respond. The system’s knowl-
edge base was limited to its rules, so if none
of the rules could apply, the system had no
alternatives. It was brittle.

We can compare the behavior of the rule-
based expert system with the behavior of the
human expert. First, the central feature of
expertise is experience. An expert is someone
who has vast, specialized experience; has wit-
nessed numerous cases in the domain; and
has generalized this experience to apply it to
new situations. When confronted with a
problem, the expert is reminded of previous,
similar problems and their respective resolu-
tions. It might be that the expert has so many
exemplars for a given problem that the expe-
riences have been distilled into a general rule
to be applied. Still, this general rule has its
roots in actual experience.

Thus, the human expert derives knowledge
from experience. The basic unit of knowledge
is not the rule but the case. Human experts
acquire knowledge by assimilating new cases,
either first hand or through reports from
others. Furthermore, it is easier for people to
articulate knowledge as experience than rules.
This observation suggests the psychological
hypothesis that expert knowledge might, in
fact, primarily be encoded as episodes rather
than rules. Contrast this acquisition of knowl-
edge from experience with the knowledge-
acquisition bottleneck given as the first
problem of rule-based systems.

Second, human experts remember their own
experience. The doctor who fails to effectively
treat a case should remember this case when
another patient presents the same symptoms.
The doctor can learn from his(her) mistakes.

Third, human experts can reason by analogy.
If our doctor sees a patient who presents symp-
toms that are unlike anything in his(her)
experience, the doctor does not need to

simply give up. The doctor might be remind-
ed of various previous cases that were similar
in one way or another and devise a treatment
accordingly. Just as our first air shuttle trip
might remind of us of both an airplane trip
and a train ride, the doctor might be able to
arrive at a composite diagnosis based on dif-
ferent earlier cases.

These arguments suggest an alternative to
the rule-based system: a case-based system.
An expert system that can extract information
from its experience can grow and acquire
knowledge on its own. This ability is crucial
for the long-range success of the expert system
concept in AI. The automated reasoning power
can be applied to so many tasks that it is nec-
essary to develop a mechanism that can direct-
ly assimilate new knowledge from experience.

The technology of case-based systems direct-
ly addresses problems found in rule-based sys-
tems: First is knowledge acquisition. The unit
of knowledge is the case, not the rule. It is
easier to articulate, examine, and evaluate
cases than rules. Second is performance expe-
rience. A case-based system can remember its
own performance and modify its behavior to
avoid repeating prior mistakes. Third are adap-
tive solutions. By reasoning from analogy
with past cases, a case-based system should be
able to construct solutions to novel problems.

The scientific research issues previously
given for case-based reasoning models also
directly apply to the technological research
issues for case-based systems. We must answer
these same questions in building case-based
systems:

First, what makes up a case? How can we
represent case memory?

Second, how is memory organized? What
are the indexing rules?

Third, how does memory change? How do
the case memory and indexing rules change
over time?

Fourth, how can we adapt old solutions to
new problems? What are the similarity metrics
and modification rules?

Fifth, how can we learn from mistakes?
What are the repair rules?

At this point, the astute reader might ask
why case-based systems use rules for indexing,
modification, and repair because rules seem
to be at the heart of so many problems with
rule-based systems. There are two answers.
First, the rules in case-based systems do not
make up the primary knowledge base but,
rather, independent support modules. Thus,
there should be less complexity. However, the
theory of case-based reasoning suggests that
these rules would themselves be acquired by
experience from cases through a recursive

CYRUS and IPP

can be viewed
as prototypes
for case-based
systems.
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For example, when presented with the task
of creating a strawberry souffle, CHEF resorts
to modifying a vanilla souffle recipe. However,
simply adding strawberries to the standard
recipe keeps the souffle from rising properly.
CHEF discovers the source of the problem in
the excess liquid from the berries and decides
that the best remedy is to add more whipped
egg whites. This solution fixes the recipe. CHEF

never repeats this mistake and can use this
experience in other recipes, such as a raspber-
ry souffle.

CHEF provides one set of answers for our
cardinal research questions:

First, what makes up a case? For CHEF, cases
are recipes—a particular set of plans. CHEF sug-
gests the feasibility of looking at planning as
case-based reasoning.

Second, how is memory organized? CHEF’s
memory is indexed in many ways, including
goals, plan failures, and plan interactions.

Third, how does memory change? CHEF

learns from mistakes. When a failure occurs,
CHEF must identify the source of the failure,
fix the plan, and remember the result. CHEF

tries not to make the same mistake twice.
Fourth, how can we adapt old solutions to

new problems? CHEF can create new recipes by
starting with old recipes. In selecting an old
plan, CHEF tries to match as many of the new
plan’s goals as possible. The modification to
the recipe is driven first by a rudimentary
knowledge of the ingredients and then by
trial-and-error testing.

Fifth, how can we learn from mistakes? CHEF

can identify errors when it observes that a
recipe does not satisfy its intended goals. At
this point, CHEF must find the source of the
error and apply a set of strategies for modifying
the plan. Many of CHEF’s modification strategies
are domain specific, relating to the substitu-
tion or preparation of cooking ingredients.

As an ongoing research enterprise, case-based
reasoning finds new ways of asking and
addressing these questions. I now review a
number of case-based systems in a variety of
domains.

Another early case-based expert system is
Simpson’s MEDIATOR (Kolodner, Simpson, and
Sycara-Cyranski 1985; Simpson 1985). The
program acts as an advisory system for dispute
mediation. MEDIATOR is presented with a dis-
pute situation between two parties and sug-
gests a resolution based on its experiential
knowledge base. The program addresses prob-
lems of similarity measures, memory struc-
tures for representing and retrieving cases,
adaptation, and recovery from failure.

For example, when faced with the dispute
between Israel and Egypt over control of the

application of the case-based reasoning algo-
rithm. That is, the system would derive rules
for indexing, modification, and repair from
cases and experience. Early case-based sys-
tems have not addressed this problem, but
the basic paradigm suggests this approach.

The technology of case-based systems is an
instantiation of the psychological theories of
case-based reasoning. CYRUS and IPP can be
viewed as prototypes for case-based systems.
They began to address the fundamental ques-
tions of case representation and indexing pre-
viously posed. In the 1980s, researchers began
explicitly to develop case-based systems.

Case-Based Systems

To see how the technology of case-based sys-
tems developed, we first look at Hammond’s
(1984, 1986, 1989) CHEF program. Unlike
CYRUS and IPP, CHEF is not based in a natural
language-understanding task but instead
focuses on planning. CHEF develops new plans
based on its own experience in the domain of
cooking. When faced with the task of prepar-
ing a dish for which it has no appropriate
plan (recipe), CHEF modifies an existing plan
to fit the new situation and then tries to
detect and correct any errors that result. CHEF

learns from its own mistakes.
CHEF demonstrates how episodic knowledge

can be used to guide planning and avoid past
failures. When presented with a problem—
how to prepare a certain dish—the program is
reminded of previous related recipes. It modi-
fies the most similar previous recipe to fit the
new requirements and then tries out the new
recipe. CHEF tests the recipe through a simula-
tion involving rules that specify the physical
effects of each step of the cooking process.
The results are then examined to see if they
match the goals of the intended dish. If the
program recognizes a failure, it then tries to
analyze and explain the failure through a
process of reasoning by asking questions.
Finally, the program modifies the recipe in
light of its explanation to correct the failure.
This case-based planning process closely fol-
lows the flowchart in figure 1.

Articles

50 AI MAGAZINE

CHEF demonstrates how episodic knowledge
can be used to guide planning and avoid past
failures.



Sinai, MEDIATOR first selects the precedent of
the Korean conflict in which the disputed ter-
ritory was equally divided. This proposal fails
in the case of the Sinai because Israel’s goal is
one of national security, but Egypt is concerned
with territorial integrity. In the process of
explaining the failure, MEDIATOR is reminded
of the Panama Canal treaty, which divided
the disputed territory in another manner,
ceding economic and political control to
Panama, with the United States retaining mil-
itary control. MEDIATOR then proposes this case
as an appropriate precedent for the Sinai dispute.

JUDGE (Bain 1984; Bain 1986) applies the
case-based approach to legal reasoning in the
context of sentencing convicted criminals.
The program simulates the process of a judge
deciding the appropriate sentence to mete out
based on the judge’s experience. The follow-
ing is a brief example from JUDGE (Bain 1986).
The program is given a new case, CRIME8,
which has features that remind JUDGE of a pre-
vious assault case, CRIME1. JUDGE compares
the two cases to decide what sentence should
be imposed in the new case. The program
explains its reasoning as it goes along:

CRIME8 Facts:
First, Terry struck Sam with his fists

several times.
Sam was only slightly hurt. 

[Interpreted as unprovoked-violation]

Next, Sam struck Terry with his fists
several times. 

Terry was only slightly hurt. 
[Interpreted as parity-self-defense with

an achieved-result]

Finally, Terry struck Sam with his fists
several times.

Sam received a concussion. 
[Interpreted as parity-retaliation with a

violative-accidental-result.]

The only thematically similar previous
situation in memory was CRIME1. CRIME1
contained a similar final intention and result
interpretation as CRIME8.

Comparing CRIME1 from memory
with the current input, CRIME8…

The old crime, CRIME1, once again,
involved the following: 

First, Randy struck Chuck with his fists
several times. 

Chuck was only slightly hurt. 
[Interpreted as unprovoked-violation]

Next, Chuck struck Randy with his fists
several times. 

Randy was only slightly hurt. 
[Interpreted as parity-self-defense with

an achieved-result]

Then, Randy slashed at Chuck with a
knife one time. 

Chuck’s skin was slightly cut. 
[Interpreted as escalated-retaliation

with a bungled-result.]

Next, Chuck slashed at Randy with a
knife one time. 

Randy’s skin was slightly cut. 
[Interpreted as parity-self-defense with

a bungled-result.]

Finally, Randy stabbed Chuck with a
knife several times. 

Chuck died. 
[Interpreted as escalated-retaliation

with an achieved-result]

The result where Chuck was killed was
worse than the one in which Sam received
a concussion. Not only was the outcome in
the newer situation accidental, but Randy
both intended and caused more harm than
Terry.

The intent of Randy, the offender in
the older crime, to act repeatedly to stab
Chuck to death was more severe than that
of Terry, the other offender, to act repeated-
ly to hit Sam. In addition, although neither
actor’s intentions were justified, Randy
escalated the level of violence, while Terry
did not.

Comparison finished with result that
the old crime, CRIME1, was worse.

The sentence originally given for
CRIME1, for violation of murder, was a
term of imprisonment of not less than 40
years nor more than 50 years to be served
in the state’s prison. Since the circumstances
of CRIME1 are found to be worse than
CRIME8, due to more severe actions and
results at the end of the crime, the offender
will get a sentence which is more lenient
than the sentence for CRIME1, relative to
the crime of assault in the second degree.
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Program Year Domain Task

CYRUS 1980 Diplomacy Memory organization and retrieval
IPP 1980 Terrorism Story understanding/learning
MEDIATOR 1985 Mediation Case-based problem solving
JUDGE 1986 Law Case-based assessment
CHEF 1986 Cooking Case-based planning/learning
HYPO 1987 Law Case-based reasoning

Table 1. Early Case-Based Systems.



becomes assimilated into JUDGE’s case library
for future use.

The HYPO program (Ashley 1987; Rissland
and Ashley 1988) is another legal reasoning
system. Developed at the University of Mas-
sachusetts at Amherst, HYPO analyzes legal
problems in domains such as tax law and
trade secrets. Given a description of a legal
dispute, HYPO, like any good lawyer, can provide
arguments, supported by appropriate legal
precedents, on both sides of the case. HYPO’s
case library comprises actual legal cases. A key
focus of the HYPO system is assessing the simi-
larity between the problem situation and rele-
vant cases in the knowledge base.

Table 1 summarizes these early programs,
all of which represent completed Ph.D. research.
Recent work in case-based reasoning has pro-
ceeded apace, reflecting a widespread and
growing interest in the case-based paradigm.

The sentence to be given for CRIME8,
for violation of assault in the second
degree as defined in Section 53A-60 in
the Connecticut penal code, will be a
term of imprisonment of not less than 3
years to be served in the state’s prison. The
maximum period of incarceration allowed
for violation of this statute is 5 years.

This example illustrates some of the
main aspects of case-based reasoning. First,
JUDGE has a case library comprising an episod-
ic memory of previously adjudicated crimes.
Second, new cases are analyzed to provide
indexes for retrieving past cases. Third, JUDGE

can compare the new case with the old case
to determine how the new situation might
require modification of the prior sentence.
Fourth, JUDGE provides an explanation of its
reasoning by explicit analysis and compari-
son of the two cases. Finally, the new case
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Program Citation Site Domain Task

PLEXUS Alterman 1986 Berkeley Travel Adaptive planning
CBD Hammond & Hurwitz 1988 Chicago Machines Case-based diagnosis
TRUCKER Marks et al 1988 Chicago Scheduling Pluralistic planning
ROENTGEN Berger 1989 Chicago Medicine Case-based planning
CYCLOPS Navinchandra 1988 CMU Landscaping Design problem solving
PERSUADER Sycara 1988 CMU Mediation Plan adaptation and repair
PRODIGY Carbonell & Veloso 1988 CMU Algebra Derivational analogy
CBR Shell Riesbeck 1988 CSI Tool Programming shell
JULIA Shin 1988 GA Tech Cooking Analogical reasoning
MEDIC Turner 1988 GA Tech Medicine Diagnostic reasoning
PARADYME Kolodner 1988 GA Tech Cooking Parallel memory retrieval
CLAVIER Mark 1989 Lockheed Autoclave layout Case-based reasoning
CASEY Koton 1988 MIT Medicine Reasoning about  evidence
SMARTplan Koton 1989 MITRE Scheduling Resource allocation
n/a Wall et al., 1988 TI Military Tactical planning
OGRE Donahue 1989 TI Tool Reasoning shell
JOHNNY Stanfill 1988 TMC Reading Memory-based reasoning
PHI-PSI Zhang & Waltz 1989 TMC Protein structure Memory-based reasoning
LAWCLERK Selfridge & Cuthill 1989 UConn Law Cross-context reminding
CBS Bradtke & Lehnert 1988 UMass Puzzles Case-based search
TA Williams 1988 UMass Programming Case-based learning
CABARET Skalak 1989 UMass Tool Reasoning shell
PROTOS Bareiss 1988 UTexas Medicine Exemplar-based learning
GREBE Branting 1989 UTexas Law Exemplar-based explanation
ANON Owens 1988 Yale Proverbs Indexing prototypical cases
DMAP Riesbeck & Martin 1985 Yale Economics Direct memory access parsing
IVY Hunter 1989 Yale Medicine Case-based diagnosis
SWALE Kass & Leake 1988 Yale Post-mortem Case-based explanations

Table 2. Recent Case-Based Research Projects.



Just as law seemed a natural domain for
early case-based reasoning systems, medicine
also proved an attractive subject. Medical
education places great emphasis on learning
from experience through internships and resi-
dencies in which doctors are exposed to a
wide range of patients, symptoms, diseases,
and treatments. The basic patient episode is 
a case.

PROTOS (Bareiss 1988; Bareiss, Porter, and
Wier 1988), developed at the University of
Texas, reasons from cases in the domain of
clinical audiology (hearing disorders). PROTOS

was trained with 200 clinical cases from the
Baylor College of Medicine. A case consists of
the symptoms reported by the patient, the
patient history, and the results of routine
tests. When presented with a new case, PROTOS

tries to match it against previous cases to clas-
sify the new case and arrive at a diagnosis.
Cases can be grouped under exemplars based
on how prototypical their features are. In the
training set, PROTOS learned 24 diagnostic cat-
egories and 120 exemplars. Following train-
ing, PROTOS was given a set of 26 test cases on
which it scored over 90-percent accuracy.

Recent case-based research projects are sum-
marized in table 2. This list is not exhaustive,
merely illustrative. These efforts demonstrate
a wide range of domains and research issues
that have flowed from the case-based reason-
ing paradigm.

Summary
In this article, I reviewed some of the begin-
nings, motivations, and trends in case-based
reasoning research. Case-based reasoning
grew out of psychological models of episodic
memory and the technological impetus of AI.
In recent years, interest in case-based reasoning
has grown across the country. The two long-
term agendas of case-based reasoning remain:
Develop a scientific model of human memory,
and build robust computer programs that can
assimilate experiences and adapt to new situa-
tions. As the results of the past few years seem
to demonstrate, these enterprises appear to be
synergistic.
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