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Abstract. This paper presents a unifying framework to model case-
based reasoning recommender systems (CBR-RSs). CBR-RSs have com-
plex architectures and specialize the CBR problem solving methodology
in a number of ways. The goal of the proposed framework is to illustrate
both the common features of the various CBR-RSs as well as the points
were these systems take different solutions. The proposed framework was
derived by the analysis of some systems and techniques comprising nine
different recommendation functionalities. The ultimate goal of the this
framework is to ease the evaluation and the comparison of case-based
reasoning recommender systems and to provide a tool to identify open
areas for further research.

1 Introduction

Recommender systems are being used in e-commerce web sites to help customers
in selecting products more suitable to their needs. The growth of Internet and
the business to consumer e-Commerce has brought the need for such a new
technology [32]. In the past years, a number of research projects have focused
on recommender systems [25, 7, 30, 8, 27]. These systems learn about user pref-
erences over time and automatically suggest products that fit the learned user
model.

Case-Based Reasoning (CBR) is one of the most successful machine learning
methodologies that exploit a knowledge-rich representation of the application do-
main [1, 36, 2]. Basically, CBR is a problem solving methodology that addresses
a new problem by first retrieving a past, already solved similar case, and then
reusing that case for solving the current problem. In the most straightforward
application of CBR to recommendation generation, the case base models the
products to be recommended and the set of suggested/recommended products
is retrieved from the case base by searching for products similar to that par-
tially described by the user [7]. In these approaches a case and a product are



essentially considered as identical objects. The problem component of the case
is typically represented by a set of product features, those specified by the user,
and the solution component of the case is the product itself.

In the basic usage scenario, the customer is looking for some product to
purchase. He/she makes explicit some requirements about the product being
searched for and the system searches the case base for products that match
the user requirements. The retrieval process is driven by a similarity metric that
computes the similarity of the problem description, i.e., the current user require-
ments and the products in the case base. A set of cases products is then retrieved
from the case base and these products are recommended to the user. If the user
is not satisfied with these suggestions he/she can modify the requirements in the
query and a new recommendation cycle is started.

In a Case-Based Reasoning Recommender System (CBR-RS) the effective-
ness of the recommendation is based on: the ability to match user preferences
with product description; the tools used to explain the match and to enforce the
validity of the suggestion; the range of available functionalities and the graphical
interface that support the user in browsing the information content, either the
cases or the products to recommend.

In this paper we propose an interpretation framework that models how CBR-
RSs behave. We have derived this model by an analysis of the literature, that
even if not complete, includes a good number of radically different approaches.
In carrying out such an analysis we realized that the literature is fragmented and
even contradictory in explaining the effective adoption of the CBR methodology
to generate recommendations. The proposed framework: a) specializes the gen-
eral CBR steps to the recommendation task; b) describes how a recommender
system exploits the classical CBR learning loop (retrieve-reuse-revise-review-
retain); and c) illustrates how different classes of CBR-RSs further specialize
the general CBR model.

To validate the framework we considered several approaches recently devel-
oped either as techniques or as full recommender systems. For instance, Entree
[7], is a restaurant recommender system that provides recommendations by find-
ing restaurants in a new city similar to restaurants the user knows and likes.
The Interest Confidence Values [22] is a recommendation technique where a new
product (restaurant) is suggested reasoning on the explicit and implicit user’s in-
terests on previously considered products, that are stored in the case base. This
approach exploits also a forgetting mechanism that allows the system to dis-
tinguish between current and old interests. In the Comparison-Based Retrieval
technique [16] is used a preference-based feedback approach that transforms the
user’s preference into explicit query modifications. In another system, DieToRecs
[28, 11], the goal is to help the user to plan a leisure trip. DieToRecs is able to
personalize the current recommendation on the base of previously stored recom-
mendation sessions (cases). In the Compromise-Driven Retrieval technique cases
are retrieved and grouped according to the compromises done by the system, i.e.,
the user requirements which cannot be satisfied, and therefore are relaxed by the
retrieval algorithm [17]. In the Order-Based Retrieval technique [4] a number of



different order relationships among cases are managed to optimally sort the rec-
ommended products.

In summary, the goal of this paper is to present a good sample of CBR-RSs
and explain the proposed methods using a unifying notation that will ease the
reader in understanding their relationships, respective benefits and shortcom-
ings. We aim at offering this research as a starting point for further analysis,
identifying still unexplored solutions and therefore motivating new research in
the field.

The paper is organized as follow. A brief overview of recommender system
technologies is given in the next section. Section 3 describes the whole Case-
Based Reasoning process and how it is used in recommender systems. Section
4 discusses the proposed framework. Section 5 illustrates the chosen examples
of recommendation techniques and discusses how they fit in the interpretation
framework. Section 6 presents a summary comparison of the techniques presented
in the previous section. Finally, Section 7 summarizes the conclusions of the
paper.

2 Recommender Systems

In the past years, a number of research projects have focused on recommender
systems [25, 31, 32]. These systems try to learn user preferences over time and
to automatically suggest products that fit the learned user model. E-commerce
sites are using recommender systems to suggest products to their customers and
improve the look to buy ratio.

The most popular recommendation technique is collaborative filtering that
aggregates data about customer’s preferences (products’ ratings) to recommend
new products. Amazon.com is a very popular example of an e-Commerce site
that exploits a collaborative-filtering approach. In its book section for instance,
the system encourages direct feedback from customers about books they already
read [32]. After this, the customer may request recommendation for books that
he/she might like. Another notable example is MovieLens [19], a well-known
movie recommender system that bases its recommendations on collaborative
filtering as well.

Content-based filtering is another recommendation technique that basically
exploits the preferences (past and current) of a specific customer to build new
recommendations to the customer. NewsDude [3], for instance, observes what
online news stories the user has read and not read and learns to present the
user with articles he/she may be interested to read. Content-based systems are
usually implemented as classifier systems based on machine learning research
[37].

In collaborative filtering the recommendation depends on customers’ infor-
mation, and a large number of previous user/system interactions are required to
build reliable recommendations. In content-based systems only the data of the
current user are exploited in building a recommendation. It requires a description
of user interests that is either matched in the items’ catalog or provided as input



for the learned user model to output a recommendation. Both approaches, if not
trained with lot of examples (product ratings or pattern of user preferences), de-
liver poor recommendations. This limitation mostly motivated a third approach,
knowledge-based, that tries to better use preexisting knowledge specific of the
application domain (e.g. travels vs. computers) to build a more accurate model
requiring less training instances.

The knowledge-based approach is considered complementary to the other ap-
proaches [7]. In this approach, knowledge about customers and the application
domain are used to reason about what products fit the customer’s preferences.
The most important advantage is that this approach does not depend (exclu-
sively) on customer’s rates, hence avoiding the mentioned difficulty in bootstrap-
ping the system. Knowledge can be expressed as a detailed user model, a model of
the selection process or a description of the items that will be suggested. How-
ever, the usually complex and error prone process required for extracting the
required knowledge and building the needed models (knowledge representation),
is seen as a limitation of this approach.

Knowledge-based recommender system can exploit similarity metrics. For
example, in the e-commerce portal site recommender.com [7] the system uses
knowledge about the customer (the movie’s name that the user liked) to search
in the database (catalog) for similar movies. The retrieved set is sorted by the
similarity to the input movie and the top candidates are recommended to the
user. We will further discuss this knowledge-based approach in the next Section.

3 Case-Based Reasoning

Case-based reasoning (CBR) is a problem solving methodology that tries to solve
new problems by re-using specific past experiences stored in example cases [12].
A case models a past experience, storing both the problem description and the
solution applied in that context. All the cases are stored in the case base. When
the system is presented with a new problem to solve, it searches for the most
similar case(s) in the case base and reuses an adapted version of the retrieved
solution to solve the new problem.

CBR is a cyclic and integrated problem solving process (see Figure 1) that
supports learning from experience [1] and has four main steps: retrieve, reuse,
adaptation and retain [12]. The adaptation phase is split into two sub-steps:
revise and review. In the revise step the system adapts the solution to fit the
specific constraint of the new problem. Whereas in the review step the con-
structed solution is evaluated by applying it to the new problem, understanding
where it fails and making the necessary corrections.

In a diagnosis task, for instance, the system acquires the patient symptoms
(new problem) and tries to give the final diagnosis based on past patient exam-
ples (stored in the case base). Sometime the solution retrieved can be straight-
forwardly reused in the new problem, but in the majority of the situations the
retrieved solution is not directly applicable and must be adapted to the specific



Fig. 1. Case-Based Reasoning problem solving cycle [2]

requirements of the new problem. After this adaptation the system creates a
new case and could retain it in the case base (learning).

A fundamental issue in CBR is the case model. This must account for both
the problem and solution components. It is necessary to decide which attributes
should compose a case and what representation language is better suited to rep-
resent the particular knowledge involved in the problem solving process. Hence,
the case representation task is concerned with (1) the selection of relevant at-
tributes, (2) the definition of indexes and (3) structuring the knowledge in a
specific case implementation. Indexing is related to the creation of additional
data structures that can be held in the memory to speed up the search pro-
cess focussing on the most relevant dimensions. The indexes identify the case
attributes that should be used to measure case similarity. Moreover, indexes can
speed up the retrieval process by providing fast access to those cases that must
be compared with the input case problem. For instance, in a medical diagnosis
system, if the system must produce an infection diagnosis then attributes such
as profession, gender or age are probably less important than the attributes
describing the symptoms.

4 Methodology for the CBR Recommender Systems

In this section we shall illustrate how the generic steps of the CBR problem
solving cycle are specialized in a CBR Recommender System, hence providing
a unifying description of various systems or techniques. Whereas in the next



Section we shall illustrate some real CBR-RSs and the techniques exploited to
generate the recommendations.

In the simplest recommendation process, the user is supposed to be looking
for some product to purchase and therefore is asked by the system to provide
some product requirements, those that he/she considers as the most important.
In reply, the system initiates a search in the case base to identify products that
should be recommended, i.e. those that satisfy these requirements. In this process
we can identify some basic elements, such as, the input (where the user provides
his/her requirements), the products retrieval (where the system searches the
products according to user requirements) and the output, where some recom-
mendation is given to the user.

As described in the previous section this flows is very similar to that of a
generic CBR system. This starts with a new problem, retrieves similar cases from
the case base, shows the retrieved solution to the user or adapts it to better solve
the new problem and terminates the process retaining the new case.

We have therefore analyzed four CBR recommender systems and six recom-
mendation techniques and through this analysis we created a condensed model
of these recommendation approaches. This model is a general framework for ac-
commodating the description of the specific tasks/functionalities available in the
considered systems for product recommendation. Using the framework a number
of approaches can be described as specific instantiation of the different steps of
the CBR cycle and the evaluation and the comparison of CBR-RSs can be eased.

The CBR recommender systems that we have analyzed are:

– Entree (EN): a recommender system that exploits query tweaking to recom-
mend restaurants to the user.

– DieToRecs (DTR): a travel recommender system that suggests both single
travel services (e.g. hotel or an event) and complete travel plans comprising
more that one elementary service.

– First Case (CDR): a prototype system that uses the Compromise-Driven
Retrieval technique to retrieve and group cases according to the alternative
compromises found by the system.

– Expertclerk (EC): a tool for developing dialogue-based recommender systems
for e-commerce websites.

The recommendation techniques that we have analyzed, either included in
some of the previously mentioned systems or not yet exploited in any prototype,
are:

– Interest Confidence Value (ICV): a similarity-based retrieval technique that
is used to predict the interest of a user in a product. This technique intro-
duces also a mechanism to progressively forget old not useful cases.

– Single Item Recommendation (SIR): a recommendation technique intro-
duced in the DieToRecs system (DTR) to recommend a single item (prod-
uct).

– Seeking for Inspiration (SI): this technique, used in DieToRecs, updates
travel plans recommendations according to explicit user feedbacks.



– Travel completion (TC): a recommendation technology introduced in DTR
to recommend a complete travel a partially defined plan.

– Order-based retrieval (ODR): a retrieval technique based on the application
of partial order operators to the case base.

– Comparison-based Retrieval (COB): this technique transforms user’s prefer-
ences into explicit query modifications.

Figure 2 shows the framework including the classical five steps of the CBR
problem solving cycle plus an additional ”iterate” step. The iterate step models
a peculiar feature of many RSs, i.e., to incrementally update the current set
of recommendations acquiring new input from the user, usually in the form of
critics or feedbacks. In each stage we list in bold face a general description of
the technique or data and then the recommendation techniques or systems that
exploit such general technique or data. For instance, in the ”Input” box we have
”product features” used by the SIR (Single Item Recommendation) technique
of the DieToRecs system. All the details and acronyms mentioned in this figure
will be explained in the following sections. We provide here a general description
of this framework as an introduction to the description of each single technique
or system.

Fig. 2. CBR recommender systems framework

The first stage of many recommendation techniques is the input where the
system interacts with the user to capture her preferences. According to [24] there
are different strategies for interacting with the user. The most popular strategy
is dialog-based, where the system offers guidance to the user by asking questions
and presenting products alternatives, to help the user to decide. Several CBR



recommender systems ask the user’s requirements to have an idea of what the
user is looking for. In the Compromise-Driven Retrieval [18], for instance, the
user provides the (case) features of a personal computer that he/she is looking
for, such as, type, price, processor or speed. Expertclerk [34] asks directly to the
user to answer some questions and hence to provide case features as replies to
these questions.

Usually when the user searches for a product, three situations can occur [6,
24]:

– the user knows exactly what he/she wants;

– the user has a desire but does not know the name of the product;

– the user does not know precisely what he/she is looking for.

In each of these situations, to recommend suitable alternative products the
system requires some kind of knowledge. In CBR-RSs the knowledge is mainly
stored in the case base and analyzing the existing CBR-RSs we noticed that the
knowledge contained in a case can refer to many characteristics of the problem
domain. In fact, in the systems that were considered for this study, a case stores
information about: the products recommended (or to be recommended), the user
to whom the recommendation was supplied, and contextual information about
the recommendation session when the recommendation was provided. Actually,
the systems exploits these basic ingredients to define their own specific case
model as a mix of these. Hence, for instance, in one case model we may find a
description of the recommended products and user who received the recommen-
dation or the user together with his recommended products’ evaluation.

To compare different CBR-RSs we propose here an artificial case model that
includes case components found in these RSs. In this perspective a case base
CB, can be decomposed in four sub-components:

CB ⊆ X × U × S × E

where X is the product/content model, U is the user model, S is the session
model, and E is the evaluation model (more details on these models are provided
below). This means that a general case c = (x, u, s, e) ∈ CB in a generic CBR-
RS consists of four (optional) sub-elements x, u, s, e which are instances of the
spaces X,U, S,E respectively. Each CBR-RS adopts a particular model for the
spaces X,U, S,E. These spaces could be empty, vector, set of document (textual),
labelled graphs, etc. Let us now describe each model separately.

– Content model(X): the content model describes the product recommended
or to be recommended, and usually adopts a feature-based representation
of the product (feature vector). In Compromise-Driven Retrieval [18], for
instance, a case is modelled (only) by the content component, which is an
n-dimensional vector space X =

∏n

i=1 Xi. Each Xi represents the set of
possible values for a product attribute. For instance, when the products are
computers, an attribute (symbolic) could be the computer type, or the price
of the computer (numeric).



– User model(U): the user model usually contains personal user information,
such as, name, address, age or information about the user past system usage,
such as his/her preferred products. Very few CBR-RSs have exploited this
component.

– Session model(S): the session model is introduced to collect information
about the special recommendation session (problem solving loop). In Di-
eToRecs, for instance, a case describe a recommendation session and stores
all the user queries and product selected in that session.

– Evaluation model(E): the evaluation model describes the outcome of the
recommendation, i.e., if the suggestion was appropriate or not. This could
be a user a-posteriori evaluation, or, as in [22], the outcome of an evaluation
algorithm that guesses the goodness of the recommendation (exploiting the
case base of previous recommendations).

Actually, in CBR-RSs, as we noticed above there is a large variability in what
a case really models and therefore what components are really implemented.
There are systems that use only the content model, i.e, they consider a case as
a product, and other systems that focus on the perspective of cases are recom-
mendation sessions. The example systems described in the following sections will
illustrate this variability in case structure.

Going back to the problem solving cycle, let us now consider more in detail
how cases are managed by different approaches. The first step of the recom-
mendation cycle is the retrieval phase. This is typically the main phase and
the majority of CBR recommender systems can be described as sophisticated re-
trieval engines. For example, in Order-Based Retrieval [4] the system uses special
operators to retrieve a lattice of cases, or in the Compromise-Driven Retrieval
[18] the system retrieves similar cases from the case base but also groups the
cases, putting together those cases that offer the same compromise to the user
and presents to the user just a representative case for each group.

After the retrieval, in the reuse stage the case solution is considered and
the system evaluates if it can be reused in the current problem or what part of
the case can be reused. In the simplest CBR-RSs, the system reuse the retrieved
cases/products showing them to the user. In more advanced solutions, such as
in ICV [22] or DTR [28], the retrieved cases are not recommended but used to
rank candidate products identified with other approaches, for instance in DTR,
with an interactive query management component.

In the next phase revise the reused case is adapted to better fit the new
problem. The review phase in CBR-RSs is implemented by allowing the user
to customize the retrieved set of products. For instance in DieToRecs the user
can add to the current case other products either using the CBR functionality
or by using other system functions (e.g. browsing the product catalogue).

The iterate step is implemented very often in conversational systems. For
example, In Entree [7] the system allows the user to tweak the initial query and
search for products having marginal differences with those already shown, with
respect to some of the product features (e.g. cheaper products). In Comparison-
based Retrieval [16] the system asks the user to provide feedback, either positive



or negative, about the retrieved product and automatically updates the user
query using this information.

The last step of the CBR recommendation cycle is the retain phase (or
learning), where the new case is retained in the case base. In DieToRecs, for
instance, all the user/system recommendation sessions are stored as a new cases
in the case base.

The next subsections describe some representative CBR-RSs, focusing on
their peculiar characteristics.

5 CBR Recommendation Techniques and Systems

5.1 Entree - EN

Entree is a restaurant recommender system that provides recommendations by
finding restaurants in a new city similar to restaurants the user knows and likes
or those matching some user goals (case features)[7].

The user starts the interaction with Entree, as showed in Figure 3, either
by: mentioning a known restaurant in some place (source case) and asking for a
similar one in a give city; or selecting a set of high-level features (case features)
and searching for a restaurant that matches those features. With this input
information, the system first selects from the database, which physically stores
the cases, the set of all restaurants that satisfy the largest number of logical
constraints generated by considering the input features type and value. The
system, if necessary, implicitly relaxes the lowest important constraints until
some restaurants could be retrieved.

Then Entree sorts the retrieved cases using a similarity metric. This similarity
metric assumes that the user goals, corresponding to the input features (or the
features of the source case), could be sorted to reflect the importance of such
goals from the user point of view. Hence the global similarity metric sorts the
products first with respect the most important goal and then iteratively with
respect to the remaining goals (multi-level sort).

If the recommended restaurants satisfies the user then the interaction fin-
ishes. But if the user is not satisfied, because of the values of some features
of the proposed restaurant, then he can criticize them. This failure situation
is determined by the fact that in the similarity retrieval it is possible that the
recommended restaurant does not match 100% the good example provided by
the user as input. If for instance, the price is too high and the user is looking for
something cheaper, then he/she can ”tweak” the original request and provide a
new input explicitly mentioning that the result must have a cheaper price. This
starts a new recommendation cycle and the criticized features is considered the
most important user goal.

In Entree the reuse step is trivially implemented, i.e. the products retrieved
are passed to the revise step for ranking. The review and retain steps are not
implemented.



Fig. 3. Entree recommender system

5.2 Interest Confidence Value - ICV

Montaner et al. (in [22]) assume that the user’s interest in a new product is
similar to the user’s interest in similar past products. This means that when a
new product comes up, either selected by a user’s query or by another method,
then the recommender system predicts the user’s interest in this product based
on the interest attributes/evaluation of similar products.

A case is modelled by objective attributes describing the product (content
model) and subjective attributes describing implicit or explicit interests of the
user in this product (evaluation model). Formally, the case c is defined as c ∈
X × E.

The content model (X), in this system, is represented by a vector space X
=

∏n

i=1 Xi where, for instance, x1 is the restaurant code (integer); x2 is the
restaurant name (string); x3 is the restaurant address (string); x4 is the cuisine
type (string); x5 is the approximate price (real); x6 is the capacity (integer)
and x7 is the air-conditioning (boolean).

The evaluation model (E) is also an heterogeneous vector space E =
∏m

i=1 Ei

where some ei ∈ Ei describe explicit interests attributes like a general evalua-
tion of the product provided by the user or a quality price ratio. Some other ei

describe implicit evaluation attributes like the rate of time spent by the user to
read product information. There is also a special attribute, called drift attribute,
that measures how recently the user expressed his interest in the product. When
this drift attribute becomes very small the system tends to reduce the impor-
tance of the information contained in the case associated to that product, and
eventually can discard the case.

As Figure 4 shows, the recommendation process starts with the user provid-
ing some preferences about a new restaurant he/she is looking for and with a



new restaurant r (source case). The goal of the system is to evaluate if this new
restaurant r could be interesting for the user. With these preferences and in-
put product the system searches similar restaurants in the case base (retrieval
phase) to find restaurants that could be used to compute the interest prediction
of the new restaurant r.

Fig. 4. The Interest Confidence Value technique

In the reuse phase the system basically extract from the retrieved cases (ci,
i = 1, . . . , k) the interest attributes, or in our terminology the evaluation model.
In the revise phase the system assumes that the user’s interest in the new
restaurant r is similar to his/her interest in the retrieved restaurants, hence, for
each retrieved case ci it extracts the interest attributes (evaluation model) and
compute a global interest value V (i) for each retrieved case. V (i) is a weighted
average sum of the interest attributes multiplied by the drift attribute [22].

Then a global interest confidence value I(r) for the product r is computed
as a weighted average of the interest values of the retrieved cases:

I(r) =

∑k

i=1 V (i)Sim(r, ci)
∑k

i=1 Sim(r, ci)

If the interest confidence value of the new restaurant is greater than a certain
value (a confidence threshold), then the new restaurant is recommended to the
user. Otherwise, the CBR cycle terminates with no recommendation and the
system just provides a negative advice to the user about the queried restaurant.

The review phase is implemented by asking the user for the correct evalua-
tion of the restaurant and after that a new case (the product and the evaluation)



is retained in the case base. Also implicit evaluation indicators are retained as
derived from the analysis of the user/system interaction.

We stress that in this approach the recommended product is not retrieved
from the case base, as we saw before in Entree, but the retrieved cases are used
to estimate the user interest in a generic new restaurant. The new restaurant
could be generated in many ways, including a search in the case base.

5.3 DieToRecs - DTR

DieToRecs is a case-based travel planning recommender system, that helps the
user to plan a leisure travel in a selected destination [11]. Three different recom-
mendation techniques were implemented in DieToRecs: the single item recom-
mendation (SIR), the travel completion (TC) and seeking for inspiration (SI).

In DieToRecs, a case represents a user interaction with the system and it is
built incrementally during the recommendation session [28]. A case comprises
the following main components:

– Collaborative Features (clf) are features that describe general user’s and
travel characteristics, wishes, constraints or goals (e.g. desire to relax or to
practice sports). They capture preferences relevant to the user’s decision-
making process, which cannot be directly mapped into product attributes
stored in the electronic catalog. These features are used to measure case
(session) similarity. A knowledge of the domain and the decision process
is essential to select the right collaborative features [26]. The collaborative
features belong to the user and session models.

– Content Queries (cnq) are queries posed over the catalogs of products. Con-
tent queries are built by constraining (content) features that describe prod-
ucts listed in the catalogs. Products may belong to different types (e.g. an ac-
commodation or an event). The content queries belong to the session model.

– Cart contains the set of products chosen by the user during the recom-
mendation session represented by the case. A cart represents a meaningful
(from the user’s point of view) bundling of different products. For instance, a
travel cart may contain some destinations, some accommodations, and some
additional attractions. The cart component belongs to the content model.

– Rate is a collection of rates given by the user to the products contained
in the cart. It represents the user evaluation of the products and therefore
belongs to the evaluation model.

In the single item recommendation technique (SIR), the user interacts with
the recommender system by querying recommendations about a product type
(e.g., a destination). The whole process is shown in Figure 5. In SIR the systems
asks the user both some general preferences (the clf) that are used to generate a
case (current case or source case) and some specific product preferences that are
used to query (cnq) the product catalogue. The system uses the content queries
to search in the catalog for products that (logically) match these preferences and
computes a result set.



Fig. 5. DieToRecs - Single Item Recommendation technique

The system supports an interaction flow that allows the user to eventually
refine the initial content query. That is depicted in Figure 5 as a set of parallel
arrows from the product features to the product catalogue. In fact, If too many
products matches the input query, then a tightening function suggests to the
user some additional features he may use to further constrain the search [21].
Conversely if no result can be found then the system explains to the user the
cause of the failure, i.e., it lists those constraints that if relaxed would allow the
query to return some results (relax function) [20]. When the number of items
retrieved is satisfactory then the system proceeds with the revise phase to rank
the result set.

In parallel, the collaborative features are used to retrieve the ten most similar
cases, and in the reuse phase the products contained in these case are extracted.
In the revise phase the results set is ranked with a double similarity process
where the product contained in the result set that are more similar to products
contained in similar cases obtain a higher rank [28].

Finally the user can edit the current case adding new products, using one
of the available recommendation techniques (review). The case is always stored
in the case base and it is updated every time the user changes some of its
components (for instance adding a new travel product to the cart).

The second recommendation technique introduced in DieToRecs is called
Travel Completion (TC). Here the system recommends additional travel prod-
ucts or services to complete the current travel plan of the user. In TC the cycle
starts with the current case as source case. This is used by the system to retrieve
from the case base similar cases, i.e., travel plans built by other travellers that
match the collaborative features of the source case (see Figure 6). Some of the
collaborative features are used to generate some logical constraints, hence the
retrieval combines a similarity-based one piped after a logical filter.



Fig. 6. DieToRecs - Travel Completion technique

Before recommending to the user the products contained in the retrieved
cases (solutions), the system in the revise stage updates, or replace, the travel
products contained in the cases exploiting up-to-date information taken from the
product catalogs. This adaptation stage is constrained-based and the constraints
are stored as structural properties of the travels. For instance if the destination
is x, then the system cannot recommend an accommodation in y where the
distance of x and y is larger than a given threshold.

In the review phase the system allows the user to reconfigure the recom-
mended travel plan. The system allows the user to replace, add or remove items
in the recommended travel plan. If the user accepts the outcome (the final ver-
sion of the recommendation showed to the user), then the system retains this
new case in the case base.

In the third recommendation technique introduced in the DieToRecs system,
that is Seeking for Inspiration (SI) [29], the user is prompted with complete
travel recommendations to choose. SI proceeds as a loop, which is initiated with
a source case, and terminated when the user selects one of the recommended
case. At each loop six cases are shown. The initial probe is randomly selected
by the system if the user has not created yet any case (e.g. with any of the
other recommendation techniques). These six displayed cases are computed by,
first retrieving k most similar cases to the source case, and then selecting with
a greedy algorithm the six more diverse among the k retrieved. When these
six cases are shown the user can provide some feedback, by checking a ”I like
this” option. The system then iterates the process using the liked case as the
current source case. As in the other techniques when the recommendation process
terminates the newly generated case is stored in the case base.



Fig. 7. DieToRecs - Seeking for Inspiration technique

5.4 Order-Based Retrieval - OBR

The Order-Based Retrieval (OBR) technique integrates different type of sorting
criteria [4]. Using ORB the authors have developed a prototypes that helps
a user to find a place to rent in London. A case is modelled using only the
content model, c = (x). The content model X is a vector space X =

∏n

i=1 Xi.
Typical attributes are: the price of the apartment (a real number); the number
of bedrooms (integer); the number of bathrooms (integer); the location (string);
the type of the property (string) and whether it is furnished or not (boolean).
The features were classified as ordered or unordered values.

The recommendation process starts when the user provides some preferences,
as ideal values, or as maximum or minimum values of the searched case. In the
retrieval phase, the system converts the user input into order relationships on
the attributes. Then all these order relationships are combined in a pre-order to
produce a lattice of products. The operators used in this task were defined in
[5].

Figure 8 illustrate how ORB can be described in the proposed framework.
In the reuse phase the system extracts from the lattice the maximal products.
The last implemented step is the iterate, where the system waits for additional
preference constraints from the user to refine the lattice structure. The user
can provide modifications to the query, and these are encoded as filters and
finally converted into orders using Filter-Ordering (FO) operators. The system
will recommend products that satisfy the filter but will not eliminate products
that do not satisfy the filter. There are no revise, review and retain tasks
implemented in this technique.

The advantage of OBR, compared to pure similarity-based retrieval, is that it
allows the user to provide some soft constraints. Suppose the user wants to define
the following query: ”Rent a property in Clapham with 2 bedrooms but the rent
cannot be more than 400”. The system takes this upper bound condition (”not



Fig. 8. The Order-Based Retrieval technique

more than 400”) and build an unary predicate. But instead of filtering away
products it builds an ordering from the products using the Filtering-Ordering
(FO) operator.

<FO(λx[price(x)≤400])

The values that satisfy the predicate are higher in the ordering than ones
that do not.

5.5 First Case - CDR

First Case is a CBR-RS that uses the Compromise-Driven Retrieval (CDR)
technique to recommend computers to the user. First Case models a case ex-
ploiting only the content component [18]. The content model X is a vector space
X =

∏n

i=1 Xi where n is the number of attributes. Typical attributes are: the
computer type (string); the price (real); the manufacturer (string); the proces-
sor (string); the speed (integer); the monitor size (integer); the memory (integer)
and the hard disk size (integer). In CDR, if a given case c1 is more similar to
the target query than another case c2, and differs from the target query in a
subset of the attributes in which c2 differs from the target query, then c1 is more
acceptable than c2.

As showed in Figure 9, the CBR recommendation cycle starts with the user
providing his/her requirements in a query. The user can specify how many re-
quirements he/she wants. For example, let’s consider a query q, defined by the
following conditions: Intel Pentium; speed = 900 (or higher); 17” monitor size;
desktop or tower and price not higher than 1400. Let us further imagine that
the hard disk and memory are not important for the user.



Fig. 9. First Case recommender system

In the CDR retrieval algorithm the system sorts all the cases in the case-
base according to the similarity to a given query. The combination of attributes
in which the case differs from the user query is important and not just the
number of attributes that differ.

For any case c and query q, the author defines the set of compromised at-
tributes as:

compromises(c, q) = {a ∈ Aq : πa(c) fails to satisfy the user preference}

where Aq is the set of attributes constrained in the query, a is an attribute, and
πa(c) is the value of attribute a in c.

In a second step the algorithm groups together the cases making the same
compromise (do not match a user preferred attribute value) and builds a refer-
ence set with just one case for each compromise group. In the reuse phase the
reference set is recommended to the user without modifications and the user has
immediate access to it.

The user can also refine (iterate) the original query, accepting one com-
promise, and adding some preference on a different attribute (not that already
specified). The system will further decompose the set of cases corresponding to
the selected compromise. The revise, review and retain phases are not imple-
mented in CDR.

In this approach similarity and compromise play complementary roles, in-
creasing the probability that one of the retrieved cases will be acceptable to the
user. CDR shows alternative compromises and groups cases according to the
compromise that is done. In this way it helps the user to immediately grasp the
alternatives available and therefore increase the diversity of recommendations.
Other researches had proposed different ways to retrieve a diverse set of cases
[35]. Mongouie et al [23] have also studied the concept of generalized cases and



presented a method to build a retrieval set of cases that are enough different
and are also representative for a set of similar cases.

5.6 Comparison-based retrieval - COB

According to McGinty and Smyth [14], a key feature that differentiates recom-
mender systems from more conventional information retrieval systems, such as
search engines, is their conversational character.

As we saw before, the majority of the recommendations techniques support a
cycle that initiates with a first query/problem of the user. Then, each feedback
provided by the user during the recommendation cycle is used to update the
user’s query. The goal is to refine the query so that user needs are better captured
and a better recommendation can be produced.

Some researches have focused on different strategies for capturing the user
feedback [15, 33]. We have:

– Value-elicitation: where the user is asked to provide a specific value for a
specific feature of the recommended product;

– Tweaking : where the user is asked to provide a directional preference for a
particular feature;

– Rating-based : where the user is asked to rate the recommended cases accord-
ing to his/her preferences;

– Preference-based : where the user is asked to select one of the current recom-
mendations, that is closest to his/her requirements.

These strategies have been classified (in [33]) as: navigation by asking, when
the system can ask to the user to specify individual feature values as search
criteria or navigation by proposing when the system invites the user to rate
recommendation as relevant or not relevant.

The comparison based retrieval technique (COB) is a navigation by proposing
[34] recommender system that exploits preference feedbacks by transforming the
user’s preference into explicit query adaptations [15]. McGinty and Smyth have
used COB to build a prototype aimed at supporting the user in selecting a
computer. In this prototype the case model includes only the content model.

The recommendation process starts with the user providing his/her require-
ments as attribute-value pair of the preferred case. In the retrieval phase the
system retrieves the cases with a traditional similarity-based process. The re-
trieved cases are shown to the user in the review phase.

Figure 10 shows the recommendation cycle in COB. In the iterate phase
the user selects a preference case as feedback (positive if the user likes the case
recommended or negative if he/she does not like it). This feedback are interpreted
as a user evaluation of the difference between the selected product and the
products not chosen. This information is used to learn from the user’s feedback
and update the current query. Some update strategies are used in the review



Fig. 10. Comparison-Based Retrieval

phase, such as, More-Like-This that takes each feature of the preferred case as a
new query feature, or Partial-More-Like-This that transfers a feature value from
the preference case if none of the rejected cases have the same feature value.
The process terminates when the user is presented with an acceptable item or
when he/she gives up. In this approach there are no revise, review and retain

phases.

In another paper of the same authors the COB approach is improved using
the Adaptation Select technique, that adapts the way the new products are
selected, making the preference-based feedback more efficient [16].

5.7 ExpertClerk - EC

Expertclerk is a general recommendation methodology aimed at implementing
virtual salesclerk systems as front-end of an e-commerce website [34]. The system
implements a question selection method (decision tree with information gain).
Using navigation-by-asking, the system starts the recommendation session by
asking the user some questions. The questions are nodes in a decision tree. A
question node subdivides the set of answer nodes and each one of these repre-
sents a different answer to the question posed by the question node. The system
concatenates all the answer nodes chosen by the user and then builds the SQL
retrieval condition expression.

In EC the user can answer the question by choosing an answer node or ignore
the question (Figure 11). The system concatenates all the answer nodes chosen
by the user and then constitutes the SQL retrieval condition expression. This
query is applied to the case base to retrieve the set of cases that best match
the user query.



Fig. 11. ExpertClerk

The system ranks the products in the revise phase, recommends three sample
products to the user, and explains their characteristics (positive and negative).

In the review phase, the system switches to the navigation-by-proposing
conversation mode and allows the user to refine the query. After refinement, the
system applies the new query to the case base and retrieves new cases (iterate).
These cases are ranked and shown to the user. This cycle continues until the user
finds a good product. In this approach the retain phases is not implemented.

6 Comparison

In this Section we present a couple of summary tables to quick compare the
CBR-RSs that we have illustrated. From the analysis of these systems or tech-
niques we have detected some common patterns. Tables 1 and 2 show a cross-
dimension analysis of the systems, taking into account the features described in
the proposed CBR framework .

In Table 1 we summarize the analysis of the case model adopted in the various
approaches (techniques or systems). In the majority of them the case includes
essentially the content model. In other words a case is considered equal to the
product to be recommended. This has the implication that no real learning pro-
cess is supported by these systems. This is severe limitation which is overcome
only by two systems: ICV, where they suggested a case representing the user
interest and DieToRecs where the authors proposed a case representing a user
interaction with the system. Hence in our opinion CBR-RSs research must de-
vote much more attention on the case model and particularly in finding a more
comprehensive way to include in the case information and knowledge about the
user, the recommendation process and especially the outcome of such a process.



Table 1. Cross-dimensional analysis of the case model

Approach Case model

Entree EN Content

Interest Confidence Value-ICV Content, Evaluation

DieToRecs DTR All

Order-Based Retrieval OBR Content

Compromise-Driven Retrieval CDR Content

Comparison-Based Retrieval COB Content

ExpertClerk EC Content

Table 2. Cross-dimensional analysis of the selected approaches (Retrieval, Reuse, Re-
vise, Review and Retain)

Technique Retrieval Reuse Revise Review Retain Iterate

EN Sim, Logic All Ranking none none Tweaking

ICV Sim Eval model ICV computation feedback selective none

SIR Sim Content Ranking User edit All none

TC Sim, Logic Content Constraints User edit All none

SI Sim, Grouping All none none All Feedback

OBR Sim, Ordering All none none none Tweaking

CDR Sim, Grouping All none none none Tweaking

COB Sim All none none none Feedback

EC Sim All none none none Feedback

Referring to the application of the CBR cycle to recommendation (see Ta-
ble 2), the majority of the CBR-RSs stress the importance of the retrieval phase.
Some systems perform retrieval in two steps. First, cases are retrieved by simi-
larity, then the cases are grouped or filtered. The use of pure similarity does not
seem to be enough to retrieve a set of cases that satisfy the user. This seems
to be true especially in those application domains that require a complex case
structure (e.g. travel plans). Hence in these domains similarity is piped after a
first retrieval performed with a more efficient logic based filtering (e.g. in SQL
on a data base implementation of the case base).

The default reuse phase is used in the majority of the CBR-RSs, i.e, all the
retrieved cases are recommended to the user. ICV and SIR have implemented
the reuse step in a different way. In SIR, for instance, the system can retrieve
just a component of the case (e.g. the destination of a travel and discard the
selected accommodation). The same systems that implemented non-trivial reuse
approaches, have also implemented both the revise phase, where the cases are
adapted, and the retain phase, where the new case (adapted case) is stored.

Not all the CBR-RSs analyzed implement the review phase, allowing the user
to modify/configure the proposed solution (recommendation), or implementing
an automatic solution to product reconfiguration. Conversely, many systems
cycle the recommendation process, either letting the user to tweak the original



query or incorporating (system-driven) explicit or implicit feedbacks collected
during the interaction.

7 Conclusions

Looking for products on the Internet is not an easy task. There is a huge quantity
of information and on-line there is no human advisor that can help customers to
identify what products better fit their preferences. The CBR methodology has
been used extensively and successfully to build intelligent applications helping
users to cope with these problems.

In this paper we have presented a partial review of the CBR recommender
systems literature. We have found that it is often unclear how and why the
proposed recommendation methodology can be defined as case-based. In fact,
the classical CBR problem solving loop, most of the time, is implemented only
partially and sometime is not clear whether a CBR stage (retrieve, reuse, re-
vise, review, retain) is implemented or not. For this reason, we have proposed
the unifying framework illustrated in this paper to make possible a coherent de-
scription of different CBR-RSs. This framework helps to describe to what extent
a recommender system exploits the classical CBR cycle.

We believe, that with such an initial common view it will be easier to un-
derstand what the research projects in the area have already delivered, how the
existing CBR-RSs behave and which are the topics and the features that could
be improved in future systems. We plan to extend this work analyzing more CBR
recommendation techniques and to formalize the case model representation using
a case representation language such as CBML [10, 9] or CASUEL [13].
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