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Case-control design identifies 
ecological drivers of endemic coral 
diseases
Jamie M. Caldwell1,2*, Greta Aeby3, Scott F. Heron2,4,5 & Megan J. Donahue1

Endemic disease transmission is an important ecological process that is challenging to study because 

of low occurrence rates. Here, we investigate the ecological drivers of two coral diseases–growth 
anomalies and tissue loss–affecting five coral species. We first show that a statistical framework called 
the case-control study design, commonly used in epidemiology but rarely applied to ecology, provided 
high predictive accuracy (67–82%) and disease detection rates (60–83%) compared with a traditional 
statistical approach that yielded high accuracy (98–100%) but low disease detection rates (0–17%). 
Using this framework, we found evidence that 1) larger corals have higher disease risk; 2) shallow reefs 
with low herbivorous fish abundance, limited water motion, and located adjacent to watersheds with 
high fertilizer and pesticide runoff promote low levels of growth anomalies, a chronic coral disease; 
and 3) wave exposure, stream exposure, depth, and low thermal stress are associated with tissue loss 
disease risk during interepidemic periods. Variation in risk factors across host-disease pairs suggests 
that either different pathogens cause the same gross lesions in different species or that the same 
disease may arise in different species under different ecological conditions.

Disease is an ecologically and evolutionarily important process in shaping populations, communities, and eco-
systems1–5, but identifying factors that promote disease at low endemic levels or between epidemics is challenging 
because disease occurrences are rare in space and time. Disease can a�ect populations, communities, and ecosys-
tems through multiple pathways, such as changing the physiology, behavior, distribution, abundance, and �tness 
of organisms (e.g.3,6,7). For example, when the trematode Plagioporous sp. infects the coral Porites compressa it 
reduces coral growth and causes infected polyps to appear as bright swollen nodules that cannot retract into their 
skeletal cups, thus increasing �sh predation and a�ecting coral physiology, behavior, and �tness8. As another 
example, infection in three-spined sticklebacks by the �sh parasite Gyrodactylus spp. has been shown to alter the 
zooplankton community structure and nutrient cycling in streams and lakes, which in turn, a�ect the survival 
and �tness of the subsequent �sh generation5. Despite the ecological and evolutionary importance of disease, 
understanding the factors that increase individual disease risk for endemic diseases with low prevalence or dur-
ing interepidemic periods for diseases with epidemic cycles can be challenging because of the low probability of 
observing diseased individuals during non-outbreak periods.

With limited occurrence data relative to nonoccurrence data, commonly used biostatistics such as logistic 
regression can signi�cantly underestimate the probability of rare events such as disease occurrence9. Further, such 
models are likely to have high predictive accuracy (proportion of correctly identi�ed event and nonevent observa-
tions), which can be misleading: for example, if 3 of 100 individuals are diseased, a model where all observations 
are predicted healthy would return 97% predictive accuracy but provide very limited information about disease 
occurrence or causation. Ecologists interested in rare events such as insect outbreaks and species invasions could 
bene�t from adopting statistical approaches from �elds of inquiry concerned with rare phenomena. One statisti-
cal framework that works well with low event-to-nonevent ratio datasets is called the case-control study design10. 
�e case-control study design is commonly used in epidemiology where the number of people a�ected by a 
condition is very small relative to the potential control population (e.g., few people are HIV + compared with the 
general population). In the case-control design, for each subject with some condition, a control subject is selected 
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that does not have the condition but is otherwise similar in terms of factors such as age, sex, and occupation. 
�is approach naturally lends itself to many ecological studies with low event-to-nonevent ratios such as wildlife 
disease occurrence, with some modi�cations. In particular, the case-control design is typically applied to cohorts 
of individuals who are followed through time. For wildlife diseases, cohort data are rarely available. Instead, we 
propose that wildlife studies can apply the case-control design by retrospectively sub-sampling cross-sectional 
data that are widely available.

Here, we compare logistic regression models with and without a case-control design (based on retrospec-
tive sub-sampling) to answer three ecological questions for marine wildlife diseases: 1) how accurately can we 
predict disease occurrence; 2) what are the ecological factors associated with maintaining low levels of disease 
occurrence; and 3) are risk factors more similar for closely related species? We used coral diseases for this case 
study because (i) they can be extremely rare (<0.1% of disease occurrence observations); (ii) lesions can be vis-
ually identi�ed; (iii) they can cause high mortality or strongly reduce fecundity with likely long-term population 
e�ects; and (iv) large datasets are publicly available on coral health observations and hypothesized risk factors.

In this study, we investigate two types of coral diseases – growth anomalies and tissue loss diseases – a�ect-
ing �ve species of coral from two widely distributed genera in the Indo-Paci�c Ocean. Growth anomalies are 
chronic, protuberant masses of coral skeletons (i.e., tumors) that reduce growth, fecundity, and survival11–14. 
Growth anomalies in some coral genera (e.g. Porites spp.) have been associated with larger coral colonies15 located 
in shallow water (<3 m)12 with elevated nutrients16 and in regions with high human populations17. Tissue loss dis-
eases, or white syndromes, usually have very low endemic prevalence levels (<1% in the Indo-Paci�c)18 but can 
be associated with rapid outbreak events resulting in localized mass mortality19–23. �is suite of diseases is char-
acterized by progressive tissue loss across the coral colony with lesions progressing slowly (chronic to subacute) 
or rapidly (acute). Bacterial pathogens cause many tissue loss diseases24–27 and can be associated with high coral 
cover (i.e., density dependent transmission) and temperature stress (e.g. anomalously warm or cold ocean tem-
peratures)28–32. Based on these previous �ndings, we hypothesize that long-term, chronic stressors are more likely 
to drive growth anomaly persistence whereas locations with pulses of short-term, acute stressors are more likely 
to be associated with interepidemic tissue loss occurrence. Growth anomalies and tissue loss appear on numerous 
coral species and likely constitute multiple diseases. �us, we investigate each host-disease pair separately.

Results
Comparison between statistical approaches. Logistic regression models with and without a case-con-
trol design had high overall predictive accuracy (proportion of correctly predicted healthy and disease observa-
tions) for all host-disease pairs, but only the models with the case-control design accurately predicted disease 
occurrence (proportion of disease observations the model correctly predicted as diseased; i.e., the true positive 
rate). Using colony health state as a binary response variable (0 indicating healthy, 1 indicating diseased; Table 1) 
and a suite of hypothesized risk factors (Tables 2 and 3), we found that mean predictive accuracies ranged from 
98–100% for logistic regression without the case-control design and 67–82% for logistic regression with the 

Disease 
type Host

Total 
disease

Total 
healthy

GA Montipora capitata 49 35864

GA Montipora patula 35 23118

GA Montipora spp. 84 58982

GA Porites compressa 160 17889

GA Porites evermanni 42 1779

GA Porites lobata 1396 64312

GA Porites spp. 1598 83980

TL Montipora capitata 39 28669

TL Montipora patula 12 17480

TL Montipora spp. 51 46149

TL Porites compressa 89 16915

TL Porites evermanni 17 1567

TL Porites lobata 351 61489

TL Porites spp. 457 79971

Table 1. Healthy observations far exceeded disease observations for all host-disease pairs. Each row 
corresponds to the total number of disease and healthy colony observations used in this analysis for a speci�c 
disease (GA = growth anomalies, TL = tissue loss) and host (species or genus) pair. Hosts at the genus level 
include observations from all hosts species within that genus (e.g., Montipora spp. includes all observations 
from Montipora capitata and Montipora patula). In the analysis, we used 80% of observations (training data) 
to create the models and the remaining 20% of observations (test data) for model validation. We calculated 
accuracy and true positive rates based on the test data. �ere was an equal number of disease observations in 
the test data for logistic regression with and without the case-control design. In contrast, the number of healthy 
observations di�ered between the test data for logistic regression with and without the case control design: in 
the case-control design, the number of healthy observations was equal to the number of disease observations 
whereas without the case-control design the number of healthy observations in the test data was equal to ~20% 
of the total number of healthy observations.
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case-control design (Fig. 1). True positive rate, or the proportion of disease observations the model correctly pre-
dicted as diseased, is of greatest interest for rare event prediction and mean values ranged from 0–17% for logis-
tic regression without the case-control design and 60–83% for logistic regression with the case-control design 
(Fig. 1). Given the moderate-to-high mean predictive accuracies (67–82%) and mean true positive rates (60–83%) 
for the case-control design, we report only results using the case-control design below.

Ecological risk factors of different host-disease pairs. Of the 19 risk factors (predictor variables) we 
initially examined (see Methods), 14 were included in our candidate models (with the risk factors di�ering by 
disease type; Table 2), but the most predictive risk factors varied by host-disease pair. �e 14 risk factors can be 
broadly classi�ed into four categories: biological (colony size, host density, and herbivorous �sh abundance), 

Risk factor

Hypothesized 
relationship with 
disease risk Hypothesized mechanism(s) relating risk factor to disease risk Disease Type

Colony size Positive

• Larger corals have more tissue exposed to pathogens

Growth anomalies15

Tissue loss33
• Larger, older corals have a longer duration of exposure to 
pathogens/stress

• Larger, older corals have reduced immune capacity

Host density

Positive • Disease spread increases among many, closely spaced colonies
Growth anomalies17

Tissue loss33,57
Negative

• Disease spread is reduced in high density reefs because colonies 
are smaller

Depth Negative
• Multiple environmental conditions become less stressful to 
coral with increasing depth: deeper water absorbs more light, has 
cooler temperatures, and fewer re-suspended sediments

Growth anomalies12,29

Tissue loss29,56

Water temperature 
(Hot Snap)

Positive

• High temperature reduces coral immune capacity

Growth anomalies29,58

Tissue loss28–30

• High temperature increases pathogen survival, growth rate, 
and/or virulence

Negative
• High temperature reduces pathogen survival, growth rate, and/
or virulence

Human population 
size

Positive • People increase reef degradation and physical damage to coral
Growth anomalies17,59

Tissue loss60

Embayment Positive
• Areas inside bays have poor water quality (e.g., higher levels 
of nitrogen, sediments, and land-based pollutants) and are more 
likely to retain pathogens

Growth anomalies15

Tissue loss19

Herbivore �sh 
abundance

Positive

• Fish alter algae composition to favor algal species that harbor 
pathogens

Growth anomalies
Tissue loss18,39,61–63*

• Fish spread pathogens via defecation on corals

Negative

• Fish reduce macroalgae that harbor pathogens

• Fewer �sh indicate higher �shing intensity and associated 
impacts

Agriculture and golf 
course runo�

Positive
• Pesticides and fertilizers increase coral stress and susceptibility 
to infection

Growth anomalies41,64*

Irradiance Positive • Light increases oxidative stress in coral Growth anomalies59

Wave energy 
(chronic)

Negative
• Locations with high water �ow reduce temperature and light 
stress to coral

Growth anomalies58

Wave energy (acute)

Positive

• Pulses of water �ow increase contact rate between corals and 
pathogens

Tissue loss
• Pulses of water �ow increase coral abrasion via sediment or 
physical damage

Negative
• Pulses of water �ow limit duration of coral exposure to 
pathogens

Stream exposure Positive

• Stream runo� increases contact rate between corals and 
pathogens

Tissue loss65
• Stream runo� reduces coral immune capacity by decreasing 
salinity and increasing sedimentation and exposure to land-based 
pollutants

Rainfall anomaly Positive

• Rainfall reduces coral immune capacity by decreasing salinity 
and increasing land-based runo� of pathogens or pollutants Tissue loss66

*

• Rainfall increases contact rate between corals and pathogens

Chlorophyll-a (proxy 
for nutrients and 
phytoplankton)

Positive

• High chlorophyll-a concentration increases coral stress and 
susceptibility to infection

Tissue loss18

• High chlorophyll-a concentration leads to increased 
zooplankton, which can serve as disease vectors

Table 2. Risk factors (predictor variables) included in candidate models for each disease type with the direction 
and mechanism(s) of hypothesized relationships. Relationships and their proposed mechanisms described 
previously in the literature are referenced whereas hypothesized relationships based on personal observations 
are not referenced. References followed by an asterisk indicate relationships found for other type(s) of coral 
disease and/or related risk factors.

https://doi.org/10.1038/s41598-020-59688-8


4SCIENTIFIC REPORTS |         (2020) 10:2831  | https://doi.org/10.1038/s41598-020-59688-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

environmental (chlorophyll-a, irradiance, Hot Snap, and rainfall), physical (depth, embayment, acute and chronic 
wave exposure, and stream exposure), and anthropogenic (agricultural and golf course runo� and human pop-
ulation size).

All the risk factors that we hypothesized could be associated with growth anomalies were identi�ed as impor-
tant for at least one host-disease pair, with more similar risk factors associated with more closely related hosts. 
We found one biological risk factor (colony size; Fig. 2) common to all hosts, with an approximate 36–137% 
increase in disease risk of for every 1 cm increase in colony size above the host speci�c average size, given all 
other risk factors are held at their average values (Table 4). Herbivore �sh abundance was the next most common 
risk factor, with an approximate 5–15% decrease in disease risk for every gram increase in herbivorous �sh per 
meter squared (Table 4). Montipora species were positively associated with size, and negatively associated with 
herbivore �sh abundance (M. capitata) or host density (M. patula); the genus model (Montipora spp.) consisted 
of all three biological risk factors (Table 4). In contrast, the Porites genus model (Porites spp.) only partially over-
lapped with the risk factors identi�ed in the species-speci�c models (Table 4). P. compressa was associated with 
all risk factors other than irradiance, whereas P. evermanni was only associated with irradiance (in addition to 
colony size) (Table 4). P. lobata was associated with biological (host density and herbivore �sh abundance), envi-
ronmental (Hot Snap), physical (depth), and anthropogenic (agriculture and golf course runo�) risk factors, and 
most closely overlapped with the genus model (Table 4), likely because the majority of Porites observations were 
observations of P. lobata (Table 1). Agriculture and golf course runo� increased disease risk for P. lobata and P. 
compressa by approximately 23 and 80%, respectively, for every km2 increase in cultivated land.

For tissue loss diseases, we identi�ed eight hypothesized risk factors associated with disease occurrence (�ve 
associated with Montipora species and seven associated with Porites species) (Table 5). Like growth anomalies, 
we found a positive association with colony size for most hosts with an approximate 33–102% increase in disease 
risk for every 1 cm increase in colony size (Table 5, Fig. 2). We found no overlap in risk factors for Montipora 
capitata and Montipora patula: M. capitata was associated with one biological (herbivore �sh abundance) and 
three physical (depth, stream exposure, and wave exposure) risk factors whereas M. patula was only associated 
with one biological (colony size) risk factor (Table 5). Further, all risk factors for M. capitata had strong negative 
e�ects (Table 5). We identi�ed the exact same risk factors for the Porites genus model and the P. lobata model 
(Table 5), which included biological (colony size, host density), environmental (Hot Snap), physical (depth, wave 
exposure), and anthropogenic (human population size) risk factors. However, Hot Snap had a stronger e�ect in 
the genus model compared with the P. lobata model, potentially indicating di�erences in thermal sensitivities 
across morphologies, as the coe�cients for Hot Snap in the genus model and the P. compressa model were similar 
(Table 5). P. evermanni overlapped with four of those risk factors (colony size, depth, wave exposure, and human 
population size). However, the e�ect of wave exposure di�ered by host: higher wave exposure was associated with 
an increased risk of tissue loss in Porites spp. and P. lobata but reduced risk of tissue loss in P. evermanni (Table 5). 
�e P. compressa model was the most distinct of the Porites models, with associations with colony size, Hot Snap, 
and stream exposure (Table 5).

Discussion
Understanding the ecological conditions that promote endemic diseases with low prevalence and for epidemic 
diseases during interepidemic periods is central for understanding disease dynamics but can be di�cult to inves-
tigate using common biostatistical approaches. In this study, we adopted statistical methods better suited towards 
highly skewed occurrence data to investigate ecological correlates of several coral diseases. We show that the 
case-control study design improved our ability to predict disease and healthy colony observations with rela-
tively high speci�city given a suite of ecological conditions. In contrast, a more traditional biostatistical approach 
yielded high overall predictive accuracy (heavily biased by successful predictions of healthy state) but o�en 
failed to accurately predict the events of interest: disease occurrences. �is study highlights the usefulness of the 
case-control design for ecological questions using infrequent occurrence data. In this study, we identi�ed biologi-
cal, environmental, physical, and anthropogenic drivers that promote low levels of coral disease and explored how 
those factors di�er across host-disease pairs. �ese results provide insight into factors that should be explored 
further through experimental and observational studies and that may be favorable for intervention strategies.

Among the suite of ecological risk factors that we included in our study, we found that disease risk was con-
sistently higher for larger colonies across host-disease pairs. A positive size-disease relationship has been found 
in other coral disease studies15,33,34 and could be associated with exposure area or duration of exposure to poten-
tial disease causing agents (biotic or abiotic), or immune function, which is hypothesized to decline with age35. 
Further, a positive relationship between disease prevalence and coral cover has been well established for infectious 
diseases like tissue loss13,28,30,31. However, because the relationship between coral size-frequency distributions and 
coral cover is not straightforward36,37, it is unknown whether disease prevalence is higher in locations with high 
coral cover because of many small colonies (many potential susceptible hosts and/or reservoir species) or fewer 
large colonies (higher susceptibility of certain individuals). Our results provide evidence that highly susceptible 
corals (i.e., large colonies) drive the positive relationship between disease prevalence and coral cover. Although 
we found a positive linear relationship between disease risk and size within the range of 0 to 300 cm, it is possible 
that disease risk saturates or is reduced above some species-speci�c size threshold (Fig. 2). Regardless of what the 
functional form of this relationship looks like across the entire range of colony sizes, the consistent importance of 
size across di�erent host-disease pairs (e�ects ranging from 32 to 137% increase in disease risk) provides biolog-
ical evidence for evaluating disease risk at the colony scale (also supported by simulation models38) rather than 
evaluating prevalence at the transect or site scale as is currently common practice. Such probabilistic models of 
colony health state could easily be integrated into a hierarchical framework to predict local or regional disease 
prevalence.
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In addition to colony size, our �ndings suggest that shallow reefs with low herbivorous �sh abundance, limited 
water motion, and located adjacent to watersheds with high fertilizer and pesticide runo� promote low levels of 
chronic disease year-round. We found that growth anomalies were more common in reefs with lower herbivorous 
�sh abundance, potentially indicating indirect relationships with macroalgal cover that can harbor pathogens39 
or with more degraded reefs with high �shing intensity and associated impacts. Further, we found that growth 
anomalies were more likely to occur in shallow water, in reefs with low host density (likely because as colony 
sizes increase, host density decreases), and inside bays and other areas with low wave exposure (possibly because 
of longer residence times and associated concentration of pollutants). Growth anomalies in P. compressa and P. 
lobata were more common in locations with elevated levels of pesticide and fertilizer runo� from agriculture and 
golf courses (increasing disease risk by 23–80%, Table 4) and support previous research associating disease risk 
to nutrient enrichment, human populations, and poor water quality17,40,41. �is research indicates that reducing 
coastal development and high-intensity land use activities such as farming and golf adjacent to semi-protected 
reefs would be an e�ective management approach to break transmission cycles of growth anomalies.

For tissue loss, we found that wave exposure, stream exposure, depth, and thermal stress were commonly 
associated with disease risk during interepidemic periods, but their precise e�ects sometimes di�ered across 
hosts. Tissue loss was consistently more common in shallow reefs with low thermal stress exposure (Table 5). �e 
strong negative association with anomalously warm thermal stress in the summer for P. compressa, P. lobata, and 
Porites spp. models appears contrary to several previous studies on tissue loss in other regions28,30,31,42. Although 
there are no documented outbreaks of Porites tissue loss in Hawaii, this result may shed some light on why sev-
eral tissue loss outbreaks in Montipora in Hawaii occurred in the winter19,33 compared with other regions where 
outbreaks occurred in the summer30,31,43. �is result may suggest low temperature stress restricts the tissue loss 
pathogens’ growth rate, enabling the pathogen(s) to persist during interepidemic periods without causing an 
outbreak. Alternatively, disease risk could be highest in winter months because of a time lag between exposure to 
heat stress and increased host susceptibility to disease. We found that wave exposure and stream exposure were 
important risk factors for tissue loss as well, but the direction and magnitude of these relationships varied by 
host. For example, wave exposure was negatively associated with tissue loss in M. capitata, Montipora spp., and P. 
evermanni but positively associated with tissue loss in P. lobata and Porites spp. (Table 5). Similarly, stream expo-
sure was negatively associated with M. capitata and Montipora spp. but positively associated with P. compressa. 

Risk factor Ecological category Characteristic Description
Minimum 
value

Maximum 
value Source

Colony size Biological Site Maximum diameter or average size of size class (cm). <1 300 Survey dataA

Host density Biological Site Number of colonies divided by survey area (m−2). 0.02 9.49 Survey dataA

Herbivore �sh 
abundance

Biological Site
Pooled estimate of herbivorous �sh calculated between 2012 and 2013 
(g m−2).

0.06 0.42 67

Chlorophyll-a Environmental Chronic
Maximum anomaly calculated within a 30-meter boundary of the 
coast between 2003 and 2013 from NASA MODIS satellite imagery 
(mg m−3).

0.0004 0.3566 68,B

Irradiance Environmental Chronic
Photosynthetically active radiation (PAR) average annual frequency of 
anomalies calculated within a 30-meter boundary of the coast between 
2003 and 2013 from NASA MODIS satellite imagery (mol m−2 day−1).

0.13 0.27 68,B

Hot Snap Environmental Acute
Magnitude and duration of heat stress above a summertime threshold 
at 5 km resolution (°C-week).

0 3.6 NOAA CRWC

Rainfall Environmental Acute

Monthly rainfall anomaly interpolated from rain gauge data, expert 
knowledge, radar observations, meteorological model simulations and 
vegetation data. Anomalies were calculated as the rainfall variation in 
any given month and year from the 1978–2007 mean.

0.04 4.35 69,D

Depth Physical Site Distance below sea surface (m). 0.6 26.0 Survey dataA

Embayment Physical Site
Binary variable indicating whether survey site is outside or inside of 
semi-enclosed habitat.

0 1
Calculated in this 
study

Stream exposure Physical Acute
Inverse planar distance between survey site and stream mouth in 
nearest watershed (m−1).

2.72 3.33
Calculated in this 
study

Wave energy Physical Acute
Average annual maximum anomaly of wave energy �ux calculated 
between 2000 and 2013 (kW m−1).

0.08 285.74 68,B

Wave energy Physical Chronic
Average annual maximum monthly mean of wave energy �ux 
calculated between 2000 and 2013 (kW m−1).

0.04 103.48 68,B

Agricultural and 
golf course runo�

Anthropogenic Chronic

Proxy for fertilizer and chemicals like pesticides and herbicides 
discharge from agricultural land and golf courses calculated as area of 
cultivated land and golf course per watershed (km2) with a distance-
decay function.

0.00 0.53 70

Human 
population size

Anthropogenic Chornic Number of people living within 1 km of coastline nearest to survey site. 0 4425
NASA SEDAC 
GPW v4E

Table 3. Characterization of biological, environmental, physical, and anthropogenic risk factors (predictor 
variables) used in candidate models. Public datasets: AHawai’i Coral Disease database: https://www.
sciencedirect.com/science/article/pii/S2352340916304607. BOcean Tipping Points: http://www.pacioos.hawaii.
edu/projects/oceantippingpoints/#data. CNOAA Coral Reef Watch CoralTemp: https://coralreefwatch.noaa.
gov/satellite/coraltemp.php. DRainfall Atlas of Hawai’i: http://rainfall.geography.hawaii.edu/. NASA SEDAC 
Gridded Population of the world v4: http://sedac.ciesin.columbia.edu/data/collection/gpw-v4.

https://doi.org/10.1038/s41598-020-59688-8
https://www.sciencedirect.com/science/article/pii/S2352340916304607
https://www.sciencedirect.com/science/article/pii/S2352340916304607
http://www.pacioos.hawaii.edu/projects/oceantippingpoints/#data
http://www.pacioos.hawaii.edu/projects/oceantippingpoints/#data
https://coralreefwatch.noaa.gov/satellite/coraltemp.php
https://coralreefwatch.noaa.gov/satellite/coraltemp.php
http://rainfall.geography.hawaii.edu/
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4


6SCIENTIFIC REPORTS |         (2020) 10:2831  | https://doi.org/10.1038/s41598-020-59688-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

100

75

50

25

0

100

75

50

25

0

Accuracy True positive rate

Case-control design

Accuracy True positive rate

No case-control design

100

75

50

25

0

100

75

50

25

0

C
o

rre
c
tly

 p
re

d
ic

te
d

 d
is

e
a

s
e

 o
b

s
e

rv
a

tio
n

s
 (%

)

C
o

rr
e

c
tl
y
 p

re
d

ic
te

d
 h

e
a

lt
h

y
 a

n
d

 d
is

e
a

s
e

 o
b

s
e

rv
a

ti
o

n
s
 (

%
)

Growth anomalies Growth anomaliesTissue loss Tissue loss

M. capitata
M. patula
Montipora spp
P. compressa
P. evermmani
P. lobata
Porites spp

Figure 1. Logistic regression with case-control design has higher disease detection rates compared with logistic 
regression without case-control design. Boxplots of accuracy (percent correctly predicted healthy and disease 
observations) and true positive rates (percent correctly predicted disease observations) across 500 randomly 
sampled test datasets (see Methods) for each host-disease pair included in this study. �e top panel shows 
results for logistic regression models without the case-control design and the bottom panel shows results for 
logistic regression models with the case-control design. �e le� side of the panels show accuracy results and 
the right side of the panels show true positive rates. Boxplots are grouped by disease type and colored by host; 
models at the genus level include observations from all hosts species within that genus (e.g., Montipora spp. 
includes all observations from Montipora capitata and Montipora patula). We created this �gure in R statistical 
so�ware v 3.5.1 (https://www.r-project.org/)56.
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Figure 2. Larger colonies increase disease risk for most host-disease pairs. Lines indicate the expected 
probability of disease occurrence given colony size for (a) growth anomalies and (b) tissue loss. M. capitata is 
not shown in b because colony size is not a risk factor in the M. capitata tissue loss model (Table 5). Lines are 
colored by host species. Using the same color scheme, average colony size is indicated along the horizontal axis 
(Montipora capitata = 16 cm; Montipora patula = 19 cm; Porites compressa = 23 cm; Porites evermanni = 22 cm; 
Porites lobata = 15 cm). Figure. S1 shows individual plots for each host-disease pair (excluding genus models 
for visibility) with data points overlaid for one randomly sampled case-control training dataset. We created this 
�gure in R statistical so�ware v 3.5.1 (https://www.r-project.org/)56.
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We did not �nd evidence that these opposing patterns were driven by di�erences in habitat associations across 
hosts (Figs. S2–3). One hypothesis that would explain this result is that water movement may be important for 
transmitting pathogens for some hosts (e.g., P. lobata and Porites spp.) but more stagnant water where pathogens 
can proliferate may be more likely to promote disease in other hosts (e.g., M. capitata, Montipora spp., and P. ever-
manni). Alternatively, the association with water movement may be related to water di�usion processes as colo-
nies exposed to high water �ow minimize the di�usion boundary layer44 and could therefore limit exposure to 
pathogens in areas with high water movement and vice versa. Colony morphology can also a�ect water di�usion 
and pathogen exposure as branching morphologies (common in Montipora spp.) are more likely to retain water 
within their branches compared with massive colonies that tend to have smooth surfaces (common in Porites 
spp.). Similarly, stream exposure and potentially associated changes in salinity, sedimentation, and/or land-based 
pollutant runo� may promote disease occurrence in some hosts (e.g., P. compressa) and decrease disease risk in 
other hosts (e.g., M. capitata and Montipora spp.).

�e variation in risk factors across host-disease pairs suggests that there may be di�erent pathogens causing 
the same gross lesions in di�erent hosts or that the same disease may arise in di�erent hosts under di�erent eco-
logical conditions. Corals have a limited repertoire of responses to insult; therefore, disease lesions that are grossly 
identical, such as tissue loss, could be caused by di�erent pathogens of the same general type (e.g., bacterial patho-
gens), which has been suggested in other studies45. Recent research supports this hypothesis as multiple bacterial 
pathogens have been identi�ed for tissue loss in Montipora capitata in Hawaii46. Alternatively, the same causative 
agent(s) could be triggered to infect di�erent species under di�erent conditions. Our understanding of coral 
disease ecology is still limited but our results suggest that there may be speci�c ecological conditions that support 
or restrict the spread of speci�c diseases in each host. �us, researchers should strongly consider how combining 
data for multiple species to assess disease risk may impact our understanding of factors that promote transmis-
sion. For example, combining species into a single model may be reasonable if the researchers acknowledge that 
the models will perform best for reefs that re�ect the composition of species used in model development.

�is study demonstrates the usefulness of the case-control design to study rare events in space and time 
using existing datasets with low probability of occurrence, but also provides a path forward for more e�ciently 
collecting new data for future investigations. For example, for studies speci�cally focused on coral disease, we 
recommend complementing more traditional ecological assessments that characterize overall reef health, such 
as belt transect surveys and rugosity measurements, with survey e�orts that maximize information on disease 

Host Intercept Size Density Fish
Hot 
Snap PAR Depth Bay

Wave 
exposure

Ag & 
Golf

Human 
pop.

M. capitata 1.92 5.46 −0.60

M. patula 0.49 2.40 −0.59

Montipora spp. 1.00 3.65 −0.50 −0.47

P. compressa −0.82 1.22 −1.64 −0.26 −5.54 0.65 3.07 −0.80 3.18 −0.42

P. evermanni 4.05 2.39 −1.93

P. lobata −0.58 1.34 −0.19 −6.99 −0.62 0.93

Porites spp. 0.56 1.43 0.13 −0.24 −6.31 −0.50

Table 4. All hypothesized risk factors were associated with at least one host-disease pair for growth anomalies. 
Average coe�cient values based on model runs across 500 case-control datasets for all host-disease pairs. 
Coe�cient values indicate the magnitude and direction for the expected change in disease risk given a one-unit 
change in the risk factor, holding all other risk factors at their average values. Since the slope of the logistic curve 
is steepest at its center, coe�cient values can be divided by 4 (“divide by 4 rule”) to reasonably approximate 
the upper bound of the predicted di�erence in disease risk corresponding to a one-unit di�erence in the risk 
factor71.

Host Intercept Size Density Fish Hot Snap Depth
Stream 
exposure

Wave 
exposure

Human 
pop.

M. capitata −0.18 −1.96 −1.48 −1.77 −1.40

M. patula 0.69 2.53

Montipora spp. 0.60 2.71 −1.28 −0.77 −0.76

P. compressa −2.37 1.45 −3.49 0.43

P. evermanni 6.84 4.07 −1.52 −1.34 −2.01

P. lobata −8.45 1.32 −0.39 −1.42 −0.23 0.22 −0.25

Porites spp. −3.69 1.42 −0.29 −4.71 −0.23 0.16 −0.27

Table 5. Tissue loss associated with di�erent biological, environmental, physical, and anthropogenic risk 
factors across host-disease pairs. Average coe�cient values based on model runs across 500 case-control 
datasets for all host-disease pairs. Coe�cient values indicate the magnitude and direction for the expected 
change in disease risk given a one-unit change in the risk factor, holding all other risk factors at their average 
values. Since the slope of the logistic curve is steepest at its center, coe�cient values can be divided by 4 (“divide 
by 4 rule”) to reasonably approximate the upper bound of the predicted di�erence in disease risk corresponding 
to a unit di�erence in the risk factor71.
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observations. Using experimental designs to collect data geared towards rare and/or clustered populations would 
allow for targeted investigations into the underlying mechanisms that drive disease processes. �erefore, for coral 
diseases, collecting more extensive information such as size, morphology, geographic location, clustering with 
nearby diseased colonies, severity of infection, area of a�ected tissue, etc. allows the use of modeling techniques 
to better explore the ecology of speci�c diseases. Such survey designs and associated analyses have already been 
developed and widely used in other �elds such as epidemiology, plant pathology, and conservation biology (e.g., 
case-control design47, cluster sampling48,49, line transect surveys50) and could be adapted for coral disease and 
other ecological studies. Rare occurrence or abundance data is very common in ecology and approaching eco-
logical questions with this statistical design in mind will allow ecologists to more rigorously quantify ecological 
relationships for infrequent disturbances.

Methods
Coral health observations. We used coral health observations from the Hawaii Coral Disease Database 
(HICORDIS)51 and additional surveys collected by the authors following the same methodologies used in 
HICORDIS (e.g., 10 × 1 m2 belt transects surveys) resulting in 362,366 coral health observations collected 
between 2004 and 2015. We separated the data by host (species or genus of interest) and disease type (growth 
anomalies or tissue loss) and used only observations with available data for all hypothesized risk factors (predic-
tor variables). �e �nal dataset excluded observations from the Northwestern Hawaiian Islands because several 
hypothesized risk factors were only available for the Main Hawaiian Islands. �e number of disease and healthy 
colony observations we used for each host-disease pair are shown in Table 1.

Ecological disease drivers. For each coral health observation, we collected biological, environmental, 
physical, and anthropogenic risk factors corresponding to the time and location of each observation (Tables 2 
and 3). We selected risk factors based on relationships described in previous studies and based on personal obser-
vations (Table 2). A�er removing variables that were highly colinear (see Testing for multicollinearity below), 
our hypothesized risk factors were: (i) biological variables of colony size, host density, and herbivore �sh abun-
dance; (ii) environmental variables of anomalous temperature (Hot Snap), rainfall, chlorophyll-a (proxy for water 
quality/eutrophication), and irradiance; (iii) physical variables of depth, outside/inside of an embayment, acute 
and chronic wave exposure, and stream exposure (proxies for potential terrestrial runo� and retention); and 
(iv) anthropogenic variables of human population size and agriculture and golf course runo�. Variables re�ect 
short-term (acute, pulse) or long-term (chronic, press) interactions or site characteristics (Table 3).

For each risk factor, we used survey data where recorded, or compiled externally sourced data from the 
vicinity (and within the watershed) of where the survey was conducted. We used measurements of colony size 
and depth that were recorded in the coral health surveys and calculated host density from the survey data. We 
extracted all other risk factors by survey location and by time (where applicable; i.e., acute interactions) using 
ArcGIS v 10.4. Measurements of rainfall were land-based, using gridded values from the land location nearest 
to the survey site that contained data within the appropriate watershed and month; human population size was 
similarly determined. For chlorophyll-a, wave exposure, irradiance, Hot Snaps, and herbivore �sh abundance, 
we used data from the pixel containing the survey location when possible or else the nearest pixel with available 
data over the appropriate time period. However, we used herbivore �sh abundance data compiled from only one 
year (2012–2013). We expect this data to adequately represent the spatial structure of herbivore �sh abundance 
across the archipelago. Further, we expect year to year variation within the study period to be minimal, as the 
major drivers of herbivore �sh dynamics – major disturbance events52,53 and protection status54 – were minimized 
during the study period: there were no changes to marine protection status across the study region and only one 
major disturbance event (mass coral bleaching in 2015) at the end of the study period. We calculated agriculture 
and golf course runo� for each ocean pixel as the value from the nearest watershed decayed with distance from 
shore; therefore, we used the same technique as described above acquiring data from the pixel containing the 
survey location when possible or else the nearest pixel with available data. We manually determined whether a 
site was outside or inside of an embayment by visualizing the survey site locations relative to coastal boundaries 
downloaded from the State of Hawaii O�ce of Planning. We calculated stream exposure as the inverse planar dis-
tance between the site location and the nearest stream mouth within a given watershed. Higher stream exposure 
values indicate sites closer to stream mouths. For sites located in watersheds without streams, we set the stream 
exposure value to zero.

We used a different combination of risk factors for growth anomalies and tissue loss models because of 
hypothesized di�erences in their modes of transmission and etiologies. We included ten hypothesized risk factors 
in the growth anomalies models and eleven hypothesized risk factors in the tissue loss models; seven risk factors 
were common to both diseases (Table 2).

Testing for multicollinearity. To test for multicollinearity among risk factors, we calculated the variance 
in�ation factor. �e variance in�ation factor (VIF) is a ratio that quanti�es the amount of multicollinearity among 
covariates in a regression model by dividing the variance of a model with multiple terms by the variance of a 
model with a single term. A VIF equal to one indicates a variable is not correlated with other variables, a value 
between one and �ve indicates moderate correlation, and a value above �ve indicates high correlation. We initially 
hypothesized that, in addition to the risk factors listed in Table 2, total coral density, wintertime thermal stress 
(Cold Snaps, Winter Condition), and coastal development should be included as risk factors for both growth 
anomalies and tissue loss models, and that an additional metric of urban runo� should be included in the growth 
anomalies model. However, these risk factors had VIF values greater than �ve indicating strong multicollinearity 
with other covariates (Fig. S4), so we excluded these risk factors from our candidate models.
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Logistic regression without the case-control design. We investigated the ecological drivers of each 
host-disease pair using logistic regression with all available coral health data (Tables 1–3) and assessed model 
predictive accuracies and true positive rates based on withheld portions of data (see below). �e response variable 
in our logistic regression models described the colony observation health state as 0 for healthy and 1 for diseased. 
We included the hypothesized risk factors listed in Table 2 (combination dependent on disease type) for the full 
models with island and month as random e�ects and conducted backward model selection to �nd the best �t 
model based on the lowest Akaike Information Criterion (AIC). We included island and month as random e�ects 
to make the model results as comparable as possible with the case-control model results, as the case-control 
datasets were sub-sampled accounting for island and survey month. We conducted this analysis using the lme4 
package55 in R statistical so�ware v 3.5.156. We used 80% of the data for model development and model selection, 
and the remaining 20% of data to quantify model predictive accuracy (proportion of total colony observations 
correctly identi�ed as healthy and diseased) and true positive rate (proportion of disease colony observations 
correctly identi�ed as diseased). We split the data using the sample function in base R, which selects data in 
proportion to the raw data (e.g., if the full data has a zero-to-one ratio of 90%-to-10%, then the sample will also 
contain 90% zeros and 10% ones).

To ensure that the randomly sampled training and testing data did not bias our results, we repeated our model 
development and selection and accuracy assessments 500 times. �erefore, for each host-disease pair, we split the 
full data into 500 paired training and testing datasets, conducted model selection within each training dataset, 
and then used the most frequently selected best �t model (Table S1) to predict health state on the 500 withheld 
test datasets. We compared predicted health state with observed health state to calculate accuracy and true posi-
tive rates within each withheld test dataset and report mean values across all 500 withheld test datasets.

Logistic regression with the case-control design. For the logistic regression analysis with the 
case-control design, we followed the approach described above except instead of creating 500 randomly 
selected training and testing datasets from all available coral health data for each host-disease pair, we created 
500 case-control datasets each with matching numbers of disease and healthy observations and randomly split 
those case-control datasets into paired training data and testing data (80% training/20% testing). To create each 
case-control dataset, we selected all disease colony observations for a given host-disease pair, and for each dis-
ease colony observation we randomly selected a healthy colony observation of the same host type (by species or 
genus) surveyed in the same month (but not necessarily year) and from the same island as the disease colony 
observation. We repeated this process to create 500 case-control datasets per host-disease pair that all had the 
same disease observations but varied in the paired healthy colony observations. We followed the same process of 
model development, selection, and testing as described above. Results for the frequency of model selection for the 
best �t model are available in Table S1.

Received: 11 October 2019; Accepted: 20 December 2019;

Published: xx xx xxxx

References
 1. Hudson, P. & Greenman, J. Competition mediated by parasites: biological and theoretical progress. Trends Ecol. Evol. 13, 387–390 

(1998).
 2. Kohler, S. L. & Hoiland, W. K. Population regulation in an aquatic insect: the role of disease. Ecology 82, 2294–2305 (2001).
 3. La�erty, K. D. & Morris, A. K. Altered behavior of parasitized killi�sh increases susceptibility to predation by bird �nal hosts. 

Ecology 77, 1390–1397 (1996).
 4. Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. Plos Biol. 7, e1000210 

(2009).
 5. Brunner, F. S., Anaya-Rojas, J. M., Matthews, B. & Eizaguirre, C. Experimental evidence that parasites drive eco-evolutionary 

feedbacks. Proc. Natl. Acad. Sci. USA 114, 3678–3683 (2017).
 6. Behringer, D. C., Butler, M. J. & Shields, J. D. Avoidance of disease by social lobsters. Nature 441, 421–421 (2006).
 7. Woodworth, B. L. et al. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian 

malaria. Proc. Natl. Acad. Sci. USA 102, 1531–6 (2005).
 8. Aeby, G. S. Behavioral and ecological relationships of a parasite and its hosts within a coral reef system. Paci�c Sci. 45, 263–269 

(1991).
 9. King, G. & Zeng, L. Logistic Regression in Rare Events Data. Polit. Anal. 9, 137–163 (2001).
 10. Lewallen, S. & Courtright, P. Epidemiology in practice: case-control studies. Community eye Heal. 11, 57–8 (1998).
 11. Sutherland, K. P., Porter, J. W. & Torres, C. Disease and immunity in Caribbean and Indo-Paci�c zooxanthellate corals. Mar. Ecol. 

Prog. Ser. 266, 273–302 (2004).
 12. Stimson, J. Ecological characterization of coral growth anomalies on Porites compressa in Hawai’i. Coral Reefs 30, 133–142 (2010).
 13. Ruiz-Moreno, D. et al. Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis. Aquat. 

Organ. 100, 249–261 (2012).
 14. Palmer, C. V. & Baird, A. H. Coral tumor-like growth anomalies induce an immune response and reduce fecundity. Dis. Aquat. 

Organ. 130, 77–81 (2018).
 15. Couch, C. S. et al. Spatial and temporal patterns of coral health and disease along leeward Hawai’i Island. Coral Reefs 33, 693–704 

(2014).
 16. Kaczmarsky, L. & Richardson, L. L. Do elevated nutrients and organic carbon on Philippine reefs increase the prevalence of coral 

disease? Coral Reefs 30, 253–257 (2011).
 17. Aeby, G. S. et al. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human 

population size across the Indo-Paci�c. Plos One 6, e16887 (2011).
 18. Williams, G. J., Aeby, G. S., Cowie, R. O. M. & Davy, S. K. Predictive modeling of coral disease distribution within a reef system. PLoS 

One 5, e9264 (2010).
 19. Aeby, G. S. et al. Emerging coral diseases in Kaneohe Bay, Oahu, Hawaii (USA): two major disease outbreaks of acute Montipora 

white syndrome. Dis. Aquat. Organ. 119, 189–198 (2016).
 20. Brodnicke, O. B. et al. Unravelling the links between heat stress, bleaching and disease: fate of tabular corals following a combined 

disease and bleaching event. Coral Reefs 38, (2019).

https://doi.org/10.1038/s41598-020-59688-8


1 0SCIENTIFIC REPORTS |         (2020) 10:2831  | https://doi.org/10.1038/s41598-020-59688-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

 21. Hobbs, J.-P. A., Frisch, A. J., Newman, S. J. & Wake�eld, C. B. Selective Impact of Disease on Coral Communities: Outbreak of White 
Syndrome Causes Signi�cant Total Mortality of Acropora Plate Corals. PLoS One 10, e0132528 (2015).

 22. Precht, W. F., Gintert, B. E., Robbart, M. L., Fura, R. & van Woesik, R. Unprecedented Disease-Related Coral Mortality in 
Southeastern Florida. Sci. Rep. 6, 31374 (2016).

 23. Walton, C. J., Hayes, N. K. & Gilliam, D. S. Impacts of a Regional, Multi-Year, Multi-Species Coral Disease Outbreak in Southeast 
Florida. Front. Mar. Sci. 5, (2018).

 24. Sussman, M., Willis, B. L., Victor, S. & Bourne, D. G. Coral pathogens identi�ed for White Syndrome (WS) epizootics in the Indo-
Paci�c. PLoS One 3, e2393 (2008).

 25. Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. 
Evol. Microbiol. 53, 309–315 (2003).

 26. Ushijima, B. et al. Vibrio coralliilyticus Strain OCN008 is an etiological agent of acute Montipora White Syndrome. Appl. Environ. 
Microbiol. 80, (2014).

 27. Ushijima, B. et al. Mutation of the toxR or mshA genes from Vibrio coralliilyticus strain OCN014 reduces infection of the coral 
Acropora cytherea. Environ. Microbiol. 18, 4055–4067 (2016).

 28. Bruno, J. F. et al. �ermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).
 29. Caldwell, J. M., Heron, S. F., Eakin, C. M. & Donahue, M. J. Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian 

Archipelago. Remote Sens. 8, 93 (2016).
 30. Heron, S. F. et al. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals. PLoS 

One 5, e12210 (2010).
 31. Maynard, J. A. et al. Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef. Coral Reefs 30, 485–495 (2011).
 32. Randall, C. J., Jordan-Garza, A. G., Muller, E. M. & Van Woesik, R. Relationships between the history of thermal stress and the 

relative risk of diseases of Caribbean corals. Ecology 95, 1981–1994 (2014).
 33. Caldwell, J. M., Donahue, M. J. & Harvell, C. D. Host size and proximity to diseased neighbours drive the spread of a coral disease 

outbreak in Hawai’i. Proc. R. Soc. B 285, (2018).
 34. Jolles, A. E., Sullivan, P., Alker, A. P. & Harvell, C. D. Disease Transmission of Aspergillosis in Sea Fans: Inferring Process from 

Spatial Pattern. Ecology 83, 2373–2378 (2002).
 35. Bythell, J. C., Brown, B. E. & Kirkwood, T. B. L. Do reef corals age? Biol. Rev. 93, 1192–1202 (2018).
 36. Bak, R. & Meesters, E. Coral population structure:the hidden information of colony size-frequency distributions. Mar. Ecol. Prog. 

Ser. 162, 301–306 (1998).
 37. Meesters, E. H. et al. Colony size-frequency distributions of scleractinian coral populations: spatial and interspeci�c variation. 

Marine Ecology Progress Series 209, 43–54 (2001).
 38. Jordán-Dahlgren, E., Jordán-Garza, A. G. & Rodríguez-Martínez, R. E. Coral disease prevalence estimation and sampling design. 

PeerJ 6, e6006 (2018).
 39. Nugues, M. M., Smith, G. W., Hooidonk, R. J., Seabra, M. I. & Bak, R. P. M. Algal contact as a trigger for coral disease. Ecol. Lett. 7, 

919–923 (2004).
 40. Kaczmarsky, L. & Richardson, L. L. Transmission of growth anomalies between Indo-Paci�c Porites corals. J. Invertebr. Pathol. 94, 

218–221 (2007).
 41. Yoshioka, R. M., Kim, C. J. S. S., Tracy, A. M., Most, R. & Harvell, C. D. Linking sewage pollution and water quality to spatial patterns 

of Porites lobata growth anomalies in Puako, Hawaii. Mar. Pollut. Bull. 104, 313–321 (2016).
 42. Randall, C. J. & Van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Chang. 

5, 375–379 (2015).
 43. Jones, R., Bowyer, J., Hoegh-Guldberg, O. & Blackall, L. L. Dynamics of a temperature-related coral disease outbreak. Mar. Ecol. 

Prog. Ser. 281, 63–77 (2004).
 44. Lesser, M. P., Weis, V. M., Patterson, M. R. & Jokiel, P. L. Effects of morphology and water motion on carbon delivery and 

productivity in the reef coral, Pocillopora damicornis (Linnaeus): Di�usion barriers, inorganic carbon limitation, and biochemical 
plasticity. J. Exp. Mar. Bio. Ecol. 178, 153–179 (1994).

 45. Work, T. M., Russell, R. & Aeby, G. S. S. Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with 
multiple host responses and potential causes. Proc. R. Soc. B. Biol. Sci. 279, 4334–4341 (2012).

 46. Beurmann, S. et al. Pseudoalteromonas piratica strain OCN003 is a coral pathogen that causes a switch from chronic to acute 
Montipora white syndrome in Montipora capitata. PLoS One 12, e0188319 (2017).

 47. Breslow, N. E. Statistics in Epidemiology: �e Case-Control Study. J. Am. Stat. Assoc. 91, 14–28 (1996).
 48. Venette, R. C., Moon, R. D. & Hutchison, W. D. Strategies and Statistics of Sampling for Rare Individuals. Annu. Rev. Entomol. 47, 

143–174 (2002).
 49. Balmaseda, A. et al. Index Cluster Study of Dengue Virus Infection in Nicaragua. Am. J. Trop. Med. Hyg. 83, 683–689 (2010).
 50. Burnham, K., Anderson, D. & Laake, J. Estimation of Density from Line Transect Sampling of Biological Populations. Wildl. Monogr. 

72, 3–202 (1980).
 51. Caldwell, J. M. et al. Hawaiʻi Coral Disease database (HICORDIS): species-speci�c coral health data from across the Hawaiian 

archipelago. Data in Brief 8, 1054–1058 (2016).
 52. Taylor, B. M. et al. Synchronous biological feedbacks in parrot�shes associated with pantropical coral bleaching. Glob. Chang. Biol. 

gcb.14909. https://doi.org/10.1111/gcb.14909 (2019).
 53. Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shi�s versus rebound 

potential in coral reefs. Nature 518, 94–97 (2015).
 54. Stockwell, B., Jadloc, C., Abesamis, R., Alcala, A. & Russ, G. Trophic and benthic responses to no-take marine reserve protection in 

the Philippines. Mar. Ecol. Prog. Ser. 389, 1–15 (2009).
 55. Douglas, B., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-E�ects Models Using lme4 | Bates | Journal of Statistical 

So�ware. J. Stat. So�w. 67, (2015).
 56. Team, R. C. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. (2018).
 57. Hobbs, J. & Frisch, A. Coral disease in the Indian Ocean: taxonomic susceptibility, spatial distribution and the role of host density 

on the prevalence of white syndrome. Dis. Aquat. Organ. 89, 1–8 (2010).
 58. McClanahan, T. R., Weil, E. & Maina, J. Strong relationship between coral bleaching and growth anomalies in massive Porites. Glob. 

Chang. Biol 15, 1804–1816 (2009).
 59. Aeby, G. S. et al. Patterns of Coral Disease across the Hawaiian Archipelago: Relating Disease to Environment. PLoS One 6, e20370 

(2011).
 60. Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science 359, 460–462 (2018).
 61. Raymundo, L. J., Halford, A. R., Maypa, A. P., Kerr, A. M. & Karl, D. M. Functionally diverse reef-�sh communities ameliorate coral 

disease.
 62. Garren, M., Smriga, S. & Azam, F. Gradients of coastal �sh farm e�uents and their e�ect on coral reef microbes. Environ. Microbiol 

10, 2299–2312 (2008).
 63. Lamb, J. B., Williamson, D. H., Russ, G. R. & Willis, B. L. Protected areas mitigate diseases of reef-building corals by reducing 

damage from �shing. Ecology 96, 150422141041004 (2015).
 64. Bruno, J. F. et al. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).

https://doi.org/10.1038/s41598-020-59688-8
https://doi.org/10.1111/gcb.14909


1 1SCIENTIFIC REPORTS |         (2020) 10:2831  | https://doi.org/10.1038/s41598-020-59688-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

 65. Sheridan, C., Baele, J. M., Kushmaro, A., Frejaville, Y. & Eeckhaut, I. Terrestrial runo� in�uences white syndrome prevalence in SW 
Madagascar. Mar. Environ. Res. 101, 44–51 (2014).

 66. Haapkylä, J., Seymour, A. S., Trebilco, J. & Smith, D. Coral disease prevalence and coral health in the Wakatobi Marine Park, south-
east Sulawesi, Indonesia. J. Mar. Biol. Assoc. UK 87, 403 (2007).

 67. Heenan, A. et al. Ecological Monitoring 2012-2013 - reef �shes and benthic habitats of the main Hawaiian Islands, American Samoa, 
and Paci�c Remote Island Areas, https://doi.org/10.13140/RG.2.1.4351.9122 (2014).

 68. Wedding, L. M. et al. Advancing the integration of spatial data to map human and natural drivers on coral reefs. PLoS One 13, 
e0189792 (2018).

 69. Frazier, A. G., Giambelluca, T. W., Diaz, H. F. & Needham, H. L. Comparison of geostatistical approaches to spatially interpolate 
monthyear rainfall for the Hawaiian Islands. Int. J. Climatol. 36, 1459–1470 (2016).

 70. Lecky, J. H. Ecosystem Vulnerability and Mapping Cumulative Impacts on Hawaiian Reefs, https://doi.org/10.13140/
RG.2.2.33194.52162 (University of Hawaii at Manoa, 2016).

 71. Gelman, A. & Hill, J. Data analysis using regression and hierarchical/multilevel models. (Cambridge, 2007).

Acknowledgements
We thank the Fore-C research team for valuable feedback on analyses and the following funding sources for this 
research: NASA Roses Ecological Forecasting grant NNX17AI21G (MJD, SFH, JMC), NASA Earth and Space 
Science Fellowship (JMC, MJD), and Stanford University Woods Institute for the Environment Environmental 
Ventures Program (JMC). �e scienti�c results and conclusions, as well as any views or opinions expressed 
herein, are those of the author and do not necessarily re�ect the views of NOAA or the Department of Commerce.

Author contributions
J.M.C., G.A. and M.J.D. designed experiments. J.M.C. and S.F.H. assembled data. J.M.C. conducted the analyses 
and wrote the manuscript. J.M.C., G.A., S.F.H. and M.J.D. interpreted results and edited the manuscript.

Competing interests
�e authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-59688-8.

Correspondence and requests for materials should be addressed to J.M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2020

https://doi.org/10.1038/s41598-020-59688-8
https://doi.org/10.13140/RG.2.1.4351.9122
https://doi.org/10.13140/RG.2.2.33194.52162
https://doi.org/10.13140/RG.2.2.33194.52162
https://doi.org/10.1038/s41598-020-59688-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Case-control design identifies ecological drivers of endemic coral diseases
	Results
	Comparison between statistical approaches. 
	Ecological risk factors of different host-disease pairs. 

	Discussion
	Methods
	Coral health observations. 
	Ecological disease drivers. 
	Testing for multicollinearity. 
	Logistic regression without the case-control design. 
	Logistic regression with the case-control design. 

	Acknowledgements
	Figure 1 Logistic regression with case-control design has higher disease detection rates compared with logistic regression without case-control design.
	Figure 2 Larger colonies increase disease risk for most host-disease pairs.
	Table 1 Healthy observations far exceeded disease observations for all host-disease pairs.
	Table 2 Risk factors (predictor variables) included in candidate models for each disease type with the direction and mechanism(s) of hypothesized relationships.
	Table 3 Characterization of biological, environmental, physical, and anthropogenic risk factors (predictor variables) used in candidate models.
	Table 4 All hypothesized risk factors were associated with at least one host-disease pair for growth anomalies.
	Table 5 Tissue loss associated with different biological, environmental, physical, and anthropogenic risk factors across host-disease pairs.


