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SUMMARY

A new method is developed for analyzing case series data in situations where occurrence of the event
censors, curtails, or otherwise affects post-event exposures. Unbiased estimating equations derived from
the self-controlled case series model are adapted to allow for exposures whose occurrence or observation
is influenced by the event. The method applies to transient point exposures and rare nonrecurrent events.
Asymptotic efficiency is studied in some special cases. A computational scheme based on a pseudo-
likelihood is proposed to make the computations feasible in complex models. Simulations, a validation
study, and 2 applications are described.

Keywords: Censored data; Counterfactual; Endogeneity; Estimating equation; Horvitz–Thompson estimator; Pseudo-
likelihood; Self-controlled case series.

1. INTRODUCTION

The self-controlled case series method, or case series method for short, was developed to investigate the
association between time-varying exposures and outcome events using data on cases, that is, individuals
who have experienced the event. Its advantages are that only cases need be sampled and it is self-matched
so that time-invariant multiplicative confounders are necessarily adjusted. The method was originally de-
scribed in Farrington (1995). For a review of modeling and applications, see Whitaker and others (2006).

The model is derived by conditioning on the number of events and the exposure history experienced
by each individual over a predetermined observation period. The main limiting assumption is that both the
exposure distribution and the observation period must be independent of event times. These requirements
inhibit the use of the case series method when occurrence of an event alters in some way the subsequent
exposure process or the observations made of that process. This occurs for exposures whose distribution
depends on the event history. It also occurs for terminal events by virtue of the fact that follow-up, and
hence the exposure history, is curtailed by the event. Similarly, the case series method cannot be used
if observation of the exposure process is censored or otherwise disrupted by occurrence of an event. In
some circumstances, violation of the assumptions does not result in severe bias, as illustrated for example
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4 C. P. FARRINGTON AND OTHERS

by the application to myocardial infarction discussed in Farrington and Whitaker (2006). Nevertheless,
it is desirable to have a method applicable whenever the exposure process or the exposure observation
process is affected by occurrence of an event and whose validity does not depend on robustness to failure
of assumptions.

In this paper, we derive a case series method, applicable to binary exposures, which can be used in such
circumstances, provided the postexposure risk period is short. In Section 2, we briefly review the standard
case series method, describe some of the situations in which the assumptions it requires might fail, and
outline our proposed approach. In Section 3, we derive a set of unbiased estimating equations applicable in
such situations. These are based on counterfactuals in which post-event exposures do not take place. The
asymptotic efficiency of the method is discussed in Section 4. In Section 5, we present a pseudo-likelihood
formulation that leads to a straightforward method for estimating the parameters and calculating bootstrap
confidence intervals (CIs). The performance of the methods is studied by simulation. Section 6 contains 3
examples including a validation study and 2 applications. We end with a brief discussion of some further
issues in Section 7.

2. THE CASE SERIES METHOD

2.1 The case series likelihood

We begin by introducing the case series method and relevant notation for use in the paper. We suppose
that an individual i is observed over a predetermined observation period (ai , bi ], usually defined in terms
of age, during which this individual may experience point exposures, at ages ci1, . . . , ci D say. We assume
that ci1 < ci2 < · · · < ci D and that following the dth exposure, the incidence of the event of interest
is multiplied by a factor eβd over the interval (cid , min{cid + τ, cid+1}], which we call a risk period.
The intervals during which the individual does not experience an exposure-related risk are called control
periods. From now on, to simplify the notation without sacrificing essential generality, we shall assume
that ai � cid + τ � cid+1 � bi . The sequence of exposures for individual i determines J = 2D + 1
contiguous nonoverlapping control and risk periods (ai , ci1], (ci1, ci1 + τ ], (ci1 + τ, ci2], . . . ,(ci D + τ, bi ]
indexed by j = 1, . . . , J . The risk periods correspond to even values of j and the control periods to odd
values of j . (If cid + τ = cid+1, interval 2d + 1 is empty.)

Suppose furthermore that age is stratified in K + 1 age groups indexed by k = 0, 1, . . . , K , leading
to a further subdivision of the J control or risk periods into up to K + 1 subintervals. Let Ei jk denote the
subset of the observation period for individual i lying within the j th risk or control period and the kth age
group. Ei jk has length ei jk ; typically, some ei jk = 0. A possible configuration for a single individual i is
shown in Figure 1, for which ei11 = ei21 = ei40 = ei50 = 0.

In the case series method, it is assumed that the exposure is an external time-varying covariate
(Kalbfleisch and Prentice, 2002) and that, conditionally on the ages at exposure, events arise in a
nonhomogeneous Poisson process with rate

λi jk = exp(ϕi + αk + βd( j)).

Fig. 1. Configuration for two exposures and two age groups.
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Case series analysis for censored, perturbed, or curtailed post-event exposures 5

This is piecewise constant on the Ei jk . The parameters ϕi represent the individual effect, αk the age effect,
and βd( j) the exposure effect ( β0 = 0) with

d( j) =
{

d, if j = 2d, d = 1, . . . , D,

0, otherwise.

Let ni jk denote the number of events arising in Ei jk . The case series likelihood contribution of individual
i is obtained by conditioning on both the exposure history {ci1, . . . , ci D} and the total number of events
observed during the observation period, ni ·· = ∑

j,k ni jk , yielding

Li =
∏
j,k

{
ei jk exp(αk + βd( j))∑
r,s eirs exp(αs + βd(r))

}ni jk

. (2.1)

The overall likelihood is product multinomial. Note that the individual effects ϕi factor out. It follows that
the method is self-matched and controls implicitly for all fixed multiplicative confounders.

The above derivation of the method applies to recurrent events. However, the method also applies for
rare unique events with which we shall exclusively be concerned in the present paper. In this case, the case
series likelihood (2.1) is valid in the limit ϕi → −∞ (see Farrington and Whitaker (2006) for details).

2.2 How key assumptions might fail

A key assumption of the case series model is that the exposure is an external time-varying covariate:
equivalently, the occurrence of an event does not alter an individual’s subsequent exposure. It is also
assumed that occurrence of an event does not alter the duration of the observation period. Furthermore,
complete information on exposure status throughout the observation period of each individual is required.
We briefly review situations where these assumptions and requirements might fail.
Censored or partially observed post-event exposures. The exposure process and observation period are
unaffected by the occurrence of an event, but the observation of the exposure process is affected by such
an occurrence. This arises typically when the exposure data collection occurs at time of event so that post-
event exposures are undocumented: in effect, the event censors subsequent exposures (for an example see
Section 6.3). Alternatively, the post-event exposure process might only be partially observed. In either
situation, the case series likelihood (2.1) is valid, but its denominators cannot be evaluated owing to
missing exposure data.
Curtailed or perturbed post-event exposures. The individual remains under observation after the event, but
the exposure process is stopped or perturbed by the event. This might occur in pharmacoepidemiology,
for example, when the event of interest is a contraindication to the drug of interest (as is the case with
rotavirus vaccination and intussusception), in which case the indication for the drug changes after an
event has occurred. This violates the assumption that the exposure is an external variable and hence that
its distribution is unaffected by the event history. In this scenario, the case series likelihood (2.1) is no
longer valid.
Event-dependent observation periods. The end of the observation period is a random variable which is
not independent of the event process. The most important case relates to death either because the event
of interest is death or because it increases the mortality rate (as is the case with myocardial infarctions
discussed in Farrington and Whitaker (2006)). In this case, the case series likelihood (2.1) is no longer
valid either because the observation period (ai , bi ] depends on the event time.

Typically, as well as modeling exposures, it is necessary to take into account age effects. This is
particularly important in studies in children and the elderly for whom it can seldom be assumed that event
and exposure processes are stationary.
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6 C. P. FARRINGTON AND OTHERS

2.3 A way forward

To make progress, it is useful to think in terms of counterfactuals, in which the event did not occur and the
exposure process (and observation of it) unfolded unperturbed (Rubin, 1976). The case series likelihood
may validly be derived using the counterfactual (i.e. event free) end bi of the observation period, and the
counterfactual exposure processes up to bi . As it happens, even when the observation periods are event
dependent, the end of the observation period bi that would have applied had the event not taken place is
often known. This is typically the case when observation periods are determined by calendar time and age
boundaries, and the case ascertainment can reasonably be regarded as complete. An example is provided in
Section 6.1. Hence, in all that follows, we shall assume that bi , whether factual or counterfactual, is known.

Thus, all 3 scenarios described above share the following essential characteristic: the observed post-
event exposure history is not that which would have been observed had an event not occurred. The post-
event exposure history that would have been observed, had the event not occurred, is not known because
the event has interfered with the subsequent exposure process or our observation of it. As noted above,
such interference ranges from censoring to termination of follow-up. For simplicity, in order to deal with
all the possibilities together, we shall henceforth refer to such events as “interferent” events.

One approach for dealing with interferent events might be to model the event-free exposure process in
some way and either impute post-event exposures or integrate them out of the likelihood. In the myocar-
dial example referred to previously, we imputed counterfactual exposures and showed that not knowing
them had little effect on the results (Farrington and Whitaker, 2006). In most cases, however, there is no
empirical basis upon which to build a reliable model for the exposures.

We therefore propose a different approach, which requires no assumptions about the event-free expo-
sure process. This is achieved by analyzing the data for each exposure as if there could be no subsequent
exposures: thus, we impose our own counterfactual. Where such exposures do in fact occur, we apply
Horvitz–Thompson-like estimators (Horvitz and Thompson, 1952; Levy, 1998) to adjust the event counts
to what they would have been, on average, under our counterfactual. This strategy enables us to derive
a set of unbiased estimating equations. Related approaches using reweighted estimating equations have
been used in longitudinal data analysis (Robins and others, 1994, 2000; Bryan and others, 2004; Davidian
and others, 2005). Note, however, that our approach retains the 2 essential features of the standard case
series method: it requires only cases and all time-invariant multiplicative confounders—whether measured
or not—are controlled.

Throughout, we make the assumptions that the exposure is binary, that is, present or absent; the
postexposure risk period is short; and the event of interest is an uncommon, nonrecurrent event. Note
that the risk is assumed to return to an age-related baseline level at the end of each risk period; this
assumption is essential.

3. AN ESTIMATING EQUATION APPROACH

The estimating equations we propose for arbitrary numbers of exposures and age groups are rather ob-
scure. We therefore lead up to them by describing a special case which will help to motivate the general
method. This special case reveals the key recursive principle that lies at the heart of the method: we start
with the last observed pre-event exposure and work back through the exposures, deriving new estimating
equations at each stage. The process gets started by virtue of the fact that a valid case series analysis is
possible for the final observed pre-event exposure.

3.1 Two exposures and 2 age groups

We consider a situation in which an individual i can be exposed on up to 2 occasions at ages ci1 and
ci2. We assume that the observation period (ai , bi ] that would have applied had no event occurred is
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Case series analysis for censored, perturbed, or curtailed post-event exposures 7

known. The exposures partition the observation period (ai , bi ] into up to J = 5 successive control and
risk periods, indexed by j . In addition, we assume that there are 2 age groups (so K = 1), indexed by k.
Thus, the observation period for individual i is partitioned into up to 6 intervals Ei jk of length ei jk , in
which ni jk events occur. (See Figure 1 for an example.) Note that for all i , ni ·· = 1 since the event is
nonrecurrent and only cases are considered; this fact is essential in what follows.

Let β1 and β2 denote the log relative incidences (RIs) associated with the first and second risk period,
respectively, and α the RI associated with age group 1 relative to age group 0. We shall take age group 0
to be the earlier one. Now let Ti denote the age at event for an individual i . Generally, the counterfactual
exposure history after Ti (i.e. the exposures that would have been observed had the event not occurred) is
not known.

There is, however, one key exception: if Ti � ci2, then we know that no further exposures would have
taken place. Inference about β2 may thus proceed using a standard case series analysis with observation
period redefined as (ci2, bi ]. The log-likelihood for this case series model is

li ( β2, α) = ni4·β2 − (ni4· + ni5·) log{eβ2(ei40 + eαei41) + (ei50 + eαei51)}
and the elementary score function for β2 is

Ui2( β2, α) = ni4· − (ni4· + ni5·)
eβ2(ei40 + eαei41)

eβ2(ei40 + eαei41) + (ei50 + eαei51)
.

Suppose that we now try to apply the same method for inference about β1, using only cases with events
arising in (ci1, bi ]. Unfortunately, this will not work since the age at second exposure is unavailable for
cases whose interferent event occurs after experiencing just 1 exposure. Instead, we proceed as if no
individual experiences a second exposure, and let n∗

i4· denote the number of events that would have arisen
in the new control period that now replaces the second (possibly unobserved) risk period (ci2, ci2 + τ ]. If
n∗

i4· were observed, we could then estimate β1 using the elementary score function

U∗
i1( β1, α) = ni2· − (ni2· + ni3· + n∗

i4· + ni5·)

× eβ1(ei20 + eαei21)

eβ1(ei20 + eαei21) + (ei30 + eαei31) + (ei40 + eαei41) + (ei50 + eαei51)
.

However, if the event occurs after the second exposure, then ni4· is observed but not n∗
i4. In this case,

the score function U∗
i1 cannot be evaluated. We therefore replace n∗

i4· by an unbiased estimator of n∗
i4·,

namely the Horvitz–Thompson-like estimator ni4·e−β2 . (We call it Horvitz–Thompson like because the
adjustment factor is a relative rate not a probability.) Thus, we obtain the elementary estimating function

Ui1(β1, β2, α) = ni2· −
(

ni2· + ni3· + ni4·
eβ2

+ ni5·
)

× eβ1(ei20 + eαei21)

eβ1(ei20 + eαei21) + (ei30 + eαei31) + (ei40 + eαei41) + (ei50 + eαei51)
.

This estimating function is unbiased conditionally on ni2+ = ni2· + ni3· + ni4· + ni5· and on ci1 and
ci2, the latter possibly being unavailable in the observed realization. Unbiasedness follows because the
event is nonrecurrent, so ni2+ = 0 or 1. The key point is that the estimating function Ui1 can always be
evaluated, even if ci2 is unavailable, since in this case ni4· = ni5· = 0 and ei3· +ei4· +ei5· = bi −(ci1 +τ)
is known, even though ei3·, ei4·, and ei5· are not.

We now construct a third unbiased estimating function for α. This comprises 3 components. The
case series likelihood restricted to events after the second exposure yields the following elementary score
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8 C. P. FARRINGTON AND OTHERS

function for α:

U 2
i3( β2, α) = (ni41 + ni51) − (ni4· + ni5·)

eα(eβ2ei41 + ei51)

(eβ2 ei40 + ei50) + eα(eβ2 ei41 + ei51)
.

Similarly, the case series likelihood restricted to events after the first exposure, obtained from the coun-
terfactual in which no further exposures take place, yields the following unbiased elementary estimating
function for α:

U 1
i3( β1, β2, α) =

(
ni21 + ni31 + ni41

eβ2
+ ni51

)
−

(
ni2· + ni3· + ni4·

eβ2
+ ni5·

)
× eα(eβ1ei21 + ei31 + ei41 + ei51)

(eβ1ei20 + ei30 + ei40 + ei50) + eα(eβ1 ei21 + ei31 + ei41 + ei51)
.

Finally, applying the same argument to all the events in (ai , bi ], including those occurring prior to the first
exposure, yields the following elementary estimating function:

U 0
i3( β1, β2, α) =

(
ni11 + ni21

eβ1
+ ni31 + ni41

eβ2
+ ni51

)
−

(
ni1· + ni2·

eβ1
+ ni3· + ni4·

eβ2
+ ni5·

) eαei ·1
ei ·0 + eαei ·1

.

We shall use as the third elementary estimating function the sum of all 3 elementary estimating functions
for α, namely

Ui3( β1, β2, α) = U 0
i3( β1, β2, α) + U 1

i3( β1, β2, α) + U 2
i3( β2, α).

The system
∑

i Ui1,
∑

i Ui2,
∑

i Ui3 provides a triple of unbiased estimating equations (condition-
ally on each case experiencing a single event) which may be used to estimate β1, β2, and α. So far,
we have assumed that β1 and β2 are distinct. In many circumstances, it will make sense to assume that
β1 = β2 = β. The simplest way of combining

∑
i Ui1 and

∑
i Ui2 is to take their sum,

∑
i (Ui1 + Ui2).

Combining estimating equations in this way is convenient for computational reasons that will become
apparent in Section 5.

In this subsection, we made the assumption that the maximum number of possible exposures D is
known, with D = 2. In fact this assumption is not necessary: we can use the method described if the
maximum number of pre-event exposures observed is 2, but more could have occurred (but did not in the
sample). All this means is that only β1 and β2 are estimable. More generally, if maximum D pre-event
exposures are observed for each case, then any exposure that might have occurred subsequently can be
ignored and only β1, . . . , βD are estimable.

3.2 The general case

The special case described in Section 3.1 helps to motivate the estimating equations for the general case,
in which there are up to D distinct observed pre-event exposures at ages ci1, . . . , ci D . We suppose also
that there are K + 1 age groups indexed by k = 0, 1, . . . , K . To the D risk periods correspond D log
RI parameters β1, . . . , βD (relative to the control periods, for which β0 = 0). To the K + 1 age groups
correspond K parameters α1, . . . , αK . These represent log RIs, relative to the 0-indexed age group, so
α0 = 0.

Now define, for d = 0, 1, . . . , D (note the inclusion of d = 0 here),

w
(d)
i jk =

⎧⎪⎨⎪⎩
0, if j < 2d,

1, if j = 2d or j = 2d ′ + 1, d ′ � d,

exp(−βd ′), if j = 2d ′, d ′ > d,

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/10/1/3/269598 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Case series analysis for censored, perturbed, or curtailed post-event exposures 9

the redundant subscript k being retained for clarity in what follows. The elementary estimating function
for βd , d = 1, . . . , D, is

Uid =
K∑

k=0

ni(2d)k −
⎛⎝ K∑

k=0

J∑
j=1

w
(d)
i jk ni jk

⎞⎠ ∑K
k=0 w

(d)
i(2d)k eβd+αk ei(2d)k∑K

k=0
∑J

j=1 w
(d)
i jk eβd( j)+αk ei jk

,

where the subscript i(2d)k represents i jk with j = 2d and d( j) is defined in Section 2.1. The elementary
estimating function for αk , k = 1, . . . , K , is

Ui(D+k) =
D∑

d=0

U d
i(D+k),

where the subscript i(D + k) represents ir with r = D + k, and

U d
i(D+k) =

J∑
j=1

w
(d)
i jk ni jk −

⎛⎝ K∑
k=0

J∑
j=1

w
(d)
i jk ni jk

⎞⎠ ∑J
j=1 w

(d)
i jk eβd( j)+αk ei jk∑K

k=0
∑J

j=1 w
(d)
i jk eβd( j)+αk ei jk

.

If the parameters βd and βd ′ are constrained to be equal, then the 2 elementary estimating functions Uid

and Uid ′ are replaced by their sum.

3.3 Sandwich variance estimates

Let θ denote the parameter vector ( β1, . . . , βD, α1, . . . , αK ) and Ui1, . . . , Ui(D+K ) the set of elementary
estimating functions. Denote by V the observed covariance matrix and by H the Jacobian of

∑
i Ui j , with

(r, s) elements:

Vrs =
n∑

i=1

Uir Uis,

Hrs =
n∑

i=1

∂Uir

∂θs
.

Then, the asymptotic sandwich estimator of cov(θ̂) is H−1V H−1T . This can in turn be used to obtain the
Wald CIs for θ .

4. RELATIVE EFFICIENCY

In this section, we explore the asymptotic efficiency of β̂ (we assume a common βd and hence suppress the
subscripts) estimated using the standard case series model with the complete exposure data on (ai , bi ],
relative to the efficiency of β̂ estimated without post-event exposures, as described in Section 3. Our
purpose in doing this is to quantify the loss in efficiency resulting from incomplete observation of the
underlying event-free exposure history and hence help guide the choice of observation periods in practical
applications.

We consider special cases in which individuals experience up to 2 exposures, there are no age effects,
and all individuals share the same partition of their observation period. The asymptotic relative efficiencies
are derived and discussed in detail in Section 1 of the supplementary material available at Biostatistics
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10 C. P. FARRINGTON AND OTHERS

online (http://www.biostatistics.oxfordjournals.org). More general relative efficiency calculations are pos-
sible but unenlightening and are not pursued.

The key messages from these investigations are as follows: The relative efficiency is high for short
risk periods and when the preexposure period and inter-exposure control periods are short in proportion
to the overall observation time. Relative efficiency is low when there is little postexposure control time.
Thus, in designing case series studies of interferent events, it is important where possible (i.e. without
unduly reducing the number of events) to select the observation period so as to minimize the amount of
time prior to the first exposure and maximize the control time after the last exposure. As expected, the
proposed method cannot be used for indefinite risk periods.

5. A PSEUDO-LIKELIHOOD METHOD

In practice, there may be many age groups and exposures. In such settings, writing down and solving
the estimating equations and deriving the sandwich variance estimator can become very cumbersome. In
other circumstances, the asymptotic theory upon which the sandwich variance estimator is based may
not be applicable. In this section, we present an alternative approach to derive the estimating equations,
which is convenient for computation and which lends itself to bootstrapping. The trick is to view the es-
timating equations derived above as pseudo-score equations resulting from a particular pseudo-likelihood
(Kalbfleisch, 1998). As in Section 3, we develop the argument first in a special case before moving on to
the general case.

5.1 Two exposures and 2 age groups

For a count n and weight w with 0 � w � 1, let the expression nw ∼ P(µ) denote a likelihood
contribution proportional to e−µµnw when w �= 0 and equal to 1 when w = 0. We shall refer to this as
a pseudo-Poisson likelihood; similar pseudo-likelihoods appear in the literature on spatial point patterns
(Baddeley and Turner, 2000). Recall from Section 3.1 that the elementary estimating functions Ui2 and
U 2

i3 were score contributions obtained from the case series likelihood restricted to events after the second
exposure. These may equivalently be obtained as score contributions from the pseudo-Poisson model

ni jkw
(2)
i jk ∼ P(λi jkei jk), j = 4, 5, k = 0, 1;

log(λi jk) = ϕ
(2)
i + β2 I ( j = 4) + α I (k = 1),

where I (.) is the indicator function and w
(2)
i jk is the weight defined in Section 3.2, which here is 1 for j � 4

and 0 otherwise.
Similarly, Ui1 and U 1

i3 were elementary estimating functions obtained from the case series likelihood
restricted to events after the first exposure assuming that there are no subsequent exposures and replac-
ing ni4k with the unobserved n∗

i4k which was estimated by ni4k e−β2 . These estimating functions may
equivalently be derived as score equations from the pseudo-Poisson model

ni jkw
(1)
i jk ∼ P(λi jkei jk), j = 2, 3, 4, 5, k = 0, 1;

log(λi jk) = ϕ
(1)
i + β1 I ( j = 2) + α I (k = 1).

Here, the weights w
(1)
i jk are e−β2 for counts of events in the risk period of the second exposure, 0 for j = 1,

and 1 elsewhere.
Finally, U 0

i3 was an elementary estimating function obtained from the case series likelihood assuming
that there were no exposures at all, replacing ni2k with n∗

i2k , estimated by ni2k e−β1 , and ni4k with n∗
i4k ,
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Case series analysis for censored, perturbed, or curtailed post-event exposures 11

estimated by ni4k e−β2 . This estimating function may be derived as a score contribution for α from the
pseudo-Poisson model

ni jkw
(0)
i jk ∼ P(λi jkei jk), j = 1, 2, 3, 4, 5, k = 0, 1;

log(λi jk) = ϕ
(0)
i + α I (k = 1).

In this case, the weights w
(0)
i jk are e−β1 for counts of events in the first risk period, e−β2 for counts of events

in the second risk period, and 1 elsewhere.
Now, stack the 3 sets of data for individual i and the corresponding models duplicating the counts

where required. Thus, the counts ni1k will occur once, the counts ni2k and ni3k will occur twice, and the
counts ni4k and ni5k will occur 3 times in the stacked data. The pseudo-Poisson likelihood for the stacked
data constitutes a pseudo-likelihood for individual i , the pseudo-score contributions of which are exactly
the elementary estimating functions Ui1, Ui2, and Ui3.

5.2 The general case

With D risk periods and K + 1 age groups, up to D exposure parameters βd and K age parameters αk ,
the method requires D + 1 stacked data sets, labeled 0 to D. Stack 0 contains all the data to which the
following model is to be fitted:

ni jkw
(0)
i jk ∼ P(λi jkei jk), j = 1, . . . , 2D + 1, k = 0, . . . , K ;

log(λi jk) = ϕ
(0)
i + α1 I (k = 1) + . . . + αK I (k = K ).

Stack d, d = 1, . . . , D, contains the data for periods 2d, 2d + 1, . . . , 2D + 1 to which the following
model is to be fitted:

ni jkw
(d)
i jk ∼ P(λi jkei jk), j = 2d, . . . , 2D + 1, k = 0, . . . , K ;

log(λi jk) = ϕ
(d)
i + βd I ( j = 2d) + α1 I (k = 1) + . . . + αK I (k = K ).

These models are fitted together to the stacked data, or rather, pseudo-data ni jkw
(d)
i jk , as a whole. Thus, the

parameters αk are estimated from all levels of the stack. The pseudo-Poisson likelihood for the stacked
data yields pseudo-score equations which reproduce exactly the estimating equations based on the ele-
mentary terms Uid and Ui(D+k) described in Section 3.2.

5.3 A fitting algorithm

Estimates are obtained by an iterative procedure. Choose initial values of the βd , for example 0, and
calculate the weights w

(d)
i jk . Then, obtain estimates of the parameters βd and αk by maximizing the pseudo-

likelihood with these weights. Update the weights using the new values of the βd and iterate until con-
vergence. The procedure resembles an Expectation (E)–maximization (M) algorithm in which at each
iteration the missing data n∗

i jk are replaced by their Horvitz–Thompson-like expected values (the E-step)
and the resulting pseudo-likelihood is then maximized (the M-step).

5.4 Bootstrap estimates

The pseudo-likelihood method provides a simple way of obtaining parameter estimates using standard
Poisson regression software. It also can be exploited to obtain bootstrap standard errors and interval
estimates.
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The simplest method is nonparametric bootstrapping in which the stacked data for individuals i =
1, . . . , n are resampled with replacement. More precisely, what is resampled is not the counts themselves
but blocks of counts corresponding to individuals. Bootstrap estimates may then be obtained in the usual
way (Davison and Hinkley, 1997).

5.5 Simulations

The performance of the method and the different approaches to obtain interval estimates were studied
by simulation. The simulations and their results are described in Section 2 of the supplementary material
available at Biostatistics online (http://www.biostatistics.oxfordjournals.org). The medians of the esti-
mated log RIs associated with exposure and age were close to their true values, improving in accuracy
and precision as the sample size increased, as expected. Coverage probabilities of the 95% CIs were also
close to 0.95. As expected, the pseudo-likelihood method of Section 5.2 generated the same estimates as
the estimating equations. The overall conclusion from these simulations is that the model performs well.

6. EXAMPLES

We present 3 examples. The first relates to sudden deaths after a smoking cessation therapy. The other 2
include a validation study and an application, both relating to a putative association between vaccination
with the oral polio vaccine (OPV) and intussusception in infants. The data and STATA program used
to apply the proposed method in the validation study are available from the self-controlled case series
website (http://statistics.open.ac.uk/sccs).

6.1 Bupropion and sudden death

Bupropion is an effective smoking cessation therapy. However, soon after its introduction in the United
Kingdom, concerns were expressed that starting on Bupropion may increase the risk of sudden death.
A study was undertaken within the health improvement network (Hubbard and others, 2005). Sudden
deaths occurring within a defined ascertainment period ending on November 11, 2003, were documented.
Clearly, individual observation periods and exposure histories are curtailed following a sudden death.
However, in this study, it is not unreasonable to suppose that, had an individual died of a sudden death at
any time within the ascertainment period, they would have been captured by the ascertainment process.
Thus, we can take each individual’s counterfactual end of observation bi as being their age on November
11, 2003.

The question of interest is whether there is a risk associated with the initiation of Bupropion. In this
analysis, only individuals who died following Bupropion were included, so the analysis proceeds with
individual observation periods stretching from age at which Bupropion treatment was first started and
ending with age on November 11, 2003. The risk period was 0–27 days after the start of treatment. There
were 121 cases of sudden death including 2 in the risk period. The RI was 0.50, 95% CI (0.12, 2.05). These
results provide no evidence that initiation of Bupropion is associated with an increased risk of sudden
death within the first 4 weeks, though they are uninformative as to whether there is a long-term risk.

6.2 Validation study

This is a reanalysis of data originally described by Andrews and others (2001) and is used to evaluate whe-
ther there exists an association between OPV and intussusception. Intussusception is a condition where the
bowel folds in on itself, obstructing the intestine. Most children diagnosed with intussusception have an
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operation and recover completely, so normally this is not an interferent event. The data are hospital episode
statistics collected in the United Kingdom between January, 1991, and March, 1997. They comprise 207
children aged 28–365 days of whom 10 had one repeat episode that we excluded. The children received
up to 3 doses of OPV. In the original analyses, Andrews and others (2001) used risk periods 14–27 and
28–41 days after each dose so that there were a total of 6 post-OPV risk periods. We combined these into
a single risk period 14–41 days after each of the 3 OPV doses. We used 11 monthly age groups. In this
data set, D = 3, J = 7, and K = 11. The 207 events analyzed were distributed as follows: n·1· = 15,
n·2· = 13, n·3· = 9, n·4· = 21, n·5· = 13, n·6· = 35, and n·7· = 101.

To demonstrate the method described in this paper, the data were analyzed in the following 4 ways:

(1) A standard case series analysis with likelihood given in Section 2 using the full exposure
information.

(2) The post-intussusception exposures were censored and the observation period was redefined to end
on the day an intussusception occurred. We analyzed the censored data by the standard case series
method without taking into account the fact that the exposures and the observation periods were
censored.

(3) The observation periods ended as in the original data, but post-intussusception exposures were
censored. Data were analyzed using the standard case series model ignoring the censoring.

(4) We analyzed the censored data with the new method described in the present paper; using the
pseudo-likelihood method described in Sections 5.3 and 5.4.

For all 4 analyses, we obtained bootstrap CIs. We present percentile bootstrap CIs. These were similar
to both normal and bias-corrected bootstrap CIs, and where a standard case series model was used, they
were also similar to, though a little wider than, the Wald CIs. The results are given in Table 1.

Analysis 1 represents the gold standard case series analysis using data where the full exposure history
is known. In this analysis, a significant increase in the risk of intussusception 14–41 days after the third
dose of OPV was found. Analysis 2 violated the assumption that the observation period must not depend
on the occurrence of an event. The RIs for the risk periods after each of the 3 doses are all attenuated
toward the null, and the CIs for doses 1 and 3 are considerably wider when compared with analysis 1.
The estimated age effects are not shown but were very biased, especially for older age groups. Analysis 3
ignored the assumption that exposures must not depend on previous events. RI estimates are substantially
biased upward when compared with analysis 1. As a result of censoring, post-event risk periods are
classified as control periods, thus biasing the RI upward. Analysis 4 is the correct analysis for censored
data. Although the RI estimates are attenuated toward the null when compared with analysis 1, they are

Table 1. RI and 95% CI for analyses of intussusception and OPV in the United Kingdom

Dose Analysis 1: Analysis 2: Analysis3: Analysis 4:
original data observation censored data censored data

ends at event

Standard model Standard model Standard model Censoring model
RI (95% CI) RI (95% CI) RI (95% CI) RI (95% CI)

1 0.710 0.582 0.850 0.581
(0.328, 1.408) (0.048, 3.799) (0.370, 1.652) (0.257, 1.170)

2 0.922 0.476 1.431 0.876
(0.501, 1.639) (0.174, 1.170) (0.733, 2.657) (0.439, 1.629)

3 1.625 1.347 2.913 1.566
(1.038, 2.589) (0.485, 5.101) (1.687, 5.017) (0.999, 2.519)
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Table 2. RI and 95% CI for analyses of intussusception and OPV in Latin America

Risk period 0-30days RI (95% CI)
after dose

1 1.253 (0.629, 2.235)
2 1.069 (0.741, 1.533)
3 0.970 (0.677, 1.365)
4 0.998 (0.500, 1.618)
5 1.599 (0.000, 6.125)

All doses 1.054 (0.820, 1.342)

generally less attenuated than the estimates obtained from analysis 2. In conclusion, our method does
correct the bias created by ignoring the dependence of exposures and observation period on the event of
interest to some extent, though cannot fully make up for the loss of data.

6.3 Polio vaccine and intussusception in Latin America

We present an analysis of data on intussusception in several Latin American countries. The data con-
sist of 456 confirmed diagnoses of first intussusception of children aged up to 2 years who attended a
participating hospital during the study period. Hospitals within 11 countries participated in the study:
Argentina, Brazil, Chile, Costa Rica, Honduras, Mexico, Nicaragua, Panama, Peru, Dominican Republic,
and Columbia. Study periods for 10 countries spanned approximately 2 years, the other just 1 year, starting
between January, 2002, and September, 2003. The vaccination history of each case was collected through
an interview with the child’s parents at the time of the child’s treatment. There was no follow-up, so the
subsequent vaccination history was censored.

Of the 456 cases, 26 were unvaccinated, over half received at least 3 doses of OPV, 86 were given a
fourth dose and 12 a fifth dose. Almost all the first 3 doses and the majority of the fourth and fifth doses
of OPV were administered during the first year of life. Age at diagnosis peaked within the sixth month.

In our analysis, age was stratified into 15 1- or 3-month age bands. The longer 3-month age groups
were used for ages when there were few events: age group 1 contained 1–3 months and the final 3 age
groups included 15–17, 18–20, and 21–23 months. Risk periods were taken to be 0–30 days after each of
the 5 doses of OPV so that there were a total of 5 risk periods, thus D = 5, J = 11, and K = 14. Analyses
were carried out both with separate exposure effects βd for each dose and with a common parameter β for
all doses.

RIs and 95% percentile bootstrap CIs are given in Table 2. No significant change in incidence of
intussusception in the post-OPV risk periods in comparison to all other periods was found.

7. FURTHER POINTS

For simplicity, it has been assumed throughout that there is a single risk period after each exposure. More
generally, there may be several postexposure risk periods, contiguous or otherwise, and the method can
readily be adapted for such situations. Suppose for example that there are no age effects (so the subscript
k is suppressed) but 2 exposures, at ages ci1 and ci2, each giving rise to 2 risk periods, (cir , cir + τ1]
and (cir + τ2, cir + τ3] with 0 < τ1 � τ2 < τ3. The observation period (ai , bi ] is then subdivided into
J = 9 intervals labeled 1 to 9 in increasing order. The baseline incidence is multiplied by the factor eβ1
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in interval 2, by eβ2 in interval 4, by eβ3 in interval 6, and by eβ4 in interval 8. Let

Ai ( β3, β4) = eβ3ei6 + ei7 + eβ4ei8 + ei9,

Bi ( β1, β2) = eβ1ei2 + ei3 + eβ2ei4 + ei5 + ei6 + ei7 + ei8 + ei9.

Then, the 4 elementary estimating functions are

Ui1( β1, β2, β3, β4) = ni2 −
(

ni2 + . . . + ni5 + ni6

eβ3
+ ni7 + ni8

eβ4
+ ni9

) eβ1 ei2

Bi (β1, β2)
,

Ui2( β1, β2, β3, β4) = ni4 −
(

ni2 + . . . + ni5 + ni6

eβ3
+ ni7 + ni8

eβ4
+ ni9

) eβ2 ei4

Bi (β1, β2)
,

Ui3( β3, β4) = ni6 − (ni6 + . . . + ni9)
eβ3 ei6

Ai (β3, β4)
,

Ui4( β3, β4) = ni8 − (ni6 + . . . + ni9)
eβ4 ei8

Ai (β3, β4)
.

Other situations are handled in a similar fashion.
Simple variations of the method can also accommodate staggered observation periods for which cid �

ai or bi < cid for some i and d.
Recently, a semiparametric case series method has been developed in which the age effect is left

unspecified (Farrington and Whitaker, 2006). Similar ideas could be applied to the analysis of interferent
events. In practice, this means subdividing observation periods into large numbers of short intervals of
unit length and ignoring those in which no event occurs. The asymptotics of such a scheme require further
study.

The estimation method we propose could perhaps be improved by a more judicious combination of
estimation equations. For example, in Section 3.1, we obtained 3 estimating equations for the age effects,
which we simply added together. This choice was motivated by computational convenience though it may
not be the optimal linear combination.

Finally, we are aware that the method we propose, in which we impose our own counterfactuals to
render unobserved exposure histories determinate and then adjust the data where necessary to fit in with
these counterfactuals, is derived using arguments very much adapted to the particular circumstances of
the case series method. It would be desirable to recast this approach within a more general theoretical
framework.
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