11

Case-Based Recommendation

Barry Smyth!?

' The School of Computer Science and Informatics,
University College Dublin, Belfield, Dublin 4, Ireland
2 ChangingWorlds Ltd.

South County Business Park, Leopardstown,
Dublin 18, Ireland.
Barry.Smythe@ucd.ie

Abstract. Recommender systems try to help users access complex information
spaces. A good example is when they are used to help users to access online prod-
uct catalogs, where recommender systems have proven to be especially useful for
making product suggestions in response to evolving user needs and preferences.
Case-based recommendation is a form of content-based recommendation that is
well suited to many product recommendation domains where individual products
are described in terms of a well defined set of features (e.g., price, colour, make,
etc.). These representations allow case-based recommenders to make judgments
about product similarities in order to improve the quality of their recommenda-
tions and as a result this type of approach has proven to be very successful in
many e-commerce settings, especially when the needs and preferences of users
are ill-defined, as they often are. In this chapter we will describe the basic ap-
proach to case-based recommendation, highlighting how it differs from other
recommendation technologies, and introducing some recent advances that have
led to more powerful and flexible recommender systems.

11.1 Introduction

Recently I wanted to buy a new digital camera. I had a vague idea of what I wanted—a
6 mega-pixel digital SLR from a good manufacturer—but it proved difficult and time
consuming to locate a product online that suited my needs, especially as these needs
evolved during my investigations. Many online stores allowed me to browse or nav-
igate through their product catalog by choosing from a series of static features (e.g.,
manufacturer, camera type, resolution, level of zoom etc.). Each time I selected a fea-
ture I was presented with the set of cameras with this feature and I could then go on
to choose another feature to further refine the presented products. Other stores allowed
me to search for my ideal camera by entering a query (e.g. “digital slr, 6 mega-pixels”)
and presented me with a list of results which I could then browse at my leisure.

Both of these access options were helpful in different ways—in the beginning I
preferred to browse through catalogs but, after getting a feel for the various features
and compromises, I tended to use search-based interfaces—however neither provided

P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds.): The Adaptive Web, LNCS 4321, pp. 342-376, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

file://localhost/Users/ssahay/Library/Mail/IMAP-sauravsahay@imap.gmail.com/%5BGmail%5D/All%20Mail.imapmbox/Attachments/318127/3/Barry.Smyth@ucd.ie

11 Case-Based Recommendation 343

me with the flexibility I really sought. For a start, all of the stores I tried tended to
slavishly respect my queries. This was especially noticeable when no results could be
returned to satisfy my stated needs; this is often referred to as stonewalling [17]. For
instance, looking for a 6 mega-pixel digital SLR for under $200 proved fruitless—
unsurprising perhaps to those ‘in the know’—and left me with no choice but to start
my search again. This was especially frustrating when there were many cameras that
were similar enough to my query to merit suggestion. Moreover, stonewalling is further
compounded by a diversity problem: 1 was frequently presented with sets of products
that were all very similar to each other thus failing to offer me a good set of alternatives.
At other times I would notice a camera that was almost perfect, aside from perhaps one
or two features, but it was usually difficult to provide this form of feedback directly.
This feedback problem prevented me from requesting “another camera like this one but
with more optical zoom and/or a lower price”, for instance.

In all, perhaps one of the most frustrating aspects of my search was the apparent
inability of most online stores to learn anything about my preferences over time. In my
opinion shopping for an expensive item such as a digital camera is an exercise in pa-
tience and deliberation, and one that is likely to involve many return visits to particular
online stores. Unfortunately, despite the fact that I had spent a significant time and effort
searching and browsing for cameras during previous visits none of the stores I visited
had any facility to remember my previous interactions or preferences. For instance, my
reluctance to purchase a very expensive camera—I never accepted recommendations
for cameras above $1000—should have been recognised and factored into the store’s
recommendations, but it was not. As a result many of my interactions turned out to be
requests for less expensive suggestions. This preference problem meant that starting my
searches from scratch became a regular feature of these visits.

Recommender systems are designed to address many of the problems mentioned
above, and more besides, by offering users a more intelligent approach to navigat-
ing and searching complex information spaces. They have been especially useful in
many e-commerce domains with many stores using recommendation technologies to
help convert browsers into buyers by providing intelligent and timely sales support
and product suggestions; see for example Chapter 16 of this book [38] for a survey
of recommendation techniques in an e-commerce setting. One of the key features of
many recommendation technologies is the ability to consider the needs and preferences
of the individual when it comes to generating personalized recommendations or sug-
gestions. We will return to this issue later in this chapter but also refer the interested
reader to related work on the development of personalization technologies. For exam-
ple, Chapters 2 [35] and 4 [44] of this book consider different approaches to learning
and modeling the preferences of users while Chapters 3 [62], 6 [61], and 18 [8] of this
book consider different ways in which user models may be harnessed to provide users
with more personalized access to online information and services. Indeed, while many
recommendation and personalization technologies focus on the needs of the individual,
some researchers have begun to consider group recommendation scenarios where the
potentially competing preferences of a number of individuals need to be considered;
see for example Chapter 20 [41] of this book.

344 B.Smyth

Recommendation techniques come in two basic flavours. Collaborative filtering ap-
proaches rely on the availability of user ratings information (e.g. “John likes items A,
B and C but dislikes items E and F” and make suggestions for a target user based on
the items that similar users have liked in the past, without relying on any information
about the items themselves other than their ratings; see Chapter 9 [83] of this book for
a more detailed account of collaborative filtering approaches. In contrast content-based
techniques rely on item descriptions and generate recommendations from items that are
similar to those the target user has liked in the past, without directly relying on the pref-
erences of other users; see Chapter 10 [69] of this book for a detailed account of pure
content-based approaches.

Case-based recommenders implement a particular style of content-based recom-
mendation that is very well suited to many product recommendation scenarios; see also
[16]. They rely on items or products being represented in a structured way using a
well defined set of features and feature values; for instance, in a travel recommender a
particular vacation might be presented in terms of its price, duration, accommodation,
location, mode of transport, etc. In turn the availability of similarity knowledge makes
it possible for case-based recommenders to make fine-grained judgments about the sim-
ilarities between items and queries for informing high-quality suggestions to the user.
Case-based recommender systems are the subject of this chapter, where we will draw
on a range of examples from a variety of recommender systems, both research proto-
types and deployed applications. We will explain their origins in case-based reasoning
research [1, 31, 46, 101] and their basic mode of operation as recommender systems.
In particular, we will look at how case-based recommenders deal with the issues high-
lighted above in terms of their approach to selection similarity, recommendation diver-
sity, and the provision of flexible feedback options. In addition we will consider the use
of case-based recommendation techniques to produce suggestions that are personalized
for the needs of the individual user and in this way present case-based approaches as
one important solution for Web personalization problems; see also Chapters 2 [35], 3
[62], and 16 [38] in this book for related work in the area of Web personalization.

11.2 Towards Case-Based Recommendation

Case-based recommender systems have their origins in case-based reasoning (CBR)
techniques [1, 46, 101, 48, 99]. Early case-based reasoning systems were used in a
variety of problem solving and classification tasks and can be distinguished from more
traditional problem solving techniques by their reliance on concrete experiences instead
of problem solving knowledge in the form of codified rules and strong domain models.
Case-based reasoning systems rely on a database (or case base) of past problem solving
experiences as their primary source of problem-solving expertise. Each case is typically
made up of a specification part, which describes the problem at hand, and a solution
part, which describes the solution used to solve this problem. New problems are solved
by retrieving a case whose specification is similar to the current target problem and
then adapting its solution to fit the target situation. For example, CLAVIER [39] is
a case-based reasoning system used by Lockheed to assist in determining the layout
of materials to be cured in an autoclave (i.e., a large convection oven used, in this

11 Case-Based Recommendation 345

Case-Base Similarity Target Specification

[—— Knowledge (parts list)

@ A A

A Retrieve J€—
C;

o O
0 [

O
|| @m®) oos

% Adapt ﬂb SOOI
GD)
v

ocono

AA
Target Solution
(parts layout)

Adaptation
Rules

Fig. 11.1. CLAVIER uses CBR to design layout configurations for a set of parts to be cured in
an autoclave. This is a complex layout task that does not lend itself to a traditional knowledge-
based approach. However a case base of high-quality past layouts can be readily assembled. New
layouts for a target parts-list can then be produced by retrieving a case with a similar parts-list
and adapting its layout. If successful this new layout can then be learned by storing it in the case
base as a new case.

case, for the curing of composite materials for aerospace applications). CLAVIER has
the job of designing a good layout—one that will maximise autoclave throughput—
for a new parts-list. The rules for determining a good layout are not well understood
but previous layouts that have proved to be successful are readily available. CLAVIER
uses these previous layout examples as the cases in its case base. Each case is made
up of a parts-list (its specification) and the particular layout used (its solution). New
layouts for a new parts-list are determined by matching the new parts-list against these
cases and adapting the layout solution used by the most similar case; see Figure 11.1.
CLAVIER has been a huge practical success and has been in use for a number of years
by Lockheed, virtually eliminating the production of low-quality parts that must be
scrapped, and saving thousands of dollars each month.

Case-based recommenders borrow heavily from the core concepts of retrieval and
similarity in case-based reasoning. Items or products are represented as cases and rec-
ommendations are generated by retrieving those cases that are most similar to a user’s

346 B.Smyth

query or profile. The simplest form of case-based recommendation is presented in Fig-
ure 11.2. In this figure we use the example of a digital camera recommender system,
with the product case base made up of detailed descriptions of individual digital cam-
eras. When the user submits a target query—in this instance providing a relatively vague
description of their requirements in relation to camera price and pixel resolution—they
are presented with a ranked list of kK recommendations which represent the top £ most
similar cases that match the target query. As a form of content-based recommendation

Product Case-Base

Similarity
Knowledge

Case
Retrieval

/ %---ﬁ Product

Target Query, t Recommendations
Price: 1000

Pixel: 6 G {sim(t, c,)},

;: {sim(t, c,)},
\ q / X 1

Fig. 11.2. In its simplest form a case-based recommendation system will retrieve and rank product
suggestions by comparing the user’s target query to the descriptions of products stored in its case
base using similarity knowledge to identify products that are close matches to the target query.

(see, for example, [3, 26, 63, 78, 94] and also Chapter 10 [69] of this book) case-based
recommenders generate their recommendations by looking to the item descriptions,
with items suggested because they have similar descriptions to the user’s query. There
are two important ways in which case-based recommender systems can be distinguished
from other types of content-based systems: (1) the manner in which products are rep-
resented; and (2) the way in which product similarity is assessed. Both of these will be
discussed in detail in the following sections.

11.2.1 Case Representation

Normally content-based recommender systems operate in situations where content
items are represented in an unstructured or semi-structured manner. For example, the
NewsDude content-recommender, which recommends news articles to users, assumes

11 Case-Based Recommendation 347

text-based news stories and leverages a range of keyword-based content analysis tech-
niques during recommendation; see for example, [9] and Chapter 18 [8] in this book.
In contrast, case-based recommender systems rely on more structured representations
of item content. These representations are similar to those used to represent case-
knowledge in case-based reasoners. For example, they often use a set of well-defined
features and feature values to describe items, rather than free-form text. This reliance on
structured content means that case-based recommenders are particularly well adapted
to many consumer recommendation domains, particularly e-commerce domains, where
detailed feature-based product descriptions are often readily available.

Manufacturer Cannon

Model EQS DE&O0

Pisel 6.3

Mermory Size(MB) 6.0

Mermory Type CormpactFlash Card
Nurn of Batteries 1.0

Battery Type BP-511

Strap Neck

Cable USE and Video
Software CD- Rom featuring Adobe Photoshop LE
Price 869.0

Fig. 11.3. An example product case from a digital camera product catalog.

Figure 11.3 shows one such example product case from a catalog of cameras. The case
is for a Canon digital camera and, as can be seen, the product details are captured us-
ing 11 different features (e.g., manufacturer, model, memory type, price, etc.) with each
feature associated with one of a well-defined space of possible feature values (e.g., the
manufacturer feature values are drawn from a well-defined set of possible manufactur-
ers such as Canon, Nikon, Sony etc.). The example also highlights how different types
of features can be used within a product description. In this case, a mixture of numeric
and nominal features are used. For instance, price is an example of a numeric feature,
which obviously represents the cost of the camera, and can take on values anywhere in a
range of possible prices, from about $100 to upwards of $3000. Alternatively, memory
type is a nominal feature, whose values come from a well-defined set of alternatives
corresponding to the 4 or 5 different memory card options that are commonly used
by digital cameras. The Entree recommender is another good example of a case-based
recommender system. This system will be explored in more detail in Section 11.4 but
suffice it to say that Entree is designed to make restaurant suggestions; see Figure 11.4.
In terms of its core representation, Entree also uses a structured case format—although

348 B.Smyth

%jpfé.g? /@M{%

The Chicago restaurant you chose is:
Michael Jordan’s
500 M, Ladale St (Grand ave, & |linols 56), Chicago, 312-649-3365

Excelent Decor, Good Service, Good Foed, Business Sicene, Hp Place To Be Private Fooms Avallable, Private Paties, People
Keep Ceming Back, Parking”/alet. Great for People Vifarching, See the Game, Singles Scene, Fub Feel YWeekend Brunch

We recommend:
Planet Hollpwood 20
633 N, Wells St (Ohio St.], Chicage, 312-266-7027
American (New) ; $15-530

Excellent Decor, Good Service, Good Foad, Traditional, Hip Flace To Be, F'n'.vate Rooms Availakle, Private Parties, No
Reservations, Place for Singles, For the Young and Young at Heart, People Keep Coming Back, Late Might Menu, Atter Hours
Dining, Parking/alet, Great for People Watching, See the Game, Singles Scene, Pub Feel, Weekend Brunch, Tourist Appeal

Loy £ sedep e

Fig. 11.4. Entree [21, 22] recommends restaurants to users based on a variety of features such as
price, cuisine type, atmosphere, etc..

the presentation in Figure 11.12 is largely textual the basic case representation is fun-
damentally feature-based—using features such as price, cuisine type, atmosphere, etc.
to represent each restaurant case.

11.2.2 Similarity Assessment

The second important distinguishing feature of case-based recommender systems re-
lates to their use of various sophisticated approaches to similarity assessment when it
comes to judging which cases to retrieve in response to some user query. Because case-
based recommenders rely on structured case representations they can take advantage of
more structured approaches to similarity assessment than their content-based cousins.
For example, traditional content-based techniques tend to use keyword-based similar-
ity metrics, measuring the similarity between a user query and a product in terms of
the frequency of occurrence of overlapping query terms within the product text. If the
user is looking for a “$1000 6 mega-pixel DSLR” then cameras with all of these terms
will be rated highly, and depending on the strength of the similarity criterion used, if
no cameras exist with all of these terms then none may be retrieved. We have already
highlighted this type of retrieval inflexibility (stonewalling) as a critical problem in the
introduction to this chapter. Any reasonable person would be happy to receive a recom-
mendation for a “$900 6.2 mega-pixel digital SLR”, for the above query, even though
strictly speaking there is no overlap between the terms used in this description and the
query.

Case-based recommenders can avail of more sophisticated similarity metrics that
are based on an explicit mapping of case features and the availability of specialised
feature level similarity knowledge. An online property recommender might use case-

11 Case-Based Recommendation 349

based techniques to make suggestions that are similar to a target query even when exact
matches are not available. For example, a user who looking for a “2 bedroom apartment
in Dublin with a rent of 1150 euro” might receive recommendations for properties that
match the bedroom feature and that are similar to the target query in terms of price and
location; the recommendations might offer slightly higher or lower priced properties in
a nearby location when no exact matches are available.

Yic1 . Wik sim;(ti, c;)
Zizl..n Wi

Similarity(t,c) = (11.1)
Assessing similarity at the case level (or between the target query and a candidate case)
obviously involves combining the individual feature level similarities for the relevant
features. The usual approach is to use a weighted sum metric such as that shown in
Equation 11.1. In brief, the similarity between some target query, # and some candi-
date case (or item), c, is the weighted sum of the individual similarities between the
corresponding features of ¢ and ¢, namely #; and ¢;. Each weight encodes the relative
importance of a particular feature in the similarity assessment process and each indi-
vidual feature similarity is calculated according to a similarity function that is defined
for that feature, sim;(;,c;). For instance, looking to the property recommender example
above, if rent is very important to the user then the weight associated with this feature
will be higher than the weights associated with less important features. In turn, when
it comes to comparing the query and a case in terms of their rent the recommender
system may draw on a specialised similarity metric designed for comparing monthly
rents. A different metric might be used for comparing the number of bedrooms or the
property type.

We must also consider the source of the individual feature level similarities and
how they can be calculated. For example, returning to our camera recommender system,
consider a numeric feature such as pixel resolution. The target query and a candidate
case might be compared in terms of this feature using a similarity metric with the sort
of similarity profile shown in Figure 11.5(a); maximum similarity is achieved when the
pixel resolution of a candidate case matches that of the target query, and for cases with
higher or lower pixel resolution there is a corresponding decline in similarity. This is
an example of a symmetric similarity metric because there is no bias in favour of either
higher or lower resolution cases.

1— |pt _pc‘
max(pr, pe)

Sometimes symmetric similarity metrics are not appropriate. For instance, consider the
price feature: it is reasonable to expect that a user will view cameras with prices (p.)
that are lower than their target price (p;) to be preferable to cameras with higher prices,
all other things being equal. The similarity metric in Equation 11.2 is used in many
recommender systems (e.g., see [52, 75]) as one way to capture this notion and the
metric displays a similarity profile similar to that shown in Figure 11.5(b). For instance,
consider a $1000 target price and two candidate cases, one with a price of $500 and one
for $1500. In terms of the symmetric similarity metric represented by Figure 11.5(a), the
latter candidate corresponds to the point x in Figure 11.5(a) and the former to point y.

Simprice(phpc) = (11.2)

(a) (b)
1 LN 1 4
< / \ > < / >
pt pc / \ pt pc pt pc / \ pt pc
N\
E 4 \ E 4 \ N -
8 ’ \ S ’ -
£ 7 \ g 7
® y \ @ ’
/ /
\
’ \ ’
/ /
0) 0 : f
X o y X 0 y
P: - P Pt = Pc

Fig. 11.5. Two example similarity profiles for numeric similarity metrics: (a) corresponds to a
standard symmetric similarity metric; (b) corresponds to an asymmetric metric that gives prefer-
ence to features values that are lower than the target’s value.

For both cases the similarity assessment is the same, reflecting that both differ from
the target price by the same amount, $500, with no preference given to whether a case
is less or more expensive. These cases are plotted in the same way in Figure 11.5(b)
but now we see that the more expensive case (point x) has a lower similarity than the
cheaper camera (point y). Even though both candidates differ by $500, preference is
given to the cheaper case.

To evaluate the similarity of non-numeric features in a meaningful way requires
additional domain knowledge. For example, in a vacation recommender it might be im-
portant to be able to judge the similarities of cases of different vacation types. Is a skiing
holiday more similar to a walking holiday than it is to a city break or a beach holiday?
One way to make such judgments is by referring to suitable domain knowledge such
as an ontology of vacation types. In Figure 11.6 we present part of what such an on-
tology might look like with different feature values represented as nodes and similar
feature values grouped near to each other. In this way, the similarity between two ar-
bitrary nodes can be evaluated as an inverse function of the distance between them or
the distance to their nearest common ancestor. Accordingly, a skiing holiday is more
similar to a walking holiday (they share a direct ancestor, activity holidays) than it is to
a beach holiday, where the closest common ancestor is the ontology root node.

11.2.3 Acquiring Similarity Knowledge

Similarity assessment is obviously a key issue for case-based reasoning and case-
based recommender systems. Of course the availability and use of similarity knowledge
(feature-based similarity measures and weighting functions) is an important distinguish-
ing feature of case-based recommendation. Although further detailed discussion of this
particular issue is beyond the scope of this chapter, it is nonetheless worth consider-
ing the origin of this knowledge in many systems. For the most part this knowledge is
hand-coded: similarity tables and trees, such as the vacation ontology above, are made

11 Case-Based Recommendation 351

Vacation Type

Relaxation

Skiing Walking Beach Countryside
- Sim(skiing,walking) &= ~ ¥

Sim(skiing.beach) &~V

Fig. 11.6. A partial ontology of vacation types can be used as the basis for similarity judgments
for non-numeric features.

available and codified by a domain knowledge expert. Similarly, importance weights
might be assigned by the user at retrieval time or by the domain expert during sys-
tem design. Hand-coding this knowledge is, of course, expensive and so increasingly
researchers have begun to explore how machine learning techniques can be used to
relieve these knowledge acquisition costs.

A number of researchers have looked at the issue of automatically learning the fea-
ture weights that are be used to influence the level of importance of different features
during the case similarity calculations. Wettschereck and Aha [102], for example, de-
scribe an evaluation of a number of weight-learning algorithms that are knowledge-
poor, in the sense that they avoid the need for detailed domain knowledge to drive the
learning process. They show how even these knowledge-poor techniques can result in
significant improvements in case-based classification tasks and present a general frame-
work for understanding and evaluating different weight-learning approaches; see also
the work of [42, 81] for approaches to local weight-learning in CBR based on reinforce-
ment learning.

Stahl [96] also looks at feature-weight learning but describes an alternative approach
in which feedback is provided by a “similarity teacher” whose job it is to evaluate the
ordering a given retrieval set. For example, in a recommender context a user may play
the role of the similarity teacher because her selections can be interpreted as retrieval
feedback; if our user selects product number 3 in the list of recommendations first then
we can conclude that the correct ordering should have placed this product at the top
of the list. Stahl’s learning algorithm attempts to minimise the average ordering error
in retrieval sets. The work of Cohen et al. [25] looks at the related issue of learning
to order items given feedback in the form of preference judgements. They describe a
technique for automatically learning a preference function to judge how advisable it is
to rank some item i ahead of item j, and go on to show how a set of items can then

352 B.Smyth

be ranked by attempting to maximise agreements with this learned preference function;
see also the work of [13].

Finally, it is worth highlighting recent similarity learning work by O’Sullivan et al.
[66, 67, 68]. This work has not been used directly by case-based recommenders but in-
stead has been used to improve the quality of collaborative filtering recommenders (see
Chapter 9 [83] in this book) by using case-based style similarity metrics when evalu-
ating profile similarities. Normally a collaborative filtering recommender system can
only evaluate the similarity between two profiles if they share ratings. For example in a
TV recommender two users that have both rated ER and Frasier can be compared. But
if one user has only rated ER and the other has only rated Frasier then they cannot be
compared. O’Sullivan et al. point out that the ratings patterns within a collaborative fil-
tering database can be analysed to estimate the similarity between programmes like ER
and Frasier. They show that by using data-mining techniques it is possible to discover
that, for example, 60% of the people who have liked ER have also liked Fraiser, and
use this as a proxy for the similarity between these two programmes. They demonstrate
how significant improvements in recommendation accuracy can be obtained by using
these similarity estimates with more sophisticated case-based profile similarity metrics.

11.2.4 Single-Shot Recommendation

Many case-based recommenders operate in a reactive and single-shot fashion, present-
ing users with a single set of recommendations based on some initial query; thus the
user is engaged in a single (short-lived) interaction with the system. For example, the
Analog Devices OpAmp recommender presents a user with a set of available OpAmps
that closely match the user’s query [100, 103]. The online property recommender re-
ferred to earlier operate similarly, responding with a selection of suitable apartments in
response to a user’s rental constraints; see also the DubLet system by [40].

The point to make here is that single-shot recommendation has its shortcom-
ings. In particular, if users do not find what they are looking for among the initial
recommendations—as is frequently the case—then their only option is to revise their
query and start again. Indeed the pure similarity-based nature of most case-based rec-
ommender systems increases the chances of this happening in certain situations be-
cause, as we discussed earlier, the top ranked recommendations may differ from the
target query in more or less the same ways. As a result they will be very similar to
each other—they will lack diversity—and if the user doesn’t like the first recommenda-
tion she is unlikely to be satisfied with the similar alternatives either. In the remaining
sections of this chapter we will explore how this simple model of case-based recommen-
dation has been extended to provide a more sophisticated recommendation framework,
one that provides for more sophisticated interaction between recommender and user,
generating personalized recommendations that are more diverse, through an extended
dialog with the user.

11 Case-Based Recommendation 353

11.3 Similarity and Beyond

Let us look at a concrete example of the diversity problem referred to above. Consider
a vacation recommender where a user submits a query for a 2-week vacation for two
in the sun, costing less than $750, within 3 hours flying time of Ireland, and with good
night-life and recreation facilities on-site. The top recommendation returned is for an
apartment in the Hercules complex in the Costa Del Sol, Spain, for the first two weeks
in July. A good recommendation by all accounts, but what if the second, third, and
fourth recommendations are from the same apartment block, albeit perhaps for differ-
ent two-week periods during the summer, or perhaps for different styles of apartments?
While the k (k = 4 in this case) best recommendations are all very similar to the target
query, they are also very similar to each other. The user has not received a useful set of
alternatives if the first recommendation is unsuitable. This scenario is not uncommon

O O O

Oooooo

OOOQ QO
OO

O

@ O o©

% vvvvvvv Qo O
 0_00
O O O

00 O
O
© O o

O @ (o O

@QoOoo

OC)@Q QO
OO

O

@ O o

Fig. 11.7. Similarity vs diversity during case retrieval: (a) a case base with highlighted target
query, #; (b) a conventional similarity-based retrieval strategy returns the cases that are individu-
ally closest to the target query, thus limiting their potential diversity; (c) an alternative retrieval
strategy that balances similarity to the target and the relative diversity of the selected cases pro-
duces a more diverse set of recommendations.

in recommender systems that employ similarity-based retrieval strategies: they often
produce recommendation sets that lack diversity and thus limit user options (see Figure
11.7(a&b)). These observations have led a number of researchers to explore alternatives
to similarity-based retrieval, alternatives that attempt to explicitly improve recommen-
dation diversity while at the same time maintaining query similarity. !

11.3.1 Similarity vs. Diversity

How then can we improve the diversity of a set of recommended cases, especially since
many of the more obvious approaches are likely to reduce the similarity of the selected

! Incidentally, related concerns regarding the primacy of similarity in other forms of case-based
reasoning have also come to light, inspiring many researchers to look for alternative ways to
judge the utility of a case in a given problem solving context (e.g. [7, 19, 34, 45, 49, 91]).
For example, researchers have looked at the importance of adaptability alongside similarity,
arguing that while a case may appear to be similar to a target problem, this does not mean it
can be successfully adapted for this target (see [49, 91]).

354 B.Smyth

cases compared to the target query? In case-based recommenders, which implement a
similarity-based retrieval strategy, the trade-off between similarity and diversity is often
straightforward when we look at the similarity and diversity characteristics for the top
k items. For low values of k, while similarity to the target query tends to be high, the
diversity between the top k recommendations tends to be very low. In other words, the
top ranking cases are often similar to the target query in more or less the same ways; of
course what we really need is a set of recommendations that are equally similar to the
target query but in different ways. As we move through the top ranking recommenda-
tions we tend to find cases that are similar to the target query but increasingly different
from those that have gone before. These are the interesting cases to consider from a
recommendation diversity perspective.

We attempt to capture this visually in Figure 11.8(a) by depicting a list of the top 9
recommendations in decreasing order of their similarity to the target query. Each rec-
ommendation is shaded to reflect its diversity relative to the others. For example, the top
3 recommendations are all shaded to the same degree, indicating that the are all very
similar to each other. Hence there is little variation among the top 3 results; perhaps
these are all examples of vacation suggestions for the same Spanish apartment complex
for the first few weeks of July. It should be clear in this example how more diverse
recommendations only begin to appear for higher values of k. Recommendations 4, 6
and 9, for example, are more diverse alternatives; perhaps these suggestions correspond
to vacations in Tuscany or on the Costa Brava. One solution then is to look for ways
of identifying and promoting these more diverse recommendations so that the user is
presented with a more diverse list of suggestions, which still remain true to their target
query. Figure 11.8(b) illustrates this: recommendations from positions 4,6 and 9 in Fig-
ure 11.8(a) are promoted to positions 2, 3 and 4 (or perhaps the less diverse suggestions
of 2, 3, and 5 are simply removed from the suggestion list) thus providing the user with
variation in the top recommendations.

One way to improve diversity is to simply select k random cases from the top bk
most similar cases to the target query. This so-called bounded random selection strategy
was proposed by [92] but it was shown to result in an unacceptable drop in query sim-
ilarity, and so is hardly practical in many recommendation scenarios. However, more
principled approaches are available, which rely on an explicit model of diversity. We
can define the diversity of a set of retrieved cases, ¢y, ...ck, to be the average dissimilar-
ity between all pairs of these cases (Equation 11.3). Then the bounded greedy selection
strategy proposed by [92] offers a way to improve diversity, while at the same time
maintaining target query similarity; see also [11]. This strategy incrementally builds a
diverse retrieval set of k cases, R, by starting from a set of the bk most similar cases to
the target query. During each step the remaining cases are ordered according to their
quality with the highest quality case added to R. The key to this algorithm is a quality
metric that combines diversity and similarity (Equation 11.4). The quality of a case ¢
is proportional to the similarity between ¢ and the current target ¢, and to the diversity
of ¢ relative to those cases so far selected, R = {ry,...,rm }; see Equation 11.5. The first
case to be selected is always the one with the highest similarity to the target. However
during subsequent iterations, the case selected is the one with the highest combination
of similarity to the target and diversity with respect to the set of cases selected so far.

11 Case-Based Recommendation 355

(a) Similarity-Based (b) Diversity-Based

1] () I
2 1] 2

Fig. 11.8. Typical approaches to similarity-based recommendation tend to produce recommenda-
tion lists with limited diversity characteristics, such as the list shown in (a). Individual items are
shaded to reflect their diversity characteristics so that in (a) items 1,2,3 and 5 are very similar to
each other as are items 4 and 7 and items 6 and 8. In (b) a different ordering of items is presented,
one that maximises the diversity of the top items.

 Yict.n Xj—ioa(l = Similarity(ci,c;))
o Sx(n—1)

Diversity(cy,...cn) (11.3)

1. define BoundedGreedySelection (t, C, k, b)

2. begin

3. C' := bk cases in C that are most similar to t
4. R := {}

5. For i := 1 to k

6. Sort C' by Quality(t,c,R) for each c¢ in C'
7. R = R + First(C')

8. C’ := C’ - First(C'")

9. EndFor

10. return R

11. end

Fig. 11.9. The Bounded Greedy Selection strategy for producing a diverse set of k: ¢ refers to the
current target query; C refers to the case base; k is the size of the desired retrieval/recommendation
set; b refers to the bound used for the initial similarity-based retrieval.

Quality(t,c,R) = Similarity(t,c) x RelDiversity(c,R) (11.4)

RelDiversity(c,R) = 1 if R={};

_ Si1n(1 = Similarity(c,r;))
m

,otherwise (11.5)

356 B.Smyth

Empirical studies presented in [11, 92] demonstrate the diversity benefits of the
above approach. In particular, the bounded greedy algorithm is found to provide a cost
effective diversity enhancing solution, resulting in significant improvements in recom-
mendation diversity against relatively minor reductions in target query similarity. For
example, [11, 92] applied the technique in a number of different recommender systems
including a vacation recommender and a recruitment advisor. In the vacation recom-
mender, examining the similarity and diversity characteristics of the top 3 recommenda-
tions reveals that the bounded greedy technique manages to achieve a 50% improvement
in relative diversity when compared to the standard similarity-based recommendation
approach but suffers a minor loss of less than 10% in similarity to the target query.
Similar results are found in the recruitment domain and in practice users are seen to
benefit from a much more varied selection of alternatives that remain similar to their
stated needs.

11.3.2 Alternative Diversity-Preserving Approaches

The bounded greedy technique discussed above was among the first practical attempts
to explicitly enhance the diversity of a set of recommendations without significantly
compromising their query similarity characteristics; although it is worth noting that
some loss of similarity is experienced with this approach. In parallel Shimazu [86, 87]
introduced an alternative method for enhancing the diversity of a set of recommenda-
tions. In brief, a set of 3 recommendations, ¢y, ¢ and c3, are chosen relative to some
query ¢ such that ¢ is maximally similar to g, ¢, is maximally dissimilar to ¢ and then
c3 is maximally dissimilar to ¢ and c. In this way, the triple of cases are chosen to be
maximally diverse but, unlike the bounded greedy technique above, the similarity of ¢;
and c3 to the query is likely to be compromised. As such the value of this approach is
limited to situations where the set of recommended cases is drawn from a set of cases
that are all sufficiently similar to the user query to begin with.

L ® ©® ® | ¢ Retrieval Set
1

L, |® ® OO

L, [oo

Fig. 11.10. The approach described in [55, 56] partitions the case base into similarity layers—
groups of cases with equivalent similarity to the target query—and the retrieved cases are chosen
starting with the highest similarity layer and until k cases have been selected. The final cases
selected from the lowest necessary similarity layer are chosen based on an optimal diversity
maximizing technique.

11 Case-Based Recommendation 357

Recently a number of alternative diversity enhancing selection techniques have been
proposed. For example, [55] shows that it is sometimes possible to enhance diversity
without loss of query similarity and a related approach based on the idea of similarity
layers is described [56]. Very briefly, a set of cases, ranked by their similarity to the
target query are partitioned into similarity layers, such that all cases in a given layer
have the same similarity value to the query. To select a set of k diverse cases, the low-
est similarity layer that contributes cases to the recommendation set is identified and
a subset of cases from this layer are selected for inclusion in the final recommended
set with all cases in higher similarity layers automatically included; see Figure 11.10.
Cases are selected from this lowest similarity layer using an optimal diversity maxi-
mizing algorithm. This approach has the ability to improve diversity while at the same
time fully preserving the similarity of cases to the user query. However, the diversity
improvements obtained are typically less than those achieved by the bounded greedy al-
gorithm, because all cases from higher similarity layers are always included without any
diversity enhancement. An alternative, and more flexible, diversity enhancing approach
is also introduced based on the analogous notion of similarity intervals; see also [56].
The advantage of this approach is that it can achieve greater diversity improvements
by relaxing the constraint that query similarity must be preserved. Query similarity is
reduced but within a tolerance level defined by the width of the similarity intervals.

It is also worth noting that a retrieval technique may not be designed to explicitly
enhance diversity but may nonetheless have a beneficial effect by its very nature. Order-
based retrieval is a good example of such a technique [14, 17]. It is based on the idea
that the relative similarities of cases to a query of ideal feature values is one way of
ordering a set of cases for recommendation. Order-based retrieval constructs an order-
ing relation from the query provided by the user and applies this relation to the case
base of products returning the k items at the top of the ordering. The order relation is
constructed from the composition of a set of canonical operators for constructing par-
tial orders based on the feature types that make up the user query. While the technical
details of order-based retrieval are beyond the scope of this chapter the essential point
to note is that an empirical evaluation of order-based retrieval demonstrates that it has
an inherent ability to enhance the diversity of a set of retrieval results; that is, the cases
at the top of the ordering tend to be more diverse than an equivalent set of cases ranked
based on their pure similarity to the user query.

In [58] McSherry proposes a compromise-driven approach to retrieval in recom-
mender systems. This approach is inspired by the observation that the most similar
cases to the user’s query are often not representative of compromises that the user may
be prepared to accept. Compromise-driven retrieval is based on a variation of the usual
similarity assumption: that a given case is more acceptable than another if it is more
similar to the user’s query and it involves a subset of the compromises that the other
case involves. As well as being less likely to be contradicted by user behaviour, this as-
sumption serves as the basis for a more principled approach to deciding which cases are
included in the retrieval set than setting an arbitrary similarity threshold over the candi-
date cases. For example, no case is included in the retrieval set if there is a more similar
case that involves a subset of the compromises it involves. Though not relying explicitly
on diversity as an additional measure of recommendation quality, compromise-driven

358 B.Smyth

retrieval does offer users a better (usually more diverse) set of recommendation alterna-
tives. Moreover, the recommendation set is guaranteed to provide full coverage of the
available cases in the sense that for any case that is not included in the retrieval set,
one of the recommended cases is at least as good in terms of its similarity to the user’s
query and the compromises it involves. While the size of the retrieval set required to
provide full coverage cannot be predicted in advance, experimental results suggest that
retrieval-set sizes tend to remain within reasonable limits even for queries of realistic
complexity; see [58].

In summary then, we have seen how recent developments in case-based recommen-
dation have relaxed the conventional wisdom of the similarity assumption, in favour of
retrieval strategies that are more likely to deliver a recommendation set that offers users
a more diverse set of alternatives. In the next section will will revisit the diversity issue
in a slightly different context. While accepting the value of diversity during recommen-
dation, we will question whether it should always be used as a retrieval constraint or
whether there are occasions when it is more useful to focus on similarity or diversity.

11.4 The Power of Conversation

As mentioned earlier, the single-shot model of recommendation, whether similarity-
based or diversity-enhanced, is limited to a single interaction between the user and the
recommender system. If the user is not satisfied with the recommendations they receive
then their only option is to modify their query and try again. Indeed the single-shot
approach also makes the assumption that the user is in a position to provide a detailed
query from the start, an assumption that does not often hold in practice. For example,
in many product recommendation scenarios users may start with an initial query, which
they will ultimately come to adapt and refine as they learn more about a particular
product-space or the compromises that might be possible in relation to certain product
features. Sometimes a user will come to disregard features that, initially at least, were
important, as they recognise the value of other features, for example. These observations
have motivated the development of conversational recommender systems which engage
the user in an extended, interactive recommendation dialog during which time they at-
tempt to elicit additional query information in order to refine recommendations?. Today
most case-based recommenders employ conversational techniques, engaging users in
an extended dialog with the system in order to help them navigate through a complex
product space by eliminating items from consideration as a result of user feedback; note
that these dialogs are normally restricted in the form of feedback solicited from the user,
rather than offering free form natural language style dialogs.

Two different forms of conversational recommender systems can be distinguished
according to the type of feedback that they solicit from users. In the nomenclature of
Shimazu [86, 87], conversational recommenders can adopt a navigation by asking or a
navigation by proposing style approach. In the case of the former, recommenders ask

2 Conversational recommender systems have their origins in conversational case-based rea-
soning (CCBR) [3, 4, 12, 64], which apply similar techniques to elicit query information in
problem solving domains and diagnostic tasks.

11 Case-Based Recommendation 359

their users a series of questions regarding their requirements; this form of feedback is
sometimes termed value elicitation. For example, a digital camera recommender might
ask “What style of camera do you want? Compact or SLR?” or “How much optical
zoom do you need?”. Alternatively, systems that employ navigation by proposing avoid
posing direct questions in favour of presenting users with interim recommendations
and asking for their feedback, usually in the form of a simple preference or a rating.
Both styles of conversation have their pros and cons when it comes to user costs and
recommendation benefits as we shall discuss in the following sections.

11.4.1 Navigation by Asking

Navigation by asking is undoubtedly the most direct way to elaborate a user’s require-
ments and can lead to very efficient conversational dialogs in many situations. The
Adaptive Place Advisor, which helps users to choose destinations such as restaurants,
is good example of a system that employs navigation by asking [37, 98]. For instance,
Figure 11.11 shows a sample Adaptive Place Advisor conversation between the user
(the inquirer) and the recommender system (the advisor). Clearly, the Adaptive Place
Adpvisor supports a sophisticated form of conversational dialog, employing natural lan-
guage processing techniques in order to respond to freeform user answers. In addition,
it is worth highlighting that its conversational form allows the user to ask questions of
the recommender system too (see Line 3 of Figure 11.11), something that we will return
to in Section 11.4.3, under the heading of mixed-initiative systems. The essential point
is that each question that the Adaptive Place Advisor asks is designed to narrow down
the possible recommendations that might be suggested to the user. Indeed in this system
recommendations are only finally made when a few items remain.

One of the key issues that must be addressed with this style of recommendation con-
cerns the important issue of what sets of questions should be asked during each session.
For instance the order and number of questions can have a significant impact on usabil-
ity and user effort. Doyle & Cunningham were among the first to report experimental
results on this topic within CBR [32] by evaluating different question-selection criteria,
including an entropy-based method which evaluates the informativeness or information
gain of given features and is inspired by the decision-tree building work of [71, 73]; see
also [86, 87]. Schmitt and his colleagues [84] propose an alternative approach, called
simVar, that is especially tailored to e-commerce recommendation scenarios. Instead of
using entropy-based information gain measures, this approach considers the influence
that a given feature can have on the similarity of cases in the case base. Thus questions
are asked of features that are deemed to have the highest influence on the similarity of
cases. In addition, an estimate of the user’s likely ability to answer such questions is also
considered. Evaluations show that SimVar is capable of producing question dialogs that
successfully prioritise questions that are both important and easy for the user to answer
and that these can be more effective in product recommendation scenarios than those
produced by entropy-based approaches; see also [6] for other useful dialog criteria. In
Section 11.5 we will discuss how personalization techniques are used by the Adaptive
Place Advisor to improve its conversational efficiency by eliminating the need to pose
certain questions in situations where a learned model of the particular user can provide
the answers.

360 B.Smyth

1. Inquirer: Where do you think | should eat tonight?

Advisor: What type of food would you like?

Inquirer: What types are there?

Advisor: You can say things like Chinese, Indian, and Mediterranean.
Inquirer: Oh, maybe a cheap Indian place.

Advisor: What kind of parking w ould you like?

Inquirer: [/don’t care, as long as it’s in Palo Alto.

© N o ok~ wN

Advisor: [I'msorry, Idon’t know of any restaurants like that, w ould you like to search
for any price?

9. Inquirer: No, I think I'd like Chinese instead.

10. Advisor: How does Mandarin Gourmet on 420 Ramona sound?1

11. Inquirer: No, what else do you have?

12. Advisor: How about Jing-Jing Szechwan Hunan Gourmet on 443 Emerson Street?

13. Inquirer: Sure, that sounds fine.

Fig. 11.11. An example of the type of conversational dialog between a user (the inquirer) and the
Adaptive Place Advisor recommender system (the advisor) in which the user is trying to decide
on a restaurant for dinner.

The value elicitation approach adopted in navigation by asking has its origins in the
classification and diagnosis tasks that are the focus of many conversational case-based
reasoning systems (see for e.g., [3, 4, 12, 64]), but its use in recommendation tasks is
not always appropriate. For example, users are often less inclined to tolerate protracted
lists of direct questions. Oftentimes they will not know the answers to questions that
demand a high-level of domain knowledge or they may reject questions that ask for
sensitive or personal information. Moreover, providing answers to direct questions can
impose a significant interfacing burden. For example, expecting users to respond with
textual answers is not appropriate in the context of recommender systems that operate
over mobile devices such as PDAs and mobile phones.

11.4.2 Navigation by Proposing

The above value elicitation issues have led to an increased interest in other forms of
user feedback that are amenable to the navigation by proposing style of conversational
recommendation. The key feature of navigation by proposing is that the user is pre-
sented with one of more recommendation alternatives, rather than a question, during
each recommendation cycle, and they are invited to offer feedback in relation to these
alternatives. In general terms there are 3 important types of feedback. Ratings-based
feedback (see [43, 89, 90]) involves the user providing an explicit rating of a recom-
mendation, but this form of feedback is more commonly found in collaborative fil-
tering style recommender systems (see Chapter 9 [83] in this book) and shall