Case-Based Reasoning for
Evolutionary MEMS Design

A knowledge-based computer-aided design tool for microelectromechanical systems
(MEMS) design synthesis called case-based synthesis of MEMS (CaSyn-MEMS) has been
developed. MEMS-based technologies have the potential to revolutionize many consumer
products and to create new market opportunities in areas such as biotechnology, aero-
space, and data communications. However, the commercialization of MEMS still faces
many challenges due to a lack of efficient computer-aided design tools that can assist
designers during the early conceptual phases of the design process. CaSyn-MEMS com-
bines a case-based reasoning (CBR) algorithm and a MEMS case library with paramet-
ric optimization and a multi-objective genetic algorithm (MOGA) to synthesize new
MEMS design topologies that meet or improve upon a designer’s specifications. CBR is
an artificial intelligence methodology that uses past design solutions and adapts them to
solve current problems. Having the ability to draw upon past design knowledge is ad-
vantageous to MEMS designers, allowing reuse and modification of previously successful
designs to accelerate the design process. To enable knowledge reuse, a hierarchical
MEMS case library has been created. A reasoning algorithm retrieves cases with solved
problems similar to the current design problem. Focusing on resonators as a case study,
case retrieval demonstrated an 82% success rate. Using the retrieved cases, approximate
design solutions were proposed by first adapting cases with parametric optimization,
resulting in a 25% reduction in design area on average while bringing designs within 2%
of the frequency goal. In situations where parametric optimization was not sufficient, a
more radical design adaptation was performed through the use of MOGA. CBR provided
MOGA with good starting points for optimization, allowing efficient convergence to
higher quantities of Pareto optimal design concepts while reducing design area by up to
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43% and meeting frequency goals within 5%. [DOL: 10.1115/1.3462920]

1 Introduction

This paper presents a design synthesis tool, called case-based
synthesis of microelectromechanical systems (CaSyn-MEMS), for
early stage MEMS design. CaSyn-MEMS is a computer-aided de-
sign (CAD) tool that assists MEMS designers with concept devel-
opment by utilizing past design structures to synthesize new struc-
tures. CaSyn-MEMS integrates case-based reasoning (CBR), a
knowledge reasoning algorithm, with parametric optimization and
a multi-objective genetic algorithm (MOGA). Using previously
successful MEMS designs indexed in a hierarchical case library,
CaSyn-MEMS synthesizes and optimizes new design structures
that meet a designer’s current set of design requirements. This
paper will demonstrate how CBR can support design ideation dur-
ing the initial conceptual phases of the design process while en-
abling large stochastic search methods, such as genetic algorithms
(GAs), to converge to new promising design solutions.

MOGA algorithms developed previously [1-3] have proven
successful in the design of resonant MEMS structures. Zhang et
al. [1] noted that seeding MOGA with a good initial design is
essential to helping MOGA converge to better design solutions in
a practical number of evolutions. One shortfall is that they worked
with the same initial design for all of their synthesis processes,
limiting the range and quality of solutions their MOGA algorithm
could generate. In addition, the burden of selecting a seed design
was placed on the user of MOGA. What previous studies lacked
was an efficient automated knowledge base, which removes from
the human designer the burden of seeding the synthesis algorithm
with good starting designs. The CBR tool developed in this paper
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benefits MEMS design by giving a wider range of good starting
design cases for optimization and adaptation processes. The CBR
starting cases increase the quantity and quality of optimal design
solutions synthesized by evolutionary algorithms and enable con-
vergence to a wider range of optimal design solutions.

1.1 Introduction to MEMS. MEMS are microscale elec-
tronic and mechanical components made with fabrication technol-
ogy adapted from the field of integrated circuits. MEMS range
from simple beams and electrostatic gaps to more complex sen-
sors and actuators that include fluidic, magnetic, and thermal sys-
tems. MEMS can provide cost and size advantages as well as new
functionality in products and different application areas.

MEMS design efforts date back to the late 1960s when
Nathanson et al. at Westinghouse Research developed microscale
resonant structures for filtering applications [4]. Today, micro-
mechanical elements along with circuitry can be combined to-
gether on a common silicon substrate to create devices such as
micro-accelerometers for deploying car air bags [5], micro-
actuators for disk drives [6], micromirror arrays for projection
display technology [7], and microfluidic devices for ink-jet print
heads [8].

1.2 Research Motivation. Maseeh [9] surveyed MEMS com-
panies and discovered that the length of the product development
cycle was the most critical challenge to MEMS product commer-
cialization. The median time to develop a prototype device was
3.2 years, with some taking as long as 8 years. In particular, it is
not uncommon for MEMS designers to rely on a “trial-and-error”
method during the initial stages of development. MEMS product
development is an extremely costly and time-consuming process
when compared with the average 14—27 month product develop-
ment cycles of consumer products [10].

Efficient CAD tools can help MEMS designers foresee poten-
tial design problems and generate optimal design structures
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with case-based design synthesis

quickly. This can help decrease the product development time for
many MEMS devices by reducing time spent fabricating and test-
ing suboptimal design concepts. Better design synthesis tools en-
courage more complex MEMS designs by enabling the reuse of
various components, thereby reducing the need to redesign low-
level design components, enabling designers to focus on larger
structures and layouts. Knowledge-based CAD tools enable de-
signers to weed out bad design ideas early on and iterate more
with simulation than with costly manufacturing processes.

There are many variations in the MEMS product development
process [11,12], but the general process can be explained by the
diagram in Fig. 1(a). Once an initial design concept is conceived,
time is spent iterating through mask layout and fabrication in or-
der to produce the best performing design. Figure 1(b) shows how
MEMS case-based design synthesis can change the current
MEMS product development cycle by allowing designers to iter-
ate more effectively through the conceptual design phases with a
library of MEMS knowledge, artificial intelligence, and optimiza-
tion tools in addition to quick, high-level simulation. Providing
more structured design methods for MEMS can help improve the
MEMS design process by significantly reducing the costly and
time-consuming trial-and-error process for devices.

2 Related Work

2.1 MEMS Simulation Tools. Efficient CAD tools for
MEMS have the potential to revolutionize MEMS design just as
they revolutionized very large-scale integration (VLSI) circuit de-
sign with electronic design automation tools. VLSI circuit design
grew tremendously through the use of CAD tools, which enabled
designers to build complex circuit designs by drawing from basic
building blocks and hierarchies of design elements [13,14]. VLSI
simulation capabilities remain far more advanced than MEMS
simulation capabilities when it comes to mixed-domain
simulation.

MEMS CAD has matured to the point that there are now com-
mercial CAD programs, such as CADENCE®, INTELLISUITE®, and
Ansys®, which offer MEMS designers preconfigured cell libraries
with reusable components; however, there is little automatic rea-
soning in place for the user on how and when these components
should be used. These simulation packages are not very helpful
during exploratory phases of design as they require detailed mod-
eling knowledge and can take hours or even days to analyze one
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design. There is a need for simulation and design tools that can
enable faster concept generation during the initial stages of the
design process. As more MEMS fabrication processes become
standardized, MEMS designers can focus more on device design
and layout with simulation and synthesis tools. CaSyn-MEMS
aims to advance the MEMS field by utilizing successful MEMS
design knowledge and building blocks as the analog to VLSI cir-
cuit design. CaSyn-MEMS can potentially reduce the cost and
time of the MEMS product development cycle by helping MEMS
designers iterate more during the initial conceptual phases of
product development and reduce unnecessary design iterations
during the testing and fabrication stages of development.

2.2 MEMS Design Synthesis. MEMS design synthesis in-
volves the creation of new MEMS structures that meet a set of
given design requirements. The majority of the research con-
ducted to date on MEMS design synthesis has invoked some form
of optimization, such as genetic algorithms, parametric optimiza-
tion, or shape grammars. Design synthesis has been applied to all
aspects of MEMS design, ranging from mechanical design and
circuit design to mask layout and process development.

Zhou et al. [2] were the first to demonstrate that MOGA com-
bined with SUGAR [15], an open-source MEMS simulation tool,
can synthesize MEMS meandering resonators, produce new con-
ceptual structures, and outperform human designers. Kamalian et
al. [3,16] extended Zhou’s work to more advanced MEMS prob-
lems and explored interactive evolutionary computation (IEC), in-
tegrating human expertise into the synthesis loop to leverage the
strength of human expertise with computational efficiencies.
Zhang et al. [1] implemented a hierarchical MEMS synthesis and
optimization architecture, integrating an object-oriented data
structure with SUGAR and two types of optimization: GAs and
local gradient-based refinement. They noted that the MOGA ap-
proach needed a means for automating the starting populations for
MOGA that would enable a larger sampling of the solution space
of MEMS designs.

Mukherjee et al. [17] conducted work on MEMS synthesis for
accelerometers using structured optimization methods. Their work
focused on parametric optimization of a predefined MEMS topol-
ogy. Because the configuration of their MEMS design had a fixed
topology, it did not allow for a more radical design space explo-
ration. Mukherjee and Fedder [18] also worked on a mixed-
domain simulation, synthesis, and extraction methodology for
MEMS.

Agarwal et al. [19] developed a 2D shape grammar for the
synthesis of MEMS resonators. Shape grammars create designs by
applying shape transformation rules continuously to an initial
starting design. Agarwal et al. noted that MEMS designs have a
strong form-function coupling, meaning that the slightest change
in the topology of a design can drastically alter the design’s per-
formance. Wang et al. [20] approached MEMS synthesis by uti-
lizing bond graphs (BGs) and genetic programming (GP) with a
treelike structure of modeling building blocks to incorporate
knowledge into the evolutionary process. Knowledge in Wang’s
synthesis system is formed as generalized system models rather
than explicit cases of previously successful designs.

Li and Antonsson [21] applied GAs to the mask-layout aspect
of MEMS synthesis. Ma and Antonsson [22] also used GAs for
automated mask-layout synthesis but extended their work to in-
clude process synthesis for MEMS. Given a desired MEMS de-
vice topology and fabrication process, their tool could produce
mask layouts and associated fabrication steps for a particular
MEMS device. GAs were used to evolve an optimal mask layout
given a user-defined shape. Li et al. [23] also concentrated on
developing an automatic fabrication process planning for MEMS
devices for the later stages of MEMS product development once a
designer always has a defined device concept.

There is a lack of an efficient hierarchical library of MEMS
designs and a means of retrieving the necessary designs for users
embedded in these aforementioned MEMS design synthesis tools.
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The burden of finding an appropriate initial design topology for a
synthesis process is mostly left up to the user. The general lack of
design tools for the initial stages of the MEMS design process and
the need to select better starting designs for synthesis processes
motivated our development of case-based reasoning capabilities
for MEMS synthesis.

3 Case-Based Reasoning Background

CBR is an artificial intelligence method that utilizes knowledge
from a past situation to help deal with new complex problems
[24]. The beginnings of CBR can be traced back to the work of
Shank and Abelson [25] in their introduction of “scripts™ for rep-
resenting knowledge about abstract problem situations. They pro-
posed that these scripts or problem cases could be used to solve
new problems by finding and appropriately modifying the closest
matching item in memory. Shank’s work produced a cognitive
model upon which many CBR applications are based today.

The creation of a CBR system involves the indexing of infor-
mation and the use of domain knowledge to improve search. CBR
often works with a smaller hand-tailored collection of data where
cases are structured according to domain-specific rules. Indexing
and knowledge representation are the two initial stages of CBR,
determining the ultimate performance of a CBR engine. The CBR
cycle has many variations depending on the application, but at a
high level, CBR can be summarized by the steps [26] below:

1. Retrieve the most similar cases from memory.

2. Reuse the retrieved cases and attempt to solve the problem at
hand.

3. Revise the proposed solution (if necessary).

4. Retain the new solution in the case memory for future use.

3.1 CBR Design Systems. Human designers continuously
draw upon their past experiences and expertise to solve design
problems. It is with this realization that many CBR applications
have been developed. CBR has been applied to various domains
ranging from cooking recipes to the design of mechanical devices.
Applying CBR to new design applications is a challenging task
involving knowledge representation and management issues [27].
CYRUS, developed by Kolodner, was one of the first case-based
reasoners and included processes for choosing indexes, reorganiz-
ing memory, making generalizations, and searching memory [24].

Other notable systems include CADET [28] and KRITIK [29]. CA-
DET focused on the behavioral synthesis of devices with a dy-
namic or non-monotonic behavior. KRITIK generated both concep-
tual and qualitative designs for physical systems such as electrical
circuits utilizing a structure-behavior-function (SBF) model that
explicitly specified the structure and the functions of a device
along with its internal casual behaviors to explain how the struc-
ture delivers the functions and how the device functions are com-
posed from the functions of structural components. KRITIK2 eX-
panded the functionality to a wider range of designs such as
electromagnetic devices and operational amplifiers.

CADSYN [30] is a CBR system based on case decomposition and
transformation knowledge to organize structural engineering cases
for reuse. CLAVIER [31] is a CBR system used for determining
loads of composite material parts for curing in an autoclave. CLA-
VIER was one of the first successful applications of CBR in indus-
try. CLAVIER demonstrated that even with a small initial library of
only 20 cases, of which some were incomplete, it was still found
to be a useful tool by Lockheed employees. Tsai et al. [32] used
CBR to develop a defect prediction system for new printed circuit
board products. A vantage-based indexing scheme was developed
to quickly retrieve good candidate cases by using clustering algo-
rithms to partition similar cases into groups based on design
specifications.

Boyle et al. created CAFIXD [33], a CBR system for fixture
design. Boyle et al. focused on the indexing and case representa-
tion aspects of CBR with CAFIXD. CAFIXD developed two distinct
case libraries: one case library for conceptual design and another
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for individual parametrized design solutions, with indices into the
libraries based on axiomatic design decomposition. Tor et al. cre-
ated a CBR system for a stamping die design using a relation
graph representation scheme and a dual-step similarity retrieval
strategy [34].

3.2 CaSyn-MEMS Design Methodology. Based upon past
successes and lessons learned from the CBR design systems and
MEMS synthesis applications, a methodology has been created
for applying CBR to the design of MEMS. The overall goals of
the CBR methodology for MEMS design are as follows:

1. Develop a hierarchical case library containing MEMS build-
ing blocks and devices at varying levels of complexity.

2. Create an organizational scheme and representation for cases
that will enable an efficient and accurate retrieval of cases.

3. Implement a computationally inexpensive retrieval method
that can focus the search space while returning the best de-
signs possible.

4. Employ a method to effectively adapt selected cases to the
current design situation and verify adaptation accuracy.

Previous work [35,36] documents items 1 and 2 as imple-
mented in CaSyn-MEMS. Items 3 and 4 of the CaSyn-MEMS
design methodology are the focus of this paper. Figure 2 illus-
trates the information flow for CaSyn-MEMS. A designer ap-
proaches the system and inputs their initial design specifications.
The most relevant cases are retrieved from the case library using
efficient retrieval algorithms. The case library contains MEMS
components, building blocks, and preconfigured devices. Once
cases are retrieved, they are adapted (if needed) to fit the current
design problem using parametric optimization and GAs. Cases are
initially evaluated with the MEMS simulation tool SUGAR. If new
unique designs are synthesized by the system, the designs can be
validated with fabrication and more advanced modeling tech-
niques, such as finite element analysis (FEA), before being added
to the case library to further expand the knowledge base. A small
case library can expand and grow with use as newly synthesized
design cases are stored in the library for future retrieval.

4 Case Retrieval

Case retrieval is the process of finding cases in the case library
that best match a current design problem. Various approaches to
case retrieval have been explored in research. The most com-
monly used methods are nearest neighbor, induction, and template
retrieval [24,26]. These retrieval methods are often used alone or
in combination with other strategies to form hybrid retrieval algo-
rithms. CaSyn-MEMS employs a combination of retrieval meth-
ods, namely, a variation in nearest neighbor and inductive/
structured query language (SQL)-template retrieval.
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The nearest neighbor algorithm is used in CBR when comput-
ing the degree of similarity between items is desired and is one of
the most popular approaches for case retrieval. This approach in-
volves the assessment of similarity between stored cases and a
new input case based on a weighted sum of features [24]. Each
feature in a new problem is matched to the corresponding feature
in stored cases. The degree of match is then computed for each
feature of a case, and a total weighted score is calculated.

4.1 CaSyn-MEMS Case Retrieval Methodology. The foun-
dation of CaSyn-MEMS is a case library of previously successful
MEMS designs extracted from an extensive design documentation
search [35]. The extracted designs were simulated and represented
with the developed hierarchical function-structure case represen-
tation scheme [36] and were stored in a relational database to
enable case retrieval. MEMS designs were also represented in a
SUGAR, the back-end MEMS simulator used in CaSyn-MEMS,
and MOGA-compatible data structure to enable more efficient
simulation.

Because the MEMS case library is structured in a hierarchical
manner, a template search is used first to focus on the most rel-
evant section of the case library. The designer selects an applica-
tion based on MEMS pre-indexed design domains (Fig. 3). Design
requirements are entered, and a nearest neighbor similarity func-
tion is applied to weight and rank the matching cases retrieved
from the initial search. Weights for the similarity search can be
chosen by the user or set to a default where all design require-
ments carry equal weight. Cases that fall within =20% of all the
newly specified design requirements are considered good candi-
dates for parametric optimization or future design adaptation with
MOGA. The =20% bounds are chosen in order to not place rigid
bounds on design requirements, which can be improved upon with
case adaptation algorithms.

In the event that design requirements are overconstrained and
cannot pull a candidate case from the library, the retrieval algo-
rithm relaxes secondary design requirements (such as area and
stiffness for resonators) in increments of 10% and searches for
cases with the frequency operation band as the most important
criterion until cases are retrieved. Frequency requirements are not
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Table 1 Bounds on randomly generated resonator design
requirements

Input design requirement Bounds

Resonant frequency (f,)
Stiffness ratio (K,/K,)
Area

2 kHz=f,=200 kHz
1=K,/K,=2500
6X10% m*>=Area<4x 107 m?

relaxed because a resonant MEMS device is not viable if it does
not operate at its given frequency. If this search still yields no
results, the user can create a new resonator instance based on
components stored in the SUGAR component library.

After a group of candidate cases has been identified, a similar-
ity measure is applied to compare the input and output cases. A
ranking score between 0 and 1 is given to each case. Cases with a
rank score closer to 1 are considered the best match with the input
case. We will operate under the assumption that the closer two
cases are in similarity, the better suited they are for the current
design problem. The nearest neighbor variant used for ranking
cases is presented in Egs. (1)—(3) below. Assume that an input
case (C’) and a retrieved case (CF) are each represented as vectors
where i is the ith feature of the case:

S w; X sim(Cf,C,R)

Rank; = 1
Wi .
where a conditional is applied for the similarity score,
cl_ck
_ | 1 1 1 | R [2.1]
. I ~R maX|Ci - Ci |
sim(C},CF) = ;R (2
c-cl
max|C/ - CF|

and

2 w;=1 3)
i=1

[2.1] in Eq. (2) is the similarity measure used when CaSyn-
MEMS is calculating rank for a case feature that is a double-sided
constraint such as frequency. [2.2] in Eq. (2) is the similarity
measure used when CaSyn-MEMS is concerned with a one-sided
constraint such as minimum area. This dual similarity measure
was implemented because there are many one-sided and two-sided
constraints that exist for adapting MEMS designs.

4.2 Case Retrieval Experiment. Resonators were chosen to
test the CaSyn-MEMS retrieval algorithm since they are currently
the largest facet of the case library with 38 instances. To arrive at
the resonator portion of the case library, a user must first select a
“sensor” as the functional domain of their device and then indicate
an electrical input-output device. From there, a fabrication method
can be selected. Without loss of generality, the following retrieval
examples will focus on designs fabricated with the MCNC poly-
multi-user MEMS processes (MUMPS). This means the structural
material layer of all designs will be polysilicon and 2 um thick.
Resonant frequency, stiffness ratio, and surface area are the global
performance constraints, and the resonator area envelope is to be
minimized.

Design requirement inputs to the system were randomly gener-
ated with MATLAB™ in order to sample a wide range of possible
design scenarios within the realm of the current cases represented.
The values for the randomly generated requirements were
bounded by the range of design requirements the case library cur-
rently covers (Table 1).

Cobb and Agogino [35] performed a retrieval experiment over
the first generation case library design. A second retrieval experi-
ment utilizing the same bounds (Table 1) was performed utilizing
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Table 2 Resonator retrieval experiment results (* indicates designs only retrieved with the relaxing of input constraints)

Number of cases Number of cases

Test Score of top retrieved retrieved
case Input design requirements ranked design (no constraint relaxing) (with constraint relaxing)

1 f,=69.3 kHz K./K,=2320 Area=3.4x1077 m? - 0 0

2 fp=55.1 kHz K./K,=7 Area=23X 1077 m? 0.73 4 -

3 fy=123.5 kHz KX/K; =207 Area=4.1x1077 m? - 1 -

4 fy=8.3 kHz K./K,=29 Area=3.7X 107 m? - 1 -

5 fy=27.3 kHz KX/I(;,ZSZ Area=6.2x10"% m? 0.41 0 2"

6 f,=40.8 kHz K./K,=993 Area=3.6X107 m? 0.50 0 3*

7 f,=24.9 kHz K./K,=8 Area=2.1X10"7 m? 0.87 8 -

8 f,=193.0 kHz K./K,=65 Area=3.6X1077 m? - 0 0

9 f,=23.4 kHz K./K,=176 Area=1.1X10"7 m? 0.72 4 -

10 fy=32.7 kHz KX/K;,Z 163 Area=2.7x10"7 m? 0.83 4 -

11 f,=53.4 kHz K/K, =121 Area=1.1X 107 m? 0.55 3 -

Overall success rate 64% 82%

the second generation case library design, which contains more
MEMS devices and building blocks. For the resonator retrieval
experiment over the second generation case library, the same 11
sets of design requirements [35] were used (Table 2). Of the 11
sets, 4 initially returned no results (test cases 1, 5, 6, and 8). A
64% success rate was achieved for the first search. It is important
to note that success rate in this instance refers to the reasoner
retrieving at least one case, which meets the randomly generated
design requirements. For the searches that returned zero results,
CaSyn-MEMS incrementally relaxed the stiffness and area con-
straints by decreasing the stiffness ratio and increasing the device
area while maintaining the same frequency constraint as before.
After the stiffness and area constraints were relaxed, two of the
four aforementioned unsuccessful retrieval test cases returned re-
sults (test cases 5 and 6), increasing the success rate to 82%.

For the purposes of case ranking in this experiment, all case
features are assigned equal importance, but the system gives a
designer the flexibility to assign different preference weights (w;)
to each case feature based on the needs of a current design appli-
cation. As a result, this can change the ranking results for a given
design application.

The results contained a diverse mix of resonator topologies, but
often the folded flexure resonator (seen in test cases 1, 5, 6, 7, 9,
10, and 11) dominated the result set. This design dominated the
case library (see design in Fig. 8(c)) because of its ability to
achieve a high stiffness ratio in a small area. The folded flexure is
a prime example of how engineering expertise from MEMS de-
signers can be reused for new design applications.

5 Case Adaptation With Optimization

Once cases have been retrieved and ranked, the next crucial
step is to adapt the retrieved cases to better meet the current de-
sign objectives. Typically, cases retrieved from the case library
will not be an exact match with a current design problem; thus,
retrieved cases will usually require design modification for a new
problem. Case adaptation is the stage of the CBR process where
designs are modified or synthesized to match a given set of design
requirements. The retrieved cases are starting points for design
adaption and exploration. Various approaches to case adaptation
have been utilized by CBR researchers, including fuzzy logic,
neural networks, Bayesian networks, rule-based approaches, case
or subcase substitution, and optimization methods.

5.1 Parametric Optimization. MEMS structures, like many
dynamical systems, experience strong function-structure coupling.
Often, a slight adjustment to the length or width of a structure can
drastically impact the performance of a design. For this reason, we
found it beneficial to first explore parametric optimization as a
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case adaptation method. In instances where parametric optimiza-
tion does not lead to the convergence of a solution, emergent
methods, namely, GAs, are employed.

Parametric optimization works best in situations where a design
starting point is close to a local minimum. The goal with this
method is to minimize a given objective function (subjected to
defined constraints) in order to drive the initial input problem
closer to one’s desired objectives. Parametric optimization re-
quires a problem to be represented in parametric form for optimi-
zation. The decomposed MEMS designs from literature were in-
stantiated in a parametrized format [35,36], enabling parametric
optimization to more readily be applied to retrieved CBR designs.

In previous work, Cobb and Agogino [35] presented the results
of an initial parametric optimization over retrieved resonator
cases. This scheme involved minimizing area deviation while en-
forcing any deviation from the resonant frequency goal as a pen-
alty factor. This initial test did not explicitly enforce a stiffness
ratio constraint or contain weighted objectives. To extend this
work, a new objective function for resonators was implemented
and tested in CaSyn-MEMS, as presented in Eq. (4). The goal is to
minimize the device area and the deviation from the frequency
goal. If the stiffness ratio of a design falls below the stiffness ratio
requirement, a penalty factor is added to the objective function. If
the stiffness ratio requirement is met, then a penalty value of zero
is used in the objective function. In addition, objective weights
can be varied by the user, where «;+a,=1. For the purposes of
this paper, a;=a,,

Fre — Fre 2
obj(x) = a, - Area(x) + az(M>

Frquoal
K, oou K
+7, max(O,—LX oal _ —X()a) (4)
I{_v goal I{‘(/‘?)

where obj(x) is the objective function, (x) is the vector of vari-
ables representing a case, «; is the weight assigned to the area
objective, a, is the weight assigned to the frequency objective,
Area(x) is the design area as a function of geometrical parameters,
Freq(x) is the resonant frequency as a function of geometrical
parameters, KX()?)/Ky(f) is the stiffness ratio as a function of geo-
metrical parameters, and r,, is the penalty coefficient on stiffness
ratio violation.

The retrieved resonators from Table 2 were used as starting
points for a parametric optimization process. Table 3 illustrates
the results of parametric optimization for retrieved resonators
from the resonator experiment. Each design that converged to a
feasible solution was able to meet the stiffness ratio requirement.
As aresult, only the frequency and area results are compared. The
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Table 3 Parametric optimization results. Frequency error and area improvement calculations are based on a comparison with the
initial requirements from Table 2 (* indicates cases retrieved with design requirement relaxing).

No. of cases Frequency error

Area reduction
below minimum

Area reduction

Frequency error below minimum

that before after required before required after
Test Total converged optimization optimization optimization optimization
case cases to a solution (%) (%) (%) (%)
2 4 4 3.1-17.1 0.04-0.4 65.1 66.8
3 1 1 8.0 2.0 77.5 78.8
4 1 1 16.4 0.7 29.3 21.7
5% 2 2 8.3-11.0 0.04-0.07 —62.4 —70.4
6" 3 0 (N/A) (N/A) (N/A) (N/A)
7 8 8 0.1-19.1 0.0-0.08 51.2 459
9 4 4 2.9-14.2 0.09-0.09 -0.9 —1.8
10 4 4 7.3-17.4 0.09-0.09 57.8 55.9
11 3 3 5.0-14.4 1.7-26.1 26.7 0.0

minimum area achieved for each test case before and after opti-
mization is displayed along with the frequency error range. The
optimization results that met or outperformed the initial design
objectives are in bold font.

It is interesting to note that parametric optimization was able to
converge to better solutions in 7 out of 11 of the original resonator
test cases from Sec. 4. Test cases 1 and 8 retrieved zero cases as
discussed previously, while test case 6 could not converge to a
solution in a practical number of iterations. Upon closer examina-
tion, we hypothesize that this is due to the conflicting design
requirements that are out of the range achievable by the retrieved
design structure and the selected polysilicon material. Test case 6
requirements consist of an extremely high stiffness ratio, and the
only designs in the case library capable of such a stiffness value
are in a higher frequency band. Test case 11 converged to solu-
tions that were worse in terms of minimum area and frequency
error. Parametric optimization attempted to lengthen and widen
the suspensions of the retrieved designs for test case 11 in order to
meet the stiffness ratio requirement but lowered frequency and
increased design area in the process.

Employing parametric optimization before a more computation-
ally expensive optimization algorithm such as MOGA is a quick
and efficient way to adapt a case for a new design problem. As
more constraints are added to an optimization problem, we must
deal with more tradeoffs in design performance. Previous work
[35] showed that not enforcing the stiffness ratio enabled all re-
trieved resonator designs to converge to a feasible design solution.
However, this section has shown that enforcing the stiffness ratio
requirement as a penalty factor resulted in one case (test case 6)
not converging to a feasible design solution. If more objectives
such as cross-axis sensitivity and stress were added to the objec-
tive function, we expect fewer of the retrieved cases to converge
to a feasible solution with parametric optimization.

5.2 Case Adaptation With MOGA. Evolutionary computa-
tion expands the capabilities of CBR by further adapting cases and
synthesizing more conceptual MEMS designs when the CBR re-
trieved designs are not sufficient for the current problem. Param-
eter optimization may not always lead the designer to an accept-
able solution after CBR; thus, it is advantageous to apply GAs for
a more exploratory design search. GAs have been shown to be
useful for CBR case adaptation [37,38]. MOGAs are a global
stochastic search method based on the principles of evolution,
allowing multiple objectives and constraints to be considered si-
multaneously. GAs were first introduced by Holland [39] to ex-
plain the adaptive processes of evolving natural systems and for
creating new artificial systems in a similar way, but GAs became
more popular when they were applied to search, optimization, and
machine learning by Goldberg [40].

The MOGA algorithm used in this paper for case adaptation
was initially developed by Zhang et al. [1]. The MOGA library in

031005-6 / Vol. 10, SEPTEMBER 2010

its initial form contained components ranging from lower level
atomic building blocks, such as anchors and single beams, to
some higher level clusters such as comb drives. We further ex-
panded the building block data structure to accommodate addi-
tional design components used in the CaSyn-MEMS case library
(such as enclosed frame masses, crab-leg suspensions, and folded
flexures).

To begin the MOGA process (Fig. 4), the design objectives,
constraints, stopping criteria, and an initial valid design are loaded
into the MOGA adaptation module. Whereas selecting an initial
valid design for MOGA was left up to the user of the tool in
previous research, in this paper, the initial designs are selected by
CBR. During the MOGA process, the module drastically mutates
an initial design to create a population for the first generation. The
addition of case-based designs to the MOGA library contains spe-
cialized mutation operations, which mutate component geometri-
cal parameters or overall topology. After each generation of the
MOGA process, the best designs, based on a Pareto ranking of all
designs seen so far, are stored in a design archive to prevent losing
good designs during the evolutionary process. At the end of the
MOGA adaptation process, the designer is presented with multiple
good design topologies from which to choose for further design
exploration and analysis.

5.3 MOGA Adaptation Results. This section will demon-
strate that combining valuable MEMS engineering knowledge
from previously fabricated devices with MOGA can help generate
new MEMS designs that may go beyond those conceptualized by

| Createinitial || EncodeCBR
. population designs
|
N S I
Evaluation/ Create next
Simulation | generation
~ - —
~ | Archive |
Pareto | Best
Ranking | | pesigns
_"Meet

“_Criteria?

Y Yes

| Stop |

_ No Selection,
Crossover,
Mutation

Fig. 4 MOGA process with initial population seeded by CBR
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Table 4 MOGA case adaptation results summary (* indicates test cases where design requirements were relaxed during case

retrieval)
Average
number of Total
Number of solutions per quantity of

Test CBR cases symmetry solutions

case retrieved constraint case generated Performance of best design
2 4 68 340 Area=7.78 X 1078 m? fy=55.1 kHz K,/K,=122.3
4 1 58 175 Area=1.04 X 1077 m? f,=8.3 kHz KI/K),:46.6
5" 2 32 64 Area=9.83 X 1078 m? fy=27.3 kHz K,/ K,=T1.5
6" 3 23 45 Area=8.14 X 1078 m? f,=40.7 kHz K./K,=10.4
7 8 84 929 Area=9.38 X 1078 m? fy=24.9 kHz KX/K:V=8.35
9 4 69 275 Area=1.09 X 1077 m? fy=23.5 kHz K./K,=75.7
10 4 56 223 Area=1.04 X 1077 m? fy=32.8 kHz K,/K,=289.8
11 3 36 71 Area=9.50 X 1078 m? fy=53.2 kHz KX/K;=225.1

the designer. We will further explore what happens when past
MEMS structures are used to generate new ones. The cases re-
trieved from the CBR experiment (Table 2) were evaluated for use
as candidates in a MOGA process based on feedback from MEMS
designers. Some of the CBR-generated design cases were deter-
mined to be suboptimal candidates for a MOGA synthesis process
due to their relatively fixed topologies. The designs in Figs. 8(a)
and 8(b) contain complicated connected graphed suspension lay-
outs, which benefit more from local optimization than from
MOGA optimization. All designs through parameter optimization
achieved a resonant frequency within 0.04-2.00% of the fre-
quency target while simultaneously minimizing area and meeting
the stiffness ratio requirement.

For each MOGA synthesis run, a population of 400 for 50
generations was used. The synthesis metrics and geometry and
symmetry constraints were based on Zhang et al.’s efficiency tests
[1] and Kamalian et al.’s [3] research on performance, geometry
constraints, and symmetry. Below is the different symmetry con-
straint cases used for the MOGA process for CBR-generated ini-
tial cases. The MOGA adaptation process focuses on the mutation
of MEMS suspensions and not mass topologies as the suspensions
have the largest impact on design performance. Each constraint
case had five runs of the MOGA process in order to view a good
range of generated design topologies:

* no symmetry—suspension blocks are free to mutate with no
restrictions on angle orientation

* y-axis symmetry—suspension blocks are free to mutate, but
the design is required to be symmetric about the y-axis

* Xxy-axis symmetry—suspension blocks are free to mutate, but
the design is required to be symmetric about the x- and
y-axis

Unlike typical four “leg” suspension MOGA cases (sample
MEMS structures are provided in Fig. 8), the retrieved folded
flexure suspensions (Fig. 8(c)) will only undergo an asymmetry
constraint case for each MOGA synthesis run. If y-axis or xy-axis
symmetry constraints were to be applied, the resonator would ex-
perience very little topology mutation and the results would
closely match those that were presented during parametric optimi-
zation. The folded flexure suspension is already optimized in de-
sign due to human ingenuity. Thus, the most effective MOGA
synthesis process is one that constrains the folded flexure designs
the least in terms of symmetry, allowing us to view a wider range
of unique topologies.

The results of the MOGA case adaptation process are summa-
rized in Table 4. Due to the vast quantities of optimal design
solutions generated, we will only highlight some of the best de-
signs. All designs synthesized are within 5% of the specified fre-
quency goal. Designs that fell on the Pareto frontier for frequency
and area were deemed as some of the best MEMS designs.

Journal of Computing and Information Science in Engineering

Test cases 2 and 7 both retrieved resonator designs with an
enclosed frame mass with crab-leg suspensions contained inside
the mass. Although the crab-leg suspensions were free to rotate
outside of the mass frame during the MOGA process, because the
enclosed mass topology predetermines the minimum possible de-
sign area, many of the designs that had crab-leg suspensions lo-
cated outside of the frame mass were not the best Pareto ranked
designs since all designs with suspensions inside the frame had
the minimum achievable area (see Fig. 8(d)).

Test cases 2 and 7 also retrieved folded flexure designs, and
they differ by the size of their comb drives and folded flexure
parameters (see Fig. 8(c)). In each folded flexure case instance,
the stiffness ratio and area objectives were improved upon, while
the resonant frequency was brought within 5% of the target goal.
Figure 8(h) shows the best representative design for test case 7,
while Fig. 8(i) shows the best design for test case 11, which also
had a similar starting folded flexure design.

Test case 4 had only one design case retrieved from the CBR
system, and that was a lateral resonator with a rectangular ring
mass and serpentine springs. The asymmetric results for test case
4 performed well based on the frequency, stiffness, and minimum
area objectives; however, these designs may no longer be viable if
other design objectives are introduced into the process such as
cross-axis sensitivity, stress, and rotational stiffness (the best de-
sign is provided in Fig. 8(¢)). MEMS designers may be inclined
toward picking more symmetric designs, while the asymmetric
designs are somewhat unconventional and would require further
analysis using a small batch fabrication run or FEA.

MOGA optimization is especially beneficial in test case 6 be-
cause parametric optimization methods were not able to converge
to a feasible design solution, which simultaneously met all of the
given design constraints. MOGA was able to generate multiple
designs for this scenario due to the wider design space exploration
MOGA offers over parametric optimization methods. In test case
6, there was an extremely high stiffness ratio requirement that was
hard to achieve. The retrieved folded flexure design (see Fig. 8(c))
involves a tradeoff with frequency accuracy. These MOGA de-
signs generated for test case 6 are still of value for the designer to
observe, as they meet two of three design objectives (see Fig.
8(g)). In this instance, a designer would need to revaluate their
design requirements to see if such a high stiffness ratio is neces-
sary for a given design application.

With the exception of test case 5, the best minimum area
achieved by each test case was better than that of the initial de-
sign. The first retrieved design in test case 5 had a best minimum
area value that only matched that of the initial design, meaning
that area was not improved, but it was not worsened during the
MOGA process (see Fig. 8(f)).

Table 4 also shows a comparison of the quantity of Pareto op-
timal solutions generated for CBR selected designs, highlighting
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Number of Pareto Optimal Solutions Generated
(Averaged Over Different Constraint Cases and Sets
of Design Requirements)

53.25

27.48

i 9.67

Cobb Zhang Kamalian

Fig. 5 Comparison with MOGA results generated by Kamalian
[3] and Zhang [41]

the best design from each test case. One interesting point is the
amazingly large quantity of Pareto optimal solutions generated.
Whereas parametric optimization will only converge to a single
optimal solution based on one starting point, MOGA can converge
to a multitude of new optimized design topologies with just one
initial design. The quantity and quality of solutions presented can
give MEMS designers a strong range of design options to pursue
during the conceptual phases of the design process. MOGA gen-
erated many radical new design topologies that go beyond what
MEMS designers may initially conceptualize on their own.

5.4 MOGA Results Comparison. To better understand the
impact of the results presented thus far, a comparison of the quan-
tity of Pareto optimal solutions generated and the resultant mini-
mum area is made with previous test cases generated by Kamalian
et al. [3] and Zhang [41]. For all of their resonator MOGA experi-
ments, Zhang and Kamalian both utilized the same resonator
structure. The starting design employed a special mutation func-
tionality that allowed MEMS suspensions to freely mutate not
only in length, width, and angle, but also in the number of beams
used to create each suspension, forming interesting spider-like
suspension layouts in many instances. Though Zhang and Kama-
lian’s design was deemed a reasonable starting point, the CBR
reasoning system yielded a variety of stronger starting designs for
the MOGA process by incorporating and reusing MEMS design

Comparison: Quantity of Pareto Optimal Solutions Generated
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Fig. 6 Comparison of quantity of Pareto optimal solutions
generated

knowledge in the form of successful past MEMS design cases.

Focusing on the quantity of solutions, Zhang generated an av-
erage of ten designs for each symmetry constraint case used. A
similar average was taken for a test case Kamalian used with the
same initial design; however, only one set of design requirements
was utilized (f,=10 kHz, K,=K,, and minimize device area).
Kamalian garnered an average of 27 solutions. If we take the
average for the results across all of the different CBR design
requirement test cases (Table 4), CBR starting designs generate 53
solutions on average; the CBR number is almost double of what
Kamalian was able to generate with his starting MEMS design
and about six times more than what Zhang was able to generate
(see Fig. 5).

It is important to note, however, that Zhang’s results are lower
due to the fact that her process was run for shorter periods of time
and only for xy-axis symmetry constraints. Due to these limita-
tions on her data set, it is not surprising that Zhang’s quantity of
Pareto optimal design solutions has the lowest value. Kamalian,
however, ran his MOGA process for the longest period of time
(ten runs with 500 generations over a population of 400). The
MOGA designs presented in our work resulted from five runs of
the MOGA process for only 50 generations over a population of
400 and employed asymmetry, y-axis symmetry, and xy-axis sym-
metry constraints, similar to Kamalian. Figure 6 illustrates a rela-
tive comparison of the quantity of Pareto optimal solutions gen-

Comparison of Best Minimum Area (in m32)
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Fig. 7 Comparison of best minimum area
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erated by different sets of design requirement test cases.

It is interesting to note that only one CBR test case underper-
forms Kamalian’s test case. CBR test case 6, which was the poor-
est performing CBR test case due to the fact that design require-
ment relaxing was necessary during case retrieval, makes the CBR
initial designs for this test case weaker than those shown in the
other test cases. Test case 5 also required design constraint relax-
ing but was still able to generate multiple Pareto optimal solutions
with MOGA.

Because we are concerned with device area minimization in our
design problem, a comparison of the best minimum area achieved
(Fig. 7) is also examined. Again, CBR starting designs help out-
perform Kamalian’s and Zhang’s MOGA results. All of the CBR
test cases had a best minimum design area that beat the best mini-
mum design area generated by Kamalian and Zhang’s starting
design. This result is due to the fact that the CBR initial designs
varied in their mass, comb drive, and suspension topologies, al-
lowing MOGA to explore a new space for area minimization.
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6 Conclusions

A new MEMS design synthesis process, integrating CBR with
parametric optimization and a multi-objective genetic algorithm
(MOGA) for case adaptation, was introduced and evaluated.
MEMS design cases retrieved during a CBR retrieval experiment
were evaluated for their potential as initial designs for both a
parametric optimization and MOGA adaptation in order to further
generate design concepts for MEMS designers (see Fig. 8).

Focusing on case retrieval, the functional similarity retrieval
method over the MEMS resonator test cases benefitted from the
relaxing of design constraints, demonstrating an 82% success rate
for resonators. As a comparison benchmark, CLAVIER [31], a CBR
system for autoclave loading, began with a case library of only 20
designs and demonstrated an initial retrieval success rate of only
30%. However, with only the initial 30% retrieval, users still
found CLAVIER to be helpful in their engineering work. The reso-
nator retrieval rates presented here exceed CLAVIER’s values and
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will only continue to grow as new cases are added to the knowl-
edge base of the system.

Parametric optimization for case adaptation generated optimal
solutions for 7 out of 11 (64%) of the resonator retrieval test
cases. The lesson learned from the parametric optimization analy-
sis is that designs retrieved from the case library with the relaxing
of design constraints are less likely to converge to better perform-
ing design solutions when conflicting constraints and objectives
are added to the optimization problem. Designs successfully
adapted with parametric optimization are immediately good can-
didates for a design application. They have a predetermined topol-
ogy and are exemplars of MEMS design taken from literature,
having been previously fabricated by their respective authors and
optimized within feasible fabrication bounds.

MOGA case adaptation synthesized new radical layouts that
met or beat those generated by parametric optimization. In addi-
tion, for every initial design case, parametric optimization only
generates one optimal design concept. However, MOGA generates
a Pareto frontier of optimal results. One CBR case can generate
23-84 Pareto optimal solutions on average while improving upon
the minimum design area, exceeding previous results [3,41]. The
new designs generated by combining valuable engineering knowl-
edge in the form of CBR and MOGA show promise for MEMS
design applications. The quantity and quality of Pareto optimal
designs presented by MOGA adaptation can help MEMS design-
ers ideate more during the early phases of the design process and
increase the likelihood of success in the later stages.
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