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Abstract. Good similarity functions are at the heart of effective case-based rea-
soning. However, the similarity functions that have been designed so far have
been mostly linear, weighted-sum in nature. In this paper, we explore how to
handle case retrieval when the case base is nonlinear in similarity measurement,
in which situation the linear similarity functions will result in the wrong solu-
tions. Our approach is to first transform the case base into a feature space using
kernel computation. We perform correlation analysis with maximum correlation
criterion(MCC) in the feature space to find the most important features through
which we construct a feature-space case base. We then solve the new case in the
feature space using the traditional similarity-based retrieval. We show that for
nonlinear case bases, our method results in a performance gain by a large mar-
gin. We show the theoretical foundation and empirical evaluation to support our
observations.
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1 Introduction

Case-based reasoning (CBR) is a problem-solving strategy that uses previous cases to
solve new problems ([5], [6]). Over the years, CBR has enjoyed tremendous success
as a technique for solving problems related to knowledge reuse. Several practical sys-
tems and applications [15] highlight the use of similarity based functions to find rele-
vant cases from case bases. In building a case base, important descriptors of the case,
which distinguish between the cases, are singled out and represented as features. The
features are typically combined in some numerical computation for similarity. When a
new problem is input, its features will be extracted to compute its similarity measure to
other cases in the case base. The cases with the most similar measure will be retrieved
for further analysis and adaptation ([5], [6]).

The quality of the retrieved case in a CBR system depends heavily on how to use
the features to compute similarity measures. Various methods have been proposed to
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compute the similarity ([2], [1], [6], [12], [13], [14]), where most approaches rely on
linear combination of features to perform this function. However, when the nature of
the case base is nonlinear, where similar cases cannot be found by a linear combination
of the features, such a method will fail to deliver the most relevant cases. In this paper,
we present a solution to solving this problem.

As an example, suppose that in a problem domain there are N different features.
If the similarity in the domain is based on a high-order polynomial function of the
features’ values, then the similarity of the features cannot be explained by a simple
weighted sum of the input features alone. A real world example of this nature is when
we define the similarity of two boxes by their weight. Suppose the input features given
are the boxes’ three dimensions x1, x2 and x3 and the density d of the material that
makes up the boxes. Then the computation of the boxes’ weight which defines the
similarity function is not a linear weighted sum of the three dimensions; instead, it
involves the multiplication of the four features x1, x2 ,x3 and d.

One can argue that in the above example, one can input the nonlinear features such
as x1 ∗ x2 ∗ x3 directly as part of an input feature, but we cannot expect the designer
of case bases to have this insight for every domain that he encounters. We would rather
have the system find out these nonlinear features directly using an automatic method.
This issue is the focus of our paper.

In this paper, we present a kernel-based method by which we transform a case base
from the original space to a feature space with the kernel trick. For a nonlinear target
case base, we propose nonlinear feature-extraction methods with a Maximum Correla-
tion Criterion(MCC). With this criterion, one can find in feature space those features
that have the highest correlation to target solution. We call this method the Kernel Case
Correlation Analysis (KCCA). Our empirical results show that for many nonlinear do-
mains, our KCCA method outperforms the traditional linear similarity functions applied
in the original case space.

2 Transformation of a Case Base to Feature Case Space

In this paper, we focus on a dot-product formulation of the similarity computation.
Consider a given case base D = {(xi, yi), i = 1, . . . , M, xi ∈ R

N , yi ∈ R}, where R

is the real domain, xi is a vector of input attributes (features), and yi is the case-solution
which corresponds to a target variable. For generality, we assume that the target variable
is a continuous variable; discrete variables that are ordinal can also be converted to
continuous ones. Then a popular method for computing the similarity between two
cases is as follows: for an input problem −→c , the similarity between a case −→x in the case
base and the input case is computed as the S function:

S(−→c ,−→x ) =
−→w · (−→c −−→x )

|−→w |

where −→w is a weight vector. Then, the cases with the largest value of the above simi-
larity function are chosen as a candidate case. These cases are adapted to obtain a new
solution. In this paper, we consider a simplified situation where we choose a highest
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ranked case by the similarity function and use the target value of that case as a recom-
mended solution for the input case. This corresponds to using a 1-NN method for case
retrieval. Our work can be easily extended to k-NN computations. In cases where the
case solution is a compound structure, such as in the case of planning [3], our solution
corresponds to predicting a solution index for the corresponding target case.

Given a case base D, we now consider how to transform the cases to the feature
space. Our intuition is illustrated by the following example.

Consider a problem domain where the target z = x2 + 2y2, where x, y are the
attributes. In the original space (R2), we cannot find a direction which correlates well
with z, where the correlation coefficient is defined in [−1, 1]. Thus, if we use an 1-NN
in the original space, we are not going to get good result.

Now consider the case in a nonlinear space induced by a 2-degree polynomial kernel
[10]. The corresponding nonlinear map of the kernel is:

φ : ([x], [y]) �→ (
[x]2, [y]2, [x][y], [y][x]

)

With this kernel function, there exists u = [x]2 +2[y]2, which is a linear transformation
in the nonlinear feature space. We can see that u completely correlates to the target z.
We can now solve the nonlinear case-base retrieval problem better by considering the
correlation in a nonlinear feature space.

We now consider the general case. Let φ(x) be the nonlinear function which maps
the input data into feature space, F . Then in F , we can define a matrix, in terms of a
dot product in that space i.e. K(i, j) = 〈φ(xi), φ(xj)〉. Typically we select the matrix
K based on our knowledge of the properties of the matrix rather than any knowledge of
the function φ(). The kernel trick allows us to define every operation in feature space in
terms of the kernel matrix rather than the nonlinear function, φ().

Much research has been done in machine learning on feature selection and fea-
ture transformation in nonlinear feature space; some examples are Principal Compo-
nent Analysis(PCA), single value decomposition(SVD)([4]), Kernel PCA, Sparse Ker-
nel Feature Analysis, Kernel Projection Pursuit ([9], [10], [11]). However, in case-based
reasoning, it is important to relate between the input and target variables and these
works do not address this issue directly. In order to draw this relationship, we turn to
Kernel Fisher Discriminant Analysis (KFDA)([7], [8]) which takes the class label of
target into consideration. However, KFDA restricts the target to be of discrete values.
In this paper, we present a novel nonlinear feature transformation method, by which
we consider the correlation of input features with a continuous valued target variable
in the feature space. Our questions are: first, for a given case base, how do we tell if a
transformation to a feature space will give better result? Second, how do we perform
feature selection in the feature space to result in maximal retrieval accuracy?

3 Kernel Correlation Analysis in the Feature Space

3.1 Review of Correlation Coefficient

In multivariate statistics, the correlation coefficient is used to measure the linear de-
pendency between two random variables. Suppose that Y1 and Y2 are random variables
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with means µ1 and µ2 and with standard deviations σ1 and σ2, the correlation coeffi-
cient between Y1 and Y2 is defined as

ρ =
∑M

1 (Y1 − µ1) (Y2 − µ2)
σ1σ2

(1)

It is easy to prove that the value of correlation coefficient ranges from −1 to 1. The
larger the absolute value of ρ, the greater the linear dependence between Y1 and Y2.
Positive values indicate that Y1 increases with Y2 ; negative values indicate that Y1

decreases with Y2 . A zero value indicates that there is no linear dependency between
Y1 and Y2. (see Fig.1.) If we normalize Y1 and Y2 as

Y ′
1 =

Y1 − µ1

σ1

and

Y ′
2 =

Y2 − µ2

σ2

and define two vectors as follows

x1 = (Y ′
11, Y

′
12, . . . , Y

′
1M ) (2)

and
x2 = (Y ′

21, Y
′
22, . . . , Y

′
2M ) (3)

then, x1, x2 are identity vectors (whose 2-norms are equal to one) and the correlation
coefficient is the inner product of x1, x2

ρ = 〈x1,x2〉

(see the right one of fig.1) On the left of the figure are two sets of scatter points(circles

Y2

Y1 +

+

-

-

x1

x2

Fig. 1. Illustration of the correlation coefficient.

and dots) corresponding to Y1 and Y2 as they center around the mean point (µ1, µ2).
If the scatter points mainly distribute in the 1-st and 3-rd quadrants(circle points), the
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correlation coefficient is positive; if the scatter points mainly distribute in the 2-nd and
4-th quadrants, the correlation coefficient is negative(dots). If the scatter points equally
distribute in the four quadrants, the correlation coefficient trends to zero. On the right of
the figure are two vectors x1 and x2 as defined in (2) and (3), where θ is their angle. The
correlation coefficient equals cos θ, where θ = 0 means that they positively correlate,
θ = π means that they completely negatively correlate, and θ = π/2 means that they
do not correlate.

3.2 Correlation Analysis on Input Case Base

We now propose a new feature extraction method similar to Fisher Linear Discriminant
Analysis (FDA), extended to handle continuous target values. First, we consider the
case in the input case space. Given an original case base with M cases:

D = {(xi, yi), i = 1, . . . , M, xi ∈ R
N , yi ∈ R}

We assume that the attributes are centered around the origin and yi is also normalized
(assuming continuous attributes):

M∑

i=1

xi = 0 ,

M∑

i=1

yi = 0 ,

M∑

i=1

y2
i = 1 (4)

The correlation coefficient between the j-th coordinate x(j) and y is defined as fol-
lows:

cor
(
x(j), y

)
=

∑M
i=1 x

(j)
i yi√

∑M
i=1

(
x

(j)
i

)2√∑M
i=1 y2

i

=
∑M

i=1 x
(j)
i yi√

∑M
i=1

(
x

(j)
i

)2

We now consider how to find features that best describe the correlation between at-
tributes and the target. For many problems, there does not exist an independent variable
whose correlation coefficient with the target variable is either 1 or −1. In such cases, we
wish to find a new direction w in which the correlation coefficient between the projec-
tion of all cases on this direction and the target variable is maximized (absolute value
maximizing). This new direction will serve as a new feature in the feature space and
be used for computing case similarities. Suppose that zw is the coordinate on the new
direction w when a case x is projected on w,

zw = 〈w,x〉 = wτx

Then the correlation coefficient of z and the target variable y is:

cor (zw, y) =
∑M

i=1 〈w,xi〉 yi√∑M
i=1 〈w,xi〉2

√∑M
i=1 y2

i

=
∑M

i=1 〈w, yixi〉√∑M
i=1 〈w,xi〉2

To increase the correlation between zw and y is equivalent to maximizing the abso-
lute value of the correlation coefficient between zw and y. We know the following:

arg max
w

|cor (zw, y)| = argmax
w

(cor (zw, y))2
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Thus, we can get

(cor (zw, y))2 = (∑ M
i=1 〈w,xi〉yi)2

∑
M
i=1 〈w,xi〉2

= 〈w,
∑ M

i=1 yixi〉2
∑

M
i=1 wτxixτ

i w

=
wτ(∑ M

i=1 yixi)(
∑ M

i=1 yixi)τ
w

wτ (∑ M
i=1 xixτ

i )w

If we define µ =
∑

yixi, C =
∑

xixτ
i , we can get a new Rayleigh coefficient:

J(w) =
(wτµ)2

wτCw

Finally, to obtain the important directions which mostly correlate with the target
variable and be used as the new feature, we compute argmax

w
J(w). We call this the

Maximum Correlation Criterion(abr. MCC).
To provide some intuition on how Correlation Analysis generates new feature, we

show an experiment with an artificial 3-d linear target-function case base in Fig. 2. In
this example, the input variables’ x, y-values are elliptically distributed as the righthand
figure shows. The target z-values are generated from z = x − 2y + ξ, where ξ is the
white noise with a standard deviation of 0.2. The lefthand figure shows the 3-d coor-
dinate of the case base. The right hand figure is the projection on the x − y plane and
illustrates the Principle Component Analysis (PCA) and Correlation Analysis for this
case base. PCA does not consider the target variable and simply returns the direction
of statistical maximum variance as the first eigenvector. Correlation Analysis, on the
other hand, returns a direction (1,−2) that correlate to the continuous target variable
the most.

X

3210-1-2-3

Y

3

2

1

0

-1

-2

-3

WCORR

WPCA

Z = x - 2y

Fig. 2. 2-dimension input and 1-dimension target artificial example, with 500 cases generated.
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3.3 Transformation of Case Base by KCCA

In a nonlinear target domain, it is often difficult to find one or several directions that cor-
relates well with the target variable. With the “kernel trick”, we now consider projecting
a case base into a nonlinear feature space. Then, we attempt to transpose the linear cor-
relation analysis to the nonlinear case base also with MCC. We call this method Kernel
Case Correlation Analysis (abr. KCCA). In the next subsection, we give some examples
of an artificial domain to demonstrate the merit of KCCA with 1-NN.

Given an original case base with M centered observations, the new case base can
be obtained in a feature space FS by:

Φ(D) = {(φ(xi), yi), i = 1, . . . , M, xi ∈ R
N , yi ∈ R}

where φ(x) and yi are centered on the origin:

M∑

i=1

φ(xi) = 0 ,

M∑

i=1

yi = 0 ,

M∑

i=1

y2
i = 1

We project our input case in the new direction w in the feature space. Like the Kernel
PCA [9], we assume that zw is a new coordinate:

w =
∑

i

αiφ(xi) and zw = 〈w, φ(x)〉

Then the correlation coefficient of zw and y is:

(cor(zw, y)) =
∑

i 〈w,yiφ(xi)〉√∑
i 〈w,φ(xi)〉2

=
∑

i

∑
j αj〈φ(xi),φ(xj)〉yi√∑

i (
∑

j αj〈φ(xj),φ(xi)〉)2

= ατ Ky√∑
i (ατ Ki)2

= ατ Ky√
ατ

∑
i (KiKτ

i )α
= ατ Ky√

ατ KKτ α

where K is the Kernel Matrix, and α = (α1, . . . , αM )τ .
Next, we consider the Rayleigh coefficient

J (α) = (cor (z, y))2 =
(ατKy)2

ατKKτα

where K is the kernel matrix and y = (y1, . . . , yM )τ . Let µ = Ky, M = µµτ , and
N = KKτ . Finally we obtain an expression for

J (α) =
(ατµ)2

ατNα
=

ατ
Mα

ατNα
(5)

[10] presents several equivalent ways of the similar problems of maximizing Equa-
tion (5). One method is to solve the generalized eigenvalue problem and then selecting
eigenvectors α with maximal eigenvalues λ, as follows:

Mα = λNα (6)
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Like Kernel PCA, we can compute the projection on the eigenvectors wk in the
feature space as follows:

(
wk, φ (x)

)
=

∑
αk

i (φ (xi) , φ (x)) =
∑

αk
i K (xi, x) (7)

Each eigenvector then corresponds to an attribute that we can select in the feature
space for defining the cases. Let < X1, X2, . . . , Xn > be the selected attributes in the
feature space, where the target value remains the same. We can then build a feature-
space case base for case based reasoning. In particular, our feature-space case-based
reasoning algorithm is shown as follows:

Algorithm Kernel Case Correlation Analysis(KCCA)
Step1. Transform the case base by solving the Eq.(6) and computing the

selected attributes for the case base with Eq.(7).
Step2. For an input case c, transform c to the feature space using the Eq.(7).

The weight is determined by the correlation coefficient between the
nonlinear feature and the target.

Step3. Compute the weighted similarity between c and every case in the Case Base
Step4. Select the case xi with the largest similarity value.
Step5. Return the target value y of xi as the solution.

The KCCA algorithm is based on an 1-NN computation in the feature space. How-
ever, it would be straightforward for us to extend it to a k-NN algorithm.

3.4 An Example for KCCA

To give some intuition on how KCCA generates new case base and the merit of KCCA,
we show in Fig. 3 an experiment on an artificial case base with two input dimensions
and one target dimension using a polynomial kernel of degree two.

In this example, we have 500 data randomly generated cases in the following way:
the input variable’s (x,y) values are distributed in a circle, and the target z-values are
generated from z = 100x2 + 200y2 + ξ, where ξ is the white noise with a standard
deviation 0.2. The top left figure shows the 3-d coordinate of the case base. The top
right one is the result of our KCCA on this case base. V1, V2 are the first two directions
with which the linear regression plane (the hexagonal plane) is a good fit for the actual
values. The table at the bottom shows the result of a segment with 6 cases in 500 cases
before and after applying KCCA. The case numbers are also marked in the top figures.
In this table, we can find that the overall MAE (Mean Absolute Error) of 1-NN with
KCCA is about 40% lower than the overall MAE of 1-NN with original case base.
Moreover, we can find that the nearest neighbors in the original case base of case no.
148 and case no. 348 are no. 204 and no. 149. The errors are respectively 108.03 and
50.289. In contrast, KCCA put these cases (symmetrical in original case base) together,
so that the errors reduce to 7.139.

4 Experimental Analysis

We claim that KCCA benefits from superior efficiency and performance in terms of
retrieval accuracy. We test our algorithms on a number of case bases. Our experiments
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Z = 100x 2  + 200y 2

z

300

-300

200

-200
-400

-600

z

Case No. x y
Target
Value

1-NN
Case No.

1-NN
Output

Absolute
Error V1 V2

1-NN
Case No.

1-NN
Output

Absolute
Error

80 1.246799 1.69054 723.6435 328 704.506 19.138 275.286 189.7407 328 704.506 19.138
148 1.339216 -1.92838 918.2133 204 810.183 108.03 341.6025 240.2621 348 911.074 7.139
149 -1.35932 1.975726 961.3629 348 911.074 50.289 365.5675 257.0333 148 918.213 43.15
204 1.225457 -1.81911 810.1831 148 918.213 108.03 261.0379 215.4208 80 723.644 86.539
328 1.274692 1.648425 704.506 80 723.644 19.138 274.8932 168.949 80 723.644 19.138
348 -1.35658 1.912332 911.0737 149 961.363 50.289 344.0176 230.023 148 918.213 7.139

27.901 16.75
� �

MAE: MAE: 

Original Case Base KCCA

� �

Fig. 3. A 2-dimension input and 1-dimension target artificial example.

are performed on an artificial case base and several publicly available case bases; in
this paper, the case bases are: Wine Recognition, Boston House, bank, travel and comp-
activ1. For each application domain, we validate our KCCA with linear regression and
1-NN respectively.

We first used an artificial domain where there are three attributes and a numerical
target value. This domain is designed to be a nonlinear one, and is aimed at showing the
validity of our KCCA algorithm to show that for nonlinear domains where the linear
regression technique cannot produce good results, our KCCA method can indeed make
a dramatic improvement. For each system the retrieval similarity criterion is based on a
cosine-similarity threshold; an input problem was successfully solved if the similarity
between the problem and the retrieved case exceeded the threshold.

4.1 Testing KCCA

Artificial Domain Experiments. We now conduct experiments to test the effect of
KCCA in several domains, to demonstrate how effective the new algorithm is. The first

1 The Wine and Boston domains are available in
http://www.ics.uci.edu/∼mlearn/MLSummary.html. The bank and comp-activ domains are
available in http://www.cs.utoronto.ca/∼delve/data/datasets.html. For the Travel domain, we
thank Lorraine McGinty and Barry Smyth for the data.
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experiment is concerned with evaluating the KCCA method in an artificially generated
domain(same domain of fig.3). The common feature of these problem domains is that
they all exhibit nonlinear nature in terms of feature descriptions. To demonstrate this
point, we first show, in Figures (4) and (5), the result of linear regression, 1-NN and 1-
NN with KCCA in these problem domains. “Actual” means the true value of the target
function. Thus, the closer a method is to the actual value, the better the method is. As
we can see, linear regression performs poorly in these domains.

0
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300

400

500
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700

80 124 149 204 328 348
Case No.

M
ea

n 
A

bs
ol

ut
e 

Er
r.

Linear Regression in
original case base
1-NN in original case

1-NN in KCCA case
base

Fig. 4. Comparison of KCCA with linear regression and 1-NN in the original space.

0

100

200

300

400

500

600

700

800

900

Max Absolute Error Mean Absolute Error Standard Deviation

Linear Regression in
original case base
1-NN in original case base

1-NN in KCCA case base

Min of the above 3

Fig. 5. The retrieval result of 6 cases from the artificial data set, when compared with Linear
Regression and 1-NN in the original space and 1-NN with KCCA.

To test the efficiency of the KCCA method, we plotted the mean absolute error of
KCCA as a function of the number of features. The result is shown in Figure (6). As we
can see, the first several eigenvectors found by KCCA are in fact much better features
than the rest in the feature space. This gives us confidence as to the use of KCCA in
case-based reasoning.

Public Domain Experiments. We used the Bank domain, the com-activ domain and
the Wine domain (available from the UCI Machine Learning Repository). The result is
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The Error Trend of 1-NN with KCCA
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Fig. 6. The trend of average error as a function of different number of features computed by
KCCA.
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Fig. 7. Test KCCA on the Bank Base. The figure shows the average error as a function of different
sizes of the case base.

shown in Figure (7), where we compare the mean absolute error KCCA and 1-NN in the
original space as a function of different case-base size. As can be seen, using the KCCA
uniformly outperforms 1-NN in terms of the MAE, and the difference in the error rate
is the largest when the case base size reaches 512. Figure (8) shows the test result on
the Travel database used often in case-based reasoning testing [14], where the objective
is defined on the Price attribute, and Figure (9) shows the result of the com-activ base.
As can be seen from both bases, the KCCA method outperforms 1-NN in the original
space.

Table (1) shows a similar comparison with different kernels for the KCCA. As we
can see, the MAE for the 1-NN method in the original space is as large as 172.944,
whereas for the Gaussian kernel with the appropriately chosen parameters the MAE
can be made smaller. One interesting fact is that the polynomial kernel in fact results in
larger MAE error; this indicates to us that the Wine domain is in fact a linear domain,
and thus 1-NN in the original space will perform just fine. It also indicated to us that
the performance of the KCCA method is sometimes sensitive to the choice of kernel
functions.
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Travel Domain

480

500

520

540

560

580

600

620

64 128 256 512 1022
Size of Case Base

M
ea

n 
A

bs
ol

ut
e 

Er
r.

1-NN
KCCA

Fig. 8. Test KCCA on the Travel Database. The figure shows the average error as a function of
different sizes of the case base.
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Fig. 9. Test KCCA on the Computer Database. The figure shows the average error as a function
of different sizes of the case base.

We also noted that the time for the KCCA computation involves building the feature
space case base and case correlation analysis. This is a one time cost. Once done, we
can use the result to measure the similarity of each new case. This latter computation
has the same time complexity as the original case based retrieval cost.

5 Conclusions and Future Work

In this paper we proposed a new solution to case base retrieval using a new nonlinear
similarity function, when the nature of the problem domain is nonlinear. We used an
FDA for finding the best attributes to compute a new case base in the feature space.
We noted that the FDA cannot handle the continuous target case. We then proposed
a new correlation analysis in the feature space, where we designed a new case based
reasoning algorithm we call KCCA. Our approach is to first transform the case base
into a feature space using kernel computation. We perform correlation analysis with
maximum correlation criterion(MCC) in the feature space to find the most important
features through which we construct a feature-space case base. We solve the new case
in the feature space using the traditional similarity-based retrieval. We then empirically
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Table 1. Test KCCA on the Wine data set. We compare the Mean Absolute Error with different
kernels.

MAE

degree 2 3 4 5 6 7
MAE 217.96 165.6 217.9 179.8 267.5 191

Gamma 0.05 0.1 0.2 0.3 0.4 0.5
MAE 166.48 178.1 167.3 163.8 168.9 176

KCCA with Gaussian kernels of different parameters

KCCA with polynomial kernels of different parameters
172.944

Original Space

tested the KCCA for artificially generated data and for UCI data sets. Our result sup-
ports our initial claim that in nonlinear domains the KCCA will be more appropriate
measure of similarity.

In the future we wish to extend this work to other methods for the construction
of case bases. One important subject is to design kernel functions for the purpose of
selecting cases from raw datasets, so that the CBR solution can be carried out. Another
direction is to apply the kernel computation to more sophisticated kinds of target values,
instead of just a single real value.
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