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Abstract

Testing circuits is a stage of the production process that is becoming more
and more important when a new product is developed. Test and diagnosis
techniques for digital circuits have been successfully developed and automated.
But, this is not yet the case for analog circuits. Even though there are plenty of
methods proposed for diagnosing analog electronic circuits, the most popular
are the fault dictionary techniques. In this thesis some of these methods,
showing their advantages and drawbacks, are analyzed.

During these last decades automating fault diagnosis using Artificial Intel-
ligence techniques has become an important research field. This thesis devel-
ops two of these techniques in order to fill in some gaps in fault dictionaries
techniques. The first proposal is to build a fuzzy system as an identifica-
tion tool. The results obtained are quite good, since the faulty component
is located in a high percentage of the given cases. On the other hand, the
percentage of successes when determining the component’s exact deviation is
far from being good.

As fault dictionaries can be seen as a simplified approach to Case-Based
Reasoning, the second proposal extends the fault dictionary towards a Case
Based Reasoning system. The purpose is not to give a general solution, but
to contribute with a new methodology. This second proposal improves a fault
dictionary diagnosis by means of adding and adapting new cases to develop a
Case Based Reasoning system. The case base memory, retrieval, reuse, revise
and retain tasks are described. Special attention to the learning process is
taken.

Several circuits are used to show examples of the test methods described
throughout the text. But, in particular, the biquadratic filter is used to test
the proposed methodology because it is defined as one of the benchmarks in
the analog electronic diagnosis domain. The faults considered are parametric,
permanent, independent and simple, although the methodology can be ex-
trapolated to catastrophic and multiple fault diagnosis. The method is only
focused and tested on passive faulty components, but it can be extended to
cover active devices as well.
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Resum

El test de circuits és una fase del procés de producció que cada vegada pren
més importància quan es desenvolupa un nou producte. Les tècniques de test i
diagnosi per a circuits digitals han estat desenvolupades i automatitzades amb
èxit, mentre que aquest no és encara el cas dels circuits analògics. D’entre tots
els mètodes proposats per diagnosticar circuits analògics els més utilitzats són
els diccionaris de falles. En aquesta tesi se’n descriuen alguns, tot analitzant-
ne els seus avantatges i inconvenients.

Durant aquests últims anys, les tècniques d’Intel·ligència Artificial han
esdevingut un dels camps de recerca més importants per a la diagnosi de
falles. Aquesta tesi desenvolupa dues d’aquestes tècniques per tal de cobrir
algunes de les mancances que presenten els diccionaris de falles. La primera
proposta es basa en construir un sistema fuzzy com a eina per identificar. Els
resultats obtinguts son força bons, ja que s’aconsegueix localitzar la falla en
un elevat tant percent dels casos. Per altra banda, el percentatge d’encerts
no és prou bo quan a més a més s’intenta esbrinar la desviació.

Com que els diccionaris de falles es poden veure com una aproximació sim-
plificada al Raonament Basat en Casos (CBR), la segona proposta fa una ex-
tensió dels diccionaris de falles cap a un sistema CBR. El propòsit no és donar
una solució general del problema sinó contribuir amb una nova metodologia.
Aquesta consisteix en millorar la diagnosis dels diccionaris de falles mitjançant
l’addició i l’adaptació dels nous casos per tal d’esdevenir un sistema de Rao-
nament Basat en Casos. Es descriu l’estructura de la base de casos aix́ı com
les tasques d’extracció, de reutilització, de revisió i de retenció, fent èmfasi al
procés d’aprenentatge.

En el transcurs del text s’utilitzen diversos circuits per mostrar exem-
ples dels mètodes de test descrits, però en particular el filtre biquadràtic és
l’utilitzat per provar les metodologies plantejades, ja que és un dels bench-
marks proposats en el context dels circuits analògics. Les falles considera-
des son paramètriques, permanents, independents i simples, encara que la
metodologia pot ser fàcilment extrapolable per a la diagnosi de falles múltiples
i catastròfiques. El mètode es centra en el test dels components passius, encara
que també es podria extendre per a falles en els actius.
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Chapter 1

INTRODUCTION

1.1 Scope of the Thesis

There have been some Artificial Intelligence applications developed for diag-
nosing electronic circuits, but much remains to be done in this field, above
all in the analog domain. The purpose of this thesis is not to give a general
solution but to contribute with a new methodology. Our aim is to develop a
methodology for analog circuit diagnosis based on improving the well-known
fault dictionary techniques by means of adding or adapting new cases to de-
velop a Case Based Reasoning system. As an example, two fault dictionary
methods have been studied in detail. They have been extended for tolerance
coverage, and then applied to a biquadratic filter. The faults considered are
parametric, permanent, independent and simple.

In this thesis, Fault Detection and Isolation for linear analog circuits are
the only tasks addressed, although the methodology can be extrapolated to
multiple faults and non linear circuits. The faults are supposed to happen in
the passive components. Nevertheless it is not difficult to consider other possi-
ble faulty parameters, such as an IC amplifier gain or an IC input impedance,
for example.

1
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The proposed diagnosis methodology can be used for other processes diffe-
rent to electronic circuits, taking into account the adequate set of measures
necessary for diagnosing the system under test.

On the other hand, even though having the model of the system helps
enormously when generating the initial data set, it is not strictly necessary.
Data obtained from the real system can be used instead.

1.2 A Brief History of Circuit Testing

The first methods that applied fault detection and location to electronic cir-
cuits appeared during the sixties. From that moment on, many new applica-
tion technologies and methodologies have emerged. Initially, electronic circuits
were basically analog, their components were mounted on a board and they
were tested by means of a bed of nails tester, allowing access to almost all
input and output component voltages. Because of the technological advances,
and the possibility of integrating transistors on a large scale, electronic cir-
cuits were made up on a chip. So, bigger and more complex global circuits
could be built. But the accessibility to the internal IC (Integrated Circuit)
nodes for fault detection and location purposes became more difficult. This
is the reason for the development of a great deal of methods and technologies
for testing these ICs during the 70s and 80s decades (Milor, 1998).

At the end of the 70s, digital circuits were being developed at vertiginous
speed, and due to their growing importance and the easiness in testing them
compared to the analog ones, new methods and improvements in testing ana-
log circuits decreased in favor of the digital ones. One of the main problems of
this period was computing speed. Most of the analog methodologies required
a considerable volume of data management, and the computers were too slow
to obtain satisfactory results.

But in the 80s and 90s, analog circuit tests gained importance once more.
This was due to the explosion of the telecommunications market, multimedia
and automotive electronics requiring mixed signal devices to be designed.
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That is, integrating digital and analog components on a single chip. Al-
though almost all the circuits are designed using digital technology, a lot of
them have analog components (Wey, 1996), (Mir et al., 1996), (Milor, 1998).
This is due to the analog nature of the input and output signals they have
to deal with (audio signals, signals from sensors, etc.). So, analog interfaces
such as filters, AD/DA converters, PLL (Phase Locked Loop), modulators
and demodulators were needed.

As circuits become daily more complex and larger, more complexity in test
design is needed. The total cost of the circuits is augmented by a significant
percentage due to costs in the test stage (Chandramouli and Pateras, 1996),
(Milor and Sangiovanni-Vicentelli, 1994), (Murray and Hayes, 1996) and the
time the test takes. According to (Pang and Starzyk, 2002), the high quality
analogue tests are the most expensive in terms of both test development costs
and test implementation. In the commercial market, up to 80% of the test
costs are on account of the analogue functions that typically occupy only
around 10% of the chip area.

Normally, a mixed-signal circuit test begins with the analog part, goes on
to the digital part and finishes with some system tests to check the at-speed
interaction between components. To date, the majority of time and cost
associated with testing a mixed-signal system has been attributed to testing
its analog portion, above all due to the difficulty in accessing it, normally
requiring the addition of extra pins (Worsman and Wong, 2000).

Nowadays, the trend is to design circuits that are prepared for the tests.
This technique is called Design For Testability (DFT ) (Wey, 1996), (Schöber,
1995),(Novak and Biasizzo, 1994). There are several DFT structures, as for
example BIST (Built-in Self Test) and the standard IEEE 1149.x. These
techniques introduce special devices into the IC, that jointly with the addition
of a few extra pins, make the test process more feasible and with access to
almost all the internal nodes. These techniques allow the costs of the test
phase to be reduced, and avoid the necessity of introducing extra expensive
external equipment. At the same time, the test implementation is simplified
because there is a certain methodology to follow.

Although the BIST technology has been investigated for 20-25 years, it
has only recently been transferred to the industrial world. For example IBM
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and AT&T have developed their own software to apply these techniques
(Chandramouli and Pateras, 1996). In the research field there is a lot of
bibliography describing implementation, new structures and methods using
the BIST technique and the IEEE 1149.x standard (Chandramouli and Pa-
teras, 1996),(Chatterjee et al., 1996),(Murray and Hayes, 1996),(Gomez et
al., 1996), but mostly applied to digital and integrated circuits. In particu-
lar the standard IEEE 1149.4 redefines some aspects in order to take into
account the mixed-signal nature of the present IC signals, as described in
(Kac et al., 2003). But in spite of the advances in this domain, there is no
widely accepted paradigm for analog testing or fault diagnosis even with the
introduction of the IEEE 1149.4 standard for the mixed-signal test bus.

Test and diagnosis techniques for digital circuits have been successfully de-
veloped and automated. But, this is not yet the situation for analog circuits
(Mir et al., 1996), (Fanni et al., 1999). Different papers show the complexity
of testing of this kind of circuits (Bandler and Salama, 1985),(Dague, 1994).
But the interest in testing them is evident. Lucas in (Lucas, 1996), demon-
strating the importance of this subject for the industrial world, presented an
industrial development for auto-testing circuits, the DVT-100. In (Kaminska
et al., 1997) the IEEE Mixed-Signal Technical Activity Committee proposed
a common set of benchmarks for analog and mixed-signal circuits for use in
research and analog fault modelling, test generation, and evaluation of DFT
and BIST methodologies. The company Intusoft has launched the Test De-
signer Software, a package that allows simulating analog and digital faults,
constructing a fault-tree and giving diagnoses for the components. The dis-
advantage is that this software is not open and only allows implementing
separate fault dictionary based techniques.

On the other hand, Artificial Intelligence techniques (AI) did not play a
major role during the first years of circuits testing. Some expert systems were
developed for detecting board failures, but they were not successful at diag-
nosing components because of the large number of rules they needed, and the
significantly large bottleneck in translating the expert knowledge into rules.
Hence, there was no great activity in AI applied to electronic circuits from
the 70s to the beginning of the 90s. But in this last decade, several papers
addressed the electronic circuit diagnosis task using other AI methods, such as
fuzzy, neural networks and Case-Based reasoning systems among others. The
results are quite promising and open new ways to explore and research these
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fields. Hence, AI techniques have an important role to play in diagnosing
analog electronic circuits and are fully compatible with the present DFT de-
signs. This is demonstrated by the interest in developing standard integrating
diagnosis and AI, such as the Standard IEEE 1232.x set (IEEE1232.2, 2002).

1.3 Types of Faults. Test Capabilities and Se-

lection

The process of testing or diagnosing circuits consists in applying certain types
of excitations to a circuit and then analyzing the responses obtained in order
to derive a possible failure. A fault could be defined as any variation of a com-
ponent value from the nominal, which could produce an abnormal behavior
of the global circuit (Bandler and Salama, 1985). A typical Automatic Test
Equipment (ATE) environment is the one shown in Figure 1.1.

Unit Under

Test

(UUT)

PROGRAMABLE

WAVEFORM

GENERATOR

PROGRAMABLE

WAVEFORM

ANALIZER

Test Software

Figure 1.1: Basic structure of an ATE system

According to the figure, an ATE system should carry out the following
basic actions:

1. Signal generation, using an external device such as an acquisition card,
DSP board, waveform generator operated via a GPIB bus, etc. If we
are talking about a BIST system, the stimulus signal will probably be
generated by an internal IC unit. It is necessary to have a set of stored
input signals that produce particular circuit responses that are useful for
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fault detection and isolation. These input stimuli could be sinewaves,
squarewaves, DC-signals, ramps, etc.

2. Take measures from the circuit and obtain signatures. The output res-
ponse can be interpreted in time or frequency domains (Pan and Cheng,
1995). Once the measures are taken, some features must be extracted,
for example a tuple [overshoot, risetime] or a particular sequence corres-
ponding to the signal shape. The set of parameters that characterize a
signal is known as a signature. Sometimes signatures can not be directly
determined from circuit measures. In this case, they are determined by
means of adequate processing, as wavelet decomposition or fuzzy rules,
for example.

3. Interpretation of the obtained signatures. These signatures can be com-
pared with the ones previously stored, or used to derive possible para-
meter values. These tasks require an appropriate diagnosis strategy.

There are many papers in the bibliography concerning the testing or diag-
nosing of electronic circuits. The objective of these two disciplines is almost
the same but, although they have a lot in common, there is an important
difference between them. In general, the purpose of the test , as it is known
in the industrial domain, is to detect a fault or faults in a circuit, while fault
diagnosis is not only to detect but also to locate the fault or faults and identify
the incorrect parameter values (Huang, 1998). Both domains are described in
the following paragraphs.

Diagnosis Domain

From the fault diagnosis domain, the diagnosis system designed has to
have some capability requirements. As described in (Chantler et al., 1996),
capability requirements are divided into Task and Fault requirements.

• Task requirements: They specify the basic diagnostic tasks to be per-
formed. There are three basic diagnostic functions: Fault detection,
fault isolation and fault identification. The same three stages are de-
fined for diagnosing circuits, as described in (Pang and Starzyk, 2002).
Using these three fundamental tasks, additional ones can be specified,
such as fault explanation, fault remediation, fault prediction and fault
simulation. Going into more detail on the diagnosis functions:
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1. Fault Detection: This is the process by which abnormal behavior
of the circuit is detected and flagged to the user. The final result
is only to indicate whether the circuit is faulty or not.

2. Fault Isolation or location: This consists in localizing the faults
to physical regions of the circuit, it is possible to arrive at the
component level.

3. Fault Identification: This implies the estimation of circuit parame-
ters.

4. Fault prediction: Circuit parameters are non linearly identified and
monitored. Then, the fault can be predicted.

5. Fault Explanation: This involves the information generation, which
allows the test engineer to understand the link between the current
diagnosis and the circuit symptoms.

6. Fault Remediation: This consists in palliating the identified fault
by replacing the wrong component or components.

7. Fault Simulation: This is the ability to simulate a hypothetical fault
in a circuit. Normally it uses fault model output from the Fault
Identification Process. There are several CAD tools that allow
circuit behavior simulation. For example Intusoft has developed
the Test Designer Software in order to simulate analog and digital
circuit faults, or ORCAD, PROTEL or PCAD which all provide
a graphical environment in order to simulate circuit responses to
different input stimulus.

• Fault requirements : These requirements refer to the type of faults, the
characteristics of the physical phenomena that produce the circuit de-
viation from the nominal, and the diagnosis properties the diagnosis
system has to deal with.

1. Type of Faults: This characteristic refers to fault coverage.

2. The characteristics of the physical phenomena:

– Relational properties: This refers to the properties of the fault-
free relationships between physical phenomena of interest. They
can be static or dynamic properties, linear or non-linear, time
invariant or time variant, continuous or discrete, etc.

– Discrepancy definition: There are three categories of discre-
pancy: a) Fault, a significant and easily detectable deviation
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from the nominal. b) Performance degradation, a small drift
in the operation over time that is often difficult to detect and
separate from noise. c) Perturbation, a fluctuation over an
operating point.

– Symptom propagation: This concerns the direction in which
the symptom can be propagated. The symptom is unidirec-
tional if the propagation is only in one direction through the
components. In case of feedback loops the symptom can be
propagated in the reverse direction as well, and the propaga-
tion is said to be multidirectional.

3. Diagnosis system properties:

– Granularity: This refers to the level at which the fault is spe-
cified ( at sub-circuit, component, etc.).

– Reliability: The ability of the diagnosis system to avoid false
diagnostics.

Test Circuit Domain

The previous classification matches the one usually given for the circuit
domain. There is a direct relationship between the classification of the
discrepancy definition of the characteristics of the physical phenomena
item and the fault classification usually given for circuits. The present
classification is taken from (Duhamel and Rault, 1979). Although it is
not a recent paper, its classification and concept descriptions are still
used in the present. The proposed classification is as follows:

– Magnitude of Parameter variation: From this point of view the
faults can be: parametric or catastrophic. The first ones take into
account a continuous variation of circuit parameter values that can
not be accepted because they produce abnormal behavior. Catas-
trophic faults are produced suddenly, and they produce large devia-
tions of circuit parameters from the nominal values. For example a
typical catastrophic fault could be a short circuit or an open circuit.
Its equivalent in the diagnosis domain is given in the discrepancy
definition on the characteristics of the physical phenomena item.
Catastrophic faults correspond to a Fault and parametric faults to
a performance degradation.
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– Multiplicity: Depending on the number of faults produced, they
can be classified into Simple, when only one component or para-
meter is affected, and Multiple, when more than one parameter or
component have changed.

– Dependency: Two or more faults are dependent when one of them
produces the others. Otherwise the fault is independent.

– Temporality: If the fault is constant, while it is not repaired, the
fault is called permanent. Otherwise the fault will be intermittent
(it appears temporary).

In the particular case of electronic circuits, the faults can be produced
by:

– Problems in the components: There are two kinds, infancy faults
and delayed faults. Infancy faults affect the component that has a
defect from its construction. Delayed faults correspond to compo-
nents that deteriorate during use.

– Wiring and Mounting: Some mistakes can be made during the
mounting process, for example inverting a component, a short-
circuit between conducting paths, bad soldering, etc. These errors
can cause the circuit to fail.

– Design: As the design of an analog circuit is often anarchic without
a specific methodology, errors at the design stage can be produced.
Fortunately, the powerful software tools now available reduce this
factor. The circuit can be simulated easily before its implementa-
tion.

After understanding the types of faults to detect and the basic scheme of
a test system, if a circuit needs to be tested, a selection of the appropriate
kind of test has to be done. This selection depends on:

1. The type of signals to measure. These signals can be used for fre-
quency analysis, DC analysis or transients in the time domain.

2. The system under test characteristics. The model of the circuit to
be analyzed is divided into two different parts: one of them des-
cribes the circuit structure through matrices or differential equa-
tions; and the other is the functional description represented by flux



10 INTRODUCTION

diagram, transfer equations, and experimental data. The exacti-
tude of the system description model will be crucial in obtaining
good results.

3. The type of faults to detect. A description of a possible classification
of fault types was made in the previous paragraphs. The type of
faults to detect or locate is very important when selecting the type
of test to apply.

According to these selection parameters, a test can be:

– Concurrent or Non-concurrent. If the test is performed while the
circuit is working in its normal conditions, it is an on-line test-
Otherwise, if the process has to be stopped before applying the
test it is an off-line test.

– Exhaustive or partial. The test is exhaustive when all possible
working modes are analyzed. On the other hand, if the analysis is
only done on some of them, the test is called partial.

– Verification type. If the goal of the test is to analyze the perfor-
mance of the circuit responses while the parameters are at their
nominal values, it is called a functional test or purely, a test. But,
if the verification consists in testing the circuit element values, the
test is called parametric or diagnosis of the circuit.

It is possible to find failures that produce the same symptoms. This set
of faults is called an ambiguity group, as defined in the bibliography (Bandler
and Salama, 1985), (Stenbakken et al., 1989). In order to clarify this concept,
take the voltage divider of Figure 1.2 as an example.

The output voltage V0 is given by

V0 =
R2

R1 + R2

Vi (1.1)

Consider Vi = 10V DC and R1 = R2 = 10K. For the nominal values,
V0 = 5V . If R1 increases its value by 20% ( R1 = 12K), then V0 = 4.545V .
But the same V0 value will be obtained if R2 decreases 16.67%. Therefore, the
faults R1+20% and R2-16.67% produce the same symptoms at node V0 making
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Vi

+

-

V0

R1

R2

+

-

Figure 1.2: Voltage divider

it difficult to distinguish between them. This concept should be considered
when deciding on the type of measures to take and where they will be taken
from.

1.4 Decision Variables in Circuit Diagnosis

The main goal of a diagnosis system is to provide the correct diagnosis of the
highest possible amount of faults in a circuit. It has to be done using the
minimum number of stimuli signals, test points and circuit responses. Trying
to cover 100% of the faults can generate huge test procedures that can be
unaffordable. Hence, the following parameters should be defined:

• Number of nodes to measure.

• type of test (production, functionality, etc.) that best fits our purposes.

• Type of measures to take according to the kind of circuit under test and
its topology.

• The sequence in which the stimuli signals will be applied in order to
optimize the diagnosis time.
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In order to help in the choice of the previous parameters, a measure of
how the diagnosis will perform using such parameters can be obtained using
the testability definition. Testability of a circuit refers to how well a fault
in the circuit can be detected from measuring its voltages and/or currents at
certain access points. This information, traditionally referred to as network-
element-value-solvability, allows us to determine how many internal system
parameters can be uniquely determined or isolated by measuring certain I/O
relationships of the system. The method lets us know a priori if a unique
solution of the problem exists. If this solution does not exist, the method
gives a quantitative measure of how far we are from it (this means roughly
how many components cannot be diagnosed with the given test point set).
When testability is low, an important concept is that of ambiguity groups.
Therefore, testability can provide a basis for selecting test points and test
stimulus and choose the optimal combination.

The method proposed by (Sen and Saeks, 1979), is based on the sensitivity
matrix calculation. The number of identifiable circuit parameters equals the
number of independent columns of the sensitivity matrix. It has also been
proven that the testability value is almost independent of the circuit parameter
values. Hence, it can be evaluated by assigning randomly chosen integer values
to the circuit parameters. For example, (Bandler and Salama, 1985) assign a
value of 1 to all circuit parameters when calculating the testability.

1.5 Analog Versus Digital Circuits

There are plenty of methods to test or diagnose analog electronic circuits.
Some of them are extrapolated from the digital domain, and others are exclu-
sively for analog testing. Analog circuits are more complex to analyze because
they have several differences from digital circuits that make them more diffi-
cult to test. Some of these differences are included in the following list:

• Analog circuits have to accomplish certain performances (bandwidth,
gain, resonance frequency, etc.). It is not enough to test whether the
circuit is working or not as the digital circuits do. There is a continuum
of possible failures. This implies a lot of different faulty modes to detect
making the diagnosis algorithm more complicated.
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• Digital circuit design is more systematic. Design of analog circuits is
more anarchic and so the testing methods are as well.

• Both measurements and component parameters are inaccurate. Analog
systems are often non-linear, noisy and the components have a tolerance.
These factors make deterministic test techniques insufficient. Device
tolerance means that a fault is not characterized by a discrete value but
by a band fault. Depending on the component value inside its tolerance
range, a fault value can take any value in the band.

These bands can have a partial overlap, a total overlap or non-overlap.
It is clear that a significant overlap between bands makes diagnosis more
difficult.

For example, take the voltage divider in Figure 1.2. The output voltage
V0 is given by equation Eq. 1.1. Consider Vi = 10V DC and R1 = R2 =
10K. For the nominal values, V0nom = 5V . Considering a 10% tolerance
of the components, the following values could be obtained:

R1 +10%
R2 +10%

R1 +10% 
R2 -10% 

R1 -10% 
R2 +10% 

R1 -10% 
R2 -10% 

Voltaje V0

(Volts) 5 4.2 5.78 5

Table 1.1: DC values for the circuit divider

So, the V0nom value can fluctuate between V0nom min = 4.2V and V0nom max =
5.78V . Suppose now that the circuit is faulty and R2 increases its value
to 1.5K (fault R2+50). Then V0R2+50 = 6V . But taking into account the
10% tolerance of R1 this voltage can fall between V0R2+50 min = 5.77V
and V0R2+50 max = 6.57V . Therefore, as it can be seen in Figure 1.3,
there is an overlap between the case circuit that is corret and the fault
R2 + 50%. If the output measure is V0 = 5.8V it cannot be ensured if
the circuit is correct or faulty with R2 = R2 + 50%.

• The fault statistic distribution is not known with precision. So, the
probabilistic methods have some disadvantages when being developed.

• Symptoms do not necessarily give information about the possible faults.
For example, this is the case of oscillators, where most of the faults lead
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Fault R2+50%Nominal

V0nom max= 5.78 V

V0nom= 5V

V0nom min= 4.2 V

V0R2+50% max= 6.57 V

V0R2+50%= 6V

V0R2+50%min= 5.77 V

Figure 1.3: Fault band for the voltage divider

to the same type of symptom: The oscillator stops oscillating, and the
signals in its nodes remain flat (Dague et al., 1991).

• Multiple faults are very common, since the failure of one component can
provoke the failure of another.

• A faulty component can produce other components to shift from their
nominal values and still be correct. Thus, trying to model all the possible
correct behaviors of the component becomes very complex.

As a conclusion, the brute force methods used in digital testing cannot
be extrapolated directly to analog systems because they would be unrealistic.
Only partial solutions have been obtained using digital methods in analog
circuits, such as the method proposed in (Chantler et al., 1996).

1.6 Related Works

In this section we summarize major works that have paved the way of analog
electronic circuit diagnosis. Further details on the related literature are given
in Chapters 2, 3 and 4.
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In 1978 Schreiber (Schreiber, 1978) made the first Automatic Test Ge-
neration Techniques classification. But it was in 1979 when P. Duhamel and
J.C.Rault (Duhamel and Rault, 1979) published a more exhaustive categoriza-
tion of the known analog circuit testing methods. The types of tests and faults
to diagnose were given and classified. The methods were grouped into esti-
mation techniques, topological methods, taxonomical methods and methods
for linear circuits.

In 1985 J.W. Bandler and A.E. Salama (Bandler and Salama, 1985) re-
ported another excellent classification, including methods that had just ap-
peared and the improvements obtained from them. This is one of the most
referenced reviews for analog electronic circuit testing. They classify the me-
thods into two main groups: techniques that need a simulation before the
test, and the ones that need the simulation after the test. In this report AI
techniques are briefly mentioned, basically because in 1985 they were not very
developed and poor results were obtained.

Due to the relative simplicity of diagnosing digital circuits, some ideas for
trying to translate the same procedures to analyze analog circuits appeared.
For example, (Pan and Cheng, 1995) embed the analog circuit to be tested
between a digital to analog converter and an analog to digital converter. Then,
they use pseudo-random patterns as is usually done in digital testing. But
these brute force techniques used in the digital domain do not perform as well
as was expected. Another method that transforms the circuit into a digital
model is described in (Zheng et al., 1996).

While digital circuits are normally characterized by a very limited number
of fault categories, the nature of analog circuits makes this universe of fault
discretization more difficult, since this universe is continuous. The type of
measures taken and the circuit topology define the degree of solvability of
the circuit, and can be quantified by means of a testability measure. The
most useful degree of testability calculation is the one proposed by (Sen and
Saeks, 1979). It proposes the use of the column-rank of the system sensitivity
matrix as a testability measure for parametric faults in linear analog circuits.
The problem still remains far from being solved. It is a field that has a lot of
literature, and a good summary of the techniques for deriving the testability is
given in (Fedi et al., 1999). It has to be said that the majority of the proposed
methods are for linear circuits. As it could seem an important drawback, for
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mixed-signal circuits almost all the analog modules compounding the circuit
are of this nature, while the non linear parts are moved to the digital part
(Manetti and Piccirilli, 2003).

The ambiguity groups concept is completely related to the testability pa-
rameter. When testability is low, ambiguity groups begin to become impor-
tant. One of the first algorithms for identifying ambiguity groups is given in
(Stenbakken et al., 1989). But a lot of contributions can be found to this do-
main, such as (Fedi et al., 1999), (Starzik et al., 2000), (Liu and Starzyk, 2002)
or (Manetti and Piccirilli, 2003) among others.

As the complexity of the circuits increases, development of new designs
for testability is getting more important. DFT techniques try to provide
accessibility to internal nodes with the minimum addition of extra components
or pins. (Soma, 1990), (Hatzopoulus et al., 1993) and (Chatterjee et al.,
1996) are examples that describe some DFT schemes. Later, in (Chatterjee
and Nagi, 1997), a classification of these techniques into two groups is made.
The first one is based on the circuit reconfiguration in order to improve the
testability. The second one relies on the insertion of test points to increase
the controllability and observability of the circuit’s internal nodes. (Shieh
and Wu, 1998) review the main techniques proposed using Controllability
and Observability Structures (COS) and describe two new ones. (Wen and
Lee, 2001) present an algorithm that can systematically generate all possible
COSs after the user defines certain requirements.

(Milor, 1998) presents a tutorial that reinforces the classification of (Bandler
and Salama, 1985) and extends it by incorporating how the most recent DFT
techniques, and in particular BIST, can be matched . (Hoffmann, 2002) also
makes a good review of the evolution of BIST techniques to the present day
and a new testability measure is given. In (Renovell et al., 1998) there is a
scheme for operational amplifiers configuration. The biquadratic filter is used
as an example, and it is possible to use the operational amplifier as a classical
one or to configure it as a follower for signal propagation in the circuit without
affecting it.

Among all the DFT techniques the standard IEEE1149.x, and in particular
the IEEE1149.4 for mixed-signal testing have to be cited. Its main objective
is to incorporate in the digital standard IEEE1149.1 characteristics to be used
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for analog and mixed signal circuits. The standard is described in detail in
(IEEE1149.4, 1999). Although there are several studies on this subject trying
to analyze the impact of adding the analog blocks and how the standard
performs in particular circuits (Loftstrom, 1996), (Calvano et al., 2002), (Su
et al., 2003) or (Kac et al., 2003), it is important to mention that, to date, it
is not clear if the industry is going to accept and incorporate the standard, as
is discussed in the editor’s note of (Kac et al., 2003).

About using AI techniques for electronic circuit diagnosis, in (Fenton et
al., 2002) the importance of intelligent tools for electronic circuit fault diag-
nosis is highlighted. A classification of these methods for electronic circuits
is given. Basically, they are grouped into rule-based approaches, model-based
approaches, learning approaches, other approaches and hybrid combinations
of the previous ones. In this domain, there is plenty of work done using expert
systems, neural networks, Fuzzy or a combination of them.

Concerning expert systems, (Dague et al., 1991) proposes an expert system
based on interval propagation in order to diagnose an astable multivibrator
circuit. Also, (Preist et al., 1992) describes the expert system that Hewlett-
Packard used for testing a processor board during its production step.

On the other hand, in (Aminian et al., 2002) a Neural network for fault
detection in a Sallen-Key filter is described. The acquired data is previously
processed using wavelet decomposition and principal component analysis to
generate optimal features for training the neural network. (Fanni et al., 1999)
treats analog circuit diagnosis as pattern recognition. After a review of AI
techniques applied to analog circuit diagnosis, they propose to train a neural
network obtaining data from a circuit simulation SPICE environment. Also,
several feature extraction techniques and their impact on the final diagnosis
are shown. In particular a DC motor driver is tested. The faulty component
is detected in (Deng et al., 2000) by means of a Neural Network using the
backpropagation architecture. The system under test is a resistive network
circuit. In this case, the exact component deviations are not diagnosed. The
output only indicates which component is considered to be faulty.

Analyzing the fuzzy techniques applied to analog circuit diagnosis, the
work done in (Mohamed et al., 1996) can be cited. The effect of treating
the circuit parameter intervals as fuzzy sets for propagation considerations
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is studied. On the other hand (Catelani and Fort, 2002) proposes a fuzzy
system where the inputs are based on a fault dictionary and the outputs are
crisp or singleton functions from a Sugeno fuzzy system. (Berenji et al., 2003)
provides a similar fuzzy system but applied to the Hybrid Combustion Facility
at the NASA Ames Research Center. Therefore, these systems can detect the
incorrect component, but not its actual deviation.

Part of the present thesis is based on developing a fuzzy system for analog
circuit diagnosis. Hence, there are some publications related to this subject. In
(Pous and Colomer, 2001) and (Pous et al., 2002), a fuzzy system is developed
that uses information from the fault dictionary to build the input membership
functions. There are as many outputs as circuit components. A Mandami
fuzzy system with Gaussian shaped membership functions is utilized for each
output. (Pous et al., 2003b) improves some of these results and shows that
the component value estimation, in some cases, is not as good as expected.

Case-Based Reasoning systems are another powerful tool that can be ap-
plied to the analog circuit diagnosis. The paper (Cunnigham and Smyth, 1994)
presents a CBR system acting as a help-desk that makes the right questions in
order to isolate the possible fault in the circuit. In (Cunningham et al., 2003)
an incremental case retrieval mechanism is designed for minimizing the num-
ber of initial cases necessary to initiates case retrieval with a brief case des-
cription, it is not necessary to have all the features available at the first steps.
The CBR system is applied to diagnose a switching power supply module by
guiding the appropriate questions to the user.

(Aamodt and Plaza, 1994) is one of the most referenced papers that de-
fines the main CBR tasks (the CBR cycle) and describes how these tasks are
decomposed into subtasks. Also, a classification of the main types of CBR me-
thods is given. A short description of the previous work and commercial tools
in this field is given in (Lopez de Mantaras et al., 1997). At the same time,
this paper identifies the main open problems concerning the retrieval, memory
organization, matching, adaptation, forgetting and its integration with other
methodologies, that still are research topics in the present days.

As the CBR system’s core is a base of cases that can be very large, it
has a lot in common with the data mining methodologies for data processing.
In (Patterson et al., 1998) data mining is used for generating databases for



Related Works 19

CBR applications. In particular, and concerning this thesis, (Sheppard and
Simpson, 1998) propose CBR systems as an extension of the fault dictionaries.
They study the case applied to digital circuits and discuss the appropriateness
of using the Nearest Neighbor criterion.

Retrieval is one of the tasks of the CBR on which a lot of researchers focus
their attention. Concerning the metric used, three new heterogeneous distance
functions are proposed in (Wilson and Martinez, 1997b). These new distance
functions are designed to handle applications with nominal attributes, continu-
ous attributes, or both. On the other hand in (Gupta and Montezemi, 1997),
they present a modified form of the cosine matching function for retrieval and
the results are compared with the ones obtained by the nearest-neighbor and
Tversky’s contrast matching. After clarifying the differences between simila-
rity, similarity measures, and similarity metrics, (Finnie and Sun, 2002) review
the relationship between them and propose a unified conceptual framework for
the study of fuzzy similarity relations and similarity metrics. The intention is
to facilitate the research and development of CBR and fuzzy logic with their
applications. (Jarmulak et al., 2000) focuses on reducing the retrieval effort
using genetic algorithms to find the optimal parameters and to determine the
relevance of case features. Something similar is done in (Pal et al., 2000) using
a neuro-fuzzy approach.

Feature weighting methods are also investigated for selecting or giving
the appropriate importance to the corresponding attributes used for the dis-
tance/similitude calculation. In general the methods can be classified into
global or local weighting. There is a good review of these methods in (Aha,
1998) or in (Wettschereck et al., 1997). Also (Atkeson et al., 1997) offers a
review of the usual weighting functions for distance and how a local weight
can be updated by learning from the provided data.

When the case base grows it is necessary to have a good maintenance
policy. This means that we have to delete, add or modify cases or other type
of knowledge in order to keep the system performing well. For example the
deletion policy proposed by (Smyth and Keane, 1995) is well known, and uses
the competence concept, as it does similarly in (Smyth and McKenna, 1999)
and in (Brighton and Mellish, 2001). On the other hand, (Zhu and Yang, 1999)
criticizes Smyth and Keane’s deletion policy, because it can not guarantee a
lower bound, where it stops deleting, meaning that in some cases the base
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coverage is worsened. On the contrary, they suggest using an addition policy,
providing a way to find the lower bound that is close to the optimum.

Another deletion policies can be imported from the machine learning do-
main. Aha proposes several instance based learning algorithms in (Aha et
al., 1991), such as the well known IB3. In (Wilson and Martinez, 2000a),
there is a phenomenal classification of the reduction algorithms grouped into
incremental and decremental algorithms. They propose a decremental algo-
rithm known as DROP that has been demonstrated to improve the IB3 in
many situations. The book (Witten and Frank, 2000) collects many of these
machine learning algorithms, as does (Ferrario and Smyth, 2000) in its review
of maintenance methods. (Richter, Sesimbra, Portugal, October 25, 1995)
introduce the concept of learning containers and describe where the learning
can be produced in a CBR system. (Aha and Wettschereck, 1997), make a
good description of these containers as well.

Also, the paper (Pous et al., 2003a) has to be cited, which was proposed
by the author of the present thesis. The paper uses the DROP algorithm
for maintaining a case base for diagnosing a biquadratic filter, after defining
the adequate case memory (case structure and hierarchy) and introducing the
conflictive cases into another case base, where a different metric is used for
retrieval.

To finish with this brief summary of related works, the standard IEEE1232
AI-ESTATE has to be taken into account, it stands for Artificial Intelligence
Exchange and Service Tie to All Test Environments (IEEE1232.2, 2002). The
purpose of this standard is ”to standardize interfaces between functional ele-
ments of an intelligent diagnostic reasoner and representations of diagnostic
knowledge and data for use by such diagnostic reasoners”, as described in its
abstract. Hence, the importance of the Artificial Intelligence applied to circuit
diagnosis is emphasized.

1.7 Reference Circuit

In order to test the performance of the diagnosis methods developed in the
present thesis, a particular circuit has been chosen. The circuit proposed for
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testing is a biquadratic filter cited in the bibliography, such as the one in
(Cota et al., 2000), (Balivada et al., 1996), (Jurisic et al., 1996), (Kaminska
et al., 1997), (Mir et al., 1996). This benchmark is a linear system that
can be found applied in several electronic schemes. It allows parametric and
catastrophic faults due to passive and active components to be tested. The
results obtained can be extrapolated to similar systems. The circuit is a low-
pass filter, allowing the pass of frequencies from the DC to certain desired
frequency. It can be used itself or as part of the leap-frog filter ((Kaminska et
al., 1997)). It is useful in audio and multi-media applications. The structure
of the biquadratic filter is the one shown in Figure 1.4, with the component
values given in Table 1.2.
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Figure 1.4: Biquadratic filter under test

Component Value Component Value

R1 2.7 K R5 12 K 

R2 1 K R6 2K7 

R3 10 K C1 10 nF 

R4 1K5 C2 10 nF 

Table 1.2: Biquadratic filter component values

These component values have been selected in order to make it possible to
take measurements with the equipment available in our laboratory. The circuit
is linear and only parametric faults of the passive components are considered.

In order to apply the selected methods to the biquadratic filter, first, the
main characteristics and expressions that define its behavior are found. From
its nodal equations, it is not difficult to derive the transfer functions at nodes
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V2, V4 and V0 with respect to the input Vi, taking into account that Is=Vi/R1.
They are given in the set of equations 1.2.

H1(s) = V0

Vi

= −G2G3G1

C1C2G5s2+G4G5C1s+G2G3G6

H2(s) = V2

Vi

= −C1G5G1s
C1C2G5s2+G4G5C1s+G2G3G6

H3(s) = V4

Vi

= G2G5G1

C1C2G5s2+G4G5C1s+G2G3G6

(1.2)

If it is desired that these functions depend on Impedances, the set of
equations 1.3 are obtained.

H1(s) = V0

Vi

= −R4R5R6

R1

·

1
C1C2R4R2R3R6s2+C1R2R3R6s+R4R5

H2(s) = V2

Vi

= −R2R3R4R6C1

R1

·

s
C1C2R4R2R3R6s2+C1R2R3R6s+R4R5

H3(s) = V4

Vi

= R3R4R6

R1

·

1
C1C2R4R2R3R6s2+C1R2R3R6s+R4R5

(1.3)

1.8 Thesis Outline

The text is structured as follows: Chapter 2 provides a general classification of
test methodologies. Several examples are reproduced from the original papers,
and new ones are introduced in order to compare the results obtained by each
method. Fault dictionaries are detailed further in Chapter 3. After that,
Chapter 4 shows how the fault dictionary methods can be improved using
fuzzy logic. Next, a Case Based Reasoning system is developed in Chapter 5.
In Chapter 6 the methodology is validated in a real biquadratic filter circuit.
Finally some conclusions are derived and future work is described in Chapter
7.



Chapter 2

FAULT DIAGNOSIS IN

ANALOG CIRCUITS

2.1 Introduction

As stated in (Bandler and Salama, 1985) and (Mir et al., 1996), fault location
techniques are first classified according to the stage in the testing process at
which simulation of the tested circuit occurs. Two general groups can be
mentioned: Simulation Before Test (SBT) and Simulation After Test (SAT).
The former is based on fault dictionaries. Faults have to be simulated (using
software or taking measures from the circuit in which faults can be produced)
and stored in a table before the test starts. Then, the measures obtained
from the faulty circuit are processed and compared with the stored ones.
The SAT tests use measurements from the faulty circuits to compute network
parameters or locate the faulty components.

According to (Bandler and Salama, 1985) fault location techniques, in
general, can be categorized into five groups as depicted in Figure 2.1.

23
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Fault Locating Tests 

Simulation Before Test Simulation After Test 

Fault Dictionary 
Techniques

Probabilistic 
Techniques

Limited Number 
of Measures

Fault 
Verification

Parameter
Indentification 

Approximation 
Techniques

AC

Frequency
domain

DC

Time
domain

Sufficient Number 
of Measures

Optimization Based
Techniques

Artificial Intelligence 
Techniques

Figure 2.1: Classification of fault locating test

1. Fault dictionary techniques

2. Approximation techniques

3. Fault verification techniques

4. Parameter identification techniques

5. Artificial intelligence techniques

The fifth group, AI techniques, is only mentioned in a short paragraph at
the end of the Bandler’s paper, and it does not appear in the scheme due to
it not being a very relevant technique in the electronic circuit tests in that
period. But, these techniques have gained importance in the present day. This
is the reason why it has been introduced in Figure 2.1.

The following sections explain these groups in more detail, giving some
examples to clarify the methodologies. Special emphasis on fault dictionaries
and artificial intelligence techniques is taken in later chapters since they are
the basis of the present thesis.
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2.2 Fault Dictionary Techniques

Fault dictionaries are techniques completely based on quantitative calcula-
tions. Once the universe of faults to be detected is defined (Fault 1, Fault
2, ..., Fault m), selected characteristics of the measured or simulated output
are obtained from the system for each considered fault and stored in a table
(Table 2.1). This set of output characteristics is known as Fault signature.
The groups of fault signatures considered constitute the Fault dictionary.

Fault set Measure 1 Measure 2 ... Measure n
Nominal M10 M20 ... Mn0
Fault 1 M11 M21 ... Mn1
Fault 2 M12 M22 ... Mn2
... ... ... ... ...
Fault m M1m M2m ... Mnm

Table 2.1: Dictionary appearance

The measures obtained from an unknown faulty system are compared with
the fault signatures. The comparison is typically performed using the neigh-
borhood criterion, obtaining distances, minimizing certain indexes, and so on.
So, the method has two steps: the first one is based on simulation in order to
built the dictionary; the second one consists in comparing the measures from
the unknown faulty system with the stored fault signatures.

It has to be taken into account that the non-considered faults will not
be detected. Mainly the pre-simulated faults will be detected and located.
Examples and further details of these techniques can be found in Chapter 3.

2.3 Approximation Techniques

There are two main categories: Approximation techniques that obtain a fault
probability index related to each component, and techniques that estimate
system parameters, including the faulty ones, from a reduced number of mea-
surements. Both approaches have limited accuracy depending on the quality
of the estimation that is used. The different methods are based on the follow-
ing general formulation.
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Consider an analogue circuit with n parameters x i (i=1, 2,...n) in which
m measures y j (j=1,2,...m) are taken,

yj = fj(x1, x2, ...., xn) (2.1)

If the deviations of the parameter circuit from the nominal value are small,
a first order Taylor’s series expansion of the output magnitude expression
(Stenbakken et al., 1989) can be used. Then, for a given pulsation ω, a
measured output magnitude could be expressed as:

y(ω) ≈ x1(ω)b1 + x2(ω)b2 + x3(ω)b3 + ...xn(ω)bn (2.2)

with i = 1, 2, ...n parameters and y(ω) is the difference from the nominal
value, xi(ω) is the sensitivity matrix elements and bi is the deviation from the
nominal for each component i.

If several measures yj(ω) , j = 1, 2, ...,m are taken, then the previous
expression can be written in a matricial form as

∆y ≈ A∆x (2.3)

where ∆y is the vector containing the difference from the nominal values,
A is the sensitivity matrix and ∆x is the vector which contains the parameter
deviation from its nominal value. The number of measures m should be less
than the number of parameters to estimate (m<n).

Among all the possible techniques that can be classified in this range,
the associated criterion, the minimal deviation, the pseudo-inverse and the
l1-norm are explained as an example.

• Associated criterion: For this criterion, a factor of merit S i is defined
as

Si =
m
∑

j=1

(gi − yj(Xi))
2 j = 1, 2, ...,m (measures), (2.4)
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where parameter g j is the measurement of the characteristic y j , and X i

is the vector of components x 1 ,x 2 ,...,x n with their nominal values except
for x i . Each component i = 1, 2, ..., n has a merit factor S i associated
to it. The goal is to minimize the merit factor given in Eq. 2.4. So, the
steps of the method are:

1. Measure the value g i from the faulty circuit (real values).

2. Calculate y j (simulating the circuit and evaluating the measure
i) considering the parameter x i as a variable (for example several
points between the nominal value and ±50% from the nominal).
For each x i considered, evaluate the merit factor S i . Keep the
minimum.

3. Repeat step 2 for the other components of the circuit.

4. Search for the S i minimum between the minimum merit factors
obtained for each component.

5. The faulty component will be the one with the minimum S i .

This method has good results for simple faults and short deviations from
the nominal value. It can be applied to linear and non-linear circuits.

Example 1

Let us take the circuit in Figure 2.2 as an example

Vi

+

-

V0

R1

R2

+

-

C1

Figure 2.2: R-C network for the associated criterion example

with the values R1 = 10K, R2 = 10K and C1 = 1µF . The circuit has a
transfer function

H(s) =
V0

Vi

=
R2

R2C1R1s + (R1 + R2)
(2.5)
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It is a first order system with a pole at ω = 200 rad/sec. Measures
at pulsations ω = 10 rad/sec and ω = 1000 rad/sec are used. The
measures taken will be only amplitudes at node V0. Now, a deviation
up to δ = ±40% from nominal taking N = 100 points is considered for
each component xi while other components stay at their nominal value,
and the voltage measured yj(xi) for each component xi deviation point
and frequency ωj is stored. For example, if the component tolerance is
Tol = ±5% the step considered will be

∆R =
δ · R − Tol · R

N
= 70 (2.6)

for R1 and R2, and

∆C1 =
δ · C1 − Tol · C1

N
= 8.4 · 10−9 (2.7)

R1, R2 and C1 take the values shown in Table 2.2.

R1 6070 6140 6210 6280 … 13790 13860 13930 

R2 6070 6140 6210 6280 … 13790 13860 13930 

C1(
� F) 0.607 0.614 0.621 0.628 … 1.379 1.386 1.393 

Table 2.2: Component points explored

Table 2.3 shows the output measures V0 for the component values of
Table 2.2, while other components stay at their nominal value.

R1 6070 6140 6210 6280 … 13790 13860 13930 

V0( ✁ =10) 0.6218 0.6191 0.6165 0.6138 … 0.4196 0.4184 0.4172

V0( ✁ =1000) 0.1593 0.1575 0.1558 0.1541 … 0.0715 0.0711 0.0708

R2 6070 6140 6210 6280 … 13790 13860 13930 

V0( ✁ =10) 0.3775 0.3801 0.3828 0.3855 … 0.5787 0.5799 0.5811

V0( ✁ =1000) 0.0967 0.0967 0.0968 0.0968 … 0.0986 0.0986 0.0986

C1 ( ✂ F) 0.607 0.614 0.21 0.628 … 1.379 1.386 1.393 

V0( ✁ =10) 0.4998 0.4998 0.4998 0.4998 … 0.4998 0.4998 0.4998

V0( ✁ =1000) 0.1565 0.1549 0.1533 0.1517 … 0.0718 0.0714 0.0711

Table 2.3: Measures at V0 for the explored points

They are stored, and everything is ready to start with the faulty circuit.
Now, suppose that C1 = 1.2µF (C1 + 20%). Measuring V0 at ω = 10
rad/sec and ω = 1000 rad/sec, the results obtained are
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g1 = V0(ω = 10) = 0.4990 V olts

g2 = V0(ω = 1000) = 0.1319 V olts

So, the merit factor associated with each component can be calculated
using equation 2.4 and Table 2.3, obtaining Table 2.4

S1 0.0251 0.0240 … 3.274·10
-4

… … 0.0068 0.0071 

S2 0.0149 0.0142 … 5.192·10
-4

 … … 0.0072 0.0074 

S3 0.0071 0.0068 … … 6.819·10
-8

 … 2.082·10
-4

 2.224·10
-4

Table 2.4: Component point associated merit factor Si

The minimum merit factor Si associated with each component is then

S1min S2min S3min

3.274·10
-4

5.192·10
-4

6.819·10
-8

As a conclusion, the faulty component will be C1, since the minimum Si

is given by S3.

Doing the same for R1 = 7K (R1 − 30%), the following merit indexes Si

are obtained

S1min S2min S3min

0.0042 0.0170 0.0128

Clearly, the minimum factor is S1, so, the faulty component is R1. The
problem arises when the faulty component has a value outside the de-
viation margin considered when building the pre-stored values. In the
present example, the deviation is ±40%. If R1 = 16K, a deviation of
60% from the nominal, the minimum Si indexes obtained are:

S1min S2min S3min

0.0021 9.160·10
-4

0.0132

Hence, the final diagnostic is wrong, since the minimum index is obtained
for R2. Therefore, the deviation factor should be taken into account
depending on the fault margin to be detected. Also, the method is only
useful for locating the fault but not for diagnosing it.
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• Minimal Deviation method: This consists in minimizing the index
V j

Vj =
1

m

m
∑

i=1

(∆xij)
2 −

(

1

m

m
∑

i=1

∆xij

)2

(2.8)

where m is the number of measurements and the component xij devia-
tion, ∆xij, is given by

∆xij =
∆yi

Aij

(2.9)

with ∆yi the measure i taken, and Aij the elements of the sensitivity
matrix. The elements of the normalized sensitivity matrix Aij can be
calculated as (Slamani and Kaminska, 1995), (Boyd, 1999)

Aij =
xi

yi

∆yi

∆xi

≈ xi

yi

∂yi

∂xi

∀ measure i (2.10)

That calculation can be done either using deviations from the nominal
values ∆yi obtained in the real circuit or using the derivatives from the
yi mathematical expression. This approximation is valid only for linear
circuits or for small component deviations (∆xi → 0).

Also, if the measure taken is the magnitude given by a transfer function
Hi, the sensitivity for linear circuits or small deviations can be rewritten
as

Aij =
xi

yi

∂yi

∂xi

=
xij

|Hi(jω)|
∂ |Hi(jω)|

∂xij

(2.11)

If | ∆yi|< ǫi, where ǫi is a user considered interval, the circuit under test
is said to be correct. Otherwise, the minimum V j computed gives the
faulty component.

Example 2

Let us consider the circuit of Figure 2.2. In order to evaluate the index
Vj using equation 2.8, first, the components of the sensitivity matrix Aij

must be obtained. This will be done by means of equation 2.11 and the
transfer function H(s) given by equation 2.5. The measures used are
ω1 = 10 rad/sec. and ω2 = 1000 rad/sec. amplitudes at node V0. For
the nominal circuit, the values obtained are
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V0nom(ω1) = 0.4994V

V0nom(ω2) = 0.0981V

Hence, applying equation 2.11,

Ai1 = R1

|H|
∂|H|
∂R1

=
−R1(R1+R2+R1R2

2
C2

1
ω2)

R2

1
+2R1R2+R2

2
+R2

2
C2

1
R2

1
ω2

Ai2 = R2

|H|
∂|H|
∂R2

= R1(R1+R2)
R2

1
+2R1R2+R2

2
+R2

2
C2

1
R2

1
ω2

Ai3 = 1/C1

|H|
∂|H|
∂C1

=
R2

1
R2

2
C2

1
ω2

R2

1
+2R1R2+R2

2
+R2

2
C2

1
R2

1
ω2

In this particular case, i = 1, 2, corresponds to the amplitude at the
selected ω = [ω1 ω2]. Then, the following sensitivity matrix can be
written

A =

(

A11 A12 A13

A21 A22 A23

)

=

(

−5012.5 0.4987.5 −249.4
−9807.7 192.3 −961.5

)

Consider now that the circuit is faulty with C1 = 1.2 µF . The measures
obtained for the faulty circuit are:

V0f (ω1) = 0.4991V

V0f (ω2) = 0.0822V

Hence,

∆y =

(

V0f (ω1) − V0nom(ω1)
V0f (ω2) − V0nom(ω2)

)

=

(

−2.7375 · 10−4

−0.0159

)

Using equation 2.9, the elements xij are:

|A| =

(

5.4610 · 10−8 −5.4880 · 10−8 1.0981 · 10−7

1.6170 · 10−6 −8.2468 · 10−5 1.6494 · 10−8

)

Finally, from equation 2.8, the index obtained for each component is
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V1 = 6.1023 · 10−13 (corresponding to R1)
V2 = 1.6980 · 10−9 (corresponding to R2)
V3 = 2.1768 · 10−15 (corresponding to C1)

The minimum coefficient Vj is V3. So, the faulty component considered
will be C1.

Repeating the process for the fault R2 = 15 K for example, the measures
obtained in the faulty circuit are

V0f (ω1) = 0.5989V

V0f (ω2) = 0.0986V

and the final coefficients Vj

V1 = 9.8018 · 10−11 (corresponding to R1)
V2 = 7.1708 · 10−11 (corresponding to R2)
V3 = 3.9860 · 10−10 (corresponding to C1)

So, the faulty component will be R2, since it is the component with the
minimum Vj.

The difficulty of the method is when tolerances are taken into account.
For example, if in the previous case R1 = 10.8 K (a value that falls into
10% of component tolerance margins), the indexes Vj obtained are:

V1 = 7.064410−11 (corresponding to R1)
V2 = 6.408510−10 (corresponding to R2)
V3 = 2.632210−10 (corresponding to C1)

Clearly, the faulty component considered will be R1, when it was R2.
Also, the interval ǫi should be adequately selected. This is not a straight-
forward decision because the results are very sensitive to this parameter.

• Pseudo inverse method

From equation 2.3, the component deviations can be obtained as

∆x = A+∆y (2.12)
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where A+ is the pseudo-inverse matrix calculated as A+ = A′(AA′)−1.
The faulty component will be the component associated with the maxi-
mum ∆x obtained (largest deviation from the nominal).

The sensitivity matrix A has to be composed from independent rows for
system solving. Otherwise, the pseudo-inverse matrix does not exist. In
the case that a dependence is found, one possible solution is to eliminate
dependent rows before the matrix inversion. It can be done by finding
the ambiguity groups and deleting the corresponding rows, leaving just
one for each group.

Example 3

Let us consider the circuit in Figure 2.2. The measures to be taken are
the same used in example 2, giving the same sensitivity matrix A. Then,
calculating the pseudo-inverse A+,

A+ = A′(AA′)−1 =







1.0072 · 10−4 −5.1207 · 10−6

1.1026 · 10−4 −5.6160 · 10−6

1.0770 · 10−6 0.2340 · 10−7







If the circuit is faulty with R2 = 12 K, the vector ∆y for ω1 = 10 rad/sec
and ω2 = 1000 rad/sec is

∆y =

(

V0f (ω1) − V0nom(ω1)
V0f (ω2) − V0nom(ω2)

)

=

(

−2.7375 · 10−4

−0.0159

)

Then applying equation 2.12

∆x =







∆R1

∆R2

∆C1





 =







4.5579 · 10−6

4.9896 · 10−6

−5.0485 · 10−8







The maximum absolute value index is obtained in ∆R2, pointing to the
conclusion that R2 is faulty.

It has to be said that the ∆R1 value is not far from being the maximum
∆x, so, when tolerances are considered, a margin ǫ has to be taken. If
|∆x| > ǫ, the component is considered faulty. For the previous example,
∆R1 and ∆R2 could be seen as faulty due to this factor.
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• L1-norm method: This is based on using linear programming tech-
niques in order to find the most likely faulty element in an analog circuit.
This technique assumes that the catastrophic faults have already been
eliminated.

The problem of fault isolation is approached better by first locating the
parts of the network that contain the faulty elements. Then, further
diagnosis is carried out on these subnetworks to locate the exact faulty
element. It can be used for linear circuits and it can be easily extended
to non-linear ones.

The undetermined system to solve is

Minimize
n
∑

i=1

∣

∣

∣∆Ibf
i

∣

∣

∣ (2.13)

with the constraints

∆V m = Zmb∆Ibf (2.14)

with n the number of components. ∆V m is a vector containing the
difference from the nominal voltage value for each measurable node
(∆V mi = Vi − Vi0), ∆Ibf is the change in a current through a com-
ponent due to a fault, and Zmb is the impedance matrix that relates
current variations in each component to the difference voltage in mea-
surable nodes.

Zmb can be computed before the test, with the nominal component values
admittance matrix Yn and the incidence matrix Q as follows:

Zmb = Y −1
n Q (2.15)

The solution provided by 2.14 and 2.13 is ∆I bf . With this value, the
component deviation from the nominal can be calculated by

∆Ibf = Vi · ∆Gi ⇒ ∆Gi =
∆Ibf

Vi

(2.16)

and finally, the estimated component value is given by

Gi ≈ Gi0 + ∆Gi (2.17)
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The component i with its value Gi outside the tolerance bounding, is
considered as faulty.

The method can be summarized in the following steps:

1. Calculate the admittance matrix Yn and the incidence matrix Q
from the nominal circuit.

2. Derive Zmb using eq. 2.15.

3. Obtain the vector ∆V m from the measures Vi and the nominal
voltages Vi0.

4. Solve the problem

Minimize
n
∑

i=1

∣

∣

∣∆Ibf
i

∣

∣

∣

subjected to

∆V m = Zmb∆Ibf

The solution of this problem provides us with the deviation current
values ∆Ibf .

5. Using eq. 2.16 and ∆Ibf , calculate the component deviation ∆G.

6. Estimate the component value G by means of equation 2.17.

Example 4

The ladder network provided in Figure 2.3 is used as an example.

Vp1

V2

Ip1

+ -
+

-

+ - V4+

-

+

-

+

-

V1 V3
V5G1

G3 G5

G2 G4
1 2 3

Figure 2.3: Ladder circuit for the L1 norm

Suppose that the voltages at nodes 1, 2 and 3 are the only measures
available. Zmb can be obtained by means of the equation 2.15. So, Yn

has to be calculated first:
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Yn =







G1 + G2 −G2 0
−G2 G2 + G3 + G4 −G4

0 −G4 G4 + G5





 =







2 −1 0
−1 3 −1

0 −1 2







Y −1
n = 1

8







5 2 1
2 4 2
1 2 5







and the incidence matrix Q for the circuit of Figure 2.3

Q =







1 1 0 0 0
0 −1 1 1 0
0 0 0 −1 1







Using equation 2.15

Zmb = Y −1
n Q ⇒ Zmb = 1

8







5 3 2 1 1
2 −2 4 2 2
1 −1 2 −3 5







∆V m is obtained from circuit measures, and ∆I bf is given as the system
solution.

Let G1 = G2 = G3 = G4 = G5 = 1 for the nominal circuit. Suppose
that the faulty component is G2 = 1.5. Then, from the faulty circuit
V1 = 0.6842, V3 = 0.2105 and V5 = 0.1053. Hence,

V2 = V1 − V3 = 0.4737
V4 = V3 − V5 = 0.1053

Knowing that in the nominal circuit V10 = 0.6250, V30 = 0.2500 and
V50 = 0.1250, V20 and V40 can be calculated as

V20 = V10 − V30 = 0.3750
V40 = V30 − V50 = 0.1250

So, if V mi = Vi − Vi0, then the vector ∆V m is

∆V m =







∆V m1

∆V m3

∆V m5





 =







0.0592
−0.0395
−0.0197
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Now the problem to solve is (particularizing 2.13 and 2.14)

Minimize
5
∑

i=1

∣

∣

∣∆Ibf
i

∣

∣

∣ (n = 5 components)

subjected to







∆V m1

∆V m2

∆V m3





 = 1
8







5 3 2 1 1
2 −2 4 2 2
1 −1 2 −3 5

























∆Ibf
1

∆Ibf
2

∆Ibf
3

∆Ibf
4

∆Ibf
5



















The solution, ∆Ibf , to the linear programming problem is

∆Ibf =

















1.7774 · 10−5

0.1579
−3.5280 · 10−5

−8.2494 · 10−5

1.7506 · 10−5

















From the measures Vi and the recently obtained ∆Ibf , the component
deviation can be derived using 2.16

∆Ibf = Vi · ∆Gi ⇒ ∆Gi = ∆Ibf

Vi

∆G =

















∆G1

∆G2

∆G3

∆G4

∆G5

















=

















2.5977 · 10−5

0.3333
−1.6758 · 10−4

−7.8369 · 10−4

1.6631 · 10−4

















Finally, applying equation 2.17

G1 = 1, G2 = 1.3333, G3 = 0.9998, G4 = 0.9992 and G5 = 1.0002.

The conclusion is that G2 is faulty, since it is the component with the
largest deviation from its nominal value.

Trying with G4 =0.5 for example, the results of the L1-norm technique
are:
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V1 = 0.6154, V3 = 0.2308 and V5 = 0.1538

From this we can obtain

V2 = V1 − V3 = 0.3846, and V4 = V3 − V5 = 0.0769

and solving the linear programming problem (2.13 and 2.14),

∆Ibf =

















−9.8923 · 10−6

9.8923 · 10−6

−1.8837 · 10−5

−0.0768
2.8729 · 10−5

















Hence

∆G =

















−1.6075 · 10−5

2.5720 · 10−5

−8.1626 · 10−5

−0.9980
1.8674 · 10−4

















and then

G1 = 1, G2 = 1, G3 = 0.9999, G4 = 0.002, G5 = 1.0002

The faulty component is clearly G4, in spite of the error in the final
estimation value.

If there is a multiple fault, the L1-norm method can work as well. For
example, let us take G1=2, and G3=0.5;

The measures obtained in the circuit of Figure 2.3 are V1= 0.8889, V3=
0.3333 and V5= 0.1111. Voltages at the non measurable nodes V2 and
V4 are calculated as

V2= V1- V3= 0.5556
V4= V3- V5= 0.2222
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Solving 2.13 and 2.14

∆Ibf =

















0.3863
0.0582

2.8327 · 10−7

0.0581
−0.0530

















Applying equation 2.16

∆G =

















0.4346
0.1048

8.4980 · 10−7

0.2615
−0.4769

















At last, using equation 2.17

G1 = 1.4346, G2 = 1.1048, G3 = 1, G4 = 1.2615, G5 = 0.5231

Here, the fault in G1 and in G5 could be detected, but G4 and G2 could
be faulty as well if a component tolerance is taken as 10%, for example.
In this case, more equations should be used in order to obtain a sharper
solution.

2.4 Parameter Identification Techniques

When the number of measures is sufficient, the parameters of the system va-
lues can be calculated using parameter identification techniques. These values
are obtained from circuit measurements after simulation. The number of pa-
rameters that can be identified in a particular circuit is called the testability
or diagnosability degree.

One of the first approaches to derive this degree was proposed by (Sen
and Saeks, 1979). They demonstrated that the testability degree is given by
the column-rank of the sensitivity matrix. They also demonstrated that if a
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transfer function is rational in its parameters φ, then the column-rank of the
sensitivity matrix is constant. Hence, the testability is independent of the
circuit parameter and can be evaluated by simply randomly assigning values
to the circuit parameters.

A similar procedure to find the circuit diagnosability degree µ is proposed
in (Bandler and Salama, 1985). It is defined as

µ = nφ − ρ (2.18)

where nφ is the number of circuit parameters and ρ the rank of the matrix

∇φH
T (φ, s) (2.19)

with H(φ, s) the transfer function of the system depending on the para-
meters φ and the complex variable s. The matrix is particularized with a set
of parameters φ = φ∗. This set can be randomly selected, since the para-
meter values are not going to influence the testability calculations (Sen and
Saeks, 1979). If µ = 0, all the circuit parameters will be estimated. Otherwise
identification of all the components will not be possible. Let’s see an example
of diagnosability calculation.

Example 5

Suppose the following circuit is being diagnosed

The circuit parameter, φ, are (R1, R1, C), and they are unknown. The
transfer function of the circuit, when V2 is taken as the measurable node, is
given by

H(s) =
V2

Ig

=
sCR1R2

1 + sC (R1 + R2)
(2.20)

Applying equation 2.19,
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Ig

V2

R1
R2

CV1

Figure 2.4: Parameter identification

∇φH
T (φ, s) =

[

sCR2(1+sCR2)

(1+sC(R1+R2))2
sCR1(1+sCR1)

(1+sC(R1+R2))2
sR2R1

(1+sC(R1+R2))
2

]

Now, taking arbitrarily φ = [111]T ,

∇φH
T (φ, s) =

[

s(1+s)

(1+2s)2
s(1+s)

(1+2s)2
s

(1+2s)2

]

The rank of ∇φH
T (φ, s) is clearly ρ = 2. Therefore, it will be impossible

to determine all the network parameters for this transfer function (only 2 of
them).

A similar conclusion is derived if the testability matrix rank is evaluated,
as proposed first by (Sen and Saeks, 1979). If the magnitude at V2 is taken
as measure

|V2(jω)| = ωCR1R2
√

1+ω2C2(R2

1
+R2

2)
2

the sensitivity for each circuit parameter taking the same arbitrarily se-

lected parameters (R1 = R2 = C = 1) is

S
R1
V2

= R1

|V2(jω)|
∂|V2(jω)|

∂R1

= 1+ω2C2R2(R1+R2)

1+ω2C2(R1+R2)
2 = 1+2ω2

1+4ω2
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S
R2
V2

= R2

|V2(jω)|
∂|V2(jω)|

∂R2

= 1+ω2C2R1(R1+R2)

1+ω2C2(R1+R2)
2 = 1+2ω2

1+4ω2

S
C
V2

= 1/C
|V2(jω)|

∂|V2(jω)|
∂C = 1

1+ω2C2(R1+R2)
2
C2

= 1
1+4ω2

Hence, as the column-rank of the sensitivity matrix

rank
(

SR1
V2

SR2
V2

SC
V2

)

= rank
(

1+2ω2

1+4ω2

1+2ω2

1+4ω2

1
1+4ω2

)

= 2

there are only 2 identifiable parameters.

Let’s now take node V1 as a measurable node. Applying equation 2.19
again

H(s) = V1

Ig
= R1(sCR2+1)

1+sC(R1+R2)

as a transfer function, and then,

∇φH
T (φ, s) =

[

s(1+s)2

(1+2s)2
s2

(1+2s)2
−s

(1+2s)2

]

the rank now is ρ = 3, and hence µ = 0. According to (Bandler and

Salama, 1985) this implies that all the circuit parameters can be estimated.

A similar conclusion is obtained using the testability matrix column-rank con-

cept.

S
R1
V1

= R1

|V1(jω)|
∂|V1(jω)|

∂R1

= 2+3ω2

2(1+2ω2)

S
R2
V1

= R2

|V1(jω)|
∂|V1(jω)|

∂R2

=
ω2(1+3ω2)

2(1+2ω2)(1+ω2)
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S
C
V1

= C
|V1(jω)|

∂|V1(jω)|
∂C = ω2

(1+2ω2)(1+ω2)

Observing these results, the rank of the sensitivity matrix is

rank
(

SR1
V1

SR2
V1

SC
V1

)

= rank
(

2+3ω2

2(1+2ω2)

ω2(1+3ω2)
2(1+2ω2)(1+ω2)

ω2

(1+2ω2)(1+ω2)

)

= 3

meaning that 3 parameters can be estimated using the magnitude at V1 as
a measure point.

Once the diagnosability of a circuit is calculated, there are several methods
for trying to solve the n parameter identification problem. The most straight-
forward one is to obtain as many measures as parameters to be identified.
Then a set of n equations with n unknowns has to be solved. An ARMAX
identification model can be used for example.

The following example illustrates how the diagnosable values of the Figure
2.4 circuit can be derived, simply by solving a system of equations provided
by several measures at node V1

Example 6

Taking the circuit of Figure 2.4, it has a diagnosability of 3 (all parameters
determined) if measures at node V1 are taken.

First, the transfer function module is calculated

|H(jω)| =
V1
Ig

=

√

√

√

√

R2
1+(ωCR2R1)

2

1+ω2C2(R1+R2)
2

and changing

α1 = R2
1

α2 = (CR1R2)
2

α3 = C2 (R1 + R2)
2

(2.21)
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the module can be rewritten as

|H(jω)| =

√

α1+ω2α2
1+ω2α3

Three measures are necessary to obtain all the parameters φ of the circuit.
A linear system with three equations with three unknowns. Taking measures
at ω = 10 rad/sec, ω = 50 rad/sec and ω = 100 rad/sec, the following values
are derived:

|H(j10)| = 6.76 · 104 |H(j50)| = 2 · 104 |H(j100)| = 1.28 · 104

Hence,

α1 = 9.61 · 109 α2 = 8.95 · 105 α3 = 0.011

Finally from 2.21,

R1 = 9.8 · 104 R2 = 9.83 · 103 C = 9.87 · 10−7

These values can be compared with the nominal ones. The component or
components that differ more than the allowed tolerance from the nominal, are
considered faulty.

A similar solution is obtained using the ARMAX identification process, for
example. The method provides us with the transfer function coefficient values
that best approach a given circuit response. Afterwards, these coefficients are
equaled to the corresponding components equivalence, as done in the example
with the alpha parameters.

The method works quite well, but several drawbacks should be taken into
account. First of all, the number of necessary measures to derive the com-
ponent values is high. Also, the system does not give a solution in all the
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situations. It is necessary that the inverse of the matrix that constitutes the
system equations has a determinant different to 0. This means that the rows
are linearly independent, a situation that it is not always true. In this case,
not all the components could be found, and a combination of other methods
are necessary to solve the problem, if it is possible.

2.5 Fault Verification Techniques

These assume that there are a limited number of measures in the sense that
there are not enough to determine all the network parameters. They use net-
work theory, and mathematical theory to check the consistency of an equation
set after circuit simulation. An inconsistency implies a fault in one or more
of the components related to the equation. Logical relations between incon-
sistency conclusions give the faulty component. The decomposition approach
for large circuits can be classified in this group. Although there are several
methods that can use voltage or current measures, the method selected uses
voltages as measures to be taken. In general, currents are more difficult to
measure.

Let us take the biquadratic filter described in Section 1.7 as an example.
In order to detect a possible fault or faults, the consistency of the equations
has to be checked. In particular a KCL applied to node n2 gives the equation
2.22 in the Laplace domain.

V2G2 = −V4C1s (2.22)

The idea is to take measures at V2 and V4 and the components G2 and C1

at their nominal values. If the equation is satisfied, the components implied
(G2 and C1) are considered to be not faulty. Otherwise, one of them or both
are faulty.

Suppose that there are nominal conditions. Using a signal with a frequency
ω = 104rad/sec and amplitude 1 V as input, the measures obtained at nodes
n2 and n4 are
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V2 = −0.0128 − 0.0833j
V4 = 0.8327 − 0.1278j

Checking equation Eq. 2.22 with G2 and C1 at their nominal values

V2G2 = I2 = −1.28 · 10−5 − 8.327 · 10−5j
V4C1s = I4 = 1.28 · 10−5 + 8.327 · 10−5j

Hence, it can be seen that equation Eq. 2.22 is consistent. Consequently,
R2 and C1 are not faulty. If a fault at another component different to R2

and C1 occurs, the consistency still works. Let’s suppose that there is a fault
R6 = 5K. The following result is obtained

V2G2 = I2 = −4.3 · 10−5 − 1.485 · 10−4j
V4C1s = I4 = 4.3 · 10−5 + 1.485 · 10−4j

Therefore, equation Eq. 2.22 is still consistent and R2 and C1 are considered
correct, although V2 and V4 are not the nominal values.

Let’s see what happens in the case that one of the components related to
the node n2 is faulty. Suppose C1 = 1nF . Now, Eq. 2.22 with the faulty
circuit measures, V2 and V4, and using G2 and C1 nominal values produces

V2G2 = I2 = −1.25 · 10−7 − 8.3487 · 10−6j
V4C1s = I4 = 1.25 · 10−6 + 8.3487 · 10−5j

Therefore, the consistency is broken, since V2G2 6= −V4C1s. There is a
fault in R2, C1 or both.

Something similar occurs with R3 and R5 (node n5). The KCL equation
in that node is

V4G3 = −V0G5 (2.23)
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Taking G3 and G5 with their nominal values

V4G3 = 8.327 · 10−5 − 1.28 · 10−5j
V0G5 = −8.327 · 10−5 + 1.28 · 10−5j

Therefore, the equation checking is correct. So there is no fault neither at
component R3 nor at R5. But, if R3 is considered faulty with R3 = 20K,
therefore, calculating the equations using G3 and G5 nominal values,

V4G3 = 1.588 · 10−4 − 4.989 · 10−5j
V0G5 = −7.94 · 10−5 + 2.49 · 10−5j

there is no equation consistency, meaning that R3, R5 or both are faulty.

The method works quite well for fault detection. The main drawback is
that the topology and the equations of the circuit under test have to be known.
On the other hand, the method is not adequate for diagnosis, although it can
help in the preliminary stages isolating the faulty component or the faulty
part of the circuit.

2.6 Artificial Intelligence Techniques

Due to the increase in circuit complexity, system malfunction detection and
isolations are becoming more difficult. Artificial Intelligence (AI) techniques
have been a major research topic over the last decades. In (Fenton et al., 2001)
a good review of AI techniques is shown. The paper proposes the classification
of the methods shown in Figure 2.5.

Traditional Approaches : These are the most common techniques used in
the industry, and are based on heuristics. The expert experience is collected
in a IF-THEN rule base or as a decision tree. These approaches have been
well tested and they are very simple and understandable. On the other hand,
faults that are not predicted in advance will not be detected. Hence, in this
aspect the method has no learning capability.
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Figure 2.5: AI approaches classification

Model-Based Approaches make use of the model to predict faults in the real
circuit. Its main disadvantage is its inability to deal with unsimulated faults
and the expert knowledge acquisition when causal models are needed. Since
they are not able to learn from new situations, they have a fixed performance
level. Fault dictionaries are included in this group.

Machine Learning Approaches take advantage of previous successful or
failed diagnoses, and they use this knowledge in order to improve the system’s
performance. But, in general, big data bases with suitable data are necessary
if good results are desired. Case-Based reasoning (CBR) systems can be clas-
sified in this group. The main advantage of these techniques is that they can
cope with new situations because they can learn from faults that have not
been previously predicted.

Other Approaches. Fuzzy and Neural Network techniques can be cited in
this group. The former provides a very intuitive way of representing know-
ledge, and they are normally combined with other techniques. Neural Network
techniques have the power to model unknown predicted faults when they are
trained.

Hybrid Approaches are one of the research fields that has major interest,
in particular the combined use of models and cases in particular situations.
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There are several possible combinations:

• Model-Based and Case-Based Reasoning

• Model-Based Reasoning and Fuzzy Logic

• Case-Based Reasoning, Artificial Neural Networks and Fuzzy Logic

• Model-Based Reasoning and Genetic Algorithms

Chapter 4 is dedicated entirely to showing how a fuzzy technique is de-
veloped and applied in order to diagnose a biquadratic filter. On the other
hand, a CBR system is described in Chapter 5. The following section uses the
idea proposed in (Aminian et al., 2002) to classify faults by means of neural
networks.

2.6.1 Diagnosis Using Neural Networks

Neural networks are able to adjust their parameters iteratively during the
training phase, until all the training data produce relatively close outputs to
the desired ones, measured by a predefined error-goal. After the training,
the neural network is able to classify previously unseen inputs. The neuron
structure is given in Figure 2.6

Figure 2.6: Neuron structure
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where P is the input and W the weight that multiplies this input. Then,
a bias b is added giving an internal value n. This internal value n is passed
through a transfer function f , giving the output value a. The weight W and
the bias b are the adjustable parameters. Hence, the output is calculated using
equation eq. 2.24

a = f(n) = f(P · W + b) (2.24)

Of course, a simple neuron is not useful for solving complex problems.
Figure 2.7, extracted from (Demuth and Beale, 2000), shows a two layer neural
network structure. The inputs Pi (i = 1, 2, 3, ..., R) correspond to the features
extracted from the output circuit. Hence, there will be as many inputs as
measures. Each of these inputs is multiplied by a weight W1i, added to other
weighted inputs and to a bias b1si. The obtained internal value n1i serves as
the input to the transfer function f1 providing an output a1i. These outputs
are the inputs of the following layer, and the same explanation can be applied
to the end of the network.

The structure of the neurons in the same layer is equal for all of them, but
can be different between layers. Even the number of neurons contained in a
layer can differ. The bigger the network is, the closer its behavior is to the
desired behavior, although the training and the posterior test procedures will
be slower.
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Figure 2.7: Architecture of a multiple layer feedforward neural network

Example 7

Taking the biquadratic filter as an example, a three layer neural network is
designed. Suppose that the saturated ramp method described in Chapter 3
is used to obtain the output measures. In this case we have 4 measures: SP ,
Td, Tr and Vest. Then, we take 4 neural network inputs. The network is built
up by 4 layers. The first three of them with a tan− sigmoid transfer function
(output from -1 to 1) and the last with log − sigmoid (output from 0 to 1).
The hidden layers are constituted by 100 neurons each. The training method
used is based on standard numerical optimization that uses the conjugate
gradient, and the error considered for stopping the training process is taken
as M.S.E. = 10−4. For training purposes, a set of 3 cases for each considered
fault has been used. Taking a great number of cases produces overtraining of
the net, and a bad diagnosis of new previously unseen instances. Figure 2.8
shows an example of how the performance evolves during the training. After
132 epochs, the error reaches its maximum tolerated limit of M.S.E. = 10−4.

Once trained, the obtained net is tested with a set of 100 new cases for
each considered fault randomly generated (Monte-Carlo) considering a normal
probability distribution. The variation is only performed on the tolerance
margin for the components that are not faulty. The faulty one stays at its
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Figure 2.8: Neural network training performance evolution

exact deviation value. Table 2.5 shows the performance of the net when
locating faults.

The first column is related to 100 new randomly generated cases taking the
components with a tolerance of 5% normally distributed; the second considers
a component tolerance of 10%.

The results show that a tolerance of 5% gives much better results. Hence,
the neural network designed is useful for low deviations from the predicted
faults. Changing the transfer function or the training method type does not
produce a significant improvement in these results.

When the new cases correspond to any deviation between 0-70% for each
component, the success in locating them drops drastically. When a set of 100
faults for each component considering deviations compressed into the range
of 0-70% is taken, the average success in locating the faults decreases to 62%.

As a conclusion, neural networks are quite useful but only for locating small
component deviations. The structure of the network quickly gets complicated
with the circuit complexity. Also, the number of the hidden layers and the
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Fault 5% tolerance 10% tolerance

R1+20 97 78

R1-20 100 88

R1+50 100 97

R1-50 100 100

R2+20,R3+20,C1+20 73 31

R2-20,R3.20,C1.20 62 38

R2+50,R3+50,C1+50 97 78

R2-50,R3-50,C1-50 100 92

R4+20 93 70

R4-20 99 92

R4+50 100 100

R4-50 100 100

R5+20 52 29

R5-20 36 40

R5+50 97 88

R5-50 99 89

R6+20 96 64

R6-20 100 95

R6+50 100 98

R6-50 100 100

C2+20 99 72

C2-20 100 93

C2+50 100 99

C2-50 100 100

NOM 94 62

Average 91.76 79.72

Table 2.5: Neural network performance for a set of 100 new cases
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number of neurons that they should have is not clear, however there is a
straightforward relationship with circuit complexity, the number of layers and
layers size. The training and diagnosis process get slower when big neural
networks are required.

2.7 Conclusions

Approximation techniques are useful only for short deviations from the nomi-
nal, since large ones usually produce incorrect solutions. On the other hand,
the approximation techniques based on solving a linear programming problem
are not easy to implement, above all when frequency based measures are taken.

Parameter identification techniques need more nodes where they can per-
form measures rather than simply measuring at the output. The circuit model
has to be known, and it is not always available. Also, the obtained system of
equations has to be solvable.

Something similar occurs with fault verification techniques. Equations
describing the circuit behavior have to be available. Hence, the circuit model
has to be known. These techniques can be good candidates for locating faulty
components, but there is not enough information to diagnose the faults.

Concerning the artificial intelligence methods, neural networks have been
demonstrated to be useful for short deviations. Also, their complexity in-
creases dramatically with circuit size, making the system very slow when
training and when diagnosing. A part from this, they cannot diagnose faults
that have not been previously considered. Other AI techniques, such as Fuzzy
logic and Case-Based reasoning, are analyzed in more detail in later chapters.

Fault dictionaries are very simple to apply, but they have certain draw-
backs that need to be solved. Among all the previously described methods,
they are the ones that can be most easily extended to build a CBR-system.
This is the reason why fault dictionaries have been selected as a starting point
and studied in more detail in the next chapter.



Chapter 3

FAULT DICTIONARIES

3.1 Introduction

Although new techniques have been introduced into the industry, fault dictio-
naries were by far the most widely used technique for testing circuits in the
past and continue to be today. They are simple and work quite well for fault
detection. There are basically two steps: first, it is necessary to obtain the
fault signatures to build the dictionary; and second, the most similar fault
signature to the new situation presented is extracted.

The dictionary can be generated by simulating the most likely circuit faults
before the test or by obtaining real measures from a prototype circuit. This
simulation allows to define the stimuli set and the signatures of the responses
to be stored in order to detect and/or isolate the faults. The test for the faulty
circuit is done using the same stimuli used when building the dictionary. The
simulation provides us with a set of responses related with each fault (Figure
3.1).

55
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The dictionary must be built according to input stimuli, the domain of
the analysis (DC, time or frequency domain, etc.) and the signatures. An
optimum selection of a limited number of measurements is required for a high
testability degree using moderate dimensions. According to (Bandler and
Salama, 1985), they can be classified into a DC domain or an AC domain,
depending on the type of measures used. The AC group is divided into two
subgroups: dictionaries based on time response and dictionaries that use fre-
quency based measures.

+

-

R4 R6

R2

C1

R3

R5

C2

M2
M1

R1Vi

Mn

Measure 1 Measure 2 .... Measure n

Fault 1 M11 M12 M1n

Fault 2 M21 M22 M2n

...

Fault m Mm1 Mm2 Mmn

Figure 3.1: Dictionary construction

Then, the signature derived from the circuit being tested is compared to
the pre-stored ones using tree-decision-based techniques, neighborhood rule,
voting techniques, etc. The pre-stored fault in the table most similar to the
measured one will be the final conclusion.

A lot of methods corresponding to these techniques can be found in the
literature. The following sections detail some of the most commonly used fault
dictionaries. First, an example of the DC domain is given. Then, examples
based on time and frequency response are given for the AC domain.
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3.2 DC Domain

They consist in taking DC signals as input stimuli and measuring DC signals
at different nodes. Some DC based methods can be found in (Chatterjee et
al., 1996) and (Hochwald and Bastian, 1979). Hochwald proposes checking
the effectiveness of the selected stimuli using the Euclidean distance concept
given in equation 3.1.

df =

√

√

√

√

∑

jǫM

(

V 0
j − V f

j

)2
(3.1)

V 0
j is the nominal DC voltage at node j, while V f

j is the voltage at node
j due to a fault f. M is the set of nodes selected for measuring and F the set
of possible failures considered. According to (Hochwald and Bastian, 1979),
if the value of df is less than 0.5 times the number of nodes selected to be
measured (heuristic threshold), it is considered that there are not enough
stimuli to provide efficient information about the fault f . Then it will be
necessary to include more stimuli to the circuit or try to excite the circuit
using other nodes.

Example 8

In the transistor based circuit of Figure 3.2,

1 K

33 K

10 K

VCC= 12 V

BC547 BVi

1

2

3

4.7 K

Figure 3.2: DC application

some transistor catastrophic failures can be detected, such as a short-
circuit between base-emitter (QBES), collector-emitter (QCES) or collector-
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base (QCBS) or an open-circuit in the base (QBO), emitter (QEO) or collector
(QCO). The transistor is an npn BC547 B.

For testing purposes, the stimuli are DC signals of ±5 V applied to the Vi

input. Table 3.1 shows the fault signatures obtained in the circuit nodes 1, 2
and 3 for each fault.

Stimulus Non Faulty QEBS QCES QCBS QBO QEO QCO

-5 3.1 3.1 2.17 -5 8.27 3.11 -0.96 Node 1 

5 4.22 12 4.22 5 8.27 12 4.21 

-5 0 -5 2.17 0 0.85 -1.75 0 Node 2 

5 4.22 5 4.22 4.29 0.85 6.29 4.21 

-5 -5 -5 -5 -5 1.44 -5 -5 Node 3 

5 5 5 5 5 1.44 5 5 

Table 3.1: DC measures for the transistor circuit

Applying 3.1 to this case, it can be seen that the df is greater than 1.5 (0.5
times the number of measurable nodes). So, the excitations selected to detect
and locate the proposed faults in this circuit are sufficient. Observing Table
3.1, it can be seen that only using measures at nodes 1 and 2 is enough to
differentiate between all the proposed faults (with 12 measures less than in the
previous case). But, if only measures at node 1 are used, there are problems
distinguishing between faults QBES and QEO. As a conclusion, it seems that
the method has good results in catastrophic fault isolation. But, this is not the
same for parametric deviations. If there are frequency dependent components
in the circuit, a deviation in their values of a certain percentage will not be
detectable. For example, a capacitor is an open circuit in DC introducing
either a 1V or 100 mV DC signal, so the conclusion will be the same if the
capacitor has its nominal value or 20% more.

3.3 AC Domain

This domain can be divided into temporal time and frequency analysis. The
first one is based on detecting characteristics from transient circuit responses
and the second on detecting the characteristics of the response to sinusoidal
inputs. Let’s see some representative examples of both domains.
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3.3.1 Time Methods

The saturated-ramp waveform (Balivada et al., 1996) and the complementary
signal proposed by (Capitain, 1982), (Schreiber, 1977) and (Corsi et al., 1993)
can be mentioned as examples of time domain analysis. Next, these methods
are described and applied to a particular circuit as an example.

The saturated-ramp waveform testing

As proposed in (Balivada et al., 1996), a saturated ramp signal is applied to
the circuit input. This method is based on the multifrequency signal contained
in a ramp signal. It is used instead of a sinusoidal sweep in the input. The
ramp has a rise time trin and a saturation value VSAT as is shown in Figure
3.3.

trin
time

Amplitude

VSAT

Figure 3.3: Ramp stimulus

A typical circuit response to this input is depicted in Figure 3.4.

The signature that characterizes each fault is compounded by the following
parameters:

• Steady state (Vest): Final value to which the output tends.
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0,1 Vest

0,5 Vest

0,9 Vest

td

Vest

time

Amplitude

SP

0,1 Vest

0,5 Vest

0,9 Vest

tr

Vest

Output

Input

Figure 3.4: Circuit response to a ramp input

• Overshoot (SP): Defined as

SP =
Vmax − Vest

Vest

100 (3.2)

where Vmax is the maximum value of the amplitude reached at the out-
put, and Vest is the steady state value.

• Rising time (tr): Time used by the output to rise from the 10% to 90%
of the steady state value.

• Delay time (td): Interval of time between the moment input and output
gets to the 50% steady state value.

The dictionary is built by simulating the circuit, taking the saturated
ramp as the input signal and provoking the faults to be detected. Then, the
circuit ramp response parameters corresponding to each fault considered are
stored in a table. When testing, the faulty circuit is excited with the same
ramp input, and the response parameters obtained are compared with the
pre-stored ones. The difficulty associated with this method is to choose an
appropriate input ramp rise time tr that produces a satisfactory difference
between the values obtained for each fault. Making this choice is not trivial.



AC Domain 61

As stated in (Balivada et al., 1996) a faster rise time trin does not necessary
imply better results. To illustrate an application of this technique, an example
is shown.

Example 9

Let’s take the circuit in Figure 3.5 with R1 = R2 = 100Ω, L =
√

2 · 102H and

Vi

+

-

V0
C2

R1

R2

L1

+

-

Figure 3.5: Circuit RLC

C =
√

2 · 10−2F . The transfer function of this circuit is given by

H(s) =
R2

L1R2C2s2 + (L1 + R1 · R2 · C2)s + (R1 + R2)
(3.3)

If the saturated ramp is taken with trin = 1 seg and VSAT = 1 V , the
circuit response of Figure 3.6 is obtained

So, for the nominal case, the following values are obtained

Vmax = 0.517V
Vest = 0.5 V

SP =
Vmax−Vest

Vest
100 = 4.13%

tr = t90% − t10% = 1.45 sec.
td = 2.24 sec.
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Time (sec.)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Vest ✄ 0.5
Vmax = 0.517

0.9Vest

0.1Vest

0.5Vest

td =2.24

tr =1.45

SP= 4.31%

Figure 3.6: Circuit RLC’s response to the saturated ramp

If deviations of ±20% and ±50% from the nominal are considered for each
component as the possible universe of faults, the dictionary in Table 3.2 is
obtained.

As it can be seen there will be several ambiguity groups, since there are
some measures that are the same. For instance, if for a certain faulty circuit,
the parameters measured are

Vest = 0.5 V
SP = 3.58%
tr = 1.78 sec.
td = 2.77 sec.

According to Table 3.6, the closest cases (with a distance of 0) are C2+50%
and L1 + 50%. Hence they will be taken as the possible failures.
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SP(%) td(sec.) tr (sec.) Vest

OK 4.31 1.45 2.24 0.50 

R1+20 3.05 1.41 2.25 0.45 

R1-20 5.93 1.49 2.23 0.55 

R1+50 1.67 1.36 2.28 0.40 

R1-50 9.30 1.58 2.23 0.54 

R2+20 5.63 1.49 2.23 0.54 

R2-20 2.78 1.40 2.26 0.44 

R2+50 7.26 1.53 2.23 0.60 

R2-50 0.41 1.30 2.35 0.33 

L1+20 4.23 1.59 2.44 0.50 

L1-20 4.02 1.30 2.04 0.50 

L1+50 3.58 1.78 2.77 0.50 

L1-50 2.61 1.06 1.77 0.50 

C2+20 4.23 1.59 2.44 0.50 

C2-20 4.02 1.30 2.04 0.50 

C2+50 3.58 1.78 2.77 0.50 

C2-50 2.61 1.06 1.77 0.50 

Table 3.2: Dictionary for the considered faults and the RLC circuit

Complementary signal

This method consists in building a piecewise constant signal, so that the cir-
cuit response is first different from 0 and then decays to it in a finite interval
of time tdec. This time interval defines the fault. Complementary signal steps
amplitudes are functions of the location of the circuit’s poles and, as a conse-
quence, functions of the circuit components. A typical complementary signal
could be the one showed in Figure 3.7.

T

α0

α1

α2   . . .

t
Circuit Under

Test t
tdec

Figure 3.7: Complementary signal concept

The complementary signal associated with a fault is derived using the
faulty and nominal circuit response to a pulse u(t) given by equation 3.4.
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u(t) =

{

1 0 ≤ t ≤ T
0 elsewhere

(3.4)

According to (Capitain, 1982) and (Schreiber, 1977), the parameters αi

are calculated using the following expressions:

α0 = 1

α1 = +
n−1
∑

i=1

n
∑

j=i+1
e(vi+vj)T

...

αn = (−1)n · e
n
∑

i=1

(viT )

(3.5)

where Vi are the poles of the system and T the duration of each αi .

Then, if the good and faulty circuit complementary signals are αi and α̂i

respectively, the fault signature is [αi − α̂i] for i = 1, 2, ..., n, with n the num-
ber of faults to detect. The dictionary is constituted by a vector of signatures
Q= [α1 - α̂1 , α2 - α̂2 ,....]. This technique has the disadvantage that the
transfer function of the circuit has to be known or determined empirically.

On the other hand, according to (Bandler and Salama, 1985), the comple-
mentary signal can be written as

np
∑

i=0

αi · u(t − iT ) (3.6)

where np is the system order. This response can be transformed as a
function of the circuit response vu(t) to the impulse of equation 3.4 as

np
∑

i=0

αi · vu(t − iT ) (3.7)

Then, the parameters αi have to be selected making the response of the
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system to the complementary signal vanish before t = (np +1)T . To calculate
the parameters the following system has to be solved













−vu((np + 1)T )
−vu((np + 2)T )

...
−vu((np + q)T )













=













vu(npT ) vu((np − 1)T ) · · · vu(T )
vu((np + 1)T ) vu(npT ) · · · vu(2T )

...
...

...
vu((np + q − 1)T ) vu((np + q − 2)T ) vu(qT )

























α1

α2
...

αq













(3.8)

where q is the number of vu(t) samples taken after t = (np + 1)T .

If q ≥ (np + 1), a system of overdetermined equations in α is built. The
advantage of this method for finding the αi parameters is that the circuit
transfer function is not necessary.

The difficulty of the complementary signal method is to find the period T
that gives the best results. In (Bandler and Salama, 1985), (Capitain, 1982)
and (Schreiber, 1977) this T is chosen arbitrarily. In (Corsi et al., 1993) an
approximation value of T is used, which allows the maximum sensitivity to
fault conditions to be obtained. This value has to do with the inverse of the
circuit bandwidth. To see how the method works, an example is shown.

Example 10

Suppose that the circuit to be analyzed is the RLC circuit shown in Figure 3.5
with the same component values. The circuit has the transfer function given
in equation 3.3. For the given values, the poles of the system are situated
at -0.5050±0.9192i. The stimulus impulse is chosen arbitrarily to be 1 V
amplitude and T = 0.5 seconds width.

The circuit response to this impulse is depicted in Figure 3.8
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Figure 3.8: RLC impulse response

Choosing the method proposed by (Bandler and Salama, 1985), the fol-
lowing values from the circuit impulse response are taken:

Vu(0) = 0, Vu(0.5) = 0.0491, Vu(1) = 0.1034, Vu(1.5) = 0.112,

Vu(2) = 0.0966, Vu(2.5) = 0.0720, Vu(3) = 0.0473, ...

and using the set of equations 3.8, with q = 2, since it is a second order circuit,
the following equation system can be built:

(

−Vu(1.5)
−Vu(2)

)

=

(

Vu(1) Vu(0.5)
Vu(1.5) Vu(1)

)(

α1

α2

)

↓

(

−0.112
−0.0966

)

=

(

0.1034 0.0491
0.1120 0.1034

)(

α1

α2

)

Solving the system, the parameters αi obtained are

α1 = −1.3138, α2 = 0.493
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and α0 is always set to 1. Something similar will be done with the other
faults considered.

Once the dictionary is built, the process for testing circuits consists in
applying the pulse of duration T to the faulty circuit. Then, samples of
the circuit response at instances t = T, 2T, 3T, ..., (np + 1)T are taken.
These values are used to solve the system of equations Eq. 3.8 obtaining the
parameters αi. Finally, these parameters are checked with the parameters
stored in the dictionary. The case of the dictionary with the αj parameters
that are most similar to the recently calculated αi is taken as the solution of
the test.

The method presents good results for simulated circuits with small devia-
tions from the considered faults. But, once tested with real data, the results
show that the location of faults is extremely sensitive to noise. Also, the
components tolerance makes the diagnosis system go wrong. Hence, the com-
plementary signal method does not seem to be very useful when applied to
a real circuit. Therefore, the saturated-ramp is the time method selected for
our purposes.

3.3.2 Frequency Methods

The stimuli used are sinusoidal waveforms at different frequencies. Then,
measures of the gain, phase or both at these frequencies make up the signatures
that will be stored in the dictionary. The same stimuli is applied to the faulty
circuit, and the signatures obtained are compared with the stored ones. The
most similar one will be taken as the solution.

So, the first point is to choose the adequate test frequencies. It is desirable
that the number of frequencies is the minimum and the degree of testability
the maximum. There are several procedures that can help in the frequency
selection process. Three of them are commented on.

• The Seshu-Waxman method (Bandler and Salama, 1985): Suppose a
linear time invariant system with the transfer function
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H(s) = k

nz
∏

i=1

(s − zi)

np
∏

j=1

(s − pj)

(3.9)

where s is the complex frequency, and zi and pj are the zeros and poles
of the transfer function respectively. As the parameter values shift is
related to the poles’ and zeros’ (breakpoints) complex s-plane positions,
the test frequencies are selected so that there must be at least one test
frequency below the lowest nonzero break frequency, one above the high-
est finite break frequency and one between successive breakpoints. A
change in a particular parameter will produce a change in the module
and phase of the circuit response of the breakpoints and consequently
in the test frequency set selected. This is because the variation in the
circuit parameters produces variation in the pole and zero values and
as a consequence a change in the magnitude of the transfer function is
produced. The selection of test frequencies between breakpoints allows
different measurement values produced by the parameters variation to
be obtained.

• Selection by optimization: This method is proposed and developed in
(Varghese et al., 1978). It associates a confidence level index with a set
of selected test frequencies. This index has to do with the capability
of the frequencies to separate and diagnose the proposed set of faults.
First, a wide frequency test set is defined. The faults of interest are
simulated and the magnitude and phase responses at these frequencies
are stored. Then, the algorithm starts calculating the confidence level
beginning with a frequency and a measure (module or phase). If the
index is not satisfactory (less than a pre-established minimum), more
responses and frequencies are introduced. When the confidence level is
sufficient, the algorithm stops and provides us with an optimum set of
frequencies and measures to perform.

• Sensitivity based analysis: In order to choose test frequencies that have
enough measure variations when a fault is produced, an analysis of
the circuit’s sensitivity to its components’ variations is performed. In
(Duhamel and Rault, 1979), (Bandler and Salama, 1985) and (Jurisic et
al., 1996) some techniques using this frequency selection procedure are
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shown. The sensitivity concept used in them is the differential sensiti-
vity, defined as

ST
x =

x

T

∂T

∂x
=

∆T/T

∆x/x

∣

∣

∣

∣

∣

∆x→0

(3.10)

where x is the component and T the circuit transfer function. The dis-
advantage of this definition is that it only allows for soft component
deviations from their nominal value. For large deviations, the frequen-
cies at which the sensitivity is at its maximum correspond to other
different values. This can be seen in (Slamani and Kaminska, 1995)
and an improvement is proposed, defining the concept of incremental
sensitivity.

• Selecting frequencies where the maximum error is achieved: As stated in
(Balivada et al., 1996), another way of building a set of test frequencies
is to obtain the set at which the maximum deviations of the module and
phase circuit responses have the maximum difference from the nominal
for the considered faults.

Example 11

Let’s take the circuit given in (Varghese et al., 1978) and reproduced in Figure
3.9.

Vi

+

-

V0

R1

R2

+

-

C1

C2 C3

R3
R4

Figure 3.9: R-C network for the selection of frequencies

The circuit transfer function is given by:

H(s) =
V0

Vi

=
105s + 107

0.2s3 + 532s2 + 17.5 · 104 + 1.1 · 107
(3.11)
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with R1 = 1MΩ, R2 = 10MΩ, R3 = 2MΩ, R4 = 1MΩ, C1 = 0.01µF ,
C2 = 0.001µF and C3 = 0.001µF . This circuit has a zero in ωz = 100 rad/sec
and poles in ω1 = 83.3 rad/sec, ω2 = 288.6 rad/sec and ω3 = 2288.1 rad/sec.
Then, according to the Seshu-Waxman criterion ω = 10, 95, 200, 800 and
5000 rad/sec, could be taken as the set of test pulsations.

If the frequency selection proposed in (Balivada et al., 1996) is applied, the
frequencies selected are the ones where the maximum module or phase diffe-
rence from the nominal are achieved for each considered fault. For example,
for the circuit in Figure 3.9, a pulsations sweep from 10−1 to 105 is performed.
For the fault R1 + 20%, the differences in magnitude and the phase from the
nominal, are represented in Figure 3.10 and Figure 3.11.
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Figure 3.10: Sensitivity magnitude for R1 + 20%

By doing the same for the set of proposed faults to detect the nominal ±
20% and the nominal ± 50%, Table 3.3 can be built.

In the case that the frequencies are selected depending on the components
sensitivity, first the sensitivities according to equation 3.10 must be calculated.
For the RC circuit in Figure 3.9, the sensitivity magnitude for each component
is obtained and depicted in Figure 3.12.
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Fault ☎ mag (dB) ✆ (rad/sec) ☎ Phase (º) ✆ (rad/sec)

R1+20 -10.35 895.26 -36.55 418.43 

R1-20 -10.14 946.18 -36.33 460.96 

R1+50 -10.42 870.84 -36.52 407.01 

R1-50 -9.70 1028.00 -35.30 529.30 

R2+20 -10.28 907.73 -36.30 436.15 

R2-20 -10.25 920.37 -36.80 436.15 

R2+50 -10.29 907.73 -36.10 436.15 

R2-50 -10.20 933.19 -37.67 442.22 

R3+20 -9.70 841.10 34.80 1763.00 

R3-20 -10.90 1000.00 -38.50 461.00 

R3+50 -8.90 790.50 39.10 1600.30 

R3-50 -12.00 1265.00 -42.20 522.10 

R4+20 -9.00 835.50 33.30 1787.50 

R4-20 -11.70 1028.00 -41.90 494.00 

R4+50 -7.50 737.70 35.80 1622.60 

R4-50 -14.70 1318.60 -52.40 624.90 

C1+20 -10.84 882.97 -37.22 424.25 

C1-20 -9.47 959.36 -35.26 460.96 

C1+50 -11.45 847.08 -37.81 407.01 

C1-50 -7.50 1101.60 -31.20 529.30 

C2+20 -9.80 847.10 35.20 1763.00 

C2-20 -10.80 1013.90 -38.50 467.40 

C2+50 -9.20 768.90 40.00 1578.30 

C2-50 -11.70 1300.50 -42.10 529.30 

C3+20 -8.40 847.10 31.40 1837.70 

C3-20 -12.50 1000.00 -43.20 494.00 

C3+50 -6.10 768.90 31.50 1763.00 

C3-50 -17.20 1230.50 -56.80 642.40 

Table 3.3: Maximum difference from the nominal
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In this case, for components R3, R4, C2 and C3, the highest sensiti-
vity is obtained for high frequencies, having a value of −1. Hence taking
ω = 20Krad/sec for an example, could be a good choice for diagnosing these
components. If the same frequency is used for the rest of the components,
the results for them are not distinguishable from their nominal situation, be-
cause the sensitivity at high frequencies is 0 (no variation on the measures).
R1 exhibits its highest sensitivity at low frequencies, as does R2. Therefore
a frequency ω = 10 rad/sec can be useful for detecting faults related to R1

and R2. On the other hand, C1 presents maximum sensitivity of the transfer
function module close to ω = 200 rad/sec.

If the algorithm proposed in (Varghese et al., 1978) is applied, the following
procedure has to be followed:

• The power discrimination of the measure i is determined by

Di =





nf−1
∑

f=1

(dif − di,f+1)
2





1/2

∀ measure i (3.12)

where dif are the measures done for the nf faulty cases considered.
Equation 3.12 is useful in order to discriminate between the nf faults,
since a small Di value means that the fault symptoms are very close,
making the distinction between them difficult.

• A separability index between two faults f1 and f2 is defined as

Df1f2
=

[

nm
∑

i=1

(dif1 − dif2)
2

]1/2

(3.13)

Usually, this expression is given in % as

D∗
f1f2

=
Df1f2

D∗
(3.14)

where D∗ is D∗ = max(Df1f2
)

• With these values, the Confidence level is calculated as follows

CONF =
CONF1 + CONF2

nf (nf − 1)/2
(3.15)
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where CONF1 is the number of measures that have a separability greater
than 50%, and CONF2 is the separability sum of the measures with a
separability less than 50%. So, this set of measures is characterized
by a confidence level CONF . If this index is not satisfactory, the set
of measures proposed will be optimized using the algorithm given in
(Varghese et al., 1978). As it can be expected, from a certain number
of measures taken, the confidence level does not increase significantly.

Applying the algorithm to the R-C network of Figure 3.9, the following
table is obtained (extracted from (Varghese et al., 1978)).

Set N.  
Meas.

Amplitude Phase Conf. 
Level % 

1 1 - 100 50 

2 2 10 100 68.25 

3 3 10 100  600 85.55 

4 4 10 100  600  10000 87.31 

5 4 10 100  600  9000 87.55 

6 4 10 100  600  8000 87.84 

7 4 10 100  600  7000 87.24 

8 6 10  80  1000 100  600  6000 87.95 

9 7 10  80  500  900 100  600  6000 88.07 

10 9 10  80  200  400  700 100  600  5000  9000 89.33 

11 9 10  70  200  400  700 100  600  5000  9000 89.27 

12 9 10  70  200  400  700 100  600  4000  8000 89.52 

13 10 10  70  200  400  700 100  200  600  4000  7000 89.03 

14 11 10  70  200  400  600  1000 100  200  600  4000  7000 88.95 

15 12 10  60  200  400  600  1000 100  200  600  3000  6000 9000 89.22 

Table 3.4: Set of measures versus confidence level

A graphical representation of the Table 3.4 is given in Figure 3.13.

In Figure 3.13, taking more than four measurements does not cause a
great improvement. For example, set number 6 needs 4 measurements,
and the associated confidence level is 87.84%, while taking the set num-
ber 15, 12 measurements are necessary and the associated confidence
level is 89.22%. So, in order to improve the confidence level in less than
2%, 8 measures have to be taken.
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Figure 3.13: Confidence level versus set number

3.4 Numerical Results of the Biquad Filter

Since the biquadratic filter described in Chapter 1 will be used as a benchmark
for demonstrating the proposed methodology, some fault dictionary methods
will be applied to it. Two AC fault dictionaries are analyzed in detail: one
based on the the saturated ramp response, and the other based on the fre-
quency domain. The universe of faults to be detected are deviations of ±20%
and ±50% from the nominal for each component.

3.4.1 Saturated Ramp

If a saturated ramp input has values tr = 100 µs and VSAT = 1V , the circuit
output V0 is shown in Figure 3.14.
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Figure 3.14: Biquad filter saturated ramp response

The response parameters for the nominal case are

[SP, td, tr, Vest] = [4.4029%, 15 µs, 76µs, −1 V ]

Taking into account the universe of faults considered, the dictionary shown in
Table 3.5 is obtained. The faults for R2, R3 and C1 are grouped together be-
cause they produce exactly the same measures. They constitute an ambiguity
group.

The last separated column of Table 3.5 gives results when a set of 100 new
Monte-Carlo randomly generated cases for each considered fault is taken for
testing. Observe that in spite of tolerances, the performance is quite good.
The table also takes ambiguity groups into account.
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Fault SP (%) Td ( ✝ s) Tr ( ✝ s) Vest (V)  Success % 

R1+20 4.4029    15    76 -0.8332  84 

R1-20 4.4029    15    76 -1.2498  87 

R1+50 4.4029    15    76 -0.6665  99 

R1-50 4.4029    15    76 -1.9996  100 

R2,R3,C1+20 4.0473    19    77 -1.0001  41 

R2,R3,C1-20 4.6614    11    75 -1.0000  36 

R2,R3,C1+50 3.3711    24    80 -1.0003  79 

R2,R3,C1-50 5.2359     5    75 -0.9999  94 

R4+20 5.7311    12    73 -0.9994  85 

R4-20 2.4917    19    80 -1.0000  88 

R4+50 6.9145    10    71 -0.9990  98 

R4-50 0    29    92 -1.0000  100 

R5+20 4.6189    12    75 -0.9999  47 

R5-20 3.9447    20    77 -1.0002  38 

R5+50 4.8682     9    76 -1.0002  82 

R5-50 2.1315    31    86 -0.9996  91 

R6+20 4.0473    19    77 -1.2001  79 

R6-20 4.6614    11    75 -0.8000  86 

R6+50 3.3711    24    80 -1.5004  98 

R6-50 5.2359     5    75 -0.4999  100 

C2+20 5.7085    16    73 -0.9997  82 

C2-20 3.0781    15    77 -1.0000  89 

C2+50 7.6834    17    72 -1.0005  99 

C2-50 1.0031    15    80 -1.0000  100 

Nominal 4.4029    15    76 -1.0000  69 

   Average 82.04

Table 3.5: V0 parameters for the saturated ramp input
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3.4.2 Frequency Method

For the frequency analysis, first of all, a set of the adequate frequencies at
which to take the measures has to be selected. If the Seshu-Waxman criterion
is applied, the transfer function of the system is needed. The transfer function
of the biquadratic circuit taking node V0 as the only measurable node is given
by

H1(s)=
V0
Vi

=
−R4R5R6

R1
·

1
C1C2R4R2R3R6s2+C1R2R3R6s+R4R5

or normalizing as

H1(s)=
V0
Vin

=
−R5

R1R2R3C1C2

1

s2+ 1
R4C2

s+
R5

R2R3R6C1C2

Giving the corresponding values described in Chapter 1

H1(s)=
−4.444109

s2+6.667·104s+4.444·109

The transfer function has no zeros and two complex poles at

−3.33 · 104 ± 5.77 · 104j

Then, there is only a breakpoint located at ω0 = 6.663 · 104 rad/sec.
According to Seshu-Waxman, one frequency below ω0 and another above ω0

should be taken as possible frequencies where measures can be taken.

If frequencies where the maximum difference from the nominal occurs are
taken as the measurement set of frequencies, Table 3.6 is obtained for the
biquadratic filter.
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✞  x 104 ✟ Volts ✞  x 104 ✟ degrees

R1+20     0.7600    0.1993     0.3100     0.0079 

R1-20     3.0100    -0.0320     1.2000     0.1059 

R1+50     0.7600     0.3981     0.2500     0.0067 

R1-50     3.0100    -0.1275     1.2300     0.4047 

R2, R3 C1+20     1.0900     0.1930     0.8700    11.0061 

R2, R3 C1-20     0.2800     0.0015     0.1047    -0.0001 

R2, R3 C1+50     1.0400     0.3933     0.8100    23.0208 

R2, R3 C1-50     0.4800     0.0181     0.1047    -0.0003 

R4+20     0.0300     0.0001     1.6200     5.4865 

R4-20     0.9500     0.2281     0.6300     6.6562 

R4+50     0.0300     0.0002     1.5200    12.2086 

R4-50     0.9100     0.5732     0.5500    20.1225 

R5+20     0.2500     0.0010     3.0100     0.1495 

R5-20     1.0700     0.2370     0.8500    13.4128 

R5+50     0.3700     0.0050     3.0100     0.3832 

R5-50     0.9700     0.6040     0.7400    36.2301 

R6+20     1.2500     0.0478     0.8700    11.1163 

R6-20     0.5300     0.2200     0.1047     0.0040 

R6+50     1.2000     0.1002     0.8100    23.2092 

R6-50     0.6600     0.5854     0.1047     0.0023 

C2+20     1.3800     0.0826     0.8700    11.0116 

C2-20     0.7600     0.0831     0.1047    -0.0001 

C2+50     1.2900     0.1994     0.8100    23.0393 

C2-50     0.8100     0.2050     0.1047    -0.0003 

Table 3.6: Frequencies at which the difference from the nominal is at its
maximum
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As an initial set the following frequencies ω could be taken:

ω = [ 5000, 5500, 6600, 7500, 8000, 8500, 9000, 9500,
10000,11000,12000,12500,13000,14000,15200, 30000 ] rad/sec

These are the number of frequencies that group the major number of faults,
without being too particular for one exclusive fault and too close to the others.

On the other hand, if the set of frequencies are selected using the sensitivity
criterion, the circuit sensitivity at nodes V1, V2 and V3 are given in Figures
3.15, 3.16 and 3.17
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Figure 3.15: Biquad filter module sensitivity at node V1

The sensitivity phase graphic is the same for the three proposed nodes.
This is because the mathematical expression of the phase for these nodes is
given by equation 3.16

ϕ = ϕ0 − arctan
(

C1G4G5ω

G2G3G6 − C1G2G5ω2

)

(3.16)
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Figure 3.16: Biquad filter module sensitivity at node V2
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Figure 3.17: Biquad filter module sensitivity at node V0
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Figure 3.18: Biquad filter phase sensitivity at nodes V1, V2 and V0

The initial angle ϕ0 at ω = 0 rad/sec is −90o at node V1, 0o at node V2

and 180o at node V3. Hence, when differentiating, the expressions obtained
for all three will be the same.

Therefore, if node V0 is taken as the only measurable node, Figure 3.17
shows that the sensitivity for each component has its absolute maximum value
at the frequencies shown in Table 3.7

R1 R2 R3 R4 R5 R6 C1 C2

✠
(rad/sec) 5·104 7·104 7·104 6·104 7·104 3·104 7·104 5·104

Table 3.7: Frequencies at which sensitivity is at its maximum

Applying the confidence level method for the optimal frequencies at which
to perform the amplitude and/or phase measures, Table 3.8 is obtained, and
it is depicted in Figure 3.19.

At the beginning, there is a great increase in the confidence index caused
by taking more measures. But, after 6 or 7 measures, the confidence level
has a slight improvement while the number of measures to take increases
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Meas.

Num.

Measures  Conf.  

Level 

 Magnitude (rad/sec.).103 Phase. (rad/sec.) .103

1 65  53.84 

3 85 9, 65 76.11 

4 10, 85 9, 65 80.96 

5 10, 85 9, 10, 65 81.13 

6 10, 85 9, 10, 65,100 82.28 

7 10, 20, 85 9, 10, 65,100 82.95 

8 10, 15, 20, 85 9, 10, 65, 95 82.86 

9 10, 15, 20, 85 9, 10, 15, 65, 90 82.88 

10 10, 15, 20, 25, 85 9, 10, 15, 65, 90 83.40 

10 10, 15, 20, 25, 85 9, 10, 15, 65, 85 83 

11 10, 15, 20, 25, 85 6, 9, 10, 15, 65, 85 83.09 

12 10, 15, 20, 25, 30, 85 6, 9, 10, 15, 65, 85 83.42 

13 10, 15, 20, 25, 30, 85 6, 7, 9, 10, 15, 65, 85 83.54 

14 10, 15, 20, 25, 30, 85 6, 7, 9, 10, 15, 65, 80,100 83.25 

15 10, 15, 20, 25, 30, 85 6, 7, 9, 10, 15, 20, 65, 80,100 83.66 

16 10, 15, 20, 25, 30, 85 6, 7, 9, 10, 15, 20, 25, 65, 80,95 83.79 

17 10, 15, 20, 25, 30, 35, 85 6, 7, 9, 10, 15, 20, 25, 65, 80,95 84.19 

19 10, 15, 20, 25, 30, 35, 50, 85,100 6, 7, 9, 10, 15, 20, 25, 65, 80,95 84.93 

20 10, 15, 20, 25, 30, 35, 50, 85,100 6, 7, 8, 9, 10, 15, 20, 25, 65, 80,95 84.92 

21 10, 15, 20, 25, 30, 35, 50, 55, 85,100 6, 7, 8, 9, 10, 15, 20, 25, 65, 80,95 84.89 

22 10, 15, 20, 25, 30, 35, 50, 55, 60, 85,100 6, 7, 8, 9, 10, 15, 20, 25, 65, 80,95 84.57 

23 10, 15, 20, 25, 30, 35, 40, 50, 55, 60, 85,100 6, 7, 8, 9, 10, 15, 20, 25, 65, 80,95 84.31 

24 10, 15, 20, 25, 30, 35, 40, 50, 55, 60, 70, 85,100 6, 7, 8, 9, 10, 15, 20, 25, 65, 80,95 84.23 

Table 3.8: Confidence indexes for the biquadratic filter
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Figure 3.19: Confidence level for the biquadratic filter
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considerably. Therefore, selecting the set of 6 measures for the frequency is a
good compromise. These measures are reported in Table 3.9

Freq. (rad/sec.) Amplitude (Volts) Phase (º) 

9000  X 

10000 X X 

65000  X 

85000 X  

100000  X 

Table 3.9: Measures needed to perform the frequency method

Taking these measures for the biquadratic filter, and considering the same
universe of faults used for the saturated ramp method, Table 3.10 is built for
the frequency dictionary. The last separated column of Table 3.10 shows the
test results when a set of 100 new exemplars for each fault generated by the
Monte-Carlo algorithm is used. The success average is quite good even in the
presence of tolerances.

Fault Mag
9·10

3
Mag

10·10
3

Phase
10·10

3
Phase
65·10

3
Mag

85·10
3

Phase
100·10

3
Success 

%

R1+20% 172.17 0.8427 171.28 92.90 0.5868 50.19  84 

R1-20% 172.17 1.2640 171.28 92.90 0.8801 50.19  85 

R1+50% 172.17 0.6741 171.28 92.90 0.4694 50.19  95 

R1-50% 172.17 2.0224 171.28 92.90 1.4082 50.19  100 

R2,R3,C1+20% 170.60 1.0106 169.52 83.14 0.5551 46.64  43 

R2,R3,C1-20% 173.75 1.0108 173.03 107.07 0.9404 56.31  35 

R2,R3,C1+50% 168.24 1.0080 166.89 73.76 0.4179 43.45  80 

R2,R3,C1-50% 176.10 1.0085 175.66 137.10 1.5051 80.54  93 

R4+20% 173.46 1.0148 172.71 93.48 0.8110 45.00  80 

R4-20% 170.25 1.0047 169.14 92.32 0.5841 56.31  85 

R4+50% 174.76 1.0177 174.16 94.34 0.9475 38.66  95 

R4-50% 164.62 0.9780 162.94 91.45 0.3809 67.38  100 

R5+20% 173.48 1.0109 172.74 104.35 0.8927 55.01  42 

R5-20% 170.20 1.0103 169.08 81.22 0.5267 45.97  47 

R5+50% 174.79 1.0100 174.20 119.40 1.1708 63.43  88 

R5-50% 164.35 0.9990 162.56 65.19 0.2940 40.60  95 

R6+20% 170.60 1.2127 169.52 83.14 0.6662 46.64  78 

R6-20% 173.75 0.8086 173.03 107.07 0.7523 56.31  89 

R6+50% 168.24 1.5119 166.89 73.76 0.6268 43.45  96 

R6-50% 176.10 0.5042 175.66 137.10 0.7525 80.54  100 

C2+20% 172.14 1.0157 171.24 81.79 0.6288 41.42  80 

C2-20% 172.20 1.0067 171.32 103.80 0.7634 61.93  91 

C2+50% 172.10 1.0227 171.18 66.40 0.5202 32.28  97 

C2-50% 172.24 0.9999 171.37 118.29 0.7760 85.24  100 

Nominal 172.17 1.0112 171.28 92.90 0.7041 50.19  70 

Average 81.92

Table 3.10: Dictionary obtained using the frequency method
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3.5 Limitations of Fault Dictionaries

The advantage of these techniques is their simplicity. The problem is that the
only faults detected and located will be the ones that have been previously
simulated and stored in the dictionary. So, the more faults to locate, the
longer the dictionary should be.

These techniques are a compromise between fault coverage and dictionary
length. When the fault dictionary is made larger, the scope of faults detected
increases as well. On the other hand, if there is only a small set of faults
considered when generating the dictionary, the dictionary will be shorter, but
the world of detected faults will be reduced as well. So, one of the objectives of
the diagnosis designer is to built a dictionary with as few measures as possible
that gives a good fault diagnosis coverage.

A lot of systems are seriously affected by tolerances. If the dictionary is
obtained by simulating the faults only considering the nominal values of the
parameters, the measures obtained from the real system generally will not
match the stored ones because of tolerances. In order to find the possible
cases produced by the tolerances for a particular measure, several simulation
runs have to be carried out. One of the most commonly used methods is the
Monte-Carlo. It is obvious that increasing the number of Monte-Carlo runs
provokes a dictionary spreading, making it unpractical.

The results obtained by the saturated ramp and the frequency method
described above, are quite similar. For the frequency one, the set of 6 measures
is selected because it is a good compromise between the number of measures
and the confidence level obtained. In Table 3.10 and Table 3.5, there is only
a slight difference in the diagnosis results (82.04% and 81.92% of successful)
corroborating that the methods are quite equivalent to each other, as stated
in (Balivada et al., 1996).

The other important fault dictionary limitation is that they cannot cope
with faults that have not been previously considered. For example, if a set of
100 new faults for each component, uniformly distributed between ±70% of
the nominal value is taken, the temporal dictionary reduces its success average
to 17%, as shown in Table 3.11. A success means that the proposed solution
matches the fault with an error less than 10%.
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Component OK diagnosed Component Correct Wrong Non Detect. 

R1 19% 57% 16% 8% 

R2 20% 25% 42% 13% 

R3 5% 44% 37% 14% 

R4 15% 65% 17% 3% 

R5 15% 24% 50% 11% 

R6 20% 62% 12% 6% 

C1 12% 42% 35% 11% 

C2 30% 52% 7% 11% 

Average 17% 46.375% 27% 9.625% 

Table 3.11: Ramp dictionary successes for deviations of ±70%

So, more cases should be introduced in the dictionary if new situations
have to be satisfactorily solved. For example, if a fault such as R3+38% or
C2-68% has to be diagnosed, what should we do? The next chapters try to
answer to this question.



Chapter 4

IMPROVING FAULT

DICTIONARIES USING

FUZZY LOGIC

4.1 Introduction

A first solution to the fault dictionary limitations is to refine the diagnosis
system by means of fuzzy techniques. These techniques usually perform well
in systems with imprecision or uncertainty, such as electronic circuits.

Fuzzy logic has three main decision making steps: fuzzification, inference
and defuzzification. The fuzzification unit is the interface between input vari-
ables (measures from the circuit in our case) and the inference unit. It has the
attributes of acquiring and scaling input variables and their fuzzification. The
universe of each considered variable has to be partitioned. This partition is
carried out by defining fuzzy sets with a particular membership function shape
for each input variable. Fuzzy sets can be built from Monte-Carlo simulations
and the dictionary instances can be compacted in fuzzy rules. The system
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includes tolerance effects and its output is an estimation of each parameter
value.

In the inference step, the individually fuzzy sets that result have to be
combined. The decision fuzzy set obtained as output is a result of the union
of the singular fuzzy sets derived for each particular rule. Once the output
fuzzy set is made up, a crisp value belonging to the range of the output variable
universe has to be assigned to the obtained fuzzy set obtained.

The goal is to obtain a fuzzy system that is robust to tolerances and to
non predicted faults at the same time. The following steps are proposed in
order to build the fuzzy logic system:

1. First of all and according to the type of process, an adequate set of
measures has to be selected (temporal, frequency, continuous, and so
on). In our case, only the output process is taken as a measuring point.

2. Secondly, a dictionary with a considered universe of faults without
tolerances is built (the classical dictionary).

3. Then, a Monte-Carlo simulation is performed in order to include the
tolerance effect. This is done for each considered fault.

4. Afterwards fuzzy sets corresponding to each input are built. The
number of inputs is equal to the number of measures taken. Each input
has as many membership functions as faults considered. The shape of
these membership functions will be given by the distributions obtained
by the Monte-Carlo simulation.

5. There are as many fuzzy outputs as parameters to be identified. Each
output is composed by membership functions corresponding to the possi-
ble parameter deviations and the nominal case. The shape of the output
membership functions depends on the probability distribution function
related to the parameter.

6. Finally, fuzzy rules are written in the form of IF-THEN sentences.

Let’s look at these steps in more detail in the next sections.
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4.2 Defining the Inputs

Each measure is considered as a fuzzy system input. For example, for the
saturated ramp method, the system will have 4 inputs (SP ,td, tr, Vest). On
the other hand, for a frequency method that uses both, magnitude and phase
measures at 10 different frequencies, the fuzzy system will have 20 inputs.
The number of membership functions belonging to each input is given by the
previously considered universe of faults and the nominal case. That is, if
the circuit is composed of N parameters, and deviations of ±X% for each
parameter are considered as desirable identifiable faults, each fuzzy input will
have 2N + 1 membership functions. Figure 4.1 shows a possible appearance
of the measure i input. Each membership function is related to a possible
considered fault (Parameter1 + X%, Parameter1 − X%, Nominal,...). In
general, membership functions are not symmetric.

Certainty

Measure i

Param.1 + X%

Param.1 - X%

Param.2 + X%

. . . .

Param.N + X%Nominal

. . . .

Param.N - X%

Figure 4.1: Measure i appearance

The membership function shape has been selected taking advantage of
the Monte-Carlo simulation results. An analysis of the Measure i faults
distribution is carried out. For example, Measure i for Fault j can have the
distribution shown in Figure 4.2, after a Monte-Carlo simulation of L runs.

This distribution could be approximated, for example, by a Gaussian or
triangular shape as it is depicted in the figure.
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Measure Value

Number of cases

Figure 4.2: Measure i input distribution for fault j

4.3 Defining the Outputs

The outputs of the system are the estimated parameter values. Therefore,
there will be as many outputs as parameters. Each output will have a mem-
bership function for each considered deviation. For example, if deviations of
±X% are considered, the parameter param i output will look like Figure 4.3

Certainty

parameter i value

Param. i + X% Param. i - X%Nominal

Figure 4.3: Parameter i output appearance

The membership function shape will be taken according to the parame-
ter value distribution. For resistors and capacitors, it is well known that
these components have a Gaussian distribution probability function (Loveday,
1995), (Boyd, 1999). Hence a typical output can exhibit a membership distri-
bution as shown in Figure 4.4.
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Figure 4.4: Gaussian output membership functions

4.4 Defining the Rules

Once the inputs and outputs are defined, they have to be connected by means
of rules. The rule structure for the fault Param.1 + X% is

if (Meas. 1 is Param. 1+X%)&(Meas. 2 is Param 1+X%)&....(Meas. M is

Param. 1+X%) then (Param. 1 is Param. 1+ X%)&(Param. 2 is

nominal)&(Param. 3 is nominal)&... (Param. N is nominal).

Hence, there are as many rules as considered faults. The advantage of this
method is that it is not necessary to store all the cases, only the rules and
membership functions for the inputs and the outputs. The operator selected to
combine antecedents is the product. The main reason is to penalize measures
falling outside the membership’s scope. If one of the M measures falls outside
of at least one of the sets defined by the rule antecedents, the final product
will be 0, and the rule will not be fired. Otherwise, the rule will be triggered
with a value corresponding to the product of the belonging coefficients.

The defuzzification method used is the centroid. Then, after computing a
set of measures, each output will provide us with an estimated value of the
corresponding parameter with a degree of certainty.
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4.5 The Fuzzy Inference Model

Figure 4.5 displays how the inputs, outputs and rules are combined for the
ramp method. The example shows that taking the measures SP1, td1, tr1 and
Vest, only rules 1 and 3 are activated. The corresponding consequents are
derived giving an estimation of the present value for each component.

Rule 1. IF 

R1+20%

SP

AND

R1+20%

td

AND

tr

R1+20%

AND

R1+20%

Vest

THEN

Rule 3. IF 

R1 +50%

SP

SP1

R1+50%

td

td1 

tr

R1+50%

tr1

R1 +50%

Vest

Vest1 

THEN

R1+20% R2 Nom C2 Nom

. . .

. . . 
R1+50% R2 Nom

C2 Nom

. . .

R2 Nom

. . .

R1

Estimation

R2
Estimation

C2

Estimation

Defuzzification: Centroid 

Antecedents Consequents 

Inputs. Measures

AND AND AND

C2 Nom

Outputs.  

Component values 

R1+20%

R1+50%

R2=R2 Nom C2=C2 NomR1=R1+X%

Figure 4.5: Fuzzy inference model

The defuzzification procedure combine the consequents of the activated
rules by means of the centroid method. The result is an estimated value for
each component.

4.6 Numerical Results

The proposed fuzzy logic system has been implemented in the biquadratic
filter from Section 1.7. As the circuit being tested is frequency dependent, the
frequency method and the time method described previously can be used. In



Numerical Results 93

order to reduce the set of measures, it has been considered that only voltage
measures at the output V0 are possible.

The initial proposed faults to be detected are deviations of ±20% and
±50% from the nominal values of the passive components (a set of 32 faults).
So, our fuzzy logic system has a membership function for each fault and the
nominal case (33 membership functions per input).

4.6.1 Frequency Method

In the frequency method, measures at each frequency are taken as fuzzy system
inputs (6 inputs are defined). Each fuzzy system input corresponds to the
amplitude and phase measures displayed in Table 3.9. Figure 4.6 shows the
appearance of the input amplitude at 10000 Hz.

Figure 4.6: The amplitude measure at 10000Hz.

Membership functions are triangular shaped. The maximum value corres-
ponds to the value obtained for this measure and fault, while all the other
components stay at their nominal value. Figure 4.7 shows an example corres-
ponding to the measure magnitude at 10000 Hz for the nominal case, where
triangular and Gaussian membership functions with the real distribution of
the output parameter (histogram) are compared. The abscise magnitude is
in Volts. This distribution was obtained after 500 Monte-Carlo runs with
the component values being Gaussian distributed in their tolerance margin
(nominal case).

The triangle extremes are the maximum deviation of this value produced
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Figure 4.7: Magnitude at 10000. Nominal case

by the component tolerance. For example, for the fault R1 − 50%, after
500 Monte-Carlo runs, the interval extremes corresponding to the magnitude
measurement at 10000 Hz are [1.5278 2.5260], and the value obtained without
tolerances is 2.022. Figure 4.7 shows that a triangular shaped approximation
for the membership functions is not bad. Taking Gaussian distributions does
not improve the results significantly, as test results show. In a few cases,
the triangular shape slightly improves the diagnostic. The reason is because
in some cases the queues of the Gaussian shape introduce overlapping, while
triangular membership functions are exactly 0 outside the margin.

There is one fuzzy system output associated with each component (8 for
the biquadratic filter). There is a set of membership functions corresponding
to the component at its nominal value and one for each possible deviation
considered, ±20% and ±50% from the nominal value, giving 5 subsets for
each output attribute. So, each output attribute provides an estimated value
for each component. Figure 4.8 shows the sets considered for the output
attribute related to component R1.

Membership functions belonging to the output attributes have a Gaussian
shape, which is the typical distribution for electronic components (Loveday,
1995), (Boyd, 1999). Rules are simple relations, such as the following one:
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Figure 4.8: Output attribute sets for R1

if (phase9000 is R1-20)&(mag10000 is R1-20)&(phase10000 is

R1-20)&(phase65000 is R1-20)&(phase100000 is R1-20) then (R1 is R1-20)&(R2

is nominal)&(R3 is nominal)&... (C2 is nominal).

The previous rule corresponds to the case R1 − 20%. The operator ’&’ is
defined by the product function. When the measurements in Table 3.9 are
acquired, they belong to a set in a certain degree. Hence, if one of the 6
measures falls outside at least one of the sets defined for this rule, the final
product will be 0, and the rule will not be fired. On the other hand, if each
of the 6 measures taken fall into the sets defined by the case R1 − 20%, this
rule will be activated with a value corresponding to the belonging coefficients
product. Figure 4.9 shows the activated sets in gray for the case R1 − 20%.

Analyzing Figure 4.9, it can be seen that the rule corresponding to R1 −
20% is fired with a belonging coefficient of 1 per set. Rules corresponding to
R4 − 20%, R5 − 20% and R6 − 20% are fired as well but with a lower index. If
R1 − 20% was the only fired rule, the diagnostic would be R1 − 20% and the
other components would have a value belonging to the 10 % tolerance range
from the nominal. But, due to the overlapping in the sets, sometimes several
rules are fired at the same time for the same set of measures. In this case, the
product is the operator selected to combine the fired membership functions.
Now, the results of the rules are added providing the output set shown in
Figure 4.10 for R1.

A similar figure is obtained for each component. The centroid method is
used for giving a final estimated value for each component. The final outputs
for the case R1 − 20% are given in Table 4.1.
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Figure 4.9: Fuzzy input sets activation for R1 − 20%

Therefore, the conclusion is that R1 is faulty, since it is the only component
that has an estimated value outside the tolerance limits (R1nom = 2.7K).
Something similar can be done in the other cases. There are 4 components
that give a wrong diagnosis: R2−20%, R3−20%, R5−20% and C1−20%. In
the case of R2, R3 and C1−20% the diagnosis is R5, and the opposite happens
for R5 − 20%. The signature of R2 − 20%, produces the output set depicted
in Figure 4.11 for R2.

This is because in that particular case the measures overlapping fire rules
that produce a wrong centroid when defuzzifying. The centroid method gives
an average of R2 = 0.911K, therefore, R2 is considered non faulty.

On the other hand, Figure 4.12 shows the output for R5.
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Figure 4.10: R1 output set for R1 − 20%

R1 R2 R3 R4
2223 1000 10000 1504

R5 R6 C1 C2
12010 2757 10nF 10nF

Table 4.1: Results with fuzzy
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Figure 4.11: R2 output set for R2 − 20%
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Figure 4.12: R5 output

The centroid method applied to this set produces an output R5 = 13.58K.
So, R5 is considered to be faulty. The diagnosis being worse is not serious,
since without fuzzy, it gave a lot of overlapping that makes the situation
difficult to diagnose. Something similar happens with the other cases.

As it has been previously explained, the system has to be able to make
decisions in other unlearned situations. For example, the system was tested
with the new cases R1+15%, R6−30%, C2−30% and R3+70%. The diagnosis
provided is given in Table 4.2

Fault Diagnosis

R1+15% R1

R6-30% R6

C2-30% C2

R3+70% R2, R3, R5, C1 

Table 4.2: Diagnosis for unlearned cases

So, the system does what is expected when applying fuzzy. It interpolates
to diagnose the new situations, and it gives satisfactory results.

In a real circuit the components have tolerances, and how the diagnosis
system copes with this factor should be tested. Trying the system with 100
cases for each considered fault, randomly chosen using Monte-Carlo with a
Gaussian distribution, the percentage of successes is shown in Table 4.3.
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Fault Diag. Succes Fault Diag. success 

R1+20 92% R5-20 20%

R1-20 84% R5+50 96%

R1+50 98% R5-50 93%

R1-50 100% R6+20 88%

R2,R3,C1 +20 84% R6-20 83%

R2,R3,C1 -20 18% R6+50 100%

R2,R3,C1 +50 99% R6-50 100%

R2,R3,C1 -50 99% C2+20 95%

R4+20 80% C2-20 77%

R4-20 86% C2+50 99%

R4+50 98% C2-50 99%

R4-50 98% Nominal 42%

R5+20 82% Average 84.40% 

Table 4.3: Diagnosis success for 100 runs. Frequency method.

The percentage of success means that the right component is diagnosed
each time, although sometimes it does not appear alone. For example, the
case R1 − 50% is detected in 100% of the cases. Actually, this percentage
corresponds to R1 in 98.7% of cases and 1.3% to the set [R1, R6].

Table 4.3 shows that in the majority of cases, the success percentage is
good. In the nominal case, it has a lower value because of overlapping with
other sets. For instance, it diagnoses R5 in 11.25% of the cases, and the
set [R2, R3, C1] in 9% of them. It has to be mentioned as well, that the
cases corresponding to R2, R3 and C1 constitute an ambiguity group for each
deviation considered.

4.6.2 Time Method

Now, the signature parameters overshoot, rise time, delay time and steady

state will be taken as the fuzzy system inputs. As in the frequency method,
each input attribute is divided into 33 triangular shaped membership func-

tions. For example, for R2 + 20% the final diagnosis is R2, R3 and C1. Doing
the same for the other faults, it can be concluded that the fact of applying
fuzzy does not worsen any of the results obtained with the fault dictionary
using the ramp method, and the huge overlapping is improved. Taking into
account that real circuits have tolerances, the system was tested making a
randomly Gaussian distributed sweep in the component values. 100 runs were
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made for each considered fault, and the percentage of successes is given in
Table 4.4.

Fault Diag. Succes Fault Diag: success 

R1+20 94% R5-20 15%

R1-20 75% R5+50 100%

R1+50 100% R5-50 99%

R1-50 100% R6+20 91%

R2,R3,C1 +20 88% R6-20 68%

R2,R3,C1 -20 14% R6+50 100%

R2,R3,C1 +50 99% R6-50 100%

R2,R3,C1 -50 99% C2+20 96%

R4+20 94% C2-20 77%

R4-20 78% C2+50 100%

R4+50 100% C2-50 100%

R4-50 100% Nominal 40%

R5+20 87% Average 84.56% 

Table 4.4: Diagnosis success for 100 runs. Ramp method.

As occurs with the frequency method, some signatures cause the fired rules
to point to an incorrect diagnosis. For example, a random simulation of the
fault R5 − 20% while other components stay at their tolerance margin from
a nominal of 10%, produces the following component values: R1 = 2.6966K,
R2 = 1.0170K, R3 = 9.9316K, R4 = 1.4443K, R5 = 9.6000K, R6 = 2.6995K,
C1 = 9.8752 nF and C2 = 9.8169 nF . Simulating the circuit with these
values, the corresponding temporal signature activates the rules as shown in
Figure 4.13. It can be appreciated that errors estimating R2, R3, R5 and C1

are produced.

The conclusions are not made worse by testing the method with non pre-
dicted cases, so the fuzzy system is able to interpolate and predict unlearned
cases. But, the cases C1 + 20%, R2 + 20% and R3 + 20%, among others,
remain impossible to distinguish, because the responses are almost identical.
They form an ambiguity group. A similar conclusion is made for the other
deviations of R2, R3 and C1.

Another important fact to highlight, is that the method is quite good
locating the fault but it loses efficiency when identifying. Figure 4.14 depicts
errors in the components R1 and R5 value estimations for the same set of 100
considered cases for each fault in the case of the biquadratic filter with the
temporal signature. The x axis corresponds to the case number. Therefore,
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Figure 4.13: Rules activation for the randomly simulated fault R5 − 20%.
Ramp method
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cases from 1 to 100 correspond to the fault R1 + 20%; cases from 101 to 200
correspond to simulations of fault R1 − 20% while other components stay in
the nominal range; cases 3101 to 3200 correspond to the fault C2 − 50% and
cases from 3201 to 3300 to the non faulty circuit situation (all components
with a value contained in the nominal range).
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Figure 4.14: Error estimating components R1 and R5

As it can be observed, there are some cases where the R1 value is estimated
with an error less that 10%, which is a good approach. But in some cases,
the error is superior to the 20% or in a few cases even higher than 100%.
The situation is worse for R5, as there were less cases estimated with an error
below 10%. Something similar can be said for the other components. This
error is made worse when deviations not previously considered, say 38%, are
given.
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4.7 Conclusions on the Fuzzy Approach

Parameter identification by means of fuzzy modeling is introduced into the
previously described temporal or frequency dictionaries. Triangular member-
ship function shapes were tried first, because of their simplicity. The authors
can state that there are no great differences between these and the real mea-
sures distribution shape observed at the circuit output.

After applying fuzzy modeling to the time and frequency methods, an
improvement in the diagnostic is obtained if compared with the classic dictio-
nary. Furthermore, from the set of faults used to generate the dictionary, the
system is able to interpolate and locate the faults that are not in the original
set.

The system including fuzzy sets has been tested taking into account that
real circuits are affected by tolerances. In particular, when testing the fault
isolation capability of the system, 100 cases were generated for each fault consi-
dered. The results are summarized in tables 4.4 and 4.3, and show that good
diagnoses are made despite of tolerances (84.56% and 84.40% respectively)
compared to the classic dictionary methods (82.04% and 81.92%). Again, the
equivalence between the saturated-ramp and frequency methods is evident.
These tables consider the diagnosis as a success when the component that de-
viates from its nominal behavior is given. Since only simple faults are allowed,
the component that has a great deviation from its nominal value will be the
one considered to be faulty. Therefore, the method is quite good for wrong
component detection. Also, it has to be taken into account that the method
reduces its success rate when the diagnosis of the component is desired. As
a conclusion, the fuzzy approach proposed can help in detecting wrong com-
ponents, but care must be taken when using it for estimating the component
deviation.
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Chapter 5

DIAGNOSING CIRCUITS

USING A CBR-SYSTEM

5.1 Introduction

Diagnosis of parametric faults in analog circuits is the main goal of this work.
After a review of the main techniques for analog circuit testing, it is evident
that some methods are adequate for detecting faults but not for diagnosing
them. Some of the others need to take measures at several nodes in order to
identify the component deviation. Also, the majority of the methods do not
have learning capability, making diagnosis of new faulty situations difficult.

On the other hand, AI methods are able to learn from new situations. In
Chapter 2, a neural network is designed in order to diagnose the biquadratic
filter. After adequate training, the system can correctly diagnose the conside-
red faults. But, if more faults have to be considered, a more dense neural net
with a great deal of outputs (as many outputs as possible diagnosis) with their
corresponding high dimensional hidden networks and a long training process
should be carried out.

105
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Fault dictionaries are also a good technique for fault detection, but, as
explained previously in Chapter 3, they have two main drawbacks:

• When tolerances are taken into account, their success rate decreases.

• For non previously considered faults, there is a high probability that
these faults are diagnosed incorrectly.

One possible solution to cope with these two difficulties is to include more
fault signatures in the dictionary. Hence, in this chapter it is firstly proposed
to spread the dictionary in order to take the effect of tolerances into account.
As the generated dictionary is huge and is built randomly (Monte-Carlo al-
gorithm), it is necessary to reduce its size. Then, algorithms from the data
mining environment are proposed to fulfill this objective. In this domain, a
fault is generally known as a Class and the fault signature as an instance or
exemplar. Also it is better to talk about classification rather than test or diag-

nosis. The goal of these reduction methods is to eliminate noisy or redundant
cases while maintaining efficiency. In particular, two reduction methods are
explained in detail in this chapter.

But, the diagnosis of faults that have not been previously considered has
not yet been solved. The idea proposed in the present thesis is to include
knowledge about these new situations in the system completing it towards a
CBR-system in order to solve these drawbacks. The CBR-system is designed
by taking a fault dictionary as a starting point. The main CBR-cycle tasks
are described in detail, and special attention is taken with the learning process
and case base maintenance.

5.2 Fault Dictionaries as Case Bases

When building a CBR-system, it is very important to select an appropriate
initial case base. It can be an empty base that will grow by learning from new
situations or a base containing some faults. With regards to this last group,
fault dictionaries are good candidates for being a starting point (Sheppard
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and Simpson, 1998). It is straightforward to use the dictionary table as a case
base only with slight modifications.

It is common in fault dictionaries to select ±20% and ±50% from the no-
minal values of the components as a world of faults, although other deviations
could be considered. These faults seem to be distributed well enough in order
to cover a possible set of typical faults. Then, each considered fault can be
simulated and the measures can be stored in the initial dictionary. This dic-
tionary will have as many rows as there are considered faults, and as many
columns as there are signature characteristics.

5.2.1 Spreading the Dictionary

The first approach to take the effect of tolerances into account is to spread
the dictionary with more faults. There are several methods for considering
tolerances, such as the band fault method (Pahwa and Rohrer, 1982), Monte-
Carlo simulations or the high level model proposed in (Ozev and Orailoglu,
2002) among others. In our case Monte-Carlo simulation has been selected
because all generated faults can be stored in the first instance, and this is a
straightforward step to implement a case base reasoning system.

One of the questions that immediately arises is how many Monte-Carlo
runs are necessary to predict a good interval (L1, L2) for each measure. L1
and L2 are known as the tolerance limits. It is important to find the minimum
number of trials that are necessary to obtain a good estimation of these interval
limits. Of course, this assertion can only be made in a probabilistic form.
Given a number of trials n, it can be asserted that, with a given probability
β, at least a proportion γ of the distribution lies between the tolerance limits
L1 and L2.

In our case, as the tested circuits give a Gaussian like measure distribution,
the limits of this normal function are chosen. According to (Stuart et al.,
1999), given a sample of size n with mean x̄, variance σ and the probabilities
γ and β, it is possible to find a value λ that approximates the tolerance
intervals according to Eq. 5.1
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L1 = x̄ − λσ
L2 = x̄ + λσ

(5.1)

The mathematical expressions proposed by (Stuart et al., 1999) are given
in table form in (Kokoska and Nevison, 1992). This table shows the value
of λ (they call it k) that defines the tolerance interval (L1, L2) containing a
proportion γ of the population with a probability β. Table 5.1 shows some of
them.

✡
=0.95

✡
=0.99Number

of Trials ☛ =0.95 ☛ =0.99 ☛ =0.999 ☛ =0.95 ☛ =0.99 ☛ =0.999

… …

n=10 3.379 4.433 5.649 4.265 5.594 7.129 

n=11 3.259 4.277 5.452 4.045 5.308 6.766 

n=12 3.162 4.150 5.291 3.870 5.079 6.477 

… … …

n=100 2.233 2.934 3.748 2.355 3.096 3.954 

n=110 2.218 2.915 3.723 2.333 3.066 3.917 

n=120 2.205 2.898 3.702 2.314 3.041 3.885 

… … …

n=500 2.070 2.721 3.475 2.117 2.783 3.555 

n=600 2.060 2.707 3.458 2.102 2.763 3.530 

n=700 2.052 2.697 3.445 2.091 2.748 3.511 

… … …☞ 1.960 2.576 3.291 1.960 2.576 3.291 

Table 5.1: Tolerance interval factor

It is necessary to derive interval limits that represent the distribution
margin with a certain high confidence. Hence, values of λ corresponding to
β = 0.99 and γ = 0.99 are selected. That is, there is 99% probability that
99% of the population is contained in the interval (L1, L2). The number of
trials n will be according to the error estimation that is tolerated. Of course,
this value is related to the standard deviation σ that the measures have. Go-
ing back to the biquadratic filter example, if 2000 runs are done for the fault
R1+20% with the Monte-Carlo method using Gaussian randomly distributed
values, the distributions in Figure 5.1 are obtained. Similar distributions can
be depicted for the other considered faults.

As can be observed, measures are distributed in a Gaussian way for the
biquadratic filter. Table 5.2 displays the mean and the standard deviation for
each measure.
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Figure 5.1: Measures distribution for the ramp method

Fault R1+20 

 Mean Standard deviation 

SP 4.393 0.3735 

td 15.66 ✌ s 1.479 ✌ s

tr 75.76 ✌ s 0.663 ✌ s

Vest -0.834 0.0275 

Table 5.2: Fault R1+20% statistics
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Trials ✍  - ✍✏✎
n=10 5.594 - 2.576 = 3.018 

n=100 3.096 - 2.576 = 0.520 

n=500 2.783 - 2.576 = 0.207 

Table 5.3: Comparison with the infinite trials case

The case of 2000 runs can be considered as a situation close to infinite
trials. But, if a lower number of trials are carried out it has to be evaluated how
much closer the situation is to the infinite trials case. If n = 10, n = 100 and
n = 500 trials are performed, the difference with the λ parameter compared
to the infinite trials case is given in Table 5.3 (using Table 5.1)

Therefore, there is an error of 3.018σ, 0.520σ and 0.207σ respectively on
the interval estimation. Applying this to the previous R1+20% fault example,
it corresponds to the absolute errors given in Table 5.4. The percentage is with
respect to the mean of the measure.

n=10 n=100 n=500

SP 1.127
(19.99%)

0.1942
(3.44%)

0.0773
(1.37%)

td 4.46 ✑ s
(21.26%)

0.769 ✑ s
(3.66%)

0.306 ✑ s
(1.45%)

tr 2 ✑ s
(2.56%)

0.345 ✑ s
(0.44%)

0.137 ✑ s
(0.17%)

Vest 0.083
(9.93%)

0.0143
(1.71%)

0.0057
(0.68%)

Table 5.4: Estimated errors for n=10, 100 and 500 trials

Observing Table 5.4, it is obvious that taking n = 10 produces a non per-
missive error, while taking more than 500 trials is not worthwhile. Therefore,
500 runs for each considered fault, with Monte-Carlo method using Gaus-
sian randomly distributed values of the components were used to generate
the spread dictionary. For the biquadratic filter, a total of 16500 cases were
obtained. If ambiguity groups are considered, this set is reduced to 12500.
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5.2.2 Reduction Algorithms

Previous steps generate a huge dictionary, making it difficult to seek for similar
cases, and wasting memory space while keeping noisy and redundant cases.
For dictionary size reduction, instance pruning techniques can be applied.
These techniques are based on the improvements of the nearest neighbor al-
gorithm. They can be classified according to several factors (Wilson and
Martinez, 2000b):

• Search direction. They can be incremental or decremental. The for-
mer starts with an empty set and adds an instance if it fulfills certain
criteria. The latter starts with a big set of instances and removes re-
dundant or noisy data. Decremental search direction methods are, in
general, computationally more expensive than incremental algorithms.
But, they usually provide greater storage reduction and better accuracy.
An example of the incremental algorithm is the IB3 (Instance Based
Learning Algorithm 3) method, while DROP4 (Decremental Reduction
Optimization Procedure 4) is a type of decremental method.

• Retaining central points, border points or other sets. The idea behind
keeping border points is that central points affect the decision less than
border points, so the former can be deleted. Border points are removed
if they are considered noisy or they are not in accordance with their
neighbor’s class.

• Used distance function. The Euclidean distance is the most common
metric used in nearest neighbor and other algorithms. Several distance
functions are defined in order to deal with non numeric and unsorted
attributes. Examples of these distances are Euclidean, Clark, Heteroge-
neous Value Difference Metric (HVDM), Interpolated Value Difference
Metric (IVDM) and so on.

The IB3 (Aha et al., 1991) and DROP4 (Wilson and Martinez, 2000a)
reduction algorithms are applied to the spread obtained dictionaries generated
by Monte-Carlo. These techniques are explained here because they are the
baseline of the proposed CBR-system learning algorithm.
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Decremental Reduction Optimization Procedure (DROP4)

The Decremental Reduction Optimization Procedure (DROP) version 4 clas-
sifies an instance by giving the class of the K-nearest neighbors. As described
by the authors, the method tends to preserve border instead of center points.

The neighbors of an instance are the k nearest instances according to a
certain metric, where k is the number of neighbors to be considered. The
method also uses the associate concept in the reduction algorithm. Associates
of an instance are the exemplars that have this particular instance as a neigh-
bor. Let’s consider the following example to clarify these concepts. Let’s take
the two dimensional instance space in Figure 5.2

Attribute 1

Attribute 2

Case2

Case1

Case3

Case4

Case5

Figure 5.2: Two dimensional case space

If k = 2 is selected, the two nearest neighbors of each instance are resumed
in Table 5.5

Case Num Neighbor 1 Neighbor 2 

Case 1 2 3 

Case 2 1 4 

Case 3 5 4 

Case 4 3 5 

Case 5 3 4 

Table 5.5: Neighbors example

Recalling the associate concept, Table 5.6 summarizes the associates of
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each instance. For example, case 4 is a neighbor of case 2, case 3 and case 5.
Hence, the associates of case 4 are case 2, case 3 and case 5.

Case Num Associates 

Case 1 2   

Case 2 1   

Case 3 1 4 5 

Case 4 2 3 5 

Case 5 3 4  

Table 5.6: Associated instances

In order to simplify data processing, a matrix with a row corresponding to
each exemplar that contains ’1’ if an instance is one of its neighbors is built.
For the previous example, the matrix can be built like the one shown in Table
5.7. The advantage of doing so is that the columns of this matrix have the
information about the associates.

Case Case 1 Case 2 Case 3 Case 4 Case 5 

Case 1 0 1 1 0 0 

Case 2 1 0 0 1 0 

Case 3 0 0 0 1 1 

Case 4 0 0 1 0 1 

Case 5 0 0 1 1 0 

Table 5.7: Neighbor/associates matrix

The associate concept is important because it helps to find the influence
produced by the introduction of a new instance in the case base very quickly.
When such an influence evaluation has to be done, first, the new instance
neighbors are calculated, and then a new row and column in the neigh-
bor/associates matrix are added. Afterwards, associates can be obtained by
reading the column corresponding to the new instance.

As a decremental method, DROP4 begins with the entire set of instances
T and removes unnecessary instances. S is the reduced set obtained. The
basic rules to remove a case are:

1. Remove instance i from S if it is correctly classified by its neighbors, but
with the condition that
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2. At least as many of its associates in T could be classified correctly with-
out i.

Once k nearest neighbors are extracted, an examination of their class has to
be done. The simplest way to do so is to carry out a simple voting procedure,
counting the cases corresponding to each class.

Example 12

Recalling the biquadratic filter, let us suppose that a base with several exem-
plars corresponding to each considered fault is taken, and k = 3 neighbors
are selected for classification. Now, it has to be evaluated if case 1 can be
dropped or not. Table 5.8 shows the values stored for this particular case.

Case Number SP td tr Vest Class 

Case 1 3.97 18 ✒ s 77 ✒ s -0.8716 R1+20 

Table 5.8: Case 1 structure

Applying the Euclidean distance, the neighbors depicted in Table 5.9 are
obtained. Hence, case 1 is correctly classified by its neighbors (3 votes for
R1+20). So, rule 1 is satisfied for case dropping.

   Neighbor 1 Neighbor 2 Neighbor 3 

Number 37 11 19 

Class R1+20 R1+20 R1+20 

Table 5.9: Case 1 neighbors

Now, rule 2 has to be evaluated. Therefore, the associates of case 1 are
analyzed. If case 1 was dropped, the new neighbors of these associates would
be the ones displayed in Table 5.10

Associate 11 has 3 votes for R1+20%, this is correct. Associate 29 has 2 for
R1+20% and 1 for R2+20% giving a majority for R1+20%. Something similar
can be said for the other associates. The conclusion then is that dropping case

1 does not make the diagnosis worse.
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Associates Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 

11

(R1+20) 
2

(R1+20) 
45

(R1+20) 
1

(R1+20) 

29

(R1+20) 

29

(R1+20) 
45

(R1+20) 
1

(R1+20) 
28

(R1+20) 

124 

(R2+20) 

37

(R1+20) 
697

(R5-20) 
29

(R1+20) 
1

(R1+20) 

45

(R1+20) 

45

(R1+20) 
1

(R1+20) 
29

(R1+20) 
119

(R2+20) 

37

(R1+20) 

Dropping case 1  

Associates Neighbor 1 Neighbor 2 Neighbor 3 

11

(R1+20) 
2

(R1+20) 
45

(R1+20) 

29

(R1+20) 

29

(R1+20) 
45

(R1+20) 
28

(R1+20) 

124 

(R2+20) 

37

(R1+20) 
697

(R5-20) 
29

(R1+20) 

45

(R1+20) 

45

(R1+20) 
29

(R1+20) 
119

(R2+20) 

37

(R1+20) 

New associates neighbors after dropping case 1 

Table 5.10: Case 1 associates dropping results

Let’s now consider case 5 given in Table 5.11

Case Number SP td tr Vest Class 

Case 5 4.33    17 ✓ s 76 ✓ s -0.8811 R1+20 

Table 5.11: Case 5 structure

Its neighbors are shown in Table 5.12, and rule 1 is accomplished since case

5 is correctly classified (2 votes for R1 + 20% against 1 vote for R5 − 20%).

   Neighbor 1 Neighbor 2 Neighbor 3 

Number 697 36 45 

Class R5-20 R1+20 R1+20 

Table 5.12: Case 5 neighbors

Giving a look at its associates and their corresponding neighbors depicted
in Table 5.13, initially they are correctly classified. If case 5 is dropped,
associate 42 of class R1 + 20% will be diagnosed as R5 − 20%. Therefore, rule
2 is not accomplished and case 5 should not be dropped from the base.
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Associates Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 

42

(R1+20) 
5

(R1+20) 
680

(R5-20) 
32

(R1+20) 

687 

(R5-20) 

697 

(R5-20) 
687

(R5-20) 

5

(R1+20) 

690 

(R5-20) 

45

(R1+20) 

Dropping case 5  

Associates Neighbor 1 Neighbor 2 Neighbor 3 

42

(R1+20) 
680

(R5-20) 
32

(R1+20) 
687 

(R5-20) 

697 

(R5-20) 
687

(R5-20) 
690

(R5-20) 
45

(R1+20) 

New associates neighbors after dropping case 5 

Table 5.13: Case 5 associates dropping results

But this simple method does not take into account any information on
the distance. It is logical to think that it is more probable that the new
case belongs to the class of the closest retrieved neighbor. Then, as proposed
in (Wilson and Martinez, 2000a) a weight can be given to the retrieved cases
according to their distance from the new case (distance-weighted voting). Wil-
son proposes 3 types of weights: linear, Gaussian and exponential. They are
given by the following formulas:

wj = wk + (1−wk)(Dk−Dj)

Dk
Linear

wj = w

D2

j

D2

k

k Gaussian

wj = w

Dj

Dk

k Exponential

(5.2)

where wk is the weight given to the k neighbor, and Dk and Dj are the
distances to the k neighbor and the jth neighbor respectively. These weight-
distances are depicted in Figure 5.3.

As it can be seen, the bigger the distance from the new case to the j th

neighbor, the lower the weight given to the jth neighbor. After several tests,
in our case, the weight-distance method that performs best is the exponential
one.

For example, let us suppose that case 633 that is class R5 − 20% has the
neighbors given in Table 5.14. Neighbor 650, with class R5 − 20%, is at a
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Distance

Voting Weight

Linear

Gaussian

Exponential

0

wk

1

Figure 5.3: Possible weight kernel given to distances

distance of 0.012, while neighbors 26 and 43, with class R2 + 20%, are at a
distance of 0.15 and 0.23 respectively.

   Neighbor 1 Neighbor 2 Neighbor 3 

Number 650 26 43 

Class R5-20 R1+20 R1+20 

Distance 0.012 0.15 0.23 

Table 5.14: Case 633 neighbors

Applying the weighted-voting process with the exponential kernel taking
ωk = 0.2, the obtained weights are ω1 = 0.92, ω2 = 0.35 and ω3 = 0.2 for each
neighbor. Hence, the weighted-voting assigns a vote of 0.92 for R5 − 20% and
0.55 for R1 + 20%, giving a final classification of R5 − 20%.

The method has been applied to the biquadratic filter shown in section 1.7.
Taking the spreading dictionary of 12500 cases generated in the previous sec-
tion (considering ambiguity groups), DROP4 is used to reduce its size trying
to keep its efficiency. A reduced dictionary of 1112 cases is obtained, (8.8%
of the original number of cases). After that, the reduced dictionary is tested
using a randomly generated case set with 100 simulations for each considered
fault (a total of 2500 test cases). Again, the Euclidean distance is used and
the class of the closest extracted case is taken as a classification of the input
case. The results are shown later in this chapter in Table 5.15.
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Instance-Based learning algorithm (IB3)

The Instance-Based learning version 3 algorithm is considered as an incremen-
tal technique. The idea is to start with an empty base and then begin selecting
potential cases to be introduced. The performance of each stored exemplar
is monitored and the ones that do not perform well are discarded. This is
done by maintaining a classification record for each instance si stored. This
record indicates how the instance is performing the classification of instances
of the same class and it gives an idea of how it will perform in the future. The
greater the correct number of classifications, the greater the value contained
in the record. Making wrong classifications makes the value of the record
decrease.

Two predetermined thresholds are set. If the record of an instance has a
figure higher than a certain pre-established value z = Cmax (confidence index),
it is used to classify the subsequent instances. If it is less than a certain value
z = Cmin (confidence index) the instance is believed to be noisy and will be
dropped from base S. If it lies between the two, it is not used for prediction
but its performance record is updated.

The confidence limits used in IB3 are the ones defined by the success
probability of a Bernoulli process. This probability is a random variable which
means it corresponds to the true probability of the process and its bounds
which, with a certain confidence, can be calculated using Eq. 5.3 (Witten and
Frank, 2000).

p + z2

2n
± z

√

p(1−p)
n

+ z2

4n2

1 + z2

n

(5.3)

In the equation, z is the confidence index, p is the proportion of instances
that are of this class, and n is the number of the previously processed instances.
The sign ± gives the lower and upper bounds. A graphical representation is
shown in Figure 5.4. When the number of trials increases, the bound interval
shrinks and approaches the true probability.

The IB3 idea is to use this concept for accepting or rejecting new instan-
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Upper boundLower bound

Figure 5.4: Probability success rate distribution

ces. If an instance si has c classification successes in n number of times that
instance si is selected to classify other instances, the probability of success
for this instance is close to c/n and contained in the bounds (Lsi, Usi) de-
rived from equation 5.3, with a confidence z. At the same time, if there are
Nc instances with the same class Ci of the instance si in a set of N trials,
similar bounds (Lci, Uci) could be obtained for the probability of an instance
belonging to class Ci. The true class probability will be close to Nc/N .

If Lsi > Uci, the instance will be accepted; on the other hand, if Usi < Lci,
the instance will be rejected, as shown in Figure 5.5. This means that if the
probability of success for the instance si is always above the probability of its
class Ci, si is performing quite well for classifying instances of its class. On
the other hand, if the probability success is always below the probability of its
class, the instance is performing incorrectly or has little contribution to the
classification of the instances belonging to the same class as it. Hence, it is
removed.

IB3 normally takes a confidence index Cmax = z = 0.9 for acceptance and
Cmin = z = 0.7 for rejecting. Note that accepting an instance is made more
difficult than removing it. This is because exemplars with poor performance
only contribute a little to the classification correctness, and they will probably
be replaced by a new similar one during future training.

Figure 5.6 displays the evolution of the bounds considering that the ins-
tance si is participating in classifying subsequent cases. It can be seen that
while the number of trainings increases, the instance contributes to the classi-
fication, but it performs incorrectly in most cases. The new case j + 1 makes
the bound Usi lower than Lci. At this moment, instance si will be rejected.
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USi < LCi Rejected

UCiLCiUSiLSi

Probability distribution of 

instances of a class Ci

Probability distribution of 

success of instance Si
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LSi < UCi Accepted

Figure 5.5: Acceptance-rejection decision
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This technique assumes that the number of successes is binomially dis-
tributed. Although in general this is not true, many IBL algorithms based
on this process of selecting confidence bounds perform quite well (Aha et

al., 1991). Another important drawback is that the derived results are very
sensitive to the order in which cases are analyzed in order to be either kept
or rejected. Hence, several combinations of cases sorted in different orders
should be analyzed and the best one retained.

Let’s see a short example to clarify these ideas.

Example 13

Suppose that N = 200 trainings have been made and that a particular instance
si has been used n = 100 times to classify other instances, and c = 80 of
these are correct. Suppose also, that Nc = 120 instances of the total number
of instances N are of the same class Ci of the particular instance. Now,
the bounds of the true success rate of this instance can be estimated, at
a particular confidence level, say z = 0.90 (90%). Applying Eq. 5.3 the
bounds are Lsi = 76.17% and Usi = 83.35%. Hence, the success probability
of the instance si is between these bounds with a confidence of 90%. On the
other hand the probability that an instance of class Ci is given is between
Lci = 56.85% and Uci = 63.07%. Since Lsi > Uci, the instance si is considered
acceptable.

Consider now, that after N = 1000 trainings we have the same instance
with n = 900 interventions, c = 200 successes and Nc = 700 instances of class
Ci. The instance has a lot of interventions in the new instances classification,
taking into account that there is a great proportion of instances in the same
class as it, but its success rate is low. It is a perfect candidate to be rejected.
Numerically, the same information is provided by the probability bounds. The
new probability success bounds are Lsi = 21.27% and Usi = 23.21% and the
class probability bounds Lci = 68.98% and Uci = 71%. These values are
obtained from Eq. 5.3 with a confidence index of z = 0.70 (70%). Therefore,
Usi < Lci, and the instance si will be removed.

Applying this method to the spread dictionary of 12500 cases obtained for
the biquadratic filter, the dictionary is reduced to 2457 instances (19.6% of the
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Fault Classic Spread DROP4 IB3

R1+20 84 83 85 77 

R1-20 87 94 90 90 

R1+50 99 98 99 97 

R1-50 100 100 100 100 

R2+20,R3+20,C1+20 41 30 41 35 

R2-20,R3.20,C1.20 36 35 35 31 

R2+50,R3+50,C1+50 79 78 83 72 

R2-50,R3-50,C1-50 94 99 96 98 

R4+20 85 89 87 78 

R4-20 88 84 88 80 

R4+50 98 98 98 98 

R4-50 100 100 100 100 

R5+20 47 33 46 36 

R5-20 38 40 38 43 

R5+50 82 78 83 75 

R5-50 91 93 94 93 

R6+20 79 78 79 78 

R6-20 86 83 82 74 

R6+50 98 99 100 100 

R6-50 100 100 100 100 

C2+20 82 75 74 76 

C2-20 89 90 90 83 

C2+50 99 99 99 95 

C2-50 100 100 100 100 

NOM 69 61 72 57 

Average 82.04 80.68 82.36 78.64 

Table 5.15: Comparing classic, spread, and reduced dictionaries efficiency

original size). Table 5.15 shows a comparison of the success diagnosis between
a classical dictionary, a spread dictionary and a DROP4-reduced dictionary.
The voting procedure is carried out using a distance-weighted exponential
kernel with ωk = 0.2. The file used for testing is the one constituted by
100 instances corresponding to each fault considered and 100 for the nominal
situation.

Comparing the IB3 reduced-dictionary results with the ones obtained by
the DROP4 reduced-dictionary, the latter produces a smaller base while it
performs even better than the others. Hence, although the DROP4 is compu-
tationally more expensive than IB3, it results in a greater storage reduction
and it will produce computational savings during execution thereafter. On
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Component OK diagnosed Component Correct Wrong Non Detect. 

R1 20% 62% 11% 7% 

R2 18% 28% 41% 13% 

R3 12% 45% 29% 14% 

R4 15% 65% 15% 5% 

R5 16% 41% 32% 11% 

R6 20% 58% 15% 7% 

C1 11% 33% 44% 12% 

C2 29% 58% 5% 8% 

Average 17.625% 48.75% 24% 9.625% 

Table 5.16: Performance for non previously considered faults. DROP4

Component OK diagnosed Component Correct Wrong Non Detect. 

R1 20% 56% 16% 8% 

R2 16% 34% 39% 11% 

R3 14% 48% 26% 12% 

R4 14% 64% 18% 4% 

R5 15% 35% 40% 10% 

R6 21% 58% 14% 7% 

C1 11% 33% 43% 13% 

C2 29% 53% 14% 4% 

Average 17.5% 47.625% 26.25% 8.625% 

Table 5.17: Performance for non previously considered faults. IB3

the other hand, the spread dictionary performs even worse than the classic
dictionary. This is because the instances have been generated randomly and
there are some that are noisy, in the sense that they disturb the other clas-
sifications. But, reduced dictionaries have the same drawbacks when tested
with a set of faults corresponding to any deviation in component values be-
tween ±70%. The diagnosis results are quite poor. In particular, the average
of success is 17.625% correctly characterized using a DROP4 reduced dictio-
nary and 17.5% for an IB3 reduced dictionary. Tables 5.16 and 5.17 show the
detailed results for both methods when the same 100 case dictionary is used.

In spite of performing slightly better than the classic dictionary, their
percentage of success decreases. This situation inspired us to think about
designing a complete CBR-system.
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5.3 The CBR-System

Case Based Reasoning is an approach to problem solving that is able to use
specific knowledge of previous experiences (Lopez de Mantaras et al., 1997).
A new problem is solved by matching it with a similar past situation. If the
problem is solved, this new situation will be retained in order to solve other
new ones. In the case of diagnosis, solving the problem means that the CBR-
system proposes a solution that is satisfactory enough to identify the new
fault.

It has several advantages with respect to other machine learning schemes:
First of all it is easier to obtain rules and there is no bottleneck waiting for
expert knowledge to be acquired. On the other hand, it is quite intuitive
in certain tasks, such as diagnosis. At the same time it tolerates lazy lear-
ning schemes which means that the CBR-system can take advantage of these
techniques that are well-known and permanently updated.

One of the main drawbacks is to know when to stop training. If the case
base is overtrained, its efficiency falls. This is known as the utility problem.
Hence, a good policy for the training and maintenance tasks is necessary.
Another problem common to machine learning methods is how to train the
system. The order in which the new cases are selected is very important,
making the method more or less efficient and the case base size bigger or
smaller. With this in mind, data mining techniques can be applied in order
to help with data treatment and case base maintenance.

The first question that arises is how to represent a case. This is a very
critical step since the following steps rely on it completely. A decision has to be
made about which features should be stored in a case, to find the appropriate
structure for describing the case contents and choose an appropriate structure
and hierarchy. This structure is known as Case Base Memory.

CBR normally has the four stages depicted in Figure 5.7 for new problems
solving (Aamodt and Plaza, 1994), which is repeated for each new experience:

1. Seek for a past situation similar to the new one (Retrieve). It is neces-
sary to define the useful features, a metric function and the number of
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cases to retrieve from the base.

2. Use that case to propose a possible solution (Reuse). According to a
similitude index, a voting technique, or adapting the cases, the system
provides a possible diagnosis. The adaptation can be transformational

or derivational (Aamodt and Plaza, 1994). The first one uses the past
case solution instead of the past method that constructed the solution.

3. Evaluate the suggested solution (Revise). The revision can be evaluated
in the model or in the real world.

4. Update the CBR knowledge base with the new learned case (Retain).
After the revision process, according to the proposed solution, it has to
be decided if it is useful to retain the knowledge obtained from the new
problem.

CASE BASE

GENERAL

KNOWLEDGE

New problem 
Retrieved cases1. Retrieve

Retrieved

Solution

INPUT

Learned

case

2. Reuse 

4. Retain 

Revised

Solution

3. Revise 
OUTPUT

Figure 5.7: The CBR cycle

The diagnosis results obtained by the fault dictionary techniques can be
improved if they are completed with the adequate knowledge and learning ca-
pabilities. It can be said that the system is learning if its percentage of success
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diagnosing the circuit increases when the CBR is trained. This happens be-
cause the system gains knowledge about the circuit. Hence it is important to
know where the knowledge is contained. In a CBR-system there are four ”con-
tainers” which can carry knowledge (Richter, Sesimbra, Portugal, October 25,
1995):

1. The vocabulary (attributes, predicates etc.)

2. The similarity measure

3. The case base (Utility problem, competency analysis, Feature recogni-
tion, etc.)

4. The solution transformation (adaptation)

In this case it was decided to focus on the case base knowledge container
that performs the learning process when new cases are introduced and gives
special attention to maintaining it correctly because of the utility problem.

The next sections detail how a fault dictionary technique can be extended
towards a Case-Based Reasoning system. First of all, the case base memory
is defined, followed by a description of the CBR cycles.

5.3.1 Case Base Memory

The case structure is chosen to be the same used in the fault dictionary tech-
niques, simply introducing a slight difference in the information about the
fault. The proposed structure is shown in Figure 5.8. One part of the case
is directly related with the measures taken from the circuit at one or several
nodes. They could be temporal, frequency or static measures. This numeric
part will be used to retrieve the most similar cases. The second part of the
case contains information about the fault diagnosis.

Observe that the field Class has been maintained. As a reference, the
classes associated with the faults considered in the classical dictionary (±20%
and ±50%) are taken. When a fault has a deviation that does not correspond



The CBR-System 127

Case Num Meas. 1 Meas. 2 … Meas. n Class Compo Devi Hierarchy 

Case i M1i M2i … Mni Class i Compo i X% Li.Mj

Measures.

Numeric Part

Fault.

Qualitative Part

Figure 5.8: Case Structure

exactly to one of the original ones, the associated class will be the same given
to the closest possible deviations considered as references. For example, if a
fault is R + 40%, its associated class will be the same as R + 50%. But if a
fault is R + 35%, its corresponding class will be the same as R + 20%. This
Class field is not used for classification purposes. It is only used in particular
steps to help in the maintenance task explained later on in this chapter.

Concerning the other three qualitative fields, one of them has the faulty
component location (Compo); the second contains the characterization of the
fault (% of deviation from its nominal value Devi). When there are deviations
of the components smaller than the tolerance, the circuit is considered to be
not faulty. This is known as the nominal case (Compo = Nom).

The third field (Hierarchy) has additional information about the compo-
nent, for example at level Li and the module Mj to which the component
belongs. Case base hierarchy is defined considering several levels depending
on circuit complexity (Voorakaranam et al., 1997). Therefore, the diagnosis
result could be more or less precise depending on the retrieved qualitative
parts, according to Figure 5.9. The last level corresponds to the faulty com-
ponent deviation. The next upper level is defined as the component level.
At this point, the system will only be able to diagnose which component is
wrong, but not the fault deviation. Also, it is possible that certain faults can
only be located just at a certain module, but not deep inside it. So, going to
upper levels, the circuit is divided into modules. The number of module levels
depends on the circuit complexity.

It is necessary to have certain knowledge on the circuit topology in order
to build the case base hierarchy. For small circuits it can be done simply by
inspection. For large circuits the method proposed in (Sangiovanni-Vicentelli
et al., 1977) can be used. An example of this method can be found in appendix
B.
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One of the other important decisions to make is the starting point. It
is possible to start with an empty case base, or with a certain case base.
As faults ±20% and ±50% are representative for the parametric faults com-
pressed between ±70%, these cases are taken as an initial base. Of course
the start can be a DROP-reduced dictionary, for example, but this is not a
good idea because there will be a saturation of these cases, and they will be
over-represented compared to the other cases.

The biquadratic filter proposed in section 1.7 is a small circuit that can be
divided into blocks by inspection, as shown in Figure 5.10, consisting of three
blocks (M1, M2, M3) belonging to the same hierarchy level L1.
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Module 3 
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-

R4

R2

C1

R3

R5

C2

V054

32

1
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Figure 5.10: Biquad circuit modules decomposition

Component R1 belongs to level L1 and module M1, while component R5

belongs to the same level but to module M3. Therefore, if the ramp method
is selected, a case corresponding to the fault at R5 with a deviation of -43%
will have the appearance of Figure 5.11

Case Num SP Td Tr Vest Class Compo Devi Hierarchy 

Case i SPi Tdi Tri Vesti 20 R5 -43% L1.M3

Measures.

Numeric Part

Fault.

Qualitative Part 

Figure 5.11: Case structure for the fault R1-43%

The classical dictionary considering faults ±20% and ±50% is taken as a
starting point. Then, for the biquadratic filter, this is a set of 33 cases, or 25
cases if the ambiguous groups are considered.
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5.3.2 Retrieve

It is necessary to define a metric function and the number of cases to re-
trieve from the case base. Since the proposed CBR-system uses numerical
data corresponding to the measures for retrieval, we deal with continuous li-
near attributes; that is, attributes that can be any real number. Therefore,
from among all possible distance functions (Wilson and Martinez, 1997a), the
normalized Euclidean distance has been chosen. Attributes Normalization
is necessary because of their different order of magnitude. For example the
measures can be µsec, and amplitudes that corresponds to a magnitude of a
fraction of V olts or even V olts.

So, the distance between two instances is calculated as shown in equation
5.4

E(−→x −→y ) =

√

√

√

√

m
∑

i=1

(

xi − yi

rangei

)2

(5.4)

Where −→x and −→y are the vector instances to be compared, xi and yi are
the corresponding attribute value i, and m is the number of attributes. rangei

is the difference between the maximum and minimum value of the attribute i.

The number of cases k to retrieve from the case base will be related to the
value of k that produces the best diagnosis results. Normally it is a small odd
number. In general, the more noisy the data is, the greater the optimal value
of k. In our experiments, a value of k = 3 produces the best results. Taking a
bigger value produces confusion in the diagnosis because of the extraction of
cases corresponding to other different faults to be diagnosed.

5.3.3 Reuse

Once k − nearest cases are extracted, they are used to propose a possible
diagnosis. The proposal is to use the qualitative part of the extracted cases
to derive a possible solution. Several situations can be given. If the Compo
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field of all the k extracted cases is the same, then the proposed solution is
compounded using the measures of the new case, the Compo field of one of
them and the average deviation of the extracted cases in the Devi field and
the same module Mi and level Lj (Figure 5.12).

Case i SPi Tdi Tri Vesti Compo i di% Lm.Mn

Case 1  SP1 Td1 Tr1 Vest1 Compo i d1% Lm.Mn

Case 2  SP2 Td2 Tr2 Vest2 Compo i d2% Lm.Mn

Case 3  SP3 Td3 Tr3 Vest3 Compo i d3% Lm.Mn

Adapted 

case

SPi Tdi Tri Vesti Compo i 

3

321
ddd ✔✔ Lm.Mn

K Nearest 

neighbors 

Proposed 

Solution 

New  

case

Figure 5.12: With the same Compo field adaptation

If the Compo is different, the proposed solution will have a Compo made
up of the different components, and each of them with its corresponding de-
viation in Devi. Hierarchy will contain the common module Mn or several
if different, and the first common level Lm. This is depicted in Figure 5.13.
The case adaptation is carried out completely in the reuse task. It uses the
past case solution instead of the past method that constructed the solution
(transformational reuse) (Aamodt and Plaza, 1994).

At the same time it has to be taken into account that the nominal case
(when there are deviations of the circuit components smaller than 10%) does
not have any faulty component. Therefore, a label in the Compo field with a
value Nom indicates that this case belongs to the Nominal situation.

5.3.4 Revise and Retain

Once the solution to the new presented case is proposed, it has to be revised.
If the solution is considered correct and accurate enough, it is not necessary
to retain the new case. On the other hand, if it is considered to be incorrect
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Figure 5.13: With different Compo field adaptation

or with poor accuracy, the new case will be retained in the case memory.
The revision analyzes how the cases that constitute the adapted solution are
performing the diagnosis. Hence it is supposed that the new case diagnosis is
known by the user for its revision, which allows a decision to be made about
when it should be retained. When the CBR-system is testing circuits with
unknown faults, there is no revision task, since the proposed diagnosis can not
be contrasted with the correct one. The reasoning follows the flow diagram in
Figure 5.14.

There are 8 possible situations considered when revising while training:

1. The Compo field of the k extracted cases is equal to the new case, and
the average deviation calculated has an error of less than 10%. This
threshold is selected because this is the magnitude of the considered
tolerances and an error of the same magnitude can be tolerated. The
proposed solution is the correct one, and the case memory is enough to
diagnose the new case. Hence, it is not necessary to retain the new case.

2. The Compo field of the k extracted cases is equal to the new case, but the
average deviation has an error bigger than 10%. The present solution
is considered to be not performing well and, the new case has to be
introduced, if the DROP4 algorithm allows it.

3. The Compo field of the k extracted cases are equal between them, but
different from the new case. If the Compo field of the extracted cases
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does not belong to the nominal diagnosis, the new case should not be
introduced. This case will be an isolated case among all cases belonging
to another type of fault. Its introduction worsens the diagnosis of that
type of fault.

4. The Compo field of the k extracted cases are equal between them, but
different from the new case. If the Compo field of the extracted cases
belongs to the nominal diagnosis, the new case should be introduced, be-
cause it is not detectable. Of course its introduction is going to spoil the
diagnosis of nominal cases a little, but it is preferable to have false alarms
to not detecting faults. Hence, the case will be retained, if DROP4 de-
cides that the new case is not going to disturb others.

5. There is at least one, but not all of the k extracted cases with the Compo
field equal to the Compo field of the new case. If the Devi field of these
cases is out of the tolerated range, the case should be retained, after
DROP4 approval.

6. There is at least one, but not all of them, of the k extracted cases with
the Compo field equal to the Compo field of the new case. The Devi
field of that cases belongs to the tolerated error range. In this case the
diagnosis of the corresponding first common block is correct. But if the
sum of the weights associated to these cases is higher than the sum of
the weights of the rest of the extracted cases, the case memory tends to
be correct. Hence, the new case is not retained.

7. In the same way as the previous situation, if the sum of the weights
associated with the extracted cases with the same Compo field and equal
to the Compo field of the new case is lower than the sum of the rest of the
extracted cases, the case memory tends to be wrong. In these conditions,
the new case is not introduced.

8. There is a Compo field of the k extracted cases equal to the Compo field
of the new case. The diagnosis in these conditions is clearly wrong, and
the new case should be retained.

When a new situation is produced, retrieved cases from the case base pro-
vide a possible diagnosis. Recalling Figure 5.14, when a new case introduction
is necessary, the DROP4 algorithm is applied. There are two possibilities:
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1. New case retention does not influence previous cases diagnosis and

2. Its retention will produce misclassification of other previous cases.

In the first situation, the new case can be introduced without any problem.
But in the second one, the introduction of the new case in the Case Base could
be worse. The influence that a new case retention will have on the diagnosis
of the present case base is evaluated using the associate concept described in
the previous section. The Retaining algorithm is summarized in Figure 5.15
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INTRODUCED 

YES

NO

Does
introduction of the 

new case affect the 
classification of any 
of its associates? 

NO
New Case

INTRODUCED 

YESNew Case
NOT

INTRODUCED 

Figure 5.15: Revising and retaining process detailed

Once neighbors and associates of the new case are calculated, two situa-
tions can be given. It could be that a new case does not have associates. This
implies that the new case is not one of the k nearest neighbors of the existing
cases in the case base. Hence, its introduction will not affect the previous
classification of the cases already contained in the case base. On the other
hand, if the new case has associates, it is necessary to evaluate how these
associates are affected by the new case. If there is no change in the diagnosis
of the associates due to the introduction of the new case, it can be added to
the case base. Nevertheless, if there are more misclassifications than before
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its introduction, the case can not be retained directly in the case base, since
it will solve its own classification but it will spoil some associate diagnoses.

Of course if k > 1 neighbors are taken for the decision, during the very
first steps of the training procedure, it is obvious that any case introduction
will be considered as disturbing. In this sense, the Class field is preserved.
If there are less than k cases belonging to a certain class, the new instance
will be introduced, even if it disturbs the classification of the cases already
contained in the base.

Forgetting Noisy Exemplars

To avoid the utility problem factor, a maintenance of the case base memory
is proposed. It is very similar to the IB3 algorithm used when dropping
cases. In fact, it uses the same criterion for removing cases, that is, when the
performance of a particular case drops below a certain established value with
a certain confidence index, the case is considered to be spoiling the diagnosis
and it will be deleted. Equation Eq. 5.3 with a particular confidence level
z is used to forget cases. If the lower bound of the success probability for
a particular case Lsi is below the upper bound of the probability Uci then
the case belongs to this class, the case will be considered to be removed. In
this sense, the Class field is used for comparing how the case is performing
according to exemplars of its class, as IB3 does. The bigger the confidence z
is taken, the sooner the instances are marked for removal. This can be seen in
Figure 5.16. This figure is obtained by supposing that a case has interventions
in the decisions made in the diagnosis of new instances but it is performing
incorrectly each time. Observe that Ncross for z = 0.9 is lower than for z = 0.3.

At the same time, if a case has no intervention in the decisions of new cases
of the same class, the index of class Uci is increasing while the case index Lsi

stays the same. This is a situation where the case contained in the base is not
significant when diagnosing cases of its class. Therefore, when Lsi < Uci, the
case will be dropped.

Another parameter has been introduced in order to control the forgetting
process. It is related to the number of interventions a particular case has on
the decision process. Sometimes a case that is marked for being removed has
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Figure 5.16: Decision of dropping boundaries depending on z

only one or very few interventions. This is not significant enough to know how
the case will perform in the future. Hence, a minimum number of interventions
nmin is needed before removing a case although its confidence index is below
the minimum required.

Taking all this into account, a case si is removed from the base if it fulfills
these conditions:

1. Its lower bound probability Lsi is below the maximum bound probability
of its class Uci.

2. The number of interventions n that the case has done is higher than a
certain predefined value nmin.

5.3.5 Diagnosis Operation

After this initial training, the system is used to diagnose new cases where the
fault is unknown. In these operating conditions, the responsibility of deciding
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if the case should be retained is given to the user. The diagnosis system shows
the user the solution proposed, corresponding to the adapted case obtained
from the retrieved ones. In a situation where the extracted neighbors belong
to different components (as shown in Figure 5.13) the system shows the weight
corresponding to each one, together with the first hierarchy level common to
the k retrieved cases. The user makes the decision according to the information
provided. For example, recalling again Figure 5.13, but considering that the
fault is unknown, Figure 5.17 reproduces the given situation.
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Case 1 SP1 Td1 Tr1 Vest1 Compo i d1% Lm.Mn
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Case 3 SP3 Td3 Tr3 Vest3 Compo k d3% Lm.Mn
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Figure 5.17: Diagnosing unknown faults

Compo i with Devi = d1% is proposed with a weight W1. Compo j with
Devi = d2% is proposed with a weight W2 and something similar for the third
retrieved case. The weight depends on the distance and it is calculated using
equation 5.2. It is up to the user to choose the case with the highest weight
as a solution or to select a less precise diagnosis based on the first common
hierarchy level Module Mn at level Lm of the extracted cases.
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5.4 Results on the Biquadratic Filter

After the description of the CBR-system, it was applied to the biquadratic
filter circuit. The case structure and case base hierarchy are defined as pre-
viously explained. For the learning process and maintenance, the multi-edit
algorithm described in the previous sections is applied. The case revision and
retention tasks are performed following the algorithm in Figure 5.14, where the
algorithm based on the DROP4 procedure and described in Figure 5.15 plays
an important role when making the decision whether to introduce the new
case or not. On the other hand, the algorithm similar to the IB3 is used for
forgetting noisy exemplars. Let’s see some numerical examples demonstrating
how the proposed method works.

First of all, let us concentrate on the retaining procedure described in
Figure 5.14. Examples corresponding to each type of decision considering
k = 3 neighbors to extract are displayed. The weights are calculated using
the exponential kernel with wk = 0.2.

Consider the results given in Table 5.18, where the measures are normali-
zed.

SP td tr Vest Class Compo Devi Weight 

New case 0.5099 0.5152 2.2353 1.3024 4 1 -54.6410 - 

Neighbor 1 0.5411 0.4242 2.2059 1.2593 4 1 -54.5577 0.5167 

Neighbor 2 0.5162 0.4545 2.2353 1.1525 4 1 -50.00 0.3765 

Neighbor 3 0.5546 0.4545 2.2353 1.0466 4 1 -43.1893 0.2000 

Table 5.18: Case of a type 1 decision

The k = 3 neighbors all correspond to Compo 1, the same Compo field
as the new case. As proposed by the algorithm in Figure 5.14, the average
deviation should be obtained and compared to the new case. The average
deviation of the 3 neighbors is Devi = −49.25%, comparing this with the
deviation of the new case gives an error estimation of 9.86%. Since the error
is less than 10%, the case is supposed to be correctly estimated, and therefore
it is not necessary to introduce it into the case base.

On the other hand, consider the results given in Table 5.19.
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SP td tr Vest Class Compo Devi Weight

New case 0.5487 0.4545 2.2353 0.4600 1 1 28.0632 - 

Neighbor 1 0.4694 0.5152 2.2647 0.4918 1 1 13.7863 0.8224 

Neighbor 2 0.5598 0.4545 2.2059 0.5647 33 1 0 0.8216 

Neighbor 3 0.5537 0.3333 2.2059 1.3462 4 1 -57.877 0.2000 

Table 5.19: Case of a type 2 decision

The Compo field of the retrieved cases is 1 for all of them, and equal to
the Compo field of the new case. But, the deviation calculated as the mean
of the deviation of retrieved cases is −14.69%, that is far from being 28.063%.
This is the situation in a type 2 decision from the diagram shown in Figure
5.14. Hence, the case will be introduced if it does not disturbs others.

An example of situation 3 is given in Table 5.20.

SP td Tr Vest Class Compo Devi Weight 

New case 0.2358 0.9091 2.5000 0.6145 7 3 66.6023 - 

Neighbor 1 0.2499 0.9394 2.5294 0.5761 20 5 -50.00 0.3058 

Neighbor 2 0.3739 0.8182 2.4118 0.6056 20 5 -41.8863 0.2113 

Neighbor 3 0.2369 1.0606 2.6176 0.6033 20 5 -52.3292 0.2000 

Table 5.20: Case of a type 3 decision

The 3 neighbors belong to Compo 5 while the new case corresponds to
Compo 3. This is an isolated case surrounded by cases with other Compo
fields. The case is not introduced.

If the cases that surround a particular new situation correspond to the
nominal, this case is not detectable. An example is given in Table 5.21.

SP td Tr Vest Class Compo Devi Weight 

New case 0.5345 0.4242 2.2353 0.5565 6 2 -15.1905 - 

Neighbor 1 0.5309 0.4242 2.2059 0.5767 33 33 0 0.2406 

Neighbor 2 0.5554 0.4242 2.2059 0.5493 33 33 0 0.2315 

Neighbor 3 0.5162 0.4545 2.2353 0.5763 33 33 0 0.2000 

Table 5.21: Case of a type 4 decision

Suppose now, that the situation in Table 5.22 is given.
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SP td tr Vest Class Compo Devi Weight

New case 0.3474 0.8182 2.4118 0.5702    7 2 64.4636   - 

Neighbor 1 0.4234 0.7576 2.3529 0.5798    5 2 24.5949 0.6063 

Neighbor 2 0.4670 0.6364 2.2941 0.5623    7 2 48.3634 0.3374 

Neighbor 3 0.4694 0.5152 2.2647 0.4918    1 1 13.7863 0.2000 

Table 5.22: Case of type 5 decision

In this situation there are some retrieved cases, but not all of them have
the same Compo field as the new case. Neighbor 1 and Neighbor 2 correspond
to Compo 2, giving an average deviation of Devi = 36.48%. It is clear that
the new case is Compo 2 but with a deviation far from the proposed one.
Hence, the case will be introduced, if it does not disturb the other case base
members.

It can happen that some of the neighbors have the same Compo field, and
the average deviation produces a result with an error less than 10% compared
with the new one. We are now in a type 6 situation according to the diagram
in Figure 5.14. Table 5.23 gives an example.

SP td tr Vest Class Compo Devi Weight 

New case 0.5871 0.2727 2.2059 0.5912 19 5 53.1641 - 

Neighbor 1 0.5935 0.2727 2.2059 0.5877 19 5 54.0804 0.6911 

Neighbor 2 0.5843 0.2424 2.2059 0.5924 19 5 46.8429 0.2124 

Neighbor 3 0.5820 0.2424 2.2059 0.5988 8 3 -46.6631 0.2000 

Table 5.23: Case of a type 6 decision

Two neighbors have the same Compo field (Compo 5) as the new case. The
average deviation is Devi = 50.46%, producing an error in the estimation of
5.08%. As the sum of weights of these to neighbors is 0.9035 and bigger than
the weight of the neighbor left (0.2000) the new case will not be introduced
into the case base.

If the sum of weights of the cases with different Compo fields is bigger
than the neighbors with the same Compo field, the case should be introduced.
Table 5.24 shows an example.

In this situation, there is only one neighbor with the same Compo field
that approximates the new case with an error of less than 10% in the deviation
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SP td tr Vest Class Compo Devi Weight

New case 0.6463 0.4242 2.1765 0.6110 13 4 15.6715 - 

Neighbor 1 0.6474 0.4242 2.1765 0.6042 29 8 20.2282 0.8695 

Neighbor 2 0.6093 0.3636 2.2059 0.5991 13 4 14.4257 0.2059 

Neighbor 3 0.6693 0.4848 2.1471 0.5762 29 8 20.00 0.2000 

Table 5.24: Case of a type 7 decision

(7.94% of error), the sum of weights of the other neighbors is 1.0695 which is
bigger than the weight of the neighbor with the same Compo field (0.2059).
Therefore, the new case will be introduced.

And finally, Table 5.25 is a collection of data corresponding to the situation
where none of the neighbors with the same Compo field are equal to the new
case. The new case should be introduced, if it does not disturb its associates.

SP td tr Vest Class Compo Devi Weight

New case 0.5328 0.4848 2.2059 0.5838    5 2 12.2771   - 

Neighbor 1 0.5162 0.4545 2.2353 0.5763 33 33 0 0.5195 

Neighbor 2 0.5321 0.5152 2.2059 0.5046 1 1 16.1068 0.2989 

Neighbor 3 0.5162 0.4545 2.2353 0.4802 1 1 20.00 0.2000 

Table 5.25: Case of a type 8 decision

The previous situations correspond to a training step that is not at the
beginning. It is normal that taking the classic dictionary as the initial set, the
first new previously unseen cases would spoil the classification of the other case
base members if they were introduced. But, if there is less than k neighbors of
that class, the decision will be to retain the new case, if it is necessary. This
is the way to ensure that the case base will grow and learn.

The process of training is extremely sensitive to how the new presented
cases are sorted. Hence, a method like the well-known ten-fold cross-validation
has to be applied. In our case, we have decided to build several independent
sets {S1, S2, ...., Sn} of randomly generated exemplars corresponding to a N
number of cases for each component, with faults uniformly distributed between
±70%. The CBR-system is trained with several series {T1, T2, ..., Tm} of these
sets randomly sorted in order to obtain a case base that performs better.
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T1 = {S1, S2, ...., Sn}
T2 = {S4, Sn, ...., S1}

...
Tm = {S10, S1, .., Sn, .., S3}

Once the revising and retaining process is clear, the following step is to
describe how the noisy cases are dropped. This is performed by the algorithm
similar to IB3 previously described. Figure 5.18 demonstrates how the system
learns while training. It has been obtained for 20 training sets and taking a
confidence index of 0.9.
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Figure 5.18: Learning process evolution

At the beginning, the total of correct cases increases abruptly. This fact
is due to the multiple cases being taken instead of one as a neighbor in the
diagnosis. Therefore, it is more probable to extract the correct class between
them, but there will be overlapping with the other neighbors. The increase is
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therefore due to the percentage of the correct module detection rising (second
row second column plot in Figure 5.18). As the training advances, the case
base substitutes component and module success diagnosis by increasing the
average of precision diagnosis. On the other hand, another important factor
to observe is that the number of cases continuously increases.

The case base is trained with a bigger number of sets in order to study
if there is a saturation of the number of cases introduced or degradation of
the system performance is produced. Figure 5.19 displays the results for 250
training sets randomly sorted for training. Observe that it reaches saturation.
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Figure 5.19: Base saturation

Also, it has to be studied which confidence index z and minimum number
of interventions nmin perform better. For example, for the biquadratic filter,
several values of confidence, from 0.3 to 0.9 have been tested, while the mini-
mum number of interventions before removing has been taken from 1 to 10.
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Of course the bigger the nmin is, the less sensitive the system is to z. The
results are shown in Figure 5.20.
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Figure 5.20: Optimal confidence index for forgetting

The maximum performance is obtained for C ≈ 0.9 as the confidence
level to forget cases. Hence it is better for our system to forget irrelevant
cases faster. Figure 5.21 shows the evolution of the indexes Lsi and Uci for
some cases during training. These cases were eliminated from the case base,
because, in the end their performance fell below the established limit of the
selected confidence index.

It can be observed in the previous learning evolution figures that the case
base reaches a saturation value for the performance success and for the case
base dimension. After the training number 150, there is little variation in the
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Figure 5.21: Evolution of the confidence index during training
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success and the number of cases. Of course, if the training sets are sorted in
a different way, the results can change.

Figure 5.22 shows several results obtained from a group of 150 training
sets when they were sorted differently.
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Figure 5.22: Analysis to sort the training sets

Figure 5.22 shows that the training set order probably has the best per-
formance corresponding to the cyan curve, but the results do not differ subs-
tantially from the others. Some training orders make the learning process
faster at the beginning stage, but the final results for the precision success
are all contained between 35% and 40%, and the total success between 85%
and 90%, while the case base size has a number of cases between 200 and 300
cases.

For example, taking the color cyan curve, it can be seen that at the training
number of approximately 132 the best result when diagnosing correct cases
with precision is produced. If the set of cases obtained at this moment is used
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Component OK diagnosed Component OK Module OK Wrong

R1 50% 24% 10% 16% 

R2 41% 20% 35% 4% 

R3 40% 20% 36% 4% 

R4 38% 29% 17% 16% 

R5 29% 6% 35% 30% 

R6 40% 37% 11% 12% 

C1 40% 26% 32% 2% 

C2 37% 24% 29% 10% 

Average 39.375% 23.25% 25.625% 11.75% 

Table 5.26: Performance for faults not previously considered. CBR

to diagnose the same test set composed of 100 cases corresponding to each
component with uniformly distributed deviations compressed between ±70%,
Table 5.26 is obtained.

If the table is compared with the one obtained using the classic dictionary,
the diagnosis rate of 39.375% represents an increment of more than 100% (it
is 17% for the classic dictionary). Hence, the CBR-system has clearly learnt
and it is able to improve the diagnosis of the circuit. Table 5.27 recalls the
results obtained by the dictionary using the ramp method.

Component OK diagnosed Component Correct Wrong Non Detect. 

R1 19% 57% 16% 8% 

R2 20% 25% 42% 13% 

R3 5% 44% 37% 14% 

R4 15% 65% 17% 3% 

R5 15% 24% 50% 11% 

R6 20% 62% 12% 6% 

C1 12% 42% 35% 11% 

C2 30% 52% 7% 11% 

Average 17% 46.375% 27% 9.625% 

Table 5.27: Ramp dictionary successes for deviations of ±70%

But DROP4 tends to retain border points in order to reduce the number of
instances to keep while it preserves the success ratio. Of course, if center points
are deleted, diagnosis with less than a certain percentage error will be difficult.
Hence, a new refinement in the method is introduced. In spite of the case base
size growing, when the algorithm in Figure 5.14 is applied, if a decision to keep
the new instances is made, the case will be introduced even if its retention is
going to spoil the classification of other cases. Figure 5.23 shows the results



Results on the Biquadratic Filter 149

obtained after training the case base with the same sets used to generate Figure
5.22. Observe that the number of cases diagnosed with precision has increased
up to 50%. Also, the total number of successes (considering correctness at
component and module levels) has reached a success rate of almost 90%.
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Figure 5.23: Analysis keeping cases that disturb classification of other cases

From these graphics, taking the situation after 63 trainings as an example,
the system is able to provide the following diagnosis using a case base size of
742 cases:

49.40% successes with precision
20.25% successes at component level
19.80% successes at module level
10.37% diagnosed incorrectly

The total of successes is 89.45%. The addition of the successes and wrong
diagnosis is 99.82%. The rest of the cases to complete the 100% correspond
to a 0.18% of non detectable cases. That is, cases that cannot be diagnosed
because they are not distinguishable from the nominal situation.
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5.5 Conclusions

When applying the CBR system two different usages have to be taken into
account: training and testing. For the training stage, several actions have to
be considered. First of all, an initial case base has to be selected. It seems
that the classic dictionary is a good starting point, although other bases can
be selected. Then, the system has to be trained with new exemplars. This
can be done by simulation, since it is easier and faster than taking real data.
When a new case is given during training it is supposed that the correct
diagnosis is known in advance. After the retrieval of the k-nearest exemplars,
the algorithm described in Figure 5.14 is applied in order to decide if the new
case should be retained or not. If the case has to be kept, an analysis of the
convenience of such an action has to be done using the associated concept, as
described in Figure 5.15. The metric used is the Euclidean, because for the
numerical attributes it is the simplest that produces good results. In case of
taking nominal response characteristics as attributes other metrics should be
considered.

Also, the confidence indexes of the retrieved cases are updated according
to the IB3 algorithm for maintenance purposes. If the confidence index Lsi of
one or some of the recent k retrieved cases decreases below to the confidence
index of its class Uci, the case is considered to be performing incorrectly and
it is deleted from the case base.

Repeating the cycle for each new exemplar, the case base reaches satura-
tion. There is an equilibrium between the retained and deleted cases; some
cases are introduced but approximately the same amount deleted; that is,
there is no increasing ore decreasing of the case base size and success per-
centages. At this point, the CBR-system can be considered to be doing its
best. From this point, the case base can be trained and tested with real data
coming from the real circuit.

Concerning the test stage, it has a lot in common with the training stage,
but with an important difference. In the training phase, the revision task is
done automatically, since it is supposed that the correct diagnosis of the new
case is known. During a real test stage, this is not true. Only the circuit
symptoms are known. The CBR-system will provide a possible diagnosis,
retrieving cases and adapting a solution, but the revise and retain steps are
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not done automatically, since there is no user feedback. Of course, the test
process can be stopped and some information on the bad diagnosis done and
new data can be used to refine the CBR-system, when necessary. But, again
the user has to close the CBR-loop supervising the revise and retain stages.

The proposed CBR-system is based on fault dictionaries, taking advantage
of its case structure and provided signatures, and completed with learning
and maintenance tasks. Taking the classic dictionary with a faults universe of
±20% and ±50% as an initial case base, produces better results than using a
DROP-reduced dictionary. This is because the latter saturates the case base
in these faults.

The knowledge is given using a multi-edit technique. That is, an algorithm
similar to DROP4 is used to introduce new cases and an algorithm based
on the IB3 to delete noisy instances. The associated concept shows good
results when used to decide if it is useful for the system to retain a particular
case. The algorithm used to forget noisy exemplars has also demonstrated
to be adequate. But examples, demonstrate that better diagnosis results are
obtained when the cases are introduced when necessary, even if their retention
spoils the classification of the cases already contained in the case base.

For the biquadratic filter circuit, the results have shown that the method
improves the diagnosis provided by the fault dictionary. For a set of 100 faults
for each component corresponding to deviations compressed in the range of
±70%, the classic dictionary has a success rate of 17% while using the pro-
posed multi-edit technique increases it to 39.375%. Also, the incorrect diag-
nostics decrease from 27% to 11.75%. A transition of success rates from the
component success rate to the precise success rate can be observed, meaning
that the system tends to be more precise when diagnosing. The increase in
the case base size is not dramatic. The classic dictionary has 25 cases while
the multi-edit technique produces a case base of 263. The confidence index
selected for forgetting is 0.9. This index shows the best results after several
simulations. A case that is performing badly can quickly be deleted because
it will be substituted by another training case that can perform better. An
index of 0.3 means that the system removes cases from the case base more
slowly and the results are worse. If the cases are introduced even though they
have a bad influence on the classification of other cases already contained in
the base, the system performs even better. In this situation, success with pre-
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cision is increased up to 49.40% using the same test set. The case base reaches
saturation as well, but as shown in the previous paragraph, the training can
be truncated at training 63, while the system performance is maintained with
a case base of 742.

The next chapter shows the application of the method to a real biquadratic
filter in order to test its performance with real measures and it explains how
to deal with the possible differences from the simulated data.



Chapter 6

RESULTS FROM THE REAL

CIRCUIT

6.1 Introduction

In order to show the performance of the proposed method, a real biquadratic
filter is built. This circuit is designed to easily provoke the desired faults to
be diagnosed. Its measures will include noise and inaccuracies due to the
instruments. The idea is to obtain measures from this real circuit and test
the performance of the designed CBR-system with data from the previous
simulations. It is expected that the difference between real and simulated data
will be small, since the circuit is linear and very close to the ideal situation.

The next sections give a short description of the general environment used.
After that, the possible sources of error are analyzed and their effect on the
measures described. In the end, measures from the real circuit are used to
test the proposed CBR diagnosis system.

153
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6.2 The Environment Used

The environment is composed of a computer with a data acquisition card and
the biquadratic fault simulation board. The simulation board is connected to
the data acquisition card mounted in a computer, where the software develo-
ped configures the board and stores the acquired data in a file.
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Figure 6.1: Environment

The circuit is specifically designed for test purposes, allowing the universe
of faults to be generated in an easy manner. Appendix A describes how
the circuit has been set up and the main characteristics are given for the
data acquisition board, the PCI-6071-E from National Instruments, used for
generating test signals and obtaining the circuit measures.

6.3 Sources of Error

According to (Pallas Areny, 1995), the errors can be produced by controllable
or uncontrollable factors. Since the circuit is well isolated (physically) and
insulated (electrically), there is no electromagnetic interference and the circuit
is not submitted to any air flow that can change its working temperature. Also,
the power supply offers great protection from the electrical net fluctuations.
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Hence, the uncontrollable errors are negligible and the only errors considered
are the controllable ones. In our case, the main controllable factors that can
influence the measurements are due to:

• Sampling time: The simulations are done using continuous signals. But
when the data is acquired from a real circuit, values are only taken at
a particular sample time. Hence there could be a difference between
a value calculated at a certain instant and the data acquired close to
this instant. On the other hand, if the value of interest is based on a
measurement of time, there will be a difference due to the discretization
of the time when acquiring signals. A part from Shannon’s criterion, the
sampling time Ts should be small enough to provoke a negligible error
in the time measures.

• Relative accuracy : This parameter is related to the ADC resolution
used by the acquisition board. The ADC number of bits also produces
a quantization of the amplitude space. Due to this fact, there will be a
quantization noise. If the board has a n bits AD converter, it divides
the amplitude space range into 2n zones. Therefore, there is a maximum
error in the amplitude measures of

nQ =
Range

2n
(6.1)

• Noise: The noise considered is thermic noise, produced by the resistors
and the semiconductors. Its mean is zero, which indicates that averaging
several measures can improve the acquired data. Electromagnetic inter-
ferences are avoided if the circuit is built with this in mind (shielding
the circuit, building a good ground plane, and so on).

Let us particularize the previous effects on the measures proposed to de-
velop the diagnosis system considering the saturated ramp response method.
Concerning the sample time effect, the error affects the parameters td and tr.
For example, if the parameter td is calculated, the instant of time at which
the output signal reaches 50% of the steady state of the output voltage is
approximated in a margin given by the sampling time Ts. It is well known
that to ensure a good measurement, the sampling time should be taken at
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least 10 times less than the rise time of the signal to be acquired, as given in
equation 6.2.

Ts ≤
tr
10

(6.2)

Since the saturated ramp input has a slope of 1V/100µs, that is, it takes
90 µs to rise from 0.1 V (10% of the steady sate) to 0.9 V (90% of the steady
state), the sampling time should be selected at least as

Ts ≤
90 µs

10 = 9 µs

But, in the present situation, as we are dealing with time parameters of
tens of µs, the sampling time Ts is selected to be ts = 1µs, close to the
maximum allowed by the acquisition board data used.
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Figure 6.2: The effect of discretizing the time space

As shown in Figure 6.2, although the signal reaches 50% of the steady
state at treal, the measurement system only allows treal to be estimated with
the sample at t1 or t2. Hence, in our case there is a maximum error of ±1µs
on the time measure td due to the sampling time. Something similar can
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be concluded for the measure of the rise time tr. This fact can affect some
results, making the acquired measure differ ±1µs from the ideal one. Of
course, a more in-depth study has to be carried out if more precise knowledge
of the influence of this time measurement error on these parameters is to be
determined.

On the other hand, simulations indicate that the considered faults pro-
duce responses with amplitudes between ±5 V . Hence, the acquisition board
inputs are configured as bipolar and with a voltage range from ±5 V (10 V of
range). According to Table A.1 given in Appendix A, the 12 bits AD converter
produces 4096 discretization levels, meaning that the quantization noise is

nQ =
Range

2n
= 10

4096=2.4 mV

If dither is used to reduce the effect of quantization noise, the expected
maximum output deviation due to this factor is reduced to

nQ = 2.4 mV · 0.5 = 1.2 mV

The question now is how many measures are necessary to reduce the effect
of noise. For less than n = 200 samples and with an unknown standard
deviation of the measures, s, the confidence interval of the measure can be
calculated as (Pallas Areny, 1995)

x̂ ± t1−α · s/
√

n (6.3)

where x̂ is the mean of the measure, n the number of measures, s the
standard deviation and t1−α the value used for calculating the confidence
interval at the α confidence level. This value is given in tables in (Pallas Areny,
1995) and in (Kokoska and Nevison, 1992). For example, if n = 10 measures
are taken for a particular magnitude, the confidence interval required to have
a α = 99% probability of this interval including the correct value of the
measured magnitude is given by
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x̂ ± 3.250 · s/
√

10 = x̂ ± 1.028 · s

where t1−99% = 3.250 is taken from the mentioned tables. We can look
at an example using the biquadratic filter in a nominal situation in order to
estimate the number of measures necessary to reduce the error when averaging
them. Figure 6.3 depicts 5 consecutive measurements when all the components
stay at their nominal value. The acquired signals are zoomed to show the noise
effect.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
−4

−1.05

−1

−0.95

−0.9

−0.85

Time (sec.)

O
u
tp

u
t 
v
o
lt
a
g
e
 (

V
o
lt
s
)

data1
data2
data3
data4
data5

Figure 6.3: Acquired signal with several ramp responses

Table 6.1 shows the interval confidence obtained for the saturated ramp
parameters when increasing the number of measures taken. Observe that the
highest dispersion is produced for the parameter SP. The interval calculated
in the last column corresponds to this parameter, and is much narrower for
the rest of the parameters.

The same case simulated has SP = 4.08%, obtained from Vmax = −1.0254
and Vest = −0.9852. If the quantization noise nQ = 1.2mV is taken into
account, the worst expected overshoot SP would be
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Measure
Number 

SP (%) td ( ✕ s) tr ( ✕ s) Vest

(Volts) 
Average Standard

 deviation
t1- ✖ ✖ ✗ Confidence 

Interval for SP 

1 4.2079 16 76 -0.9863 - - - - 

2 5.1058 16 76 -0.9802 4.656 0.4030 63.66   4.656 ± 18.14 

3 5.2105 17 76 -0.9851 4.508 0.2672 9.92 4.508 ± 1.53 

4 4.2131 17 75 -0.9863 4.588 0.2034 5.84 4.588 ± 0.59 

5 4.8268 17 76 -0.9839 4.688 0.2022 4.60 4.688 ± 0.41 

…

…

…

15 4.2131 17 75 -0.9839 4.454 0.1313 2.97 4.454 ± 0.10 

… … … 

60 4.3317 17 75 -0.9851 4.330 0.1079 2.664 4.330 ± 0.03 

Table 6.1: Confidence interval for the overshoot SP

SP=
(1.0254+1.210−3)−(0.9852−1.210−3)

(0.9852−1.210−3)
= 4.3293%

Therefore, the estimated SP value after averaging several acquired signals
would have to be closer to the simulated value than this value. This ensures
that the error introduced in the measures by the noise is filtered. Looking
at Table 6.1, this happens after averaging 60 acquired ramp responses, ap-
proximately. At this point, the maximum error for this particular measure
corresponds to a 0.0371/4.330 · 100 = 0.86%. Figure 6.4 shows the raw data
of five acquisitions compared to the averaged and the simulated nominal si-
tuations. Observe that the averaged waveform is quite a good approximation
of the simulated one.

Something similar can be done for faulty situations. For example, Figure
6.5 depicts the waveform obtained by simulation and the one derived after
averaging 60 waveforms acquired from the real circuit when there is a fault
R3 − 33.8%. On the other hand Figure 6.6 shows the same comparison for a
fault R5 + 25%

In conclusion, the 60 averaged measures are very close to the simulated
responses. Hence, when considering real data, great differences from the si-
mulated results are not expected. The 1.2 mV of possible error on the voltage
measure due to the quantization error and the error of 1µs in the time mea-
sures due to the sampling time are expected to have little influence on the
results. But a more in-depth analysis must be done for each particular circuit
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Figure 6.4: Comparing raw data with simulated and averaged waveforms
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Figure 6.5: Simulated and averaged waveforms for a fault R3 − 33.8%
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Figure 6.6: Simulated and averaged waveforms for a fault R5 + 25%

and the considered universe of faults. A fault that is correctly diagnosed in
the simulation process can be classified incorrectly because it is very close to
the border of the domain of influence belonging to another fault.

6.4 Numerical Results

In order to show the difference between the performance of the system using
real data instead of simulated responses, some examples are given. Consider,
for example, the case where R1 is faulty with a deviation of R1 + 44.44%.
The closest class is R1 + 50% (Class = 3). The simulated measures give the
following parameters for the output response:

[SP,td,tr,Vest]=[4.08, 16µs, 76µs, −0.6850]

Using as a case base the set of cases obtained in Chapter 5 after 63 trai-
nings, the k = 3 closest extracted neighbors are shown in table 6.2.
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Class Compo Devi Weight

New case 3 R1 44.44 - 

Neighbor 1 3 R1 42.41 0.2751 

Neighbor 2 3 R1 42.32 0.2437 

Neighbor 3 3 R1 48.81 0.2000 

Table 6.2: Retrieved neighbors for the simulated case R1 + 44.44%

Applying the decision algorithm of Figure 5.14, the conclusion will be
decision number 1, since all retrieved cases correspond to component R1 and
the mean average

Devi =
(42.41%+42.32%+48.81%)

3 = 44.51%

Hence, the proposed solution is R1 + 44.51%, that is, a diagnosis with an
error of 1.6% in the deviation.

Provoking the same fault in the real circuit, and averaging the output
response using 60 measures, the saturated ramp response parameters obtained
are:

[SP,td,tr,Vest]=[4.14, 16µs, 75µs, −0.6818]

and the extracted k = 3 closest neighbors are given in Table 6.3.

Class Compo Devi Weight

New case 3 R1 44.44 - 

Neighbor 1 3 R1 42.32 0.2279 

Neighbor 2 3 R1 42.41 0.2120 

Neighbor 3 3 R1 48.81 0.2000 

Table 6.3: Retrieved neighbors for the real case R1 + 44.44%

Observe that the retrieved cases are exactly the same as the ones extracted
for the simulated fault, although there are certain differences in the distances
and the neighbors are sorted slightly differently. But the conclusion is the
same, giving the same diagnosis as when using the data from the simulation.
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Consider now the case where R5 is faulty with a deviation of R5 + 25%.
The simulated measures give the following parameters of the output response:

[SP,td,tr,Vest]=[4.424, 12µs, 75µs, −0.9852]

Retrieving the three most similar cases from the case base, the neighbors
of Table 6.4 are obtained.

Class Compo Devi Weight

New case 17 R5 23.9 - 

Neighbor 1 6 R2 -14.7979 0.5378 

Neighbor 2 6 R2 -14.3477 0.2783 

Neighbor 3 6 R2 -16.7959 0.2000 

Table 6.4: Retrieved neighbors for the simulated case R5 + 23.9%

Observe that this situation belongs to a decision of type 3, according to the
decision diagram shown in Figure 5.14. The new case is completely surrounded
by cases with the same Compo field between them, but different from the
Compo field of the new case. Hence, the system is going to give an incorrect
diagnosis.

Doing the same for the real circuit, and averaging the output response
using 60 measures, the obtained parameters are:

[SP,td,tr,Vest]=[4.619, 12µs, 74µs, −0.9840]

The closest retrieved neighbors are depicted in Table 6.5.

Class Compo Devi Weight

New case 17 R5 23.9 - 

Neighbor 1 6 R2 -14.7979 0.3881 

Neighbor 2 6 R2 -14.3477 0.2631 

Neighbor 3 6 R2 -16.7959 0.2000 

Table 6.5: Retrieved neighbors for the real case R5 + 23.9%

The situation does not differ from the one derived with the simulated
values.
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If a deviation of -33.8% from the nominal case is taken as fault for R3, the
simulation produces the neighbors of Table 6.6.

Class Compo Devi Weight

New case 6 R3 -33.80 - 

Neighbor 1 6 R3 -30.05 0.4992 

Neighbor 2 19 R5 41.21 0.4489 

Neighbor 3 17 R5 25.57 0.2000 

Table 6.6: Retrieved neighbors for the simulated case R3 − 33.8%

Since the weight associated with the first neighbor is the highest one (the
other two cannot be added since they belong to different classes), the proposed
diagnosis is R3 − 30.05%. The component is correct, but there is an error of
11% estimating the deviation.

For the real circuit the closest neighbors are given in Table 6.7

Class Compo Devi Weight

New case 6 R3 -33.80 - 

Neighbor 1 6 R3 -30.05 0.2274 

Neighbor 2 17 R5 33.77 0.2112 

Neighbor 3 19 R5 46.44 0.2000 

Table 6.7: Retrieved neighbors for the real case R3 − 33.8%

The conclusion drawn is the same as that drawn from the simulated faults.
Hence, comparing the averaged measures with the simulated ones, the results
obtained are very similar. Of course, there will be circuits and situations where
this is not going to happen. Then, it is possible to train the CBR-system with
real data in order to learn from real situations.

A set of 100 faults for each component has been generated, and the respon-
ses that each one produces are captured. After choosing the data base that
seems to perform better, the diagnosis results obtained are shown in Table
6.8.

Recalling that the simulation results for the same test set are
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Component OK diagnosed Component OK Module OK Wrong

R1 56% 20% 10% 12%

R2 43% 28% 16% 12%

R3 46% 21% 21% 7%

R4 62% 19% 8% 7%

R5 24% 2% 21% 19%

R6 55% 24% 7% 12%

C1 43% 26% 20% 9%

C2 61% 21% 10% 4%

Average 48,75% 20,13% 14,13% 10,25%

Table 6.8: Performance of the CBR system with real data

49.40% successes with precision
20.25% successes at component level
19.80% successes at module level
10.37% diagnosed incorrectly

As can be observed, there is not a great difference between the diagnosis
using simulated and real data. If several different randomly generated test
sets, with 100 faults per each component, are used to compare the performance
of the system using simulated and real data, the results in Table 6.9 are
obtained.

Test
number

Simulation Real measures 

OK Compo Module Wrong OK Compo Module Wrong 

1 49,40 20,25 19,80 10,37 48,75 20,13 14,13 10,25 

2 46,87 25,37 10,75 10,12 47,37 24,50 10,25 10,75 

3 46,75 26,00 9,25 11,25 48,00 24,12 10,12 11,12 

4 48,12 23,00 10,50 11,25 49,25 22,37 10,25 11,37 

5 45,75 26,12 11,50 10,75 46,00 25,00 11,50 11,12 

6 48,00 21,50 13,50 10,75 46,00 21,87 15,50 11,25 

7 47,87 23,62 11,62 10,12 45,62 24,62 13,25 10,37 

8 51,25 20,87 11,37 10,25 50,50 22,25 11,12 10,37 

9 46,50 25,12 10,50 11,62 45,12 24,62 11,37 12,62 

10 47,62 24,50 11,25 10,75 47,12 23,75 11,37 12,50 

Average 47,81 23,64 12 10,72 47,37 23,32 11,89 11,17 

Table 6.9: Comparing the simulation with real data performance

Observe that there is only a slight difference between the averages corres-
ponding to the simulated and real data, as was expected.
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In conclusion, if the range of the inputs and the sample time of the acqui-
sition board are adequately selected, and the number of measures to average
is properly chosen, the measures do not differ excessively from the simulated
data. Also, a specific study should be carried out for each particular circuit in
order to determine if the sampling time and the quantization noise magnitude
could produce any misclassification.



Chapter 7

DISCUSSION AND

SUMMARY

7.1 Discussion and Summary

This thesis deals with the diagnosis of analog electronic circuits. A review
of the literature, show that in recent years diagnosis of analog electronic cir-
cuits has taken on importance once again, after having been pushed aside by
digital circuits and the importance they had taken on. Even though circuits
are becoming more and more digitalized every day, there is still a small part
of analog circuits that makes the process of testing difficult and expensive.
The integration of circuits dramatically increases the expectations of the elec-
tronic world, but it also makes the test stage extremely complicated. DFT
techniques, including the standard IEEE 1149.4, attempt to simplify the pro-
blem but, despite the effort, it is far from solved. Also, the literature shows
that in recent years, the interest in AI techniques for diagnosing analog elec-
tronic circuits has increased. The appearance of a standard, the IEEE 1232,
reinforces that idea. Therefore, the design of a new methodology for analog
circuit diagnosis makes sense. This thesis makes two specific proposals: The
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first is based on fuzzy logic and the second develops a methodology to build
a CBR-system for analog electronic circuit diagnosis.

It is common to use particular circuits as benchmarks to compare results.
The biquadratic filter is one of the circuits used extensively to test the per-
formance of diagnosis systems on analog electronic circuits and is used in
this thesis for the same purpose. Its values have been adapted to allow our
laboratory test equipment to perform the diagnosis proposed.

There are plenty of methods proposed for analog electronic circuit diagno-
sis. Chapter 2 presents a general classification of these methods: fault dictio-
naries, fault verification, parameter identification, approximation techniques
and AI techniques. Included are some examples showing the philosophy and
the bases of these methods.

As fault dictionaries are the more extensively used technique for detecting
and locating faults, they are the base line of the present thesis. Chapter 3
describes some of them in detail, giving examples on the DC and the AC do-
main. Above all, special attention is paid to two of them: the saturated ramp
method, based on a temporal response, and the frequency method, based on
taking certain gains and phases at particular calculated optimal frequencies.
The results show that in spite of only taking measures at the output node, the
percentage of faults located at the output is high, even when tolerances are
considered. The results using the saturated ramp or the frequency method
are not very different. Hence, the saturated ramp can be used instead of the
frequency method, because it needs to keep less measures, in general, while
maintains the performance. Other types of circuits will probably need other
types of measures to provide sufficient information to make the cases different
enough. The problem with fault dictionaries is when non-previously simulated
faults are presented and the rate of success decreases.

A first solution to this problem is given in Chapter 4 using an AI tech-
nique based on fuzzy logic. The measures used for generating the dictionary
are taken as fuzzy inputs. Each membership function is related to a fault
considered in the universe of faults taken to generate the dictionary. The
membership function shape is related to the obtained distribution measure
when a Monte-Carlo simulation is performed for each fault and taking tole-
rances into account. After approaching the shape with a triangle or a Gaus-
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sian function, the results obtained are not very different. The AND function
and the centroid method have proven to be the best functions for combining
the membership functions and defuzzificate the output. The syntax of the
rules is quite simple to derive. There are as many outputs as components to
diagnose, each of them with Gaussian-shaped membership functions corres-
ponding to the same faults considered in the fault dictionary (±20%, ±50%
and the nominal situation, for example). The fuzzy system performs quite
well when locating faulty components, but not when estimating the real value
of the components. Also, the problem of diagnosing non previously considered
faults still remains to be solved.

Admitting more cases in a fault dictionary can be seen as a natural de-
velopment towards a CBR system. Hence, Chapter 5 develops a Case-Based
Reasoning system from the previous fault dictionaries. Taking advantage of
the Monte-Carlo simulations, the dictionary is expanded to cope with the tole-
rance effect. This chapter also studies the minimum number of representative
cases necessary for a particular fault. Thanks to the Gaussian distribution of
the measures obtained from the biquadratic filter, the statistical properties of
the normal distribution can be applied. The conclusion is that, for this circuit,
a set of 500 cases for each class approximates quite well 99% of the popula-
tion with 99% confidence. Something similar can be done for other types of
circuits. It should be taken into account that if the probability distribution
of the given instances for each measure and fault differs from the Gaussian
shape, this estimation contains an error. Hence, a dictionary of 16500 cases
is obtained for the filter under test.

As the cases are generated randomly, noisy cases are kept as well, although
they increase the dictionary size considerably. Therefore, reduction techniques
such as DROP4 and IB3 are applied to reduce the dictionary size while keeping
or even improving its efficiency. These methods are explained in detail because
they will be used later on in the learning procedure. The results comparing
the dictionary of 16500 cases with the reduced one with the DROP4 algorithm
shows that DROP4 improves the success average with less cases, even when
using IB3. But as dictionaries, their performance decreases for non-previously
considered faults, and they are not able to learn from new situations.

At this point, at the core of Chapter 5, the CBR-system is designed. The
same structure used by the dictionary is used for cases, but with a slight
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modification. The case has two parts. One of them contains information on
measures, exactly the same as the dictionary, and the other contains qualita-
tive information: The label corresponding to the closest class, the component,
the deviation that produces that particular fault and the hierarchy informa-
tion. A method that divides the circuit into blocks is applied, creating a
hierarchy. Therefore each component belongs to a superior level block, and
depending on the circuit size, this block can belong to other superior blocks
in the hierarchy. The influence of the circuit hierarchy information on the
results has to be studied more carefully in future versions.

The retrieval part is done extracting the k closest neighbors (k = 3 for the
biquadratic filter). The metric used is the Euclidean, where the part of the
case corresponding to the measures is used. The adaptation process is carried
out using the qualitative part of the k extracted cases, following the algorithm
proposed in Chapter 5.

The learning task is performed by a mixture of the DROP4 and IB3 al-
gorithms. A DROP4-like algorithm is used to decide if a new case should be
introduced to the case base. It presents eight possible situations and shows
how they are solved, deciding when a new case should be introduced. But
DROP4 is too restrictive for diagnosis, since it tends to preserve border points
instead of the central ones. This fact means that the deviation of several new
cases is diagnosed with an error which is higher than the desired one. Hence,
it is decided that a case will be introduced in the case base when the algo-
rithm described in Chapter 5 proposes it, even when the new instance spoils
the classification of the cases already contained in the case base.

On the other hand, an IB3-like algorithm decides when to forget a case
that is performing wrong. For the biquadratic filter, a confidence index of
0.9 for forgetting cases seems to provide the best final results. But, it is not
clear if this value can be extrapolated to other circuits. It should be studied
for each particular situation, although it is expected that the same conclusion
will be obtained.

The results obtained by the proposed CBR method provide improvement
on the results with a case base of relatively moderate size, and with the ad-
vantage that the system can learn from new situations. The learning graphics
show that, after 250 trainings the system is clearly saturated. Furthermore,
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stopping at 150 trainings can save a lot of time, with little affect on the final
results. This is again the case of the biquadratic filter. For other circuits this
can happen earlier or later. It is supposed that larger circuits will need more
training and the retention of more cases, while for small circuits less trainings
will be enough to describe the circuit behavior and the saturation would be
reached earlier.

As is usual with the training processes, the best order in which to present
the new situations to the case base for learning is not clear. Results from
the system demonstrate that, depending on the order of training, the case
base can learn faster, although the final results are not extremely different.
Therefore, a set of training sets was generated and then sorted randomly, and
the best combination of several trainings were selected to obtain the final case
base. Now this case base is ready to learn from a real circuit, with real data.

The method can also be extrapolated to non-linear circuits, or even to
different systems that are not electronic circuits. In case measures at more
nodes are necessary for ambiguity reduction, they can easily be included by
simply enlarging the part of the case corresponding to the measures. The main
advantage of the method is that the case base can be generated by simulation,
but without necessarily having the transfer function. The simulation allows
hundreds of combinations to be tested in a relatively short time, and then the
system can be fine tuned using real data.

Finally, some general remarks to be considered when applying this metho-
dology to any analog circuit are summarized:

• First of all, the type of fault dictionary has to be selected according to
the kind of circuit to be diagnosed. If the circuit is frequency dependent,
the saturated ramp and the frequency methods described in Chapter 3
can be used. Otherwise, other types of measurements should be made
to properly represent the faults.

• The classic fault dictionary with deviations of ±20% and ±50% from
the nominal value is used as the initial case base, since the initial fault
coverage is wide enough for dictionaries. Also, a study of ambiguous
cases has to be done in order to group them when diagnosing. For large
circuits, it will be necessary to take measures at other nodes, besides
the output, if ambiguities are to be reduced.
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• The structure of the cases that constitute the case base of the CBR-
system is made up of two parts that are independent from the size and
complexity of the circuit to be diagnosed: one of them corresponds to
the measurements and the other to the fault characteristics. The former
will be longer for large and complex circuits, since more measures will be
needed to characterize its behavior. The latter is composed of the closest
class, the faulty component, the deviation that the component has from
the nominal value, and the hierarchy that contains information about
the module and level to which the component belongs. For a simple
circuit, hierarchy decomposition does not make much sense, but for large
ones, their decomposition can help to localize the fault, at least, at the
module level. The hierarchical decomposition can be done using the
algorithm proposed in (Sangiovanni-Vicentelli et al., 1977) and detailed
in Appendix B.

• The system has to be trained in order to cope with non-previously con-
sidered faults. The training is done by randomly sorting new situations
and studying their diagnosis. The order in which these new cases are
presented to the CBR-system tremendously affects the performance of
the system. Therefore, it is necessary to carry out several series of trai-
nings in order to see which one performs better. The number of trainings
per serie depends on the circuit complexity. A more complex circuit is
expected to show a percentage of success saturation with a bigger case
base than a simpler circuit, since more cases will be necessary to model
the circuit behavior.

• The retrieval process is done using the Euclidean distance. For nume-
rical attributes it shows good results. The number of neighbors, k, to
be extracted has to be studied in other circuits since the information
obtained from the experiments made is not conclusive enough to affirm
that k = 3 neighbors is the best choice. Something similar can be said
for the weights associated to each retrieved case; the exponential ker-
nel with a weight of ωk = 0.2 associated to the farthest extracted case,
seems to be a good choice to help in the circuit diagnosis, although fur-
ther studies would be desirable in order to corroborate this conclusion
in other analog circuits.

• The proposed case adaptation is transformational and the method pro-
posed in Chapter 5 seems to be adequate for other types of analog cir-
cuits as well.
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• New case retention while training is decided by the algorithm proposed
in Figure 5.14. Although not demonstrated, it is expected that for other
analog circuits this retaining process would be adequate. In any case, a
more in-depth study of other machine learning methods should be done.

• Forgetting cases that perform incorrectly is done by the IB3-like al-
gorithm detailed in Chapter 5. The confidence index taken is C = 0.9,
which means that the system easily forgets cases with poor performance.
This index has demonstrated quite good results for the biquadratic filter.
But these results can be extrapolated to any other analog circuit since
easily forgotten cases that do not help in the diagnosis of new situations
are going to be quickly replaced by newly accepted cases.

• It has also been proved that simulation can be used to build the proposed
CBR-system case base before using the real circuit. It saves a lot of time
and allows the user to test the system performance in advance, and no
great differences are expected when the diagnosis system is used with
a real circuit. But, a good measurement system has to be ensured.
For the biquadratic filter it has been demonstrated that by averaging
60 acquired signals, the results are quite similar to those obtained by
simulation. For other analog circuits, a similar analysis has to be done
in order to derive the minimum number of measures necessary that have
to be averaged to eliminate the effect of noise. The majority of analog
circuits have the same noise probability distribution and, therefore, the
average of 60 acquired signal will be sufficient to compensate for these
real circuit effects if the same acquisition board is used to obtain the
measures.

• Once the system is trained, when new unknown faults have to be diag-
nosed, the user decides whether to keep the new case or not.
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7.2 Future Work

Several unresolved issues are in need of further research. Some improvements
are possible, all of which require further feasibility and performance analysis.
To begin with, the method has been successfully tested on a typical benchmark
for analog circuits, the biquadratic filter, which is linear and simple; it should
be tested on larger and on non-linear circuits. In addition, the components
diagnosed are only the passive ones; in future versions diagnosing faults in
active components and integrated circuits should be included as a mandatory
task.

Finally, taking more measures at different nodes to reduce ambiguity can
be implemented as well. It is expected that making the case structure larger
in its measures part will improve the results.

Concerning the CBR system, a way of finding the optimal number of neigh-
bors k to extract for the diagnosis should be further investigated. In the
present thesis it has been done empirically, testing values from 29 to 3, and
choosing the one that provides the best performance. Of course this procedure
is slow and takes a lot of time for big circuits.

In order to improve the retrieval stage results, weights can be added to
the attributes according to their importance on a particular measure. The
methods for obtaining local or global weights proposed in (Wettschereck et
al., 1997) or in (Aha, 1998) can be cited among others.

The new cases order when training is also of major importance. In this
thesis we have used brute force (as is typically done in the data mining field),
training with multiple combinations and selecting the one that produces the
best results. Therefore, a method to provide the optimal order of cases, of
which to give first, should be found, although it will not be easy.

The classic dictionary has been taken as starting point, because it can
easily be extended to a CBR-system. Other initial case bases can be explored
in order to see if some improvements are obtained in the final results.

The function used for forgetting non-useful cases is based on the IB3 algo-
rithm. The shape of this function (a Bernoulli function) can be changed and
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an analysis of how other functions perform can be made. Also, the forgetting
index value should be studied according to the type of circuit to be diagnosed.

Concerning the number of representative cases corresponding to each fault,
the approximation of the measure distribution by a Gaussian distribution
function has been used. It is important to study this approximation when
the measure distribution is different from the Gaussian, in order to know how
this factor can affect the number of representative cases selected, although the
circuit complexity should be related to this number of representative cases.

In the end, as hybrid combinations of AI techniques, a study of the com-
bination of the fuzzy system designed in Chapter 4 and the proposed CBR
system of Chapter 5 can be considered. As the diagnosis provided by the
fuzzy system is not very accurate, it can be used to locate the fault com-
ponent and the CBR system can provide more information on the probable
deviation associated with the component.



176 DISCUSSION AND SUMMARY



Bibliography

Aamodt, A. and E. Plaza (1994). Case-based reasoning: Foundationalu issues,
methodological variations and system approaches. AI Communications
pp. 39–59.

Aha, D. W., D. Kibler and M. Albert (1991). Instance based learning algo-
rithms. Machine Learning. 6, 37–66.

Aha, D.W. (1998). Feature weighting for lazy learning algorithms. Norwell
MA: Kluwer.

Aha, D.W. and D. Wettschereck (1997). Case-based learning: Beyond clas-
sification of feature vectors. European Conference on Machine Learning
pp. 329–336.

Aminian, F., M. Aminian and H. W. Collins, Jr. (2002). Analog fault di-
agnosis of actual circuits using neural networks. IEEE Transactions on
Instrumentation and Measurement 51(3), 544–550.

Atkeson, C.G., A.M. Moore and S. Schaal (1997). Locally weighted learning.
Artificial Intelligence Review 11(1-5), 11–73.

Balivada, A., J. Chen and J.A. Abraham (1996). Analog testing with time
response parameters. IEEE Design and Test of computers pp. 18–25.

Bandler, J.W. and A.E. Salama (1985). Fault diagnosis of analog circuits.
Proceedings of the IEEE 73(8), 1279–1325.

Berenji, H.R., J. Ametha and D. Vengerov (2003). Inductive learning for fault
diagnosis. IEEE International Conference on Fuzzy Systems. To be sub-
mitted.

177



178 Bibliography

Boyd, R.R. (1999). Tolerance Analysis of Electronic Circuits Using Matlab.
Electronics Engineering. CRC Press. ISBN: 0-8493-2276-6.

Brighton, H. and C. Mellish (2001). Chapter1: Identifying competence critical
instances for instance-based learners. Instance Selection and Construction
for Data Mining pp. 77–94.

Calvano, J.V., V. Castro, M. Lubaszewski and A.C. Mesquita (2002). Filters
designed for testability wrapped on the mixed-signal test bus. Proceedings
of the 20 th IEEE VLSI Test Symposium (VTS.02) pp. 201–206.

Capitain, P.H. (1982). Complementary signal sensitivity to component tole-
rance. Proceedings of IEEE International Automatic Testing Conference
AUTOTESTCON’82 pp. 223–227.

Catelani, M. and A. Fort (2002). Soft fault detection and isolation in analog
circuits: Some results and a comparison between a fuzzy approach and
radial basis function networks. IEEE Transactions on Instrumentation
and Measurement 51(2), 196–202.

Chandramouli, R. and S. Pateras (1996). Testing system on a chip. IEEE
Spectrum pp. 42–47.

Chantler, M., S Cermignani, K.W. Mathisen and O. Saarela (1996). Selecting
model-based diagnostic solutions. In: DX’96.

Chatterjee, A. and N. Nagi (1997). Design for testability and built-in self-test
of mixed-signal circuits: A tutorial. Proceedings of the 10th International
Conference on VLSI Design pp. 388–392.

Chatterjee, A., B.C. Kim and N. Nagi (1996). DC built-in self-test for linear
analog circuits. IEEE Design and Test pp. 26–33.

Corsi, F., M. Chiarantoni, R. Lorusso and C. Marzocca (1993). A fault signa-
ture approach to analog devices testing. IEEE Transactions on Circuits
and Systems pp. 116–121.

Cota, E. F., M. Negreiros, L. Carro and M. Lubaszewski (2000). A new adap-
tive analog test and diagnosis system. IEEE Transactions on Instrumen-
tation and Measurement 49(2), 223–227.



Bibliography 179

Cunnigham, P. and B. Smyth (1994). A comparison of model-based and incre-
mental case-based approaches to electronic fault diagnosis. Proceedings
of the 12th National Conference on Artificial Intelligence in Case-Based
Reasoning.

Cunningham, P., B. Smyth and A. Bonzano (2003). An incremental retrieval
mechanism for case-based electronic fault diagnosis. Knowledge-Based
Systems 11(3-4), 239–248.

Dague, P. (1994). Model based diagnosis of analog electronic circuits. Annals
of Mathematics and Artificial Intelligence 11(1-4), 439–492.

Dague, Ph., O. Jehl, Ph. Deves, P. Luciani and P. Taillibert (1991). When
oscillators stop oscillating. International Joint Conference on Artificial
Intelligence. Sydney. Australia pp. 1109–1115.

Demuth, H. and M. Beale (2000). Neural Network Toolbox for Use with Matlab.
User’s Guide. Version 4. Mathworks Inc.

Deng, Y., Y. He and Y. Sun (2000). Fault diagnosis of analog circuits with
tolerances using artificial neural networks. The 2000 IEEE Asia-Pacific
Conference on Circuits and Systems. IEEE APCCAS 2000. pp. 292–295.

Duhamel, P. and J.C. Rault (1979). Automatic test generation techniques for
analog circuits and systems: A review. IEEE Transactions on Circuits
and Systems Cas-26(7), 411–440.

Fanni, A., A. Giua, M. Marchesi and A. Montisci (1999). A neural network
diagnosis approach for analog circuits. Applied Intelligence 2 pp. 169–186.

Fedi, G., S. Manetti, M.C. Piccirilli and J. Starzyk (1999). Determination of
an optimum set of testable components in the fault diagnosis of analog
linear circuits. IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications. 46(7), 779–787.

Fenton, B., M. McGinnity and L. Maguire (2002). Fault diagnosis of electronic
systems using artificial intelligence. IEEE Instrumentation and Measure-
ment pp. 16–20.

Fenton, W. G., T. M. McGinnity and L. P. Maguire (2001). Fault diagno-
sis of electronic systems using intelligent techniques: A review. IEEE
Transactions on Systems, Man and Cybernetics. Part C: Applications
and Reviews 31(3), 269–281.



180 Bibliography

Ferrario, M.A. and B. Smyth (2000). Collaborative maintenance-a dis-
tributed, interactive case-base maintenance strategy. Advances in Case-
Based Reasoning: 5th European Workshop, EWCBR 2000 LNCS
1898/2000(ISSN: 0302-9743), 393–405.

Finnie, G. and Z. Sun (2002). Similarity and metrics in case-based reasoning.
International Journal of Intelligent Systems 17, 273287.

Gomez, D., F. Lucas, A. Quiros and A. Vizcáıno (1996). Aplicacion de la
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Appendix A

THE DEVELOPED

ENVIRONMENT

A.1 The Software for Simulation

In order to test the different diagnosis methods on different linear circuits, an
environment based on Matlab has been developed. The main menu is given
in Figure A.1

The menu is clearly divided into several parts. Circuit Selection allows the
user to define the circuit by means of a transfer function or by drawing the
circuit using a PSPICE environment. This last option is quite useful when
dealing with integrated circuits or with non-linear circuits.

When selecting the Circuit Selection option on the main menu, there is
possible to choose between the PSPICE environment or the transfer function.
If the latter is selected, Figure A.2 appears.

First of all the coefficients of the transfer function numerator and denomi-
nator have to be entered in a symbolic way. For example, a transfer function
denominator
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Figure A.1: Main menu

Figure A.2: Circuit selection menu
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RCs + 1

will be introduced as [R*C, 1].

The next step allows the nominal value of the components to be introduced
in a sequential manner. The tolerance is also selected, making it possible to
assign the same tolerance to all the variables or to enter a particular tolerance
value for each component. At this point, we have a transfer function describing
the circuit stored.

The following part of the main menu is related to dictionary case gene-
ration. It can also serve to generate a file of new cases for the CBR-system
training or testing purposes. If Dictionary Generation is selected from the
main menu, the submenu of Figure A.3 is displayed.

Figure A.3: Dictionary generation menu

After selecting the transfer function circuit, we have to choose the type of
dictionary to generate, based on the saturated ramp or sinusoidal (frequency
method) input. At the same time, the option of generating the fuzzy sets
in parallel as explained in Chapter 4 can be chosen. If this last action is
taken, the fuzzy options are activated. After introducing the adequate input
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test signal parameters, the generated set can be the classic dictionary, with
one case per fault, or several cases per considered fault can be generated.
Finally the universe of faults to simulate has to be defined. It is possible to
produce deviations of ±20%, ±50% or ±X% separately or simultaneously.
Also, random faults distributed in the margin between 0% and ±70% can be
used as alternatives. This last option is very useful when testing the methods
for non-previously considered faults. The probability distribution of the faults
can be normal, uniform or a set can be selected for each of them. The result is
stored in a variable that is a structure containing the values of the measures for
each simulated situation, but also includes the universe of faults considered,
the characteristics of the test signal used and the components involved.

The Dictionary Reduction option from the main menu is used to eliminate
noisy or redundant data by means of the DROP4 or IB3 algorithms. The
reduction method, the metrics, the normalization procedure (by range or using
the variance) and several other options can be selected previously.

Figure A.4: Dictionary reduction menu

The Neural Network Training window offers the possibility of designing
and training a neural network. The data used for training can be selected
from the dictionaries directory. Only the nominal cases or a dictionary can
contain several cases of each fault (multiple option).
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Figure A.5: Neural network training menu

The neural network input and output cells are known. The user has to
design the internal layers, choosing how many layers and the number of neu-
rons per layer. Also, the transfer function shape can be chosen. Afterwards,
the training function, the minimum error considered to stop (MSE) and the
maximum number of epochs allowable may be specified.

Last but not least important of the methods implemented is the CBR
Train.

Figure A.6: CBR menu
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Figure A.6 displays the parameters necessary to configure and train the
CBR system. First of all, the initial set used as the initial case base is selected.
This set can be a nominal dictionary (one case per considered fault) or a
dictionary with several cases taken per fault considered. The training method
can be DROP4, IB3 or Multedit. The metric has to be selected as well.
The error allowed when estimating the parameters value is introduced in the
Estimation Error Allowed cell. Also, the Minimum number of interventions
necessary to consider a case for removal and the maximum and minimum
values of the Confidence index for the IB3 method has to be introduced. The
confidence index is not activated when the DROP4 method is selected for
training (it makes no sense) and only one of them is activated when Multiedit
is chosen (the method only needs one index). The Number of partitions refers
to the divisions that have to be made in a file to generate several subfiles for
training.

Figure A.7: Diagnosis menu

The last button of the main menu is for diagnosis purposes, and the window
that appears after clicking this option is shown in Figure A.7. First of all,
the method used to diagnose has to be selected. Afterward, the parameters
to introduce for the particular selected method are highlighted to introduce
their values. Then, a single case, a file containing the data to test or a file
containing only one case per considered fault is picked up. The results can be
stored in a file or they can be shown graphically.
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A.2 The Hardware Environment

A.2.1 The Data Acquisition Board

The card is a PCI-6071-E from National Instruments and the main charac-
teristics of its analog inputs and outputs are shown in Table A.1 and Table
A.2.

Analog Input Characteristics

General
Number of channels 64 single-ended 

32 differential 
ADC resolution 12 bits, 1 in 4096 

Max simple rate 1.25 Msamples/sec. 
Input single range for bipolar 
configuration

From ±50 mV to ±10V 
(depending on the gain) 

Transfer characteristics 
Relative accuracy ±0.5 LSB typ dithered 

±1.5 LSB max undithered 
DNL ±0.5 LSB typ 

±1 LSB max 

Offset error (after calibration) Pregain error: ±12 ✘ V max 

Postgain error: ±0.5 mV max 

Amplifier characteristics 
Input impedance 100 G ✙  in parallel with 100 pF 

Input bias current ±200 pA 
CMRR (for a gain of 1) 100 dB 

Bandwidth 1.6 MHz
Crosstalk -80 dB (DC to 100KHz) 

Table A.1: Main analog inputs characteristics of the PCI 6071-E board

The board has digital inputs and outputs as well. Some of the digital
outputs are used to configure the faults in the biquadratic simulation board.
One of the analog outputs is used as a generator and is synchronized to one
of the analog inputs, that is used to capture the signal.

The input signal range can be unipolar or bipolar. The input range goes
from ±10 V to ±50 mV for the bipolar mode. The selection of one margin or
another is made by the gain parameter. This gain is software programmable.
A gain of 0.5 limits the bipolar input range to ±10 V . For a gain of 1 the input
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Analog Output characteristics

General   

Number of channels 2 

Resolution 12 bits, 1 in 4096 

Max update rate per channel 1 Msamples/s 

Transfer characteristics   

Relative accuracy ±0.3 LSB typ  

DNL ±0.3 LSB typ  

Offset error ±1 mV max  

Voltage output   

Ranges ±10 V, 0 to 10V  

Input impedance 10 K ✚
Bandwidth (-3dB) 1 MHz 

Slew Rate 20 V/ ✛ s

Table A.2: Main analog outputs characteristics of the PCI 6071-E board

range is decreased to ±5 V and so on. Of course, when reducing the input
range, the resolution of the measure increases since the 4096 discretization
levels (212) are confined in a narrower range. Hence, the input range should
be selected as close as possible to the expected maximum input level, avoiding
any saturation of the board amplifiers.

Also, the PCI 6071-E board allows the dither to be enabled, which means
an addition of approximately 0.5 LSB of Gaussian noise to the signal to be
converted by the ADC. This addition increases the resolution of the PCI board
and is useful for applications involving averaging, such as the present one.

A.2.2 The Fault Simulation Board

To facilitate the faults generation, digital potentiometers are used for resis-
tors fault simulation. The AD8402 from Analog Devices containing two po-
tentiometers has been selected for this purpose. Their values are fixed by a
digital code sent to the potentiometer. Of course, the universe of possible
wiper positions is finite and it depends on the number of steps allowed by the
potentiometer. It is possible to find from 32- up to 1024- step potentiome-
ters. In our case, 256-position potentiometers are used because they offer
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Figure A.8: The real circuit

enough resolution for testing the methods in the real circuit. Also, they can
be selected according to the desired value: 1K, 5K, 10K, 50K or 100K. When
the user selects a possible resistor value, the potentiometer is adjusted to the
closest possible value, taking into account the smallest step the potentiometer
has. Also, the wiper terminal introduces a small resistance that is typically
Rwiper = 50 Ω for the selected potentiometers. This value is also taken into
account in order to calculate the real value the resistor is going to take.

Capacitors are simulated using an electronic switch and a bank of discrete
capacitors. Figure A.8 shows the biquadratic fault simulating board.

The integrated circuit TL074 is used for the operational amplifiers. It has
a maximum output short circuit current of Ios = 40 mA, a Slew Rate of SR =
13V/µs and a gain bandwidth product of GBP = 3 MHz. These limitations
will not influence the response to a saturated ramp input of a 1V/100µs slope
with a saturation value of 1 V for the considered faults. Concerning the
dynamical part of the circuit response, a slope of 1V/100µs is equivalent to
0.01V/µs, which is far from surpassing the Slew Rate limitation. On the other
hand, the currents at the output of the operational amplifiers are much less
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than its limit of 40 mA, even in the overshoot that can reach close to 3 V at
V0 depending on the fault provoked.

Labwindows is used to program the faults, to access the board and to
capture the real data. There are several possible options. One of the Labwin-
dows screens allows the user to program single faults. The desired value of the
component is introduced and the output for a ramp input is captured after a
click on the OK button. The other Labwindows screen is useful for randomly
generating multiple faults. In both situations, the input is a 60 periods ramp
signal. The advantage of doing this, is that the 60 periods of the response can
be averaged in order to reduce the noise present at the output. After that,
the program calculates the signature parameters (SP , td, tr and Vest for the
saturated ramp input stimuli) and saves the fault signatures in a file, with
their corresponding fault label, the faulty component and its deviation. The
file can be easily converted to a format readable by the Matlab software in
order to test the CBR-system proposed with real data. In spite of the limita-
tion on the sampling time due to the Windows operating system, the buffer
of the data acquisition board allows samples to be obtained in real time and
sampled at a shorter sample time, i.e. 1µs.



Appendix B

HIERARCHICAL

DECOMPOSITION OF

CIRCUITS

The idea is to carry out a nodal decomposition in order to divide the cir-
cuit into blocks. The heuristic cluster algorithm described in (Sangiovanni-
Vicentelli et al., 1977) is used together with the hierarchical decomposition
approach proposed in (Salama et al., 1984).

It uses the concept of contour tableau, which consists of a three-column
table, like Table B.1. The first column is called the iterating set (IS) and it
contains iterating nodes. The second one refers to the adjacent set (AS), and
the last one has the contour number (CN).

IS AS CN 

IS(1) AS(1) CN(1) 

IS(2) AS(2) CN(2) 

IS(3) AS(3) CN(3) 

..
.

..
.

..
.

Table B.1: Contour Tableau
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The algorithm to build the table is described in (Sangiovanni-Vicentelli
et al., 1977). Let’s see an example of how a hierarchical decomposition is
performed. Taking the active filter of Figure B.1,
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Figure B.1: Active filter as an example of a large circuit

with the values shown in Table B.2 and with an input current of Ig(t) =
0.01cos(2000t) A.

R1 182 R11 2.64 K R23 10 K R34 10 K 

R3 1.57 K R14 5.41 K R25 500 K C2 10 nF 

R5 2.64 K R15 1 K R26 111.1 K C12 10 nF 

R6 10 K R17 1 K R27 1.14 K C18 10 nF 

R7 10 K R19 4.84 K R28 2.32 K C29 10 nF 

R9 100 K R21 2.32 K R31 72.4 K 

R10 11.1 K R22 10 K R32 10 K 

Table B.2: Component values for the large active filter

and considering nodes n1, n3, n5, n6, n8, n10, n12, n14, n15, n17 and
n19 as the measurement nodes, the equivalent nodal graph interpretation of
the circuit is depicted in Figure B.2

Applying the Sangiovanni-Vicentelli algorithm, contour table B.3 is ob-
tained.

Hence the cutting point can be taken at node n10 since it is the iteration
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Figure B.2: Equivalent nodal graph of the active filter

IS AS CN

n1 n3  n6   n8 3 

n3 n5  n6   n8 3 

n5 n6   n8 2 

n6 n8   n10 2 

n8 n10 1 

n10 n12  n15   n17 3 

n12 n14  n15   n17 3 

n14 n15   n17 2 

n15 n17   n19 2 

n17 n19  1 

n19 - 0 

Table B.3: Contour Tableau for the large active filter
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with de minimum CN . This indicates that the circuit can be split into two
subcircuits, one part compressed between nodes n1, n10 and ground and the
other between nodes n10, n19 and ground. A similar procedure can be applied
to each of these subcircuits in order to continue with the block division. Finally
the hierarchical diagram of Figure B.3 is obtained.

S17
S12

S1

0

1 19

S2

0

1 10

S3

0

10 19

S4

0

1 3 

6

S5

0

3 6

S6

6

0

3

101

S10

0

3 5

S11

0

5 6

S13

3

8

1

8
0

10
8

6

S14

S7

0

10 12 

15

S8

0

12 15

S9

15

0

12

1910

S15

0

12 14

S16

0

14 15

S18

10

17

12

17
0

15 17

19

S19

Level 1 

Level 2

Level 3 

Figure B.3: Hierarchical decomposition of the active filter

Once the circuit is hierarchically divided in blocks, a fault verification is
performed in order to isolate any faults, at least the block level.
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