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1 Introduction

In this chapter we present three case studies in the smart grid domain: Electrical

Vehicle charging, Household Management, and an integrated case study that combines

the first two together with ancillary services. These case studies are first modelled using

the AMADEOS Architectural Framework (AF) and associated tooling. We utilise the

four levels of the AMADEOS AF: mission, conceptual, logical and implementation, as

well as the seven viewpoints that have been defined: Structure, Dynamicity, Evolution,

Dependability and security, Time, Multi-criticality and Emergence. We therefore

examine the entire lifecycle of the framework considering some real-world case studies.

These case studies are based on experts’ feedback, including AMADEOS Advisory

Board members, to ensure that realistic architectures are designed.

The architectures developed in this chapter will be further instantiated in a simu-

lation environment, using the simulation tooling developed in the AMADEOS project.

With these instances several experiments will be run in order to validate the framework

as well as the architectures that were defined.

The three Smart Grid-based case studies described in this chapter are used to prove

the effectiveness and consistency of the AMADEOS architectural framework. The

method provided by the framework allows to design and implement a generic SoS in a

procedural and systematic way. To accomplish this, the AMADEOS project defines a

pyramidal top-down approach that must be undertaken passing through four different

levels: a mission for the SoS, the conceptual level, where the ideas and concepts of the

SoS are defined in order to support the capabilities of the SoS. Next, the logical level

where the SoS is designed and these concepts are adapted towards supporting the

requirements of the individual SoS domain. Finally, these are actualised in the

implementation level, where the design is contextualized and realized in the enterprise.

This work has been partially supported by the FP7-610535-AMADEOS project.
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2 Smart Grid SoS

2.1 Smart Grid SoS Model

Figure 1 shows the model of the Smart Grid SoS created using the supporting facility

tool. The Smart Grid SoS is composed of: EV_Charging, Medium_Voltage_Control,

and the Household CS.

2.2 EV-Charging SoS Case Study

Mission. The EV SoS must be designed to provide a friendly and convenient service

to the users and at the same time, profitable to the provider. Planning and scheduling is

of paramount importance for both energy providers and users: as an example, on one

side, if the charging requests are spread during the day, there will be limited and/or

controlled load peaks on the grid to be handled, thus the energy price may not vary

abruptly over time and prioritized consumers (e.g., police and fire-fighter vehicles,

ambulances, etc.) will be easily handled by the charging station operators. On the other

hand, knowing the energy prices and available time slots, the users will be able to

carefully plan the recharging operation while keeping the service affordable.

A typical scenario would be as follows: EVs travel through a wide area, where several

charging station operators provide recharging services, by means of charging points.

Drivers in need of power for their EV can provide the expected charging context

(duration, power, etc.) to the e-mobility service in order to receive information

regarding recharging time slots and associated energy prices of each charging station

operator. A load management optimizer that cooperates with the charging station

operators carries out planning and scheduling activities. The interested driver will then

choose one of the slot-price pair possibility for recharging its vehicle, will be allowed

to plug-in its EV at the charging point of the chosen charging station operator during

the reserved time slot only, and the amount due will be based on the energy

Fig. 1. The Blockly Smart Grid SoS model
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consumption times the booked price. At the end of the recharging operation, the driver

receives a billing invoice.

It is evident from the above-mentioned scenario that various dependability aspects

need to be considered. The participant systems need to be time synchronized to provide

consistent information for scheduling and planning purposes. Furthermore, critical EVs

should be prioritized for recharging with respect to any other vehicle. Therefore, each

EV should be assigned a priority level. Moreover, the e-mobility service should be

accessible by registered users only, i.e. the owner of an EV, to reduce the possibility of

denial of service attacks being performed by illicit malevolent users scheduling

recharging reservations, without a real need.

Conceptual Level. In this section we report the result of the activities performed at the

conceptual level for the EV charging case study. For each viewpoint we list the most

representative identified SoS requirements defined taking as input the SoS meta-

requirements [1]. Traceability of the full set of requirements on meta-requirements is

also provided in [4].

Architecture Viewpoint. The EVC consists of a subset of the CSs of the SoS “Elec-

trical Vehicle Charging in Smart Grids” described in Chapter 2.1 of [4]. In particular

(Table 1):

High level representation of EV-Component interactions.

A pictorial view of the EV charging SoS is reported in Fig. 2.

The steps required to recharge an EV are described below. Each step number

corresponds to a sequence of actions that are carried out.

Table 1. EV charging case study components description

Name Description

EV An electrical vehicle.

Driver The driver of the EV.

Charging Point (CP) A physical connection for recharging the EV.

Smart Meter (SM) A smart meter providing production and consumption values.

May also enable advanced sensor facilities providing

active/reactive production, frequency monitoring, voltage

monitoring, etc.

Charging Station

Operator (CSO)

Operator of a charging station, which is an electrified parking lot

with several CPs, represented by an independent enterprise or

owned by energy provider.

Load Management

Optimizer (LMO)

The main software component connected to the grid which is in

charge of providing power constraints and energy set points to

the CSO.

E-mobility service - Lists the best charging station locations to EVs,

- Handles reservations.

- Receives availability updates from CSOs.
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1. The information flow starts when a driver needs to recharge their EV. The driver

requests a charging opportunity from the E-mobility service by providing the

expected charging context (duration, power, etc.);

2. The E-mobility replies with the charging opportunity availabilities by accounting

all CSOs present in the SoS;

3. Once the charging opportunities are received, the Driver asks for a reservation

towards the most comfortable CSO according to his needs (e.g. availability of

energy, distance, etc.) and the E-mobility forwards the message to the corre-

spondent CSO;

4. The CSO updates its schedule, considering the received request and the power

constraints defined by the set points provided by the LMO. The CSO reserves the

desired time slot, allocates the resources and sends to the E-mobility service an

acknowledgement;

5. The E-mobility service forwards the acknowledgment to the driver;

6. The driver reaches the CSO within the booked time slot. The EV is plugged in to

the Charging Point (CP) and the CSO is notified about this event;

7. The CSO decides whether to allow the charging operation or to deny it proposing a

re-scheduling of the time slot. This can happen if the situation has changed

between the time the driver has booked their slot and they arrive at the CP. For

example, if a higher priority EV has requested a slot;

8. While recharging, the Smart Meter measures the energy consumption and the

resultant EV load for, respectively, billing and smart grid power flexibility pur-

poses. Such information are sent to the CSO;

Fig. 2. Electrical vehicle charging SoS architecture
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9. At the end of the charging cycle the EV is unplugged,

10. The CSO sends the billing invoice to the driver through the E-mobility service.

Dependability and Security Viewpoint. It is of paramount importance to guarantee the

highest achievable availability and reliability of the SoS so that the charging requests

are readily and continuously available. Achieving these properties allow not only to

reach the highest quality of service, but also to maximise the profits. The SoS allows

drivers to enquire for a charging opportunity through the E-mobility service and to

have access to the CPs at any time. Thus, energy grid enterprises can maintain the grid

stability, balance the load, and ensure correct voltage levels and frequency, etc., while

energy providers can make the highest profits out of it. To avoid undermining such

premises, Denial of Service (DoS) attacks caused by unauthorized users enquiring the

E-mobility service or trying to access CPs need to be properly tackled.

Dynamicity Viewpoint. EVs join and leave the SoS, according to the need for charging

of the EV. The change in the topology due to this turnover of EVs characterizes the

dynamicity (DYN) of the SoS.

Emergence Viewpoint. According to [2], Emergence is: A phenomenon of a whole at

the macro-level is emergent if and only if it is new with respect to the non-relational

phenomena of any of its proper parts at the micro level. This indicates that these

phenomena cannot be observed at CS level, but at SoS level (or other higher level). As

consequence of identification of emergence scenarios, hazard analysis must be per-

formed to identify and mitigate any hazards.

Evolution Viewpoint. Due to technological advances, marketing, or customer needs;

different kind of EVs it may be necessary to improve, change or add services.

Multicriticality Viewpoint. The scenario described so far, only foresees normal EVs

(e.g., private EVs) that need to recharge and ask for charging opportunity. However,

during real-life emergencies, e.g. rescue operations, wildfires and public security, the

requirement is that specific EVs must always be available. Therefore, the CSO

scheduling strategies must prioritize such vehicles before any others. Emergency EV

drivers access prioritized charging in the same fashion of any other driver, i.e. through

the E-mobility service.

Time Viewpoint. As a general remark, it is worth noting that most of the information

exchanges between CSs rely upon a notion of time. As an example, it would be

impossible to plan and schedule a request of recharging an EV by a driver for the

current day or even pay the billing invoice if not properly time-stamped. Thus, to

provide the payment services, to allow users to enquire for charging opportunities and

to effectively, and efficiently, plan, and schedule, recharging operations over time, there

must be awareness of time over the SoS. Further, each CS must be time synchronized

to a common reference time to successfully provide their services.

Logical Level. This section describes the SoS Logical Description of the SoS defined

in [4] using the model made using the supporting facility tool.
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After loading the model in supporting facility and double clicking on EV_Charg-

ing CS we can see in Fig. 3 that the EV-Charging Blockly model consist of CSs that

matches to the diagram depicted in Fig. 2.

Figures 3 and 4 show that EV-Charging CS consists of the following CSs:

(i) Chargingpoint, (ii) CSO, (iv) DriverApp, (v) ElectricVehicle, (vi) EMobilityService,

and (vii) EV-SmartMeter

In the following section will be described in details the CSs listed above, through

the expansion of the blocks.

Charging Point CS. The Chargingpoint CS can be expanded by double clicking on it

and the result is depicted in Fig. 4.

Figure 4 shows that the Chargingpoint CS communicates with the Electric Vehicle,

CSO, EV-SmartMeter CSs by the CharginPoint-ElectricVehicle RUPI,

Chargingpoint-CSO RUPI and Chargingpoint-EV-SmartMeter RUPI, respectively.

Figure 4 also shows that the services provided by the Chargingpoint CS. Furthermore,

it has a State Variable Chargingpoint: charging_done.

From the viewpoint of communication, double clicking on RUPIs and RUMI

blocks of Charging Point, CS Fig. 4 shows that the Chargingpoint CS provides the

services to CSO CS through the Chargingpoint-CSO RUMI. The Fig. 4 shows also

that:

• The Chargingpoint-ElectricVehicle RUPI transports the Plug-OUT-Signal and it is

connected to the ElectricVehicle-ChargingPoint RUPI of the ElectricVehicle CS,

• The Charging Point-EV-Smart Meter RUPI transports Electricity and it is moni-

tored through the Charging Point Probe.

Fig. 3. EV Charging in Blockly
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CSO CS. On expanding the CSO CS block (Fig. 5), its services, RUIs, MAPE, and

state variables can be seen.

Figure 5 shows that the Chargingpoint CS communicates with the EmobilitySer-

vice, Chargingpoint, LMO, Aggregator CSs by the CSO-EMobilityService,

CSO-Chargingpoint, CSO-LMO, CSO-Aggregator RUMIs respectively. The Fig. 5

also shows the services provided by the CSO CS. It also has a State variable CSO:

reservation.

From the viewpoint of communication, double clicking on RUMIs blocks of

CSO CS, Fig. 5 shows that the CSO CS provides the following services:

• CSO:do_charging_reservation, CSO:do_priority_charging_reservation to the

EmobilityService CS through the CSO-EMobilityService RUMI,

• CSO: EV Charging Schedule and CSO: Update energy consumption to the

LMO CS through the CSO-LMO RUMI

• CSO: Set Energy price and CSO: Forward energy price to the Aggregator CS

through the CSO-Aggregator RUMI

Figure 5 also shows that the CSO-Chargingpoint RUMI is connected to the

Chargingpoint-CSO RUMI in order to call the service provided by ChargingPoint CS;

the CSO-LMO RUMI is monitored through the Probe CSO Probe. The CSO has a local

clock that we call CSO-clock and that will be described when addressing the Time

viewpoint.

Fig. 4. The Blockly Charging point CS model
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DriverApp CS. On expanding the DriverAPP CS block in Fig. 6, it shows that the

DriverApp CS communicates with EMobilityService CS by the

DriverApp-EMobilityService RUMI, and shows that provides the service DriverApp:

accept_reservation.

This figure also shows that DriverApp CS:

• Interacts with a Role player: Driver,

• Has the following State variables:

• DriverApp:result_of_charging_opportunities_request;

• DriverApp: selected_charging_opportunity;

• DriverApp:duration;

• DriverApp:power,

• DriverApp:got_reservation.

From the viewpoint of communication, double clicking on DriverApp-

EMobilityService RUMI, we see that the DriverApp CS provides the service Driver-

App:accept_reservation by DriverApp-EMobilityService RUMI to EMobility CS, and

Fig. 5. The CSO CS Blockly model

214 A. Babu et al.



this RUMI is connected to the EMobilityService-DriverApp RUMI in order to call the

services provides by the EMobilityService.

ElectricVehicle CS. On expanding the ElectricVehicle block as depicted in Fig. 7, it is

shown that the ElectricVehicle CS has ElectricVehicle-Chargingpoint RUPI in order to

connect with the Charging Point CS. Indeed, expanding the ElectricVehicle-

Chargingpoint RUPI you can see that the RUPI transport Plug-In-Signal and it is con-

nected with Chargingpoint-ElectricVehicle RUPI.

EMobilityService CS. On expanding the EMobilityService CS block as depicted in

Fig. 8, it is shown that the EMobilityService CS communicates with the DriverApp,

Aggregator, Market, CSO CSs by the EMobilityService-DriverApp, EMobilityService-

Aggregator, EMobilityService-Market, EMobilityService-CSO RUMIs respectively.

Figure 8 shows also that EMobilityService CS provides the services:

• EMobilityService: Set Energy price

• EMobilityService: Forward Energy price

• EMobilityService: do_charging_reservation

• EMobilityService: get_available_charging_opportunities

• EMobilityService: re_schedule

and has the State variables:

• EMobilityService:available_charging_opportunities

• EMobilityService:charging_op_sent_by_driver

• EMobilityService:reservation_to_be_sent_to_driver

Fig. 6. The DriverAPP CS Blockly model
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From the viewpoints of communication, double clicking on RUMIs blocks of

EMobilityServices CS, the Fig. 9 shows that the EMobilityService CS provides the

services:

• EMobilityService:do_charging_reservation, EMobilityService: get_available_

charging_opportunities, EMobilityService: re_schedule through the EMobility

Service-DriverApp RUMI

Fig. 7. The EV CS Blockly model

Fig. 8. The EMobility CS Blockly model
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• EMobilityService: Set Energy price, EMobilityService: Forward Energy price

through the EMobilityService-Aggregator, that is connected to the Aggregator-

EmobilityService RUMI

• EMobilityService: Set Energy price through the RUMI EMobilityService-Market.

Furthermore, the EMobilityService-CSO is connected to the CSO-EmobilityService

RUMI in order to call the services provided by CSO CS. The Fig. 9 shows also that

EMobilityService has the State Variable:

• EMobilityService:available_charging_opportunities

• EMobilityService:charging_op_sent_by_driver

• EMobilityService:reservation_to_be_sent_to_driver.

EV-Smart Meter CS. On expanding the EV-SmartMeter CS block as depicted in

Fig. 10, it shown that the EV-SmartMeter CS communicates with Chargingpoint and

Meter Aggregator CSs by the EV-Smart Meter-Chargingpoint RUPI and EV-Smart

Meter-Meter Aggregator RUMI respectively.

Figure 10 shows also that the EV-SmartMeter CS provides the service EV-Smart

Meter: Get_energy_consumption and implements MAPE Algorithm.

Fig. 9. The EMobility CS RUMI model
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From the viewpoint of communication, double clicking on RUMI and RUPI blocks

of EV-Smart Meter CS, Fig. 10 shows that the EV-SmartMeter CS provides the service

EV-Smart Meter: Get_energy_consumption through the EV-Smart Meter-Meter

AggregatorRUMI, and the EV-Smart Meter-Chargingpoint RUPI is connected to the

Charging Point-EV-SmartMeter RUPI of the Chargingpint CS.

Implementation. As stated in D4.2 [4], the EV SoS must be designed to provide a

friendly and convenient service to the users and, at the same time, profitable to the

provider. Planning and scheduling is of paramount importance for both energy pro-

viders and users: as an example, on one side, if the charging requests are spread during

the day, there will be limited and/or controlled load peaks on the grid to be handled,

thus the energy price may not vary abruptly over time and prioritized consumers (e.g.,

police and fire-fighter vehicles, ambulances, etc.) will be easily handled by the charging

station operators. On the other hand, knowing the energy prices and available time

slots, the users will be able to carefully plan the recharging operation while keeping the

service affordable.

A typical scenario would be as follows: EVs travel through a wide area, where

several charging station operators provide recharging services, by means of charging

points. Drivers in need of power for their EV can provide the expected charging context

(duration, power, etc.) to the e-mobility service in order to receive information

regarding recharging time slots and associated energy prices of each charging station

operator. A load management optimizer that cooperates with the charging station

operators carries out planning and scheduling activities. The interested driver will then

choose one of the slot-price pair possibility for recharging its vehicle, will be allowed

Fig. 10. The EV-smart meter CS Blockly model
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to plug-in its EV at the charging point of the chosen charging station operator during

the reserved time slot only, and the amount due will be based on the energy con-

sumption times the booked price. At the end of the recharging operation, the driver

receives a billing invoice.

With this scenario in mind, and using the AMADEOS tooling, we designed a SoS

(shown in Fig. 11, and described in D4.1 [3]) based on a typical EV rollout, in par-

ticular based on the desired situation in the Netherlands, based on interviews and

workshops with experts, both in the EAB and Grid operators. This SoS was modelled

using the Blockly tool (this is described in D4.2 [4]) and a simulator was generated

from the tool. We combined this simulator with a simulation toolkit called SimPy and

performed a number of experiments based on the scenarios defined in D4.2. This

served to both validate the simulator as well as determine if such a simulation could be

used to determine and validate possible future designs of the EV charging network,

based on varying user and SoS behaviour.

The simulation is built using “SimPy” and uses fixed time slots for reservations. At

the moment these slots are 15 min long and start on 0, 15, 30 and 45 min past each hour.

Each Driver that wants to charge will attempt to make a Reservation for a Charging

Point (via the E-Mobility Service) at a CSO. Because of these timeslots, a Reservation

will only begin at the start of the next timeslot and will last for a number of time slots as

calculated by the CSO. After the reserved time has passed, the Driver is expected to Plug

Out its EV from the Charging Point, though he can do so at an earlier point in time (if the

EV is already fully charged, or the driver otherwise decides to do so).

Below, we summarize some of the results received. These are preliminary results,

and as the data retrieved from the simulator is extremely extensive, we identify only

some of the more interesting aspects. In general, we found the tooling to be extremely

useful, and, for example, several emergent behaviours were discovered in the data that,

if proven true, would lead to significant challenges to the electrical grid. Furthermore,

the aspects that the SoS was designed to test (primarily security and dependability)

were successfully tested and validated. We plan to exploit these results in two manners:

First to follow up on the results and perform more experiments after the end of the

project, leading to publications, and secondly both Thales and ENCS are planning to

make the simulator code available online, so other researchers can validate and use the

same simulation code.

Results from the EV Charging Scenarios. The first scenario that we will discuss is a

usage case where EV drivers do not immediately remove their vehicles from the

charging points for a period of time. This means that those drivers who do not remove

their EVs are acting badly – blocking charge points from other users. We chose a fixed

period of 4 h for this behaviour in this scenario, and the simulation took place over a

period of 24 h (simulated time via SimPy). There were 1000 EVs present and 500

Charging Points (CPs). In this simulation, market costs did not cause a significant

change in behaviour. The EVs were set to desire a charge of 70%, with a “must charge”

threshold at 20%. Four states are defined in the simulation: Charging, Driving, Idling

and Waiting. Charging and Driving are self-evident. Idling was periods of time when

the EV was not in use (due to lack of driver need). Waiting was an undesirable state

where an EV was waiting for a CP to become available. In order to stress the Grid and
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the SoS as a whole, Idling was the least desired state of the three normal states – the

chance of an EV idling was set to 10%. Finally, note that the drivers, cars and initial

state were randomly assigned and a period of 15 min was allowed to let the state settle.

This can be seen in an initial jump in all of the graphs.

In Fig. 12, you see four basic types of behaviour: Driving, Idling, Waiting (for a

free Charging Point) and Charging. The numbers on the X-axis reflect the number of

EVs in that state. In this scenario, (and in all our tests, due to global variables that were

Fig. 11. EV Charging SoS
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set) the initial state was close to optimum for each of the EVs, with around 70% driving

and 30% charging. The initial spike in charging (around 10000 s into the simulation) is

due to the initially driving EVs falling below the 20% lower threshold and requiring a

charge. You can then see that after around 20000 s, the system reaches a steady state

with around 70% driving, 20% charging and 10% idle. Note also that there is an

insignificant number of EVs in the waiting state.

Figure 13 shows the first set of EVs acting badly – in this case, 20% delay their

disconnection from the CPs and block other drivers from using them. This scenario

shows the resilience of the SoS to such behaviour – there is again the same spike in

charging after around 10000 s, and a minor amount of EVs waiting, but again after

around 20000 s, the SoS reaches a relatively steady state, although with more EVs

charging (around 5% more) at any given time (and consequently 5% less driving) that

the optimal case. One last thing to note is that all CPs are in use during the initial spike.

Fig. 12. Initial state where no drivers act badly

Fig. 13. 20% of EVs acting badly

Fig. 14. 40% of EVs behaving badly
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In Fig. 14, the consequence of bad actors is more apparent. Now, there is a

noticeable issue for EV drivers during the initial spike in usage, with a period of time

when all of the CPs are in continual use (for around 15000 s) and there are some

drivers constantly waiting for service. However, the SoS is still very resilient to this

issue – the number of waiting drivers is still very low (maximum was 16 drivers).

Furthermore, the average wait time was around 600 s (10 min). Again, this shows the

resilience of the SoS to malicious events. However, again there is a drop in number of

active drivers when the SoS reaches a steady state of another 8%, with the number of

charging drivers up by the same amount.

Finally, in Fig. 15, the first significant effects of bad behaviour can be recognized,

while 60% of drivers are acting badly. First, the period where the initial spike causes

full usage of all CPs, and consequently up to 100 EVs waiting for service at the worst

point. Despite this, there is another drop in active drivers when the simulation reaches

the steady state – down to around 58% from a high of over 70% in the control

simulation.

In Fig. 16, we can see some significant changes in the usage profile of the SoS due

to the bad behaviour of the EV drivers. In this scenario, during the initial spike, there is

now a period of around 35000 s (nearly 10 h in total) where all of the CPs are in

constant use. This is also reflected in the more than 200 EVs waiting at one point. In

this scenario, we now see less than 50% of the EVs driving when the SoS reaches a

Fig. 15. 60% of EVs behaving badly

Fig. 16. 80% of EVs behaving badly
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steady state, with roughly the same number charging as driving. This means that 20%

of the EVs have changed from driving to charging since the control simulation.

However, this is taking place where only 20% of drivers are behaving correctly and yet

the SoS remains (for the most part) available for use.

In the final simulation, shown in Fig. 17, every driver is now acting badly. In this

case, the effect on the SoS is dramatic and relatively catastrophic. In this simulation, for

essentially the entire day, all of the CPs are in constant use, the number of drivers is

down to less than 50% and for large periods of time, EVs are waiting to charge (more

than 30% at the peak).

Market Simulation and Energy Usage. These simulations were intended to determine

the reaction of the SoS to malicious behaviour on the part of the drivers. The results

described above shows how the SoS behaves from the perspective of the EV drivers.

However, there is another important aspect that can also be studied: the reaction of the

SoS from the perspective of the Grid. This was calculated from the perspective of the

TSO (see Fig. 11). The mission of the SoS is, basically, to ensure the stability of the

Grid, and to ensure that large changes in energy generation are not required. In order to

achieve stability, a number of measures were enacted. First, the CPOs (there are 5

independent CPOs in this simulation) received a wholesale price from the DSO, via the

market, based on:

1. Forecasted demand (by the DSO) for the next 24 h, in 15 min intervals, and

2. How much energy they predicted that they required also in next 24 h, in 15-minute

intervals.

The goal of a CSO was, using the market price, to ensure they did not stray too far

from their forecasted need. Prices were set by the DSO based on five energy bands –

the price per unit was set based on the band that the CSO requested, regardless of the

actual energy used in reality. The ideal situation for a CSO was to get as close to the top

of a band, without exceeding it, as the cost per unit would jump, and make the per unit

cost more expensive. Therefore, if a CSO discovered that (based on EV reservations)

that they were going to jump up to the next band, their behaviour would be to attempt

to get many more customers, by reducing the customer price. We used this aspect to

drive competition and the response from the domain experts was that this is indeed a

desired future scenario. This aspect proves the evolutionary promise of an AMADEOS

SoS design.

Fig. 17. 100% of EVs behaving badly

Case Study Definition and Implementation 223



Based on the same simulations as shown in Section 0, Fig. 18 shows the reaction of

the Grid to the EV charging scenario where no bad behaviour is present. The requests

come in 15-minute intervals, and this can be seen in the jagged lines that are present in

the graphs. In this instance, there is again an initial jump, after the 15 min settling down

period and then a peak and trough after around 18000 s. This is again due to the jump

in number of users charging at the start of the simulation based on their initial charge

state and desire not to fall below 20%/attain 70% charge. The interesting outcome is the

narrow band (between 40 MWh and 60 MWh) that the Grid eventually stabilizes

towards. Future research will definitely consider running such experiments over several

weeks of simulated time and integrating a typical Grid usage pattern into the demand1.

The 20% (not shown) and 40% bad behaviour results (see Fig. 19) show how the

bad behaviour is increasingly reflected in the variations of load over time. The inter-

mediate results (60% and 80% bad behaviour) show increasingly wide variations,

cumulating to the wide swings shown in Fig. 20, where all of the drivers are again

behaving badly. These variations once again show how malicious actors will cause

significant issues for Grid operators.

Fig. 18. Total network load with 0% bad behaviour.

Fig. 19. Total network load with 40% bad behaviour

1 As discussed in D4.2, the simulation was not run in concert with the MV case study.
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2.3 Household Management Case Study

Mission. The goals of the SoS are somewhat similar to the ones of the EVC: allow

users, i.e. households, to use home appliances (e.g., flexible or general loads) at a

convenient price while properly scheduling the energy consumption and distribution to

improve revenues for energy providers with the constraint of keeping a balanced load

on the grid.

During a normal scenario, a user wants to activate one or more home appliances,

thus requiring for energy from the grid. Energy requirements are managed by an energy

management gateway every time a person wants to activate home appliances. The

energy management gateway handles the scheduling of energy consumption/provision

within the household and sends requests to the coordinator to update

consumption/production setpoints. The coordinator continuously updates the energy

setpoints according to the grid energy availability. The actors need to be time syn-

chronized to provide consistent information to the coordinator for scheduling and

planning actions. Furthermore, some home appliances should be energy prioritized

with respect to others (e.g., refrigerators, air conditioning systems, etc.).

Conceptual Level. In this section we report the result of the activities performed at the

conceptual level for the Household management case study. For each viewpoint we list

the most representative identified SoS requirements defined taking as input the SoS

meta-requirements [1]. Though, the requirements come from meta-requirements, the

traceability of the full set of requirements on meta-requirements is not provided. Some

of the representative requirements are given below (the full set of requirements can be

found [4]).

Viewpoint Examination. The objective for which the SoS is designed for is to allow

end customers (i.e., households) to interact with the coordinator in order to request the

activation of some particular appliance.

Architecture Viewpoint. The HHM consists of a subset of the CSs of the SoS

“Household scenario” described in Chap. 2.2 of [4]. In particular (Table 2):

Fig. 20. Total network load where 100% of the drivers are acting badly
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Table 2. Constituent systems for Household case study

Name Description

Coordinator An entity that receives energy prices and collects energy

flexibilities. It applies optimization functions in order to shift

power consumption and generation when energy prices are

favorable.

Energy Management

Gateway (EMG)

It is any device/software or group of them installed in the

customer facilities that allows the visualization of metrological

information, price and warning signals by the customer and has

the capability to take action (e.g. rescheduling of power

consumption/production) automatically or after approval by

customer on any home appliances.

Smart Meter (SM) A smart meter providing production and consumption values.

May also enable advanced sensor facilities providing

active/reactive production, frequency monitoring, voltage

monitoring, etc.

Distributed Energy

Resource (DER)

DER devices are generation and energy storage systems that are

connected to a power distribution system.

Home Automation

Device

Device providing additional functionalities enabling consumers

to interact with their own environment (e.g., a smart thermostat).

Flexible Load Load that can be controlled by the EMG (e.g., a smart washing

machine).

Local Network Access

Point (LNAP)

Provides the WAN connection for upload of the metering data.

Display Main Human Machine Interface (HMI) between the householder

and smart services.

Fig. 21. Household management SoS architecture

226 A. Babu et al.



High level representation of HH Management interactions.

A pictorial view of the HH management SoS is reported in Fig. 21.

Figure 21 shows a pictorial view of the temporal sequence 1–7 comprising, for

each step, the involved systems and connections from Fig. 10.

In the following, the steps performed in a nominal household scenario are descri-

bed. Each numbered step corresponds to a specific, adimensional, time instant at which

the corresponding actions are carried out.

1. A person wants to activate the Flexible Load appliance. The Flexible Load sends an

energy request to the EMG.

2. The EMG sends an aggregated energy request to coordinator.

3. The Coordinator decides whether to accept or reject the EMG request by updating

energy setpoints according to the energy availability on the grid.

4. According to the Coordinator reply message, the EMG sends an OK/KO message to

Flexible Loads Home Automation Devices and DERs.

5. In the case of an OK message, the Flexible Load is activated.

6. The SM measures the energy consumption and the resultant load for, respectively,

billing operations and smart grid power flexibility purposes. Load information are

forwarded to the EMG.

7. When the Flexible Load ends its tasks, the SM sends the total energy consumption

and billing invoice to the user through the Display.

Dynamicity Viewpoint. The aforementioned case study is therefore very dynamic, in

the sense that the service provided by the electrical grid is always changing, according

to the customer requests for home appliances.

Evolution Viewpoint. Due to technological advances and new customer needs, the

EMG should have the capability of easily integrate new HMIs, automation devices and

loads. As an example, an householder may want the same interaction provided by the

in-house Display on his smartphone and to use it not only while connected to the

LNAP, but also when outside to schedule a washing machine while connected to the

mobile carrier.

Multicriticality Viewpoint. Up to this point, we have described the case study

assuming all the appliances with the same criticality. However, an HH consists of a

large variety of possibly interconnected (net-centric) appliances providing different

kind of services and, thus, characterized by different priority and criticality levels.

2.4 Medium Voltage Control SoS Case Study

Mission. The mission is to provide charging services to EV drivers and to provide

energy-related services to households, but also to highlight interesting emergent phe-

nomena that would not arises within the single SoS improving their interoperability

with predictable, dependable behaviour avoiding negative cascading emergent effects.

Conceptual Level. The Medium Voltage energy distribution infrastructures are nee-

ded to interconnect the EV-Charging SoS and HH Management SoS and consist of the

following set of CSs (Table 3):
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This section describes at logical level the infrastructures related to the Medium Voltage

energy distribution (Fig. 22) and the examples of emergent phenomena that could be

coming from the interoperability of Ev-Charging SoS and HH Management SoS.

In the following, the steps performed to manage the energy distribution are

described.

1. Smart meters (SM) are devices connected to each prosumer;

2. SM collects and send information (also on demand) about power consumption/

generation to the Meter Aggregator;

3. The Meter Aggregator sends the aggregated measures to the LMO (SM can provide

information about energy consumption/generation to the EMG and the home

Display);

4. The LMO receives information about Substation Monitoring Data, Household

forecasted energy consumption generation and EV charging schedule;

5. The Distribution Management System (DMS) updates periodically LMO infor-

mation for high level operation objectives, changes in data models (e.g. grid

topology, newly connected charging station);

Table 3. MV Energy distribution constituent systems

Name Description

DER Device able to produce energy in the grid.

Battery Storage Battery used to store energy produced by DER

Smart Meter A smart meter providing production and consumption values. May also

enable advanced sensor facilities providing active/reactive production,

frequency monitoring, voltage monitoring, etc.

Meter

Aggregator

It is in charge of collecting metering data from the supervised smart

meters.

LMO The main software component connected to the grid which is in charge of

providing power constraints and energy set points to the CSO.

DMS A system which provides applications to monitor and control a distribution

grid from a centralized location, typically the control centre. A DMS

typically has interfaces to other systems, like a GIS (Geographical

Information System) or an OMS (Outage Management System).

Information

services

Commonly available services provided by a third party. E.g. weather

information needed to predict PV production.

Substation Substation system implementing the automation sequences and the control

functions of interfacing process level control devices

Ancillary

Services

Information services to TSO (e.g. extreme increment or decrement of the

electricity frequency).

TSO Operating centre for supervising critical regions of the transmission grid

Market Set of services designed to evaluate the Energy price.

Aggregator Is designed to provide information from the grid to the Market. The

Aggregator is able to aggregate information incoming from sources

reducing complexity and redundancy.
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6. Information services updates LMO with environmental information (e.g. weather

data)

7. The LMO sends periodically updates on energy consumption/generation set points

to EV CSO, Household Coordinator, Storage, DER, Substations;

8. The DMS updates periodically Ancillary Services with supporting information

(e.g. extreme increases or decreases in electricity frequency);

9. Ancillary services forward the info to the Transmission System Operator (TSO);

10. The TSO provides info to the Market for setting the energy price;

11. The price of the energy can be requested by aggregators and other energy dealers

(e.g. E-mobility);

12. The Market provides energy price to the Aggregator, that forwards the price to the

energy dealers and to controllers (i.e. CSO, Coordinator, EMG),

13. Information about the demand and the generation Flexibilities are provided to the

aggregator by Storages, DERs, CSO and EMG.

Viewpoint Examination. Consider now the case where the owner of the HH has the

capability of storing energy from DER and also owns an EV. As described in Sect. 2.1,

Fig. 22. Architectural view of Medium Voltage Control (3).
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their EV can be charged at a CSO by means of a CP, the energy used in this process is

generally bought by the CSO from the energy market and sold at a specific price per

each kWh (plus power grid fees including taxes) (Fig. 23).

The CSO may also buy energy directly from the HHs for recharging EVs, like, e.g.,

when the HH energy price is cheaper than the one provided by the market or for

compensating effects of some energy-related service disruptions (e.g., disconnected

energy generators). In this case the total energy price would be the energy cost from the

HH plus the power grid costs with taxes (Fig. 24).

From the above scenario, the below beneficial emergence scenarios were identified:

Consider now the scenario in which the owner of the HH wants to recharge its EV

to a CSO. It is evident that the energy needed to recharge the EV can be bought and

provided, by the CSO, form either the energy market or HHs, including the one owned

by the driver of the EV.

The HH owner can check the energy price, relative to the energy market, of the

CSO and decide whether to recharge its EV with such energy or to use the energy

stored at home using DER, i.e. the HH owner can compare the price of the energy

stored at home with the one sold by the market and decide accordingly (Fig. 26).

Suppose that the energy on the market is more expensive than the one stored at the

HH. The HH owner will then decide to use its own stored energy to recharge its EV,

enabling the energy transmission from the house to the CSO. Using the energy stored at

home will cost the owner to pay only the provision of power grid including taxes (the

price may be related to the total power grid usage time or to total transmitted kWh) (see

Figs. 25 and 27).

Fig. 23. The energy used to recharge an EV is bought from the market
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These new emergent behaviors clearly arise with the interconnection and the

available communications between smart constituent system of a SoS, which the

AMADEOS framework is able to capture and describe. This way the possible large

variations in the network load could be attenuated by a suitable adaptation of the prices.

However, if this adaptation process is not correctly implemented (for instance, if the

Fig. 24. The CSO buys energy from the HH.

Fig. 25. The CSO can buy energy from either the market or HHs
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adaptation is too quick and steep), then undesirable global phenomena, such as

oscillations of prices and load, could take place.

Time Viewpoint. For identifying some of the time aspects, we describe two scenarios

that extend the previous case studies with descriptions of some systems, processes, and

interactions where the existence of an accurate global time is essential for measuring

and controlling the state of the power grid.

Fig. 26. The HH owner can check and compare the price of the energy stored at home with the

one of the market

Fig. 27. The HH owner decide to recharge its EV with the energy stored at home
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Scenario 1: Maintaining the Power Phasor Parameters. The power phasor is

defined by the amplitude, frequency, and relative phase of the electric current or

voltage in a power line. As the load in the power network varies, the braking

momentum of the power generators increases, so the generators’ rotors slow down. All

variations in network load lead thus to variations in power frequency. Traditionally,

these variations were compensated locally, by applying the load measurement signals

to an Automated Generator Control (AGC), which basically is an electro-mechanical

governor that compensates for the changes in braking momentum. The AGC signals are

collected from different points in the network, and forwarded to large production

facilities [5]. In order for the AGC to work efficiently, the following requirements must

be satisfied:

– Timely measurements of network loads.

– Timely adjustment of voltage controllers.

The adjustment signals for AGC are generated once every 2 to 4 s, so the trans-

mission time requirements are not very strict [5].

Another phenomenon that alters the power phasor is the reactive power produced

by the reactance (i.e. the reactive part of impedance) of a load. A capacitive load will

make the voltage lag behind the current, whereas an inductive load will make the

current lag behind the voltage. Although the reactive power does not dissipate energy,

it affects the efficiency of power transmission to the consumers, so this too must be

controlled, such that the reactive angle φX is kept as close as possible to zero.

To compensate for reactive power introduced in the network primarily by motors

and transformers, capacitive loads (capacitor banks) can be switched on or off by

control units. Unlike the AGC, which acts centrally at the production facility, the

reactive power control can be distributed across the grid [6]. In the AMADEOS sce-

narios this can be achieved by the LMO.

In a purely reactive approach the individual measurements by SMs are collected by

LMOs (via the EMGs or CSOs), which try to compensate for load variations using the

locally available power reserves and by re-scheduling, when possible, of some loads.

When these local measures are not sufficient, appropriate AGC signals are transmitted

to the power generation facilities. Of course, particular implementations could include

additional aggregation layers, but those do not change significantly the problem.

Fig. 28. Power triangle
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Concerning the reactive power in the grid, the LMOs try to locally compensate. In

case when the local capacitor banks do not suffice, a signal must be broadcasted

(Reactive Load Control - RLC) to request additional capacitive loads be switched on by

other LMOs.

Overall, the load measurement and control architecture includes a number of

geographically distributed LMOs and one local AGC for each of the power plants (see

Fig. 28).

The effectiveness of this reactive approach is limited, due to the delays in the

transmission of AGC signals and the time required for adjustments. A more advanced

approach (see Fig. 29) tries to predict the variation of the load based on SCADA

measurements from various places in the network, and a forecasting of load variations

[7]. The prediction function is based on a sampling of the real load over some past time

interval.

Although the AGC and reactive load balancing are still slow (in the order of

seconds), a good estimation of the current state of the system, as well as the load

prediction, require better time accuracy than in the previous case, and global time

awareness. Indeed, if two consecutive measurements from a given location in the

power grid arrive in reverse order, then the detected variation trend is reversed. If this

reversal occurs randomly over a large number of measurements, then the whole pre-

dictive load balancing has, on average, no effect. In a worst-case scenario the order of a

sequence of measurements can be altered such that the variations are amplified, leading

potentially to the activation of circuit breakers on some network segments.

Specific timing requirement can be identified for the two cases:

A. Predictive balancing of active loads – in this case we assume that LMOs compete

with each other, so they are not willing to use their local energy reserves to balance the

load at other LMOs. In this case AGC messages are sent to the power plant to increase

its power output. Similarly, when the load decreases and LMO’s storage capacity is

reached, another message is sent to decrease the generators’ power output. Obviously,

these are sent asynchronously by all LMOs. In order to ensure a proper ordering of

these events at the local AGC Message Queue, all AGC messages must be

Fig. 29. Load measurement and control architecture

234 A. Babu et al.



time-stamped. The time difference between the local clocks that provide the time

stamps must be smaller than the sampling interval2 of the Active Load Prediction

(ALP) function.

B. Predictive balancing of reactive loads – in this case we assume that LMOs help

each other since the cost of switching capacitor banks is low. A simple protocol could

be defined as follows:

– When a LMO needs additional capacitive reactance it broadcasts a RLC request

message (RLC+), and when this is no longer needed it broadcasts a RLC−.

– All RLC messages from different LMOs get stored in the Distributed RLC Queue.

– All LMOs poll the queue and:

• If the first message is RLC+ and the polling LMO has the disposable capacitance

requested by that message, it removes this message in the queue and then

switches on an appropriate capacitance.

• If the first message is RLC− and the polling LMO has more allocated capaci-

tance than that requested by the message, it removes this message and switches

off the appropriate capacitance.

Of course, more elaborated and efficient protocols can be implemented for pro-

cessing more messages at once, but for the purposes of this study this is sufficient.

Since each LMO has a local load predictor, the polling of the queue needs to be

done at the same rate as the same sampling rate of the load prediction function. For a

correct functioning of these predictors, the messages must be correctly ordered based

on time stamps, as in the case of AGC. Additionally, the polling cannot be done

completely asynchronously since this could lead to race conditions due to the dis-

tributed queue.

Fig. 30. Load measurement and predictive control architecture

2 Note that when the guaranteed transmission time for the AGC messages is smaller than the ALP

sampling interval, then no time stamping (and thus no global time) is needed.
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The time requirements resulting from these two cases are:

1. The maximum synchronisation error should be smaller than the sampling interval of

the load prediction function; otherwise, two messages arriving in reversed order

could indicate a wrong trend (cases A and B)

2. The polling of the queue should be done at specific time slots allocated to each

LMO (time-division multiplex); the maximum synchronisation error (i.e. difference

between local clocks) should be smaller than the time slot minus the time required

for processing the queue (case B)

Scenario 2: Forensic Analysis of Disruption Events. When a disruption occurs in a

network, it may lead to cascading effects (Fig. 31). In case of complex networks of

producers and consumers it is not always easy to identify the original event that

initiated the cascaded failures. However, this information is crucial when network

design needs to be improved to increase the resilience of the network, or when the

network operators are liable for the quality of the services they provide.

To cope with this requirement each circuit breaking event could be logged by the

breakers’ control computer. This way a chain of events can be reconstructed and the

root cause identified. However, given the high speed in which these events occur3, the

temporal order of the logged events may be distorted by the differences in the local

Fig. 31. Cascaded propagation of disruption and time stamping of breaking events; in nominal

terms, t0i ¼ t0j ¼ t0k

3 A typical reaction time for modern equipment is 1/8th of a 20 ms cycle [8].
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clocks used for time stamping. For this reason, it is necessary that the synchronization

error between local clocks is kept below the breaking time of the fastest breaker plus

the propagation time of the disruption. This is illustrated in Fig. 30, where a time value

t0 corresponds to three different moments in three circuits whose local clocks are not

synchronized. If the delay between two local clocks is too large, as it is the case for

circuits i and j, then the events cannot be ordered correctly.

Finally, for both scenarios the maximum transmission times for all the messages

related to events occurring in the smart grid must be guaranteed. If this is not the case,

then most of the functions described here cannot be implemented.

3 Conclusion

This chapter has shown how a realistic case study can be modeled in the Blockly tool

and directly simulated. A high-level view of the entire model can be seen using the

model query tool of supporting facility to select all blocks. Below is the graph of the

model consisting of elements and relationship between each blocks. The diagram

shows the complexity of the full model (Fig. 32).

Modeling complex and pervasive infrastructures as the one used as case study

clearly highlights how the support of a precise conceptual model and of specific tools

Fig. 32. The full SmartGrid model generated using the model query: “return true;” (i.e.: select

all blocks). Here, the triangles represent systems, star represents the SoS and other blocks are

represented by circles. The color of the blocks is the same as the one in the Blockly model.
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for its instantiation is fundamental for a sound and comprehensive codification of the

various properties of the whole. At design time the identification of causal loop in the

lower levels of the hierarchy, enabled by the support for simulation through model

execution, is a mandatory step to identify possible emergent behaviors at the higher

levels, that may lead, also in future evolution of the system of systems, to a violation of

system requirements. A correct representation of the environment is necessary. Global

time Awareness and monitoring are fundamental to early detect and to contain the

effect of detrimental emergence phenomena at run time. The main benefits of the

AMADEOS approach can be easily seen in the results from the simulations:

The AMADEOS architectural framework and associated tools allow an SoS architec-

ture to be comprehensively designed and a simulation extracted that can be tested. This

allows system architects to quickly test hypothesis regarding future systems and

determine what attributes will lead to advantageous or poor results.
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