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GEOMETRY OF THE SHOULDER OF A PACKAGING MACHINE* 

J. BOERSMAt AND J. MOLENAARt 

Abstract. The shoulder of a packaging machine is a developable surface that guides the packing material without 
stretching or tearing. The shoulder is traditionally manufactured by bending a flexible plate along a given bending 
curve, also without stretching or tearing. In this paper, the shoulder geometry is described mathematically by methods 
from classical differential geometry. For a given bending curve the generating lines of the (developable) shoulder 
surface are completely specified. It is shown that the bending curve can be chosen such that the resulting shoulder 
contains a planar triangle. The special case of a conical shoulder is also discussed, and the underlying bending curve 
is determined explicitly. 

Key words. developable surface, isometric mapping, generator, planar triangle, cone 

AMS subject classifications. 53A05, 65Y25 

1. Introduction. The research of this paper arose out of some questions from industry 
about the design of the so-called shoulder of a packaging machine. The shoulder is a surface 
that should guide the packing material (paper or plastic sheet) from a horizontal roll into a 
vertical circular cylinder where it is folded against the inner wall; see Fig. 1. Inside the cylinder 
the sheet is sealed at the bottom and at the front side to form a bag. The bag is filled from 
above by dropping the product to be packed, e.g., candy. Next, the bag is drawn downward, 
sealed at the top, and cut off, whereupon the process repeats itself. This process allows for 
packaging at high speed (hundreds of bags per minute), but is also sensitive to disturbances. 
In particular, the shape of the shoulder turns out to be quite critical. For a proper operation 
the shape should be such that the sheet is guided without stretching or tearing. 

The shoulder can be manufactured in various ways. In the traditional manner, one starts 
from a thin rectangular plate of flexible material (metal or hard plastic), of width 27r R, in 
which a so-called bending curve BC is carved. The lower part of the plate (below BC) is 
wrapped around a circular cylinder of radius R, whereby BC passes into the curve BC on 
the cylinder. At the same time the upper part of the plate (above BC) is bent backward to 
ultimately form the shoulder surface which is attached to the cylinder along BC. The original 
plate and its deformation into cylinder and shoulder are shown in Fig. 2. For a proper shoulder 
the deformation should be carried out very carefully, that is, without stretching or tearing. 

The questions from industry concern the choice of the bending curve, so that the shoulder 
meets certain geometrical specifications regarding height, radius, angle between shoulder 
and cylinder, and others. In addition, use of a numerically controlled milling machine as an 
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FIG. 1. Schematic drawing of the packaging machine. 
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FIG. 2. Left: Rectangularplate of width 27r R, with plane bending curve BC. Right: Configuration of shoulder 
and cylinder of radius R, with bending curve BC. 

alternative to the traditional manufacturing of the shoulder was considered. Both items require 
a detailed mathematical description of the shoulder geometry, which is the subject of this paper. 
From Fig. 1 it is seen that the packing material forms a planar sheet when approaching the 
shoulder. Therefore it is highly desirable that the shoulder surface be planar in the vicinity of 
the back edge. If not, the packing material and the shoulder do not perfectly fit and this might 
be a source of disturbance. So it was demanded (by industry) that the shoulder contain some 
planar piece. 

In ?2 of this paper we present the mathematical description of the shoulder geometry 
using methods from classical differential geometry. The shoulder is a developable surface that 
is completely determined by its generating lines. The bending curve is assumed to be three 
times continuously differentiable. Then the resulting shoulder is found to contain no planar 
pieces. In addition, we derive a specific condition on the bending curve which expresses that 
the shoulder is free of singularities. In ?3 the analysis is extended to the case of a bending 
curve with a discontinuity in the third derivative. It is shown that the shoulder surface now 
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contains a planar triangle with its vertex at the discontinuity point. This feature can be fruitfully 
exploited to construct shoulders with a planar back edge. Section 4 deals with the question 
whether the shoulder surface could be part of a cone. By requiring that all generating lines pass 
through one point (vertex of the cone), we determine an explicit analytical representation for 
the bending curve of such a conical shoulder. In ?5 we present a scheme for the calculation of 
the bending curve such that the corresponding shoulder meets certain prescribed specifications. 
A coordinate-dependent representation of the shoulder geometry is given in the Appendix. 

This paper does not go into the mechanics of the transport of the packing material over 
the shoulder into the cylinder. The emphasis is on the analytical construction of the isometric 
mapping of the plane into the shoulder. The converse problem has been treated by Clements 
and Leon [1] and Kreyszig [5], who presented numerical procedures for the isometric mapping 
of a given developable surface into the plane. 

2. Mathematical description of the shoulder geometry. The shoulder is manufactured 
by bending of a plane along the bending curve BC, such that BC deforms into the bending 
curve BC on a circular cylinder of radius R; see Fig. 2. In the deformation (without stretching 
or tearing) all distances and angles in the surface are preserved, which means that the shoulder 
surface is isometric to the plane. Then it is known from differential geometry [3], [4], [7], 
that the shoulder must be a developable surface. Typical for a developable surface is the 
property that it contains a one-parameter family of straight lines, called generators, and along 
each generator the surface has a constant tangent plane. Thus the shoulder is completely 
determined by a specification of its generators. Furthermore, it follows from a result of 
Forsyth [3, p. 377] that, for given bending curves BC (in the plane) and BC (on the cylinder), 
there exist two developable surfaces through BC, which are isometric to the plane through 
BC, such that BC corresponds to BC. Clearly one of these surfaces is the circular cylinder, 
while the other surface is the shoulder to be determined. 

Throughout, we adopt the convention that corresponding quantities in the plane or on 
the shoulder are denoted by the same symbol with or without an overbar, respectively. The 
points of BC and BC are represented by the two- and three-dimensional vectors i- = i-(s) and 
r = r(s), respectively, where the parameter s stands for arc length; this parameter is the same 
for BC and BC because of isometry. In this section it is understood that r(s) and r(s) are 
C3-functions, and BC is concave. Differentiation with respect to s is denoted by a subscript 
s, We introduce the unit tangent vector t and unit normal vector n to BC, given by 

(1) t(s) = rs(s), n(s) = -tS(S)/K(S) 

Likewise, the unit tangent, normal and binormal vectors to BC are given by 

(2) t(s) = rs(s) , n(s) = -ts(s)/K(s) , b(s) = t(s) x n(s) . 

Here, K and K are the curvatures of BC and BC, taken as 

(3) K(S) = Its(s)I, K(S) = Its(s)l 

Since BC is concave, the normal vector ni as defined in (1) points upward; see Fig. 3. 
The shoulder is a developable surface containing a one-parameter family of generators. 

Hence, through each point r(s) of BC passes a generator of the shoulder. The direction of 
this generator is described by the unit vector d(s). The corresponding generator in the plane, 
through the point -r(s) of BC, has a direction described by the unit vector d(s). Now the 
vectors d and d are most conveniently expressed in terms of the orthonormal bases ft, in} and 
ft, n, b}, viz. 

(4) d(s) = cos a(s)t(s) + sin a(s)i(s), 
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FIG. 3. Left: Plane bending curve BC represented by r = r(s) or by z = z(v); unit tangent vector t(s) and 
unit normal vector n(s) to BC at Fr(s); generator d(s) at fr(s); the angles * and et + ,lr are negative. Right: Bending 
curve BC represented by r = r(s); unit tangent vector t(s) to BC at r(s); shoulder generator d(s) at r(s). 

(5) d(s) = cosa(s)t(s) + sin a(s)[cos(p(s)n(s) + sin(p(s)b(s)] , 

in which the angles ex(s) and (p(s) are yet to be determined. Note that the angle a between d 
and t, and between d and t, is preserved because of the isometric correspondence; see Fig. 3. 

For the plane above BC and for the shoulder surface, we have the parametric representa- 
tions 

(6) -p =-p(s, u) = f(s) + u d(s), 

(7) p = p(s, u) = r(s) + u d(s), 

where the parameter u stands for arc length along the generators. Next, we require that the 
mapping -(s, u) -- p(s, u) is isometric, i.e., the first fundamental forms of the surfaces should 
be the same at corresponding points [7, p. 175]. Thus we are led to the following conditions 
on the derivatives of -p and p with respect to u and s: 

(8) (i) IPUI = IPUI, (ii) P5u -Ps = Pu Ps (iii) IPSI1 = IPSI 

Condition (i) is automatically fulfilled, since PU = d, PU = d and Idl = Idl = 1. Condition 
(ii) is also satisfied, because d * ds = d * ds = 0, hence jPu * s = cos oa = Pu p5. In fact, we 
anticipated this condition by preserving a in (4) and (5). Condition (iii) requires that 

(9) It + u ds I = It + u ds I 

which is equivalent to the three conditions 

(10) (iiia) Iti = Iti , (iiib) ti d5 = t . , (iiic) Ids = IdsI. 

Condition (iiia) is trivially fulfilled. To satisfy conditions (iiib) and (iiic), we first evaluate the 
derivatives d5 and ds. These are determined by use of the formulas of Serret-Frenet [7, p. 18] 
for BC and BC, which read 

(I1) ts(s) = -K(s)(s) iis (s) = K(S)S) 
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(12) ts(S) = -K(s)n(s), ns(s) = K(s)t(s) + TT(S)b(S), bs(s) = -T(s)n(s) 

Here, T(s) is the torsion of BC, given by 

(13) r = t- (ts X tss)/K 

Then by differentiation of (4) and (5) with respect to s we readily find 

(14) as = (-cxs + K)(sina t - cosa on), 

ds = (-ca5 sin et + K sin et cos 'p)t 
(15) + [cx5 cos Ot cosp - K COS CX- (( + T) sin a sin p]n 

+ [cxs cos a sin 'p + (qps + T) sin a cos (p]b, 

where the dependence on s has been suppressed. Conditions (iiib) and (iiic) can now be 
evaluated. It is easily recognized that condition (iiib) is satisfied for an angle sp(s) determined 
by 

(16) cos$o(s) = K(S)/K(S) - 

It can be shown that BC on the shoulder and BC in the plane have geodesic curvatures K cos 'p 

and W. Then (16) also follows from the property [4, p. 177] that corresponding curves on 
isometric surfaces have the same geodesic curvature at corresponding points. Condition (iiic) 
leads after some algebra to the following equation for the angle a (s): 

-K(S) sin (p(s) 
(17) tan et (s) 

= 
?'s(s) + r(s) 

This equation also follows by imposing the developability condition t. (d x ds) = 0 from 
[4, p. 182]. Both (16) and (17) were found earlier by Culpin [2], by a somewhat different 
approach. 

Remark. So far it has not been used that BC lies on the cylinder. Therefore, (16) and 
(17) hold generally for the developable surface through an arbitrary space curve BC, that 
is isometric to the plane above BC. It is readily seen that there exist two such developable 
surfaces, provided that K < K, in accordance with the result of Forsyth [3, p. 377]. 

For BC on the cylinder it is obvious that K < K, since the curvature increases when BC 
is wrapped around the cylinder. The precise relation between K and K is given in (70) of the 
Appendix. As a consequence, (16) has two solutions, 'p = 'pj and 'p = 'P2, with 0 < 'pj < 7r/2 
and 'p2 = 27r - 'pj. The corresponding values of at, to be determined from (17), are denoted by 
et, and a2. On inserting the pairs (ax,, 'pj) and (l2, 'p2) into (5), we find two generators passing 
through the point r(s) of BC, with directions to be denoted by dI (s) and d2(s), respectively. 
In the Appendix it is shown that the generator d2(s) belongs to the circular cylinder, while 
the generator dl(s) is contained in the shoulder surface. Hence, the solution pair (a1,, 'p1) 
of (16), (17) is to be used in (5), to find the generators of the shoulder. Then the shoulder 
surface is given by the parametric representation (7) with parameter u > 0. This completes 
the description of the shoulder geometry. 

The developable surface p = p(s, u) has a singularity at its edge of regression, along 
which two different sheets of the surface are tangent to each other [7, ?2-4]. The edge 
of regression is determined by the property that the tangent vectors pu and ps are linearly 
dependent there. Using (16) and (17) in (15), we find that 

(18) PS = t + u d5 = t -u(a5 -k)[sina t-cosa(cos'p n + sin'p b)], 
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while PU = d. The linear dependence of pU and p, is now expressed by the equation 

(19) pu x p5 = {sinca - u(a5 - )}(sin'p n - cosq b) = 0, 

with the solution 

(20) U = u(s) sin (s) 
aXs (s) -K (S) 

Thus the edge of regression is given by the parametric representation 

(21) p = r(s) + uo(s)d(s) 

with parameter s. For industrial practice it is imperative that the shoulder is free of singularities. 
Therefore we require that the edge of regression (21) does not lie on the shoulder surface. This 
leads to the condition uo(s) < 0 or ts -WK < 0. Let Vf = 4f(s) be the signed angle between 
the tangent t(s) to BC and the positive v-axis in Fig. 3. Then di/Ids = -W and the condition 
for a singularity-free shoulder becomes 

(22) axs(s) - W(S) = d [a(s) + */(s)] < 0 ds 

Notice that at + Vf is the signed angle between the generator d(s) and the positive v-axis 
in Fig. 3. The condition (22) expresses that at + V4 decreases with increasing s, hence, the 
generating lines through d(s) are diverging and do not intersect. At the end of this section we 
shall translate (22) into a specific condition on the bending curve BC; see (30). 

The unit normal N to the developable surface p = p(s, u) is taken as 

(23) N = PU Ps = sin n -cos b , 
IpU x PSI 

valid if u > 0 and a5 - K < 0, in view of (19). Corresponding to 'p = (pi and 'p = (P2, we 
employ the notations N1 and N2 for the normals to the shoulder and to the cylinder, respectively. 
Coordinate-dependent expressions for N, and N2 are presented in (84) of the Appendix. The 
shoulder normal N1 points upwards (having a positive z-component), while the normal N2 
to the cylinder points inwards. Next we determine the principal curvatures Ki and K2 of the 
developable surface by the standard method known from, e.g., [7, ? ?2-5, 2-6]. Omitting the 
details of the calculation, we find that 

Ksin'p 1 
(24) Ki = 0, K =- 

sin at sin cx-u (a -s 

with associated curvature directions along and perpendicular to the generators, respectively. 
For the shoulder we have K2 < 0, if the condition (22) is satisfied. This implies that the 
shoulder and its normal N1 lie on opposite sides of each tangent plane to the shoulder. Of 
special interest is the angle 0 = 0(s) between the tangent planes to the shoulder surface and 
to the cylinder, at the point r(s) of BC. Clearly, 0 is equal to the angle between the normals 
N1 and -N2 as given by (23). Thus we have 

(25) cos 0 = -(sin 'pj n - cos 'pj b) . (sin '02n- cos 2b) 
= 1 -2cos2'p1 = 1 -2(K/K)2 

by use of (16) and the relation '0 = 27r - p1. 
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In this section the description of the shoulder geometry is coordinate-free and in terms of 
arc length as the main parameter. In practice, it is often more convenient to represent BC by 
an equation of the form z = z(v), -STrR < v < ST R, where v, z are Cartesian coordinates in 
the plane; see Fig. 3. In the Appendix we present a coordinate-dependent description of the 
shoulder geometry in terms of the function z(v) and its derivatives up to third order. From 
(71), (72), and (75) we quote the equations for the angles S? and et, pertaining to the shoulder 
surface: 

Rzvv________ 1+ z2)1/2 
(26) COSp =O sin__ __ __ _ __ __ __ _ (R2Z2 + Z2 + 1)1/2 SinSp= (R22 +z2+ 1)1/2' 

(2R2 zVV + Z1)(2 + Z2) - R2ZVZ2a 

Here the subscript v denotes differentiation with respect to v. Using (67) and (69) in (25), we 
find that the angle 0 is determined by 

R2 z2 - z -1 (28) cos = =-R2z2 + I 

Finally, we come back to the condition (22). From the known values of tan a and tan Vf - = - 
we deduce that 

R 2z2~ + Z2 +1 
(29) tan(a + f) = ZV 2(R2z- v + zv) 

Next we require that (d/dv) tan(cx + V/) < 0, equivalent to (22). Then by differentiation of 
(29) we obtain the specific condition 

(30) R3ZVVVV + Rzvv < 0 

to be satisfied by the function z(v), in order that the shoulder is free of singularities. 

3. Shoulders containing a planar triangle. In this section we examine the effect of the 
plane bending curve B C having a discontinuous third derivative at some point. It is shown that 
the corresponding shoulder surface contains a planar triangle with its vertex at the discontinuity 
point. 

More specific, let BC be described by z = z(v), -7rR < v < 7rR, where v, z are 
Cartesian coordinates in the plane; see Fig. 4. It is understood that z(v) is a C3-function, 
except that the third derivative zvvv is discontinuous at v = 0. For simplicity we take the 
function z(v) to be even, i.e., z(v) = z(-v), so that zv(0) = 0, zvvv(0+) = -zvvv(0-) # 0. 
As before, BC is deformed into the bending curve BC on the circular cylinder described by 
x2 + y2 = R2, where x, y, z are Cartesian coordinates in RQ. The arc length s along BC and 
BC is measured from the corresponding points (0, z(O)) of BC, and (R, 0, z(O)) of BC. 

From (1) and (2) it is clear that the unit vectors t(s), n(s) and t(s), n(s), b(s) are continuous 
functions of s even at s = 0, since these vectors depend on z(v) and its first and second 
derivatives only. The angle $p(s) is also continuous in s and its value at s = 0 is determined by 
(26). By (27), the angle et (s) depends on the third derivative zvvv and is therefore discontinuous 
at s = 0. The right and left limits of ax(s), to be denoted by ax(0+) and x(O-), are determined 
by 

R2z2V(0) + 1 
(31) tan et(0?) = 2zvl)V0? 0 <aOt(0?) < 37 
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FIG. 4. Plane bending curve BC described by z =z (v), with z... discontinuous at v = 0; unit tangent vector 
t(O) to BC and generators d(O+) and d(O-), at the point (0, z(O)). 

Note that cx(O-) = 7- et(0+) because of the symmetry of BC. We now have two generators 
d(O?) emanating from the point (0, z(O)) of BC (see Fig. 4), and two generators d(O+) 
emanating from the point (R, 0, z(O)) of BC. According to (4) and (5) these generators are 
given by 

(32) d(0?) = cos et (0?)t(0) + sin et (0?)ii(0), 

(33) d(0?) = cos a(0?)t(0) + sin a(0?)[cosqo(0)n(0) + sinop(0)b(0)]. 

From the scalar products 

(34) d(0-) * d(O+) = d(0+) * d(0-) = cos(cx(0-) -cx(+)), 

we infer that the angles between d(0-) and d(0+), and between d(O-) and d(0+), are equal. 
Let the common angle be denoted by ,6 = c(0-) - c(0+) = - 2at(0+). Then, in virtue 
of (31), ,6 is determined by 

(35) t (,B/2) 2R2ZVVV (0+) 
(35) tan(fi/2)~~ R R2 2(0) + I 

where it is understood that ZVV)V) (0+) < 0. Furthermore, we observe that 

(36) sin c(0-)d(0+) - sin c(O+)d(0-) = sin(cx(0-) -a(O+))t(0) 

which implies that the vectors d(0+), d(0-) and t(0) are coplanar. 
Referring to Fig. 4, we divide the plane into the regions I, Ila, lIb, and III, separated 

by BC and the generating lines through d(0-) and d(0+). Region I is wrapped around the 
circular cylinder x2 + y2 = R2, whereby BC deforms into BC. At the same time, regions 
Ila and Ilb are bent backward to yield a two-part shoulder surface of the form described in 
?2. The two parts are bounded by BC and the generating lines through d(0-) and d(0+). 
The remaining region III is a triangle that fits exactly into the planar triangle bounded by 
the half-lines through d(0-) and d(0+), because both triangles have the same opening angle 
,B. Thus we have shown that the complete shoulder surface contains a planar triangle with 
its vertex at the point (R, 0, z(0)), and opening angle ,B determined by (35). An example 
of such a shoulder is depicted in Fig. 5. The shoulder surface thus determined is smooth in 
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FIG. 5. Shoulder containing a planar triangle, with parameters h/R = 6, So = 90?, 01 = 10?, and 0 = 90?. 

the sense that it has a continuous tangent plane. To show this, we recall the property of a 
developable surface that along each generator the surface has a constant tangent plane. Along 
the generator d(s), the (constant) tangent plane to the shoulder is spanned by the vectors d(s) 
and t(s), and is therefore continuous in s for s :A 0. At s = 0 we have two generators d(O+) 
and d(O-) emanating from the point (R, 0, z(O)), and the corresponding tangent planes are 
spanned by the pairs (d(O+), t(O)) and (d(O-), t(O)). Since the vectors d(O+), d(O-) and 
t(O) are coplanar, these tangent planes coincide with the planar triangle, which proves the 
continuity at s = 0. The angle 00 between the planar triangle and the tangent plane to the 
circular cylinder at the point (R, 0, z(0)) is determined by 

R2z2v (0) - 1 
(37) cosSO = R2z2V(0) + I 

as obtained from (28). 

4. Conical shoulders. From classical differential geometry it is known that a developable 
surface is a cylinder, a cone, or a tangential developable, that is, the surface generated by the 
tangent lines to a space curve (edge of regression); see e.g., [7, ?2-4]. In this section we 
address the question for which bending curves the resulting shoulder surface is (part of) a 
cone. This question is of interest both from a mathematical viewpoint, and because Mot [6] 
has proposed a construction of shoulders that consist of two truncated cones connected by a 
planar triangle. In order to have a conical shoulder, all generators d(s) should pass through 
one point T, the vertex of the cone. Equivalently, the generators d(s) in the plane should pass 
through a common point T. 

We employ Cartesian coordinates v, z, and x, y, z in the plane and in IR3, respectively. 
The plane bending curve BC is described by 

(38) z = Rf (t), t = v/R, -7R < v < rR, 

where f (). is a C3-function. Differentiation with respect to t is denoted by a prime. Two 
further conditions are imposed on f (4): (i) f (?7r) = 0; (ii) f "(t) < 0, so that BC is concave. 
Referring to Fig. 6, we now require that all generators d in the plane pass through the point 
T with coordinates (Ra, Rb), where -7r < a < 7r, b < f (a). At the point (R4, Rf (4)) of 
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FIG. 6. Plane bending curve BC described by z Rf(,), t = v/R, such that all generators d pass through 
the point T(Ra, Rb); the angle a + * is negative. 

BC, the local generator d makes an angle et + 4 with the positive v-axis. From (29) and (38) 
we infer that the angle at + 4 is determined by 

(39) tan(oa + f = - 2(f'())2 + f(f,())2 + 

This expression is identified with the slope of d, given by (f ( b)( - - a). Thus we are 
led to the following differential equation for the function f: 

(40) 2[f-b-( -a)f'](f"' + f') + (t - a)(f i2 + f 2 +1) 0 

On multiplying (40) by f", the resulting equation may be integrated once, yielding 

(41) f"i2 + f'2 + 1 = 2A[f -b-(4 -a)f'], 

where A # 0 is an arbitrary constant. Differentiation of (41) with respect to t leads to the 
simple differential equation 

(42) f"' + f'-A( -a) . 

The general solution of the differential equations (42) and (41) is easily found to be 

(43) f b-IA( -a)2 + Bcost + Csint + 
I 

(A2 + B2+ c2 + i) 

where A # 0, B, C are arbitrary constants. 
The present solution is of the same form as the solution by Mot [6, formula (6)]. In fact, 

it can be shown that Mot's solution is identical to (43) restricted by the additional condition 
f'(0) = Aa+C = 0. In Mot's approach, BC is describedby (38) with the function f (4) given 
by (43) if t > 0, and by f (t) = f (-t) if t < 0. Since f'(0) = 0, the even function f (4) is 
a C3-function, except that f"'(t) is discontinuous at t = 0. Mot then finds a shoulder surface 
consisting of two truncated cones, with different vertices, which are smoothly connected by a 
planar triangle. The latter feature is in conformity with the results of ?3. 
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The solution (43), which is supposed to hold for-7r < t < 7r, must satisfy the conditions 
(i) and (ii), stated below (38). By imposing condition (i): f (?r) = 0, we readily obtain 

(44) a=O, b= IAJr2+B- I(A2+B2+C2+1). 2 2A 

Actually, the result a = 0 could have been anticipated. The line segments from T to the 
endpoints (?7r R, 0) of BC are both isometrically mapped on the line segment from T to the 
point (-R, 0, 0) of BC. Hence, the endpoints of BC have the same distance to T, and T must 
lie on the z-axis in Fig. 6. 

By inserting the values of a and b, the solution (43) reduces to 

(45) f(t) = ( A&2 _ t2) + B(cos + 1) + C sin~ , -7r < t < ?r 5 

in which A # 0, B, C are arbitrary constants. It remains to impose the condition (ii): 
f " ()= -A - B cos -C sin < 0. Clearly, this condition is satisfied for all t E -7r, 7r], 
iff 

(46) A > B2+C2. 

Also the assumption that b < f (O) is fulfilled, since, by (44) and (45), 

(47) f()-+b = B + 2(A + B + +1= 1((A + B)+ +1)> 

Summarizing, we have shown that for the plane bending curve BC described by (38) and (45), 
the generators d in the plane pass through the point T with coordinates (0, Rb), where b is 
given by (44). The corresponding shoulder generators d then pass through one point T, the 
vertex of the conical shoulder, which we shall now determine. 

From (87) we infer that the shoulder generator d, is proportional to the vector 

(48) D = -f"el - f"'e2 + [-f'f" + 2(f"2 - - 

expressed in terms of the function f and the basis vectors el, e2, e3 with Cartesian components 

(49) el = (cost, sin t,0) , e2 = (- sint, cos t,0) , e3 = (O, O, 1) . 

By use of (41) and (42) with a = 0, we rewrite 

f = A + f', 

and 

-f'/f/" + I (f//2 _ f-/2 1) = A4f' + i4(f"12 + f'2 _ 1) = A(f - b) - 1 

in (48), whereupon 

(50) IDI2 f,2 + (At + f')2 + [A(f - b)- 1]2 = A2[42 + (f - b)2] . 

Next we observe that the distance between T and the point (R4, Rf(t)) of BC is given by 
R[42 + (f (4) - b)2]'1/2. This distance is preserved in the isometric mapping and is therefore 
equal to the distance between the vertex T and the corresponding point r(t) = Re, + Rf (t)e3 
of BC. Thus we conclude that the vertex T is represented by the position vector 

(51) r(D)- = (R + f"() f ... (4)e2 + R b + ) e3. 
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FIG. 7. Conical shoulder with vertex T, resulting from a parabolic bending curve BC. 

By inserting the values of f"(t) and f"'(t) from (45), we find that the vertex T has Cartesian 
coordinates 

(52) XT = -RB/A, YT = -RC/A, ZT = R(b + 1/A), 

where b is given by (44). 
In the industrial practice one sometimes starts from a parabolic bending curve BC of 

height h, described by 

(53) z = z(v) = h[l - (v/irR)2], -7R < v <' R . 

The latter function is a special case of (45), corresponding to A = 2h/7r2R, B - 0, C = 0. 
Thus the resulting shoulder will be part of a cone, depicted in Fig. 7, and the vertex of the 
cone is found to lie on the z-axis at height 

r4R 2 - 4h2 
(54) ZT = h + 4 2h 

It seems that industrial designers have not been aware of this property so far. 

5. Calculation of the bending curve. In this section we present an algorithm for the 
calculation of the plane bending curve BC, such that the corresponding shoulder surface 
meets certain geometrical specifications. In practice, typical specifications concern the height 
h of the shoulder, its radius R, the angle 00 between the shoulder and the cylinder at the 
highest point, and the corresponding angle 01 at the lowest point of the shoulder. In addition, 
we require that the shoulder contains a planar triangle of opening angle 8, with its vertex at 
the highest point of the shoulder. 

Employing Cartesian coordinates v, z in the plane, we describe BC by 

(55) Z = Rf (t) , t = vIR , -7f < t <7 , 

where f (4) is an even function given by 

(56) f (0 = co + C2 2 + C31 13 + C4 (COS I + 42/2)+ C51sin + 3/615 
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subject to f(7r) = 0. The present choice for f(t), which is approximately a polynomial in 
t of degree five, is motivated by the form (45) for the bending curve of a conical shoulder. 
The coefficients co, C2, C3, C4, C5 in (56) are to be determined such that the associated shoulder 
meets the specifications mentioned above. In addition, we impose two further conditions on 

(57) (i) f"(4) < 0, (ii) f(4)(t) + f"(t) < 0 

forO < t < zr. Here the prime denotes differentiation with respect to 4. Condition (i) implies 
that BC is concave, while condition (ii) stems from (30), expressing that the shoulder is free 
of singularities. The Ansatz (55), (56) gives rise to a sufficiently wide class of practically 
useful shoulders, although we have not examined the precise extent of this class. Neither did 
we look into the question for which parameter values h, R, 00, 0I, ~, the specifications and 
conditions can indeed be met. If not or if additional specifications are prescribed, the Ansatz 
(56) might be extended with higher-order terms to provide for extra degrees of freedom. 

The shoulder is supposed to have its highest point at 0 = 0 and its lowest point at ? = . 

Assigning the shoulder height h means that f (0) = h/R, from which we obtain 

(58) Co = h/R. 

The coefficient c2 is completely determined by the angle 00 at the highest point where 0 = 0. 
Indeed, from (37) it is found that 

(f (0))2 - 1 4c2 - 1 
cos O0 =-(f (o))2 + 1 4c + I 

so that 

(59) 1~~~~~~~ (- COS0o\ 1/2 1 
(59) C2 =-2 2+ ) =- tan(QO/2) . 

The minus sign on the right has been deliberately chosen to make f" (0) = 2C2 < 0. 
The function f (4) of (56) has a discontinuous third derivative at t = 0: f"'(0?) = +6c3. 

Then the resulting shoulder contains a planar triangle of opening angle , determined by (35) 
and (55), viz. 

(60) tan(/2) 
2 f 2f"'(0+) 12c3 

(=((0))2 + 1 4c2 + I 

For given ,, this relation determines the coefficient c3. 
The remaining coefficients C4 and C5 follow from conditions to be imposed on f(t) and 

its derivatives at t = 7r. First, the condition f (7r) = 0 leads to a linear equation in C4 and C5 . 
Second, we require that 0 = 01 at the lowest point (= =r), where 0 is the angle between the 
tangent planes to the shoulder and to the cylinder. This angle is determined by (28), which we 
rewrite as 

(61) (f",(t))2 _ [(f'(t))2 + 1] tan2(0/2) = 0 . 

By setting t = 7r and 0 = O1 in (61), and by inserting the values of f'(7T) and f"(7r) from 
(56), we are led to a quadratic equation in C4 and C5. The two equations can be solved and we 
find at most one admissible solution for the pair (C4, C5), such that f'(7T) < 0 and f "(7T) < 0. 
This completes the calculation of the plane bending curve BC. 
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It remains to verify the conditions (57), evaluated as 

(62)) = 2c? + 6C3 + c4(l - cos) + c5(t sint) < 0 

and 

(63) f (4)( ') + f"(t) = 2c2 + C4 + (6C3 + C5)t < 0, 

for 0 < t < 7r. By use of the known values of the coefficients c2, C3, C4, C5, it can easily be 
checked whether or not the inequalities (62) and (63) are satisfied. If not, one could either 
modify the specifications or extend the Ansatz (56) with an additional term. As an example, 
we have carried out the calculation for the specifications h/R = 6, 0o = 90?, 01 = 10?, and 
, = 90?. For the coefficients in (56) we found co = 6, c = -0.5, c3 = -0.167, C4 = 
0.986, c5 = 0.596. The resulting shoulder is shown in Fig. 5. 

Appendix. Coordinate-dependent representation of the shoulder geometry. Intro- 
duce Cartesian coordinates v, z and x, y, z in the plane and in IR3, respectively; see Fig. 3. 
The plane bending curve BC is described by z = z(v), -7CR < v < 7R, where z(v) is a 
C3-function. Differentiation with respect to v is denoted by a subscript v. It is understood 
that zvv < 0, so that BC is concave. Next, BC is wrapped around the circular cylinder 
X2 + y2 = R2 in R 3, yielding the bending curve BC on the cylinder. The points of BC and 
BC are now represented by the vectors -r = -r(v) and r = r(v), respectively, with Cartesian 
components 

(64) r = r(v) = (v, z(v)), 

(65) r = r(v) = (Rcos(v/R), Rsin(v/R), z(v)) 

The new parameter v is related to the arc length s by 

(66) d = (1 +zv2)12. 

This relation is needed in the conversion of derivatives with respect to s into derivatives with 
respect to v. 

We first determine the curvature K and the torsion -T of BC by means of formulas adopted 
from Struik [7, p. 17]: 

(67) K2 _ 1r x rVI2_ R2z 2 + _2 + 1 K (2 zv2, + Z2 + 1)/2 (67) K Ir, 6 R(+23 K 
l rt 1 R2 (I1 + 72)3 RR(l + 2)3/2 

(68) _ rv (rvv x rvvv) R z/v- +? Z 
Irv x rVvl R(R2z2, + zV ? 1) 

The curvature WK of BC is given by 

(69) K = vzv/(1 + z)3/2 

where it is recalled that z7v < 0, so that K > 0. The curvatures K and K are related by 

(70) K -2 + R-'(1 + zv)2 

which shows that K < K. 
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Next, by inserting (67) and (69) into (16), we find that the angle 'p is determined by 

(71) cos so = K/K =-(R2z2 + Z2 + 1)1/2 

The latter equation has two solutions, 'p = 'p1 and 'p = (,2, with 0 < 'pl < nr/2 and 
02 = 2n - 'pl. The corresponding values of sin 'p are given by 

(1 + Z2)1/2 
(72) sin5,o = i(R2z2 +z2 + 1)1/2s 

where the upper (lower) sign refers to 1('02); this convention is adopted throughout the 
Appendix. By differentiation of (71) with respect to s, using (66) and (72), we evaluate the 
derivative 'ps, viz. 

R2ZVVV(i ? Z2) - R 27Z2 
(73) 95 = R vv 

This value is inserted into (17), together with the values of K, T, and sin 'p from (67), (68), and 
(72). As a result we are led to the following equation for the angle a: 

R2 42 +42+1 
(74) tana = - 

R2ZVVV(1 + Z2) - RZVZV2 + (R2ZVVV + zV)(l + Zv2) 

By taking the upper (lower) sign in (74), we find that the corresponding angle a = 1 (a = (2) 

is determined by 

(75) tanaet tana02 =- 
(2R2ZVVV + zv)(I + z2) 2 R2Z Zn 

It is shown below that the pair of angles (ax, 'pl) belongs to the shoulder surface, while the 
pair ((2, 'p2) determines the generator of the circular cylinder. 

Our second objective is to express the tangent, normal, and binormal vectors to BC, and 
subsequently the normal N and the generator d, in terms of the function z (v) and its derivatives. 
At the point r(v) of BC we introduce the local orthonormal basis of vectors e1, e2, e3, with 
Cartesian components 

el(v) = (cos(v/R), sin(v/R), 0) 

(76) e2(v) = (- sin(v/R), cos(v/R), 0) 
e3(v) = (0,0,1). 

Differentiation of these vectors with respect to v, to be denoted by a prime, yields 

(77) el = Rle2, e'2 =-R-le, e3 = 0. 

In terms of the basis (76), the vector r(v) from (65) is represented by 

(78) r(v) = ReI(v) +z(v)e3(v) . 

By differentiation of (78) with respect to s, using (66) and (77), we obtain the derivatives 

(79) r, = rv(1 + Z2)-t/2 = (1 + Z2)- /2e2 + Zv(1 + Z2)"1/2e3 
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(80) rss = -R-'(1 + z-)-'el - z7z,( + z)--2e + z-v(l + 4)2e3 

From these results we conclude that the unit tangent, normal, and binormal vectors to BC are 
represented by 

(81) t = rS = (1 + ZV2)-l2e2 + zve3] 

(82) n = -rssK = (KR)-'(1 + Z2)-2[(l + Zv2)el + Rzvzvve2 - Rzvve3], 

(83) b = t x n = (KR)-' (I + Zv2)-3/2[-Rzvvel + zve2 - e3) 

where the curvature K = Irss I is given by (67). 
The expressions (82) and (83) are now inserted into (23), together with the values of 

K, cos sp, and sin o from (67), (71), and (72). As a result we find the representation 

1 
(84) N 

R= 2 + -2 + 

[(-R 4_V + (1 + V))el + (Rzvzvv + Rzl,zvv)e2 - (Rzvv + Rzvv)e3] 

for the unit normal N to the developable surface. Corresponding to the upper (lower) sign in 
(84), we employ the notation NI (N2) for the normal. It is readily seen that N1 * e3 > 0, since 
zVV < 0; hence, N1 has a positive z-component. Furthermore, N2 =-el is the inward normal 
to the cylinder x2 + y2 = R2. To determine the generator d, we rewrite (5) as 

(85) d = cos a t + sin a t x N . 

Then by use of (81) and (84) we are led to the representation 

(Rzvv + Rzvv)(1 + zv2)1/2 
R2z2V + Z 

1 
+ 1 

(86) + (I + z2) 1/2 _ +[ +1 Zv sincale2 

+(I 
+Z2) / 

[ZvCOSa 
+ R 

( 1 
+ Z) sin a]e3 v ~~~~~~~~~~R2z 2 + Z2 

We first take the upper sign in (86) and set a = a(x, corresponding to the generator dI. After 
dividing (86) by sin cl, we replace the resulting cot al on the right by its value from (75). 
Thus we obtain the representation 

(87) 2z2 + Z2 + 1 2 (1 +-2)1/2 sin o1 
.".v1 - 

+[-R2_VZVVV + I(R2z V- -)e 

By taking the lower sign in (86) and setting a = a,, we find that the corresponding generator 
d2 is given by 

(88) do = (1 + z)-1/2I(cos 2 - zv sin a2)e2 + (zv cosax2 + sin a2)e3] = e3 

because of tan -) = 1 /zv by (75). It is now clear that d2 lies along the circular cylinder 
x2 + y2 = R2. Consequently, the generator d, described by the angles (x, Sol, is contained in 
the shoulder surface. 



422 CASE STUDY FROM INDUSTRY 

Acknowledgments. The authors are indebted to Dr. H.W.M. Hendriks (Nijmegen) and 
the late Professor N.H. Kuiper (Utrecht) for helpful discussions. Figures 5 and 7 were copied 
from computer generated plots; here, the able assistance of Dr. C.W.A.M. van Overveld and 
Mr. J.W. Wesselink (Computer Graphics group, Eindhoven) is gratefully acknowledged. 

REFERENCES 

[1] J. C. CLEMENTS AND L. J. LEON, A fast, accurate algorithm for the isometric mapping of a developable surface, 
SIAM J. Math. Anal., 18 (1987), pp. 966-97 1. 

[2] D. CULPIN, A metal-bending problem, Math. Scientist, 5 (1980), pp. 121-127. 
[3] A. R. FORSYTH, Lectures on the Differential Geometry of Curves and Surfaces, Cambridge University Press, 

Cambridge, 1912. 
[4] E. KREYSZIG, Differential Geometry, Dover, New York, 1991. 
[5] , A new standard isometrv of developable surfaces in CAD/CAM, SIAM J. Math. Anal., 25 (1994), 

pp. 174-178. 
[6] E. MOT, The "shoulderproblem" of forming, filling and closing machines for poulches, Appl. Sci. Res., 

27 (1973), pp. 1-13. 
[7] D. J. STRUJIK, Lectures on Classical Differential Geometry, Dover, New York, 1988. 


	Article Contents
	p. 406
	p. 407
	p. 408
	p. 409
	p. 410
	p. 411
	p. 412
	p. 413
	p. 414
	p. 415
	p. 416
	p. 417
	p. 418
	p. 419
	p. 420
	p. 421
	p. 422

	Issue Table of Contents
	SIAM Review, Vol. 37, No. 3 (Sep., 1995), pp. 297-490
	Case Study from Industry
	Classroom Notes
	Book Reviews



