
261

Case study on algebraic software
methodologies for scientific computing1

Magne Haveraaen
Department of Informatics, University of Bergen,

P.O. Box 7800 N-5020 BERGEN, Norway

The use of domain specific languages and appropriate soft-
ware architectures are currently seen as the way to enhance
reusability and improve software productivity. Here we out-
line a use of algebraic software methodologies and advanced
program constructors to improve the abstraction level of soft-
ware for scientific computing. This leads us to the language
of coordinate free numerics as an alternative to the traditional
coordinate dependent array notation.

This provides the backdrop for the three accompanying pa-
pers: Coordinate Free Programming of Computational Fluid

Dynamics Problems, centered around an example of using
coordinate free numerics, Machine and Collection Abstrac-

tions for User-Implemented Data-Parallel Programming, ex-
ploiting the higher abstraction level when parallelising code,
and An Algebraic Programming Style for Numerical Software

and its Optimization, looking at high-level transformations
enabled by the domain specific programming style.

1. Introduction

Scientific computing is the use of computers to solve
and investigate problems from the sciences. It has all
along been the driving force for high performance com-
puting (HPC). The problems range from safety relat-
ed problems, such as weather forecasting and bridge
strength analysis, via exploration of the physical world
around us, such as particle physics and seismics, to
solving manufacturing problems, such as molding and
coating of materials. The process that leads to a solu-
tion of such problems starts with a mathematical mod-
el, typically in the form of a partial differential equa-
tion (PDE), developed by a physicist, chemist or oth-
er domain specialist. The mathematical formulation

1Much of this work was performed during the author’s sabbatical
visit to the University of Wales Swansea, with financial support from
the Research Council of Norway (NFR).

is then studied and transformed by applied mathemati-
cians or numerical analysts into data structures and al-
gorithms. These are expressed as computer programs,
whose computations are used to investigate the orig-
inal problem. The use of computers, rather than ex-
periments, to investigate problems has given rise to the
term computational science, and is becoming a very
important field in scientific computing. The production
of software plays an important role in this. Quite early
it was recognised that if the mathematical and the pro-
gramming notations could be made as closely related
as possible, then the process of writing computational
software would be eased. This is expressed clearly by
Kenneth E. Iverson in [35, preface page vii]:

Applied mathematics is largely concerned with the
design and analysis of explicit procedures for cal-
culating the exact or approximate values of various
functions. Such explicit procedures are called algo-
rithms or programs. Because an effective notation
for the description of programs exhibits consider-
able syntactic structure, it is called a programming

language.
Much of applied mathematics,particularly the more
recent computer-related areas which cut across the
older disciplines, suffers from the lack of an ade-
quate programming language. It is a central the-
sis of this book that the descriptive and analytic
power of an adequate programming language am-
ply repays the considerable effort required for its
mastery.

Since then the “toolbox” of both mathematics and
computer science has been considerably expanded. Of
special importance to us is the maturing of algebra-
ic ideas in the form of the mathematical disciplines
of universal algebra, the generalisation of algebra to
any mathematical structure, and category theory, the
study of structure and structural relationships. Alge-

braic software methodologies constitutes the conscious
application of these in the software process.

Seeing software as a formal entity, we extend the
observation of Iverson and emphasise the following
notions in the formulation of software systems.

Scientific Programming 8 (2000) 261–273
ISSN 1058-9244 / $8.00 2000, IOS Press. All rights reserved

262 M. Haveraaen / Case study on algebraic software methodologies for scientific computing

– Domain analysis and domain oriented languages:
When we need to understand and discuss a prob-
lem domain, whether it is for requirements spec-
ification or the formulation of programs to solve
problems, we need to have words for the concepts
of the domain. Universal algebra and algebra-
ic specifications are tools for precisely identify-
ing such concepts. The domain oriented concepts
form the basis for domain specific languages [34],
giving us the vocabulary needed to discuss the do-
main.

– “Programming in the small”: This is about how
to build data structures and algorithms in order to
form software. The basic program constructors for
this are grouping, choice and repetition. Combin-
ing this with encapsulation of data structures and
algorithms to form abstract data types and class-
es, provides means to produce software pieces that
implement the domain oriented concepts and thus
build domain specific programming languages.

– “Programming in the large” – software architec-
tures: This concerns how our software pieces are
to be organised in order to form the software we
want. The focus is on what software pieces we
need, and how they relate to each other in order to
provide the appropriate domain oriented concepts.
Choices here have a large influence on how to build
software libraries and the flexibility and adaptabil-
ity of the resulting software. Structure analysis
using category theory related concepts provides
valuable feedback on this.

Much information on structuring software is now
systematised in the notions of design frameworks or
design patterns [18,49]. These capture recurring de-
sign decisions at various levels of software design, but
are based on practical experience rather than formal
analysis – which we promote here.

When building a software system we want to analyse
the problem in such a way as to reduce the cost of the
software process, yet achieve optimal efficiency of the
developed programs. Experience has shown, and this
was formalised already in the COCOMO cost estima-
tion model [9], that there is a positive correlation be-
tween software source code size and the development
and maintenance costs. In fact, costs tend to increase
more than linearly with software code size, i.e., the size
of the code we need to “worry about” when developing
or maintaining a software system. Bringing down the
size of this code hence brings down overall costs. Soft-
ware architecture and language concepts affect source
code size more than many other considerations [19].

Algebraic software methodologies are useful as key
players in both the selection of problem domain con-
cepts and the selection of software architectures. Using
these tend to raise the abstraction level of the concepts,
allowing us to express ourselves more succinctly. The
choice of domain specific language strongly influences
how the original problem should be phrased and anal-
ysed. This is discussed in [23,29] for the domain of
PDEs. As an alternative to linear algebra and coordi-
nate based array notation, the traditional language of
applied mathematics, there also exists a coordinate free
language for PDEs [51]. We have developed a soft-
ware library framework, Sophus,2 embodying this. Co-
ordinate free numerical software combines conceptual
notions from several disciplines [45], but it turns out
that the coordinate free language has many advantages
when structuring numerical software. The Sophus
framework can be implemented and used in any pro-
gramming language with abstract data types or classes
and objects. Our approach uses object-orientation, and
we are thus doing object oriented numerics (OON) [3,
61]. Our focus on coordinate free numerics distinguish-
es us from most of the OON methods.

Here we present the background and rationale for
the three accompanying papers, which all relate to the
Sophus framework:

– [23] compares, using a case study from fluid dy-
namics, software properties for the traditional and
the coordinate free domain specific languages.

– [28] presents an abstraction based data parallel
programming approach.

– [15] discusses domain specific optimisation relat-
ed to the higher abstraction level of the coordinate
free language.

This paper is organised as follows. In section two we
present universal algebra as domain analysis tools and
apply them to the PDE problem domain. Section three
discusses programming in the small. Then we focus
on software architectures, and present the Sophus ar-
chitecture for PDE software. In section five we discuss
some new problems that arise from this more abstract
approach to numerical software. Finally we summarise
our basic approach.

2Named after the Norwegian mathematician Sophus Lie (1842–
1899).

M. Haveraaen / Case study on algebraic software methodologies for scientific computing 263

2. Domain analysis and domain concepts

Discovering the right concepts needed for a domain
specific language is a difficult task. It requires insight
into the domain, an ability to pinpoint the crucial con-
cepts, and deciding how to express them in program-
ming language terms. In Section 2.1 we claim that
domain concepts may be presented as sorts with op-
erations, which allow them to be embedded in gen-
eral programming languages. Universal algebra pro-
vides means for such a presentation. Algebraic speci-
fications lets us investigate concepts and their meaning
before committing ourselves to them. We show this
for the PDE domain in Section 2.2 where we present
the coordinate based and the coordinate free languages.
Validation, i.e., a check that the concepts are suited to
precisely formulate concrete problems is discussed in
Section 2.3.

2.1. Domain analysis tools: Universal algebra and

algebraic specifications

Universal algebra introduces a distinction between
syntax (signature) and semantics (models) akin to the
distinction between declaration and implementation in
a programming language. A plain, many-sorted sig-

nature Σ declares a set of sort names sj and func-
tion symbols fi : si1 , . . . , sim

→ sim+1
, where

si1 , si2 , . . . , sim
for m � 0 are the argument sorts and

sim+1
is the result sort (including the case m = 0 for

a constant). We may think of a sort as a type name or
a class name in programming language terms. A func-
tion symbol corresponds to a side-effect free function
or typed method. A procedure or method that changes
the program state (has side-effects) can be decomposed
into one or more side-effect free functions. The ap-
plication of the procedure can then be formulated as
side-effect free function calls with explicit assignments
to program variables. A signature corresponds to an
idealised declaration section of a program.

Mathematically a model or algebra A for a signature
Σ defines for each sort sj of Σ a mathematical set A(sj),
called the carrier, and for each function symbol f i :
si1 , . . . , sim

→ sim+1
, a total mathematical function

A(fi) : A(si1) × · · · × A(sim
) → A(sim+1

). In a
programming context we may let an A(sj) be a data
structure. Likewise, A(fi) may denote an algorithm
which defines a computable function from its argument
data values to its result data values.

A specification restricts the class of allowable mod-
els for a signature. Algebraic specification is a tech-

nique which has gained some momentum. It only fo-
cuses on the properties that we want satisfied, rather
than devising specific model constructions. Thus it is a
rather abstract approach, but it permits both mathemat-
ical models and programming language oriented mod-
els. The former are important in the mathematical PDE
domain, the latter in the software domain. A specifi-
cation may be extended (often referred to as interface

inheritance) and combined with other specifications in
various ways to form a new specification [50]. Given
a signature Σ and a specification, we may ask whether
an implementation satisfies the specification. Already
in [42] this problem was addressed in a clear way, and
a software development technique taking this into ac-
count was proposed. This technique is currently known
as programming by contract [40] and object-oriented
programming languages provide sufficient support to
utilise this approach.

Many algebraic specification languages have been
developed. Some of the more evolved ones are LSL
(the Larch Shared Language [24,25]) and ASF+SDF
(Algebraic Specification Formalism and Syntax Defini-
tion Formalism [6]). At present there is a pan-European
effort in creating a standard algebraic specification lan-
guage CASL [44]. A powerful toolbase supporting
CASL is expected to appear over the next few years.

2.2. Scientific computing domain concepts

Applied mathematics is concerned with studying
the models needed for scientific computing. The lan-
guage of applied mathematics has traditionally been
concerned with operations on real or complex numbers.
Linear algebra is one of its important subdisciplines,
where the notions of vectors and linear mappings in
the form of (multidimensional) matrices are prominent
in a coordinate dependent language for PDEs. Ear-
ly attempts at domain specific programming languages
for this application area, such as APL [35] and For-
tran [17], naturally took these as a starting point. They
defined abstractions for real and complex numbers, and
provided the array construct3 as basis for implementa-
tions of vectors and matrices. Arrays were also used to
store the grid points of discretisations such as the finite
difference or finite element methods.

3There is an interesting difference though: while APL treated
arrays as collection-oriented abstractions, providing operations on the
whole collection, Fortran only provided operations on the individual
array elements. This did not change until matrix operations finally
where introduced in Fortran-90 [1].

264 M. Haveraaen / Case study on algebraic software methodologies for scientific computing

If we start investigating the problem domain concepts
using algebraic methods, we will of course rediscover
the basic structures of algebra:4 monoid, group, ring,
field, vector space, linear mappings (matrices), tensors
(which generalise rings, fields, vectors, matrices and
(multi)linear mappings), etc. Algebraic specifications
of many of these concepts for a problem domain anal-
ysis is in [30]. As an example, a ring R has binary
operations + (addition), − (subtraction) and ∗ (multi-
plication), and constants 0 (zero) and 1 (one). These
form the ring signature,

+ : R,R → R,

− : R,R → R,

∗ : R,R → R,

0 : → R,

1 : → R.

An algebraic specification of a ring could be the
following, where a, b, c range over all ring elements R.

(a + b) + c = a + (b + c), (1)

a + b = b + a, (2)

(a ∗ b) ∗ c = a ∗ (b ∗ c), (3)

(a + b) − b = a, (4)

0 + a = a, (5)

1 ∗ a = a, (6)

a ∗ 1 = a, (7)

(a + b) ∗ c = (a ∗ c) + (b ∗ c), (8)

a ∗ (b + c) = (a ∗ b) + (a ∗ c). (9)

Here we see that any model for a ring must obey
the laws that addition is associative Eq. (1) and com-
mutative Eq. (2), subtraction is the inverse of addition
Eq. (4), and multiplication is associative Eq. (3) and dis-
tributes over addition in the familiar way Eqs (8)–(9).
Further, the neutral element with respect to addition is
denoted by 0 Eq. (5) and with respect to multiplication
by 1 Eqs (6)–(7).

Continuing such an analysis for the PDE domain
we note that a basic assumption is that every spatial
point in the physical world can be represented by an
element of a set M called a manifold. The physical

4It was the investigation and generalisation of these concepts that
led to the discovery of universal algebra [58].

properties are then ascribed to each point in the form
of a value field, akin to a function from the manifold
to some value domain. If the values at each point
are reals (one of the many models for a ring) they are
said to form a scalar field. If they are vectors they
are said to be vector fields, tensors give rise to tensor
fields, etc. Now a value field lifts properties of the
value elements to the field. All equationally defined
property are retained, so a scalar field is a ring, a vector
field is a vector, a tensor field is a tensor, etc. If the
manifold in addition has sufficient structure, at least a
notion of proximity and direction,we may define partial
differentiation operators on the value fields, provided
the value fields are smooth enough.

This analysis gives us a domain specific language
which is coordinate free [51] with concepts close to
those of pure mathematics. This language is equally
valid as a domain specific language as a language based
on the traditional concepts of applied mathematics.

2.3. Validating the domain concepts

To validate a domain specific language we need to
check that it is useful, i.e., that we may use it to ex-
press problems and solutions in our domain. A time
dependent PDE provides a relationship between spatial
derivatives of tensor fields (which represent physical
quantities) and their time derivatives. Given constraints
in the form of the values of the tensor fields at a specific
instance in time together with boundary conditions, the
aim of a PDE solver is to show how the physical system
will evolve over time. Solvers for time independent
PDEs are similar.

The coordinate free language we sketched allows a
PDE to be formulated abstractly and simply, indepen-
dently of coordinate systems and number of dimensions
of the problem. For example, the elastic wave equation
may be written as

ρ
∂2u

∂t2
= ∇ · σ + f(t),

σ = Λ(e), (10)

e = L�u(g).

This formulation is valid for 1, 2 and 3 dimensions,
independently of coordinate system (cartesian, cylin-
drical, curvilinear, . . .). Here ρ is the density scalar
field and Λ the stiffness tensor field, both are given data
for the physical domain, u is the time varying particle
displacement vector field which represents the propa-
gation of the elastic wave, the tensor field g defines the

M. Haveraaen / Case study on algebraic software methodologies for scientific computing 265

coordinate system used, the tensor fields σ (stress) and
e (strain) are computed intermediate values, and f(t)
is a time-varying vector field representing the forces
which initiate the wave. The ∇· and L�u are derivation
operators, the latter dependent on the displacement u.
It follows that the coordinate free language allows us
to express interesting problems from the PDE domain,
as required for validation. See [29] for a discussion of
the software properties of this formulation,

In comparison the traditional component based for-
mulation of the elastic wave equation may look like

ρ
∂2u1

∂t2
=

∂σ11

∂z
+

∂σ12

∂x
+ f1(t),

ρ
∂2u2

∂t2
=

∂σ12

∂z
+

∂σ22

∂x
+ f2(t),

σ11 = (λ1 + 2λ2)e11 + λ1e22,

σ22 = (λ1 + 2λ2)e22 + λ1e11,

σ12 = 2λ2e12,

e11 =
∂u1

∂z
,

e22 =
∂u2

∂x
,

e12 =
1

2

(

∂u1

∂x
+

∂u2

∂z

)

.

This is formulated for two dimensions (denoted z-
and x-directions), cartesian coordinate system, assum-
ing an isotropic medium. Here u1 and u2 are the com-
ponents of u, λ1 and λ2 are the two distinct compo-
nents of Λ for an isotropic medium, σ11, σ12 and σ22

are the distinct components of σ (which is symmetric),
e11, e12 and e22 are the distinct components of e (which
is also symmetric), and f1 and f2 are the components
of the function f . The derivation operators have been
given directly in terms of their partial derivatives.

Further examples with a discussion of the difference
between these two PDE domain languages is in the
accompanying paper [23].

3. Programming in the small

To make a domain specific language into a tool for
programming a computer, its concepts need to be re-
alised in a programming language. Here we will first
look at program constructors to build data structures
and algorithms, allowing us to express all computable
functions. Then we will look at the abstraction mecha-

nisms needed to provide the domain oriented concepts
in a programming language. In Section 3.3 we dis-
cuss parallel programming and relate it to the use of
abstractions. Finally we discuss the implementation of
the PDE problem domain concepts.

3.1. Program construction and reasoning

In order to build programs we need algorithm and
data constructors, confer the slogan Algorithms + Da-

ta Structures = Programs [59]. Most of the ear-
ly programming languages were strictly following the
von Neumann machine model, i.e., sequential imper-
ative programming languages. Imperative languages
place the burden of organising instruction sequencing
(choice, loops) and storage use (variable updates, ar-
rays and pointers) on the programmer. It was soon ar-
gued that this was too restricting, and that semantical
notions, and hence reasoning tools, for imperative lan-
guages were overly complex. Backus proclaimed his
FP (functional programming) language as a reaction to
this [4].

Functional languages provide the programmer with
expressions and recursion as the primary tool for writ-
ing algorithms, tuples and recursive types (lists and
trees) for organising data. These are less error prone
than their imperative counterparts. Unfortunately, in
spite of this simplicity, recursively formulated algo-
rithms often have an exponential growth in space and
time complexity, while their imperative counterparts
may be linear in time and constant in space. Memoi-
sation (caching of computed function values) may help
in avoiding unnecessary recomputation, but does not
guarantee good usage of storage, and premature purg-
ing of the cache may be needed [16]. The lack of ex-
ecution time efficiency, coupled with lack of storage
control, has hitherto proven detrimental to the use of
functional programming for high performance comput-
ing, in spite of several attempts such as those in [22,54].
The constructive recursive approach with programmer
defined explicit data dependency may be a way out of
this [14,27,31].

A general belief is that functional languages have
a simpler semantics than imperative languages, thus
that they are more akin to reasoning and manipulation.
However, it was shown already in [43], that with sim-
ple syntactic restrictions, imperative languages can be
made just as semantically simple. This allows program
reasoning and transformation to become just as easy in
an imperative context as in a functional context.

266 M. Haveraaen / Case study on algebraic software methodologies for scientific computing

3.2. Abstraction mechanisms

Program construction becomes more flexible if it is
possible to abstract over algorithms and types. Algo-
rithmic abstraction, i.e., naming algorithms by func-
tion symbols, is often called procedural abstraction, or
SUBROUTINE in Fortran. Its use has been a great suc-
cess for scientific computing in the form of large nu-
merical libraries. Type abstraction, i.e., naming data
structures as sorts, is likewise useful by itself. Algorith-
mic and type abstraction taken together gives the notion
of data abstraction – abstract data types or, in object-
oriented terminology, classes. This couples the con-
structed models (data structures and algorithms) to the
signature (sorts and function symbols) of the domain
concepts. With encapsulation [47] data abstraction be-
comes a means of realising domain concepts as atomic
elements in a general purpose programming language,
thus tailoring it as a domain specific programming lan-
guage. How this can be achieved and shown to be
correct was demonstrated already in [33,42]. The use
of data invariants, properties that are to be invariantly
true on the data, is very important for this. The data
invariant reduces the state space of the data abstraction,
making the operations easier to implement, and mak-
ing the relationship with the mathematical models of a
specification clearer.

In some cases hardware may provide an interesting
feature, such as parallelism, while a general purpose
programming language does not acknowledge it. Then
it is normally possible for the user to define a program-
ming language interface to the feature, providing it as
an abstract data type. The hardware feature will nor-
mally not be generally available, but an implementation
of the abstract data type in the programming language
can emulate its overall functionality, providing access
to the abstraction irrespectively of the hardware plat-
form used. Thus abstractions make it feasible to utilise
advanced hardware much quicker than waiting for im-
provements in compilers or programming languages.

Abstract data types lets us abstract hardware features
or software constructions, relating them to the sorts and
function symbols resulting from of our algebraic anal-
ysis of the problem domain. We thus have the ability to
get implementations of the domain specific languages
we find useful. With such abstractions, a program may
be expressed at an arbitrarily high abstraction level.

Often the use of (many layers of) abstractions reduce
the run-time efficiency of code. Partly because cur-
rent compilers introduce extra instructions when calling
procedures due to an overly complex procedure call se-

mantics, partly because certain short-cuts that are pos-
sible on low-level code would cut through non-related
high-level abstractions. With syntactic restrictions the
semantical notions of a programming langauge may be
simplified, see Section 3.1, enabling an algebraic pro-
gram transformation tool like CodeBoost, described in
the accompanying paper [15], to optimise code by tak-
ing advantage of high-level properties of source code as
well as cutting through abstraction layers to introduce
low-level short-cuts in the code and avoid procedure
call overhead.

3.3. Data dependencies and parallelisation

In order to achieve higher performance for compu-
tational modeling, machines with multiple processors
have been taken into use. Their utilisation apparently
requires either a move away from the von Neumann
programming approach by the use of functional lan-
guages or by explicit parallel constructs in the code,
or compilers that analyse and parallelise sequential im-
perative code. Functional programming has had some
success for advanced parallel programming, see [54]
for a collection of approaches and [38] for a recent
overview. The use of explicit parallel constructs turns
out to be very difficult to program, and is in general
discouraged. Letting the compiler analyse the code for
dependencies and then generate the parallelism sounds
ideal, but turns out to be an NP -complete problem in
general [39], although quite a lot may be achieved in
practice. Compiler analysis may look at the flow of
control (control dependence analysis) giving a coarse
grain parallelisation. Or it may look at data dependen-
cies, i.e., how data at one point during program execu-
tion depends on data at another point of the program
execution, giving rise to fine grain parallelism. Good
automatic analysis is only possible for programs with a
simple semantical structure. This is typical of Fortran
programs, where high performance often is essential,
but this information is also clearly visible in functional
programming. Many of the more advanced compiler
optimisation strategies were discovered for functional
programming languages, such as Crystal [13] and later
adapted for imperative languages [60].

One step further is to make the data dependencies ex-
plicit abstractions in the programs. This approach has
been shown in a functional programming context [14,
26,31] and in an imperative context in [12,14]. In gen-
eral there will be a gap between the data dependen-
cies in a program and the communication patterns of
the hardware. This gap has to be filled either by the

M. Haveraaen / Case study on algebraic software methodologies for scientific computing 267

compiler, a problem which again is NP -complete in
general [39], or closed explicitly by the programmer,
as in [14]. Making data dependencies available as an
explicit structure has the added benefit that space and
time considerations may be fully controlled by the pro-
grammer, both for sequential and parallel compilation,
breaking the exponential execution time barrier often
associated with functional programming.

Another important observation is that when using
collection oriented abstractions, such as arrays, in se-
quential code, these collections may be distributed in
parallel on processors [8]. This is the basis for data par-
allel programming [48], which has been coupled with
abstraction oriented programming in the accompany-
ing paper [28], giving direct access to this hardware
feature as a data abstraction.

3.4. Implementing the coordinate free language

Showing that the domain oriented concepts can be
implemented is a final assurance of their usefulness. It
guarantees that the concepts actually are computable,
and thus will be useful in the solution of the problems.
To check that our coordinate free language is realisable
we will sketch the implementation of two of the key
abstractions, the scalar fields and the tensors.

Numerical discretisation methods (finite difference,
finite element, etc.) make it possible to represent the
scalar fields over an infinite set M, the manifold, by
a finite approximation. Typically we store data values
for carefully selected grid points in large array data
structures. The discretisation has to provide ring op-
erations and partial differentiation operations by per-
forming computations on the stored data.

The tensor is where coordinate systems are handled
and the more advanced differentiation operations are
implemented. Tensors are typically represented as mul-
tidimensional arrays, with appropriate, well-known al-
gorithms for the tensor operations. These algorithms
only require that the array elements are ring structures.

These models can easily be built using the standard
program constructors. This is well-known from the
use of the traditional, coordinate based language for
the PDE domain, which only uses the basic types and
constructors of programming languages. With data
abstraction we may couple this together to create the
coordinate free language.

4. Programming in the large: software

architectures

In our short overview we have sketched an analysis
of the PDE domain that provided us with PDE domain
specific languages, the traditional coordinate based lan-
guage and the coordinate free language, with algebra-
ic specifications of the concepts. The languages were
shown adequate to formulate interesting problems from
the domain (Section 2.3). We have also sketched that
the concepts of these domain languages may be imple-
mented using standard data structures and algorithms.
Here we will study how to organise the concepts of the
more abstract coordinate free language as a software
library, i.e., study software architectures for such a li-
brary. In this analysis we also need to consider the is-
sue of developing both sequential and parallel versions
of the software.

A good software architecture is achieved if we min-
imise the number of distinct library components (pack-

ages), and the software complexity5 of each. How we
combine the packages to achieve the problem domain
specific concepts will be a blue-print for configuring

(i.e., putting together) the application programs from
the packages. Good choices here will greatly reduce
the software development effort. Both by directly re-
ducing our coding effort, and, more importantly, by
identifying reusable components for other tasks with-
in the same problem domain. In the algebraic speci-
fication language CASL software architecture can be
defined explicitly [7].

First we will introduce the notions of categories and
functors, precise mathematical notions for the study of
structure. Then we will use these tools to investigate
an architecture for the coordinate free language. Lastly
we present the Sophus library framework which builds
on this insight.

4.1. Algebraic structuring concepts

A collection of related mathematical structures, such
as the data structures of a programming language, typi-
cally form a category [20]. A categoryC is a collection
of objects A,B, . . ., and morphisms f : X → Y from
objects X to Y , with an associated associative com-
position rule ◦ on morphisms and a neutral morphism

5Software complexity is a measurement of the complexity of the
program text, as opposed to space and time complexity which refer to
run-time properties of the software. Software complexity correlates
to the cost of developing and maintaining software.

268 M. Haveraaen / Case study on algebraic software methodologies for scientific computing

(with respect to ◦) for each object. We will use the cat-
egories Prog and Set as our examples. The category
Set is from mathematics. It has sets as objects and
total functions between sets as morphisms. In Prog

the objects are data structures, and the morphisms are
all side-effect free algorithms from a data structure to
a data structure. The identity morphism and composi-
tion rule for morphisms in these categories should be
obvious. Functions of more than one argument are de-
fined from special objects called product objects in the
category. A comprehensive introduction to category
theory may be found in [32], while [56] is a lighter,
more intuitive introduction.

Categories are related by functors, functions between
categories. A functor F : C → D, from category C

to category D, maps objects to objects and morphisms
to morphisms such that identities and compositions are
preserved. It is not to hard to find a functor from
Prog to Set that takes the data structures and algorithms
(for some specific computer) to the sets of values and
mathematical functions being computed.

Functors (on objects) are in many ways like C++
template classes [53] or Ada generic packages [5].
These mechanisms will take a data type as argument
and define a new data type based on it. We may for
instance define a generic list package with a type
parameter, such that whenever we instantiate the pack-
age with a data structure D, we get a data structure
list of D. The functor version of a data type con-
structor has some additional properties. A list con-
structing functor L : Prog → Prog takes a da-
ta structure D and returns a list of D data struc-
ture L(D). But in addition to defining the list da-
ta type, it will take any function f : D → E and
define an iterator function L(f) : L(D) → L(E).
When L(f) is given a list ofD as argument it will
perform f on every element of that list, returning a
list of E of the results. Likewise we may treat
array data structure constructors as functors. For ev-
ery index type I we have an array constructing functor
AI : Prog → Prog which takes an object E and de-
fines array I ofE, the array structure with elements
of type E. But we also get the iterator functions. Given
for instance a binary operation + : E × E → E we
have AI(+) : AI(E)×AI(E) → AI(E) which adds,
componentwise, i.e., for each index i ∈ I , the elements
of the two argument arrays, yielding a new array with
the summed values. The functor mechanism preserves
equational properties of the argument E for A I(E). If
E is a ring, such as the reals R, then AI(E) will also
be a ring. This is very convenient, but may only be

simulated by explicit programming of these functions
in current programming languages.6

Code inheritance, in spite of its popularity in the
object-oriented community, is not an important fea-
ture in this structuring of software, and should only
be considered incidental in the construction of a soft-
ware system. While interface inheritance for specifica-
tions, and other methods combining and relating spec-
ifications [50], behave very nicely when properties are
added and modified, this is not the case for code in-
heritance. Code inheritance is a form of code reuse,
where the data structure is modified in a restricted way
and some operations are replaced and additional op-
erations may be added. But this is only sound if the
data invariants between the original and the new mod-
ule are compatible. Also note that different models of
the same abstraction may require unrelated implemen-
tations. Consider the ring abstraction. Both real num-
bers and scalar fields are rings, but they are implement-
ed by very different and unrelated data structures and
algorithms.

4.2. Software architecture for PDE problems

When designing the software architecture for a do-
main like the PDE domain, we need to investigate how
various constructors, such as the array functors, can be
(re)used. A nice example is in the construction of vec-
tor fields. We start with the observation that the array
functor can be used to generate the value fields over
a manifold M. Simply apply AM to the appropriate
value domains, such as the reals R, vectors or matrices.
We can also use the array construction to define finite
vector spaces by the expression A{1,...,n}(R), for ap-
propriate natural numbers n. Actually the vector space
implementation algorithms are independent of the ring
itself, and will work for any ring R when given the data
structure A{1,...,n}(R).

We have earlier noted that a scalar field has ring
properties. As a consequence, n-dimensional vector
fields over a manifold M may be constructed by either
of the two approaches:

1. applying the value domain construction to vec-
tors, AM(A{1,...,n}(R)), or

2. applying the vector construction to scalar fields,
A{1,...,n}(AM(R)).

6Unfortunately, this is not fully sufficient, as the generic package
mechanisms do not allow enough genericity power to let us do this
once and for all. We will omit a discussion of the technicalities of
these deficiencies.

M. Haveraaen / Case study on algebraic software methodologies for scientific computing 269

There does not seem to be any reason to prefer one
over the other, and conventional numerical software,
as well as many object oriented numerics approaches,
uses the first construction. If we study the problem
domain further, we see that PDEs contain many dis-
tinct differentiation operators. Further, these operators
may all be expressed from the partial derivatives on
the scalar fields. A more fruitful approach is then to
use the second approach as starting point. Instead of
building many different constructors for the value do-
mains (vectors, matrices, multi-linear mappings, etc.),
we also note that it suffices to build a tensor construc-
tor, which, given certain assumptions, encompass all
these. Tensors also give us the building blocks needed
to define coordinate free operators.

To implement the full scalar field abstraction we ex-
pand the construction AM such that it also includes the
definition of partial differential operators, to get a func-
tor SM : Prog → Prog for the construction of scalar
fields. The tensor constructor T{1,...,n} : Prog →

Prog extends A{1,...,n} with the derivation operations
and other tensor operators. The tensor field construc-
tion, including all derivation operations, for a manifold
M then becomes T{1,...,n}(SM(R)). As noted, we
should expect to reuse the array functors in the con-
struction of both scalar fields and tensors.

Using the array constructor to implement both the
numerical discretisation and the tensor construction al-
lows for a reuse of the array module. But more im-
portantly it allows a separation of concerns when im-
plementing these modules: the array constructor may
focus on the data layout pattern, while the numerical
modules may focus on the numerical aspects, using the
array construction for the storage aspects. The software
architecture also implies that we only need to relate to,
and thus implement, the discretisation method when
we implement the scalar field, and that the vector and
tensor field implementations are independent of this
choice. If we need to change discretisation method, this
will be localised to one module, and not being spread
out all over the code, which is the normal case with
traditional numerical software.

This also provides a route to parallelisation. We will,
at the scalar field level at least, have a large collection
of data values that may be distributed in a data parallel
fashion [10]. Actually, it suffices to provide a parallel
implementation of the array constructor to get a parallel
version of the whole program. See the accompanying
paper [28] for a discussion of this.

4.3. The Sophus library framework

The software architecture discussed in the previous
section is the basis for the Sophus software library
framework. It provides the abstract mathematical con-
cepts from PDE theory as programming entities. Its
concepts are based on the notions of manifold, scalar
field and tensor field, while implementations are based
on the conventional numerical algorithms and discreti-
sations. Sophus is structured around the following con-
cepts:

– Basic n-dimensional mesh functor Mn : Prog →

Prog, for any natural numbern, taking a ring R as
argument. A mesh structure Mn(R) is like an ar-
ray A{1,...,k1}×...×{1,...,kn}(R) with element type
R, and includes the general iterator operations.
Specifically, operations like +, − and ∗ are iter-
ated over all elements (like collection oriented ar-
ray operators), likewise operations to add, subtract
and multiply all elements of the mesh by a scalar.
There are also operations for shifting meshes in
one or more dimensions. Operations like mul-
tidimensional matrix multiplication and equation
solvers may easily be implemented for the mesh-
es. Sparse meshes, i.e., meshes where most of the
elements are 0 or have some other fixed value, may
also be provided. Parallel and sequential imple-
mentations of mesh structures can be used inter-
changeably, allowing easy porting between com-
puter architectures of any program built on top of
the mesh abstraction.

– Manifolds M. These define sets with a notion of
proximity and direction. A manifold is the index
set for a value field. It represents the physical
space where the problem to be solved takes place.

– Scalar fields SM. They describe the measurable
quantities of the physical problem to be solved.
As the basic layer of “continuous mathematics” in
the library, they provide the partial derivation and
integration operations. Also, two scalar fields on
the same manifold may be pointwise added, sub-
tracted and multiplied. The different discretisa-
tion methods, such as finite difference, finite el-
ement and finite volume methods, provide differ-
ent designs for the implementation of scalar fields.
Scalar fields are typically implemented using the
basic mesh structures for the data.

– Tensors T{1,...,n}. These provide coordinate free
mathematics based on knowledge of the coordi-
nate system, whether it is cartesian, axisymmetric
or general curvilinear. The tensor module provides

270 M. Haveraaen / Case study on algebraic software methodologies for scientific computing

the general differentiation and integration opera-
tions, based on the partial derivatives and integrals
of the scalar fields. Tensors also provide oper-
ations such as componentwise addition, subtrac-
tion and multiplication, as well as tensor product,
composition and application. The implementation
uses the basic mesh structures, with scalar fields
as the ring parameter.

– Equation administrators. These are abstractions
containing collections of scalar and tensor fields
with the purpose of building the matrices and
vectors used to describe sets of linear equations,
such as those needed for implicit time stepping
schemes. These matrices and vectors do not rep-
resent coordinate free properties of a physical sys-
tem, but abstract the important properties of linear
equations. Equation administrators are also im-
plemented using mesh structures with tensor fields
or reals as the ring, as appropriate.

Further abstraction levels, such as time integra-
tors [2], may be added to this framework to raise the
abstraction level further as even more aspects of the
problem domain are investigated. Using Sophus, the
solvers are formulated on top of the coordinate-free
layer, forming an abstract, high level program for the
solution of the problem.

The Sophus library framework can be implement-
ed using any object-oriented programming language or
any programming language with abstract data types.
Ideally the language should have template classes.
This includes languages like Ada [5], Clu [36,37],
C++ [53], Generic Java [11] and Standard ML [41].
Languages which have the abstraction mechanism but
lacks the template mechanism, such as Fortran-90 [1]
and Java [21], will be much harder to use. We
have chosen C++ for our implementations, since it is
widespread, has reasonably good compilers, and has
gained some acceptance in the numerical community.

5. Specification, certification and proofs of

modules

We have developed our presentation as if we could
satisfy our specifications, such as that of the ring, when
realising them on a computer, e.g., in the form of float-
ing point numbers or scalar field approximations. This
is not the case, which is well-known in numerical anal-
ysis. The problem is not just that we cannot exactly
represent the abstractions on our finite computers, but

that the available representations break the fundamen-
tal laws of our abstractions. For instance, the machine’s
floating point numbers do not satisfy the associative
laws Eqs (1) and (3) of rings, laws which are funda-
mental for the development of linear algebra. This can
be remedied if we choose to use computable reals as
our abstraction [57]. But this would only touch the
tip of the iceberg, as the discretisations we work with
only provide coarse approximations to the mathemat-
ical concepts, and this seems to be fundamental for
numerics [52].

Accepting this situation there is a need to supply
the approximate implementations with some kind of
information about their inaccuracy. This is routinely
done at the level of the implementation, such as in [46].
With abstractions a certificate of the approximation’s
characteristics at the level of the specification is more
appropriate. The certificate should also include infor-
mation about storage space requirements and execution
time properties. How this can be done remains open,
but [55] represents a start.

Our proof methods also fall short when moving into
this terrain: how do we prove that our implementation
satisfies our specification sufficiently well, when it ob-
viously has to break the most fundamental properties?
What notions of satisfaction we will need is open and
needs research.

6. Summary

In this paper we have sketched algebraic software
methodologies and shown how they can be applied in
the area of scientific computing, especially in the area
of partial differential equations (PDEs). We present-
ed the notion of a domain specific language, and uni-
versal algebra and algebraic specifications as tools to
analyse a problem domain in order to find suitable do-
main specific languages. Then we discussed how to
construct models of a specification as data abstractions.
The choice of imperative or functional programming
styles is independent of this analysis. Both styles may
accommodate the program constructors and abstraction
mechanisms needed, and both kinds of programs may
be subject to the same kinds reasoning of and transfor-
mations, if necessary by enforcing simple syntactic re-
strictions to simplify the underlying semantic notions.

Studying software architectures was shown to be
beneficial for the structuring of software libraries im-
plementing a domain specific language. Special needs
of the PDE domain, such as approximate accuracy of

M. Haveraaen / Case study on algebraic software methodologies for scientific computing 271

an abstraction in satisfying a specification, has been
discussed.

Presenting the analysis and software architecture in-
vestigation as a software process we see the following
steps:

1. Investigate the problem domain by defining its
main concepts using algebraic specifications.

2. Check the appropriateness of the concepts found
by formulating the problem and sketching its so-
lution using the problem domain specific lan-
guage.

3. Check the computability of the problem domain
concepts by sketching their implementation using
a general purpose programming language.

4. Investigate software architectures for the problem
domain concepts using algebraic and categorical
methods to yield an optimal architecture for the
domain, taking into account side conditions like
the need for parallel implementations.

Once the infrastructure has been established, imple-
mentation of the library is evolutionary. A library com-
ponent may be implemented on demand, e.g., as need-
ed by an application, or as part of a library upgrade.
Each implementation should be validated as much as
reasonable and certificates provided.

We started this software process for PDEs in [30]
where problem domain concepts were investigated and
a possible software architecture was discussed. This
led us in the direction of coordinate free numerics, and
formed the basis for the Sophus PDE library frame-
work. In [45] we presented a high level view, and
proposed using concepts from pure mathematics as our
domain specific language, providing them as data ab-
stractions in a programming language, using the knowl-
edge from applied mathematics to implement the con-
cepts. This brings together three separate disciplines,
pure and applied mathematics and computer science,
in a synergetic effect for the efficient development of
PDE solver software. An account of the full software
process, with examples of application software based
around the elastic wave Eq. (10), is presented in [29].
A very coarse picture of a scientific computing applica-
tion software process which utilises a domain specific
language infrastructure is:

1. Investigate the specific physical problem and de-
velop an appropriate mathematical model, e.g., in
the form of a PDE expressed in the appropriate
domain specific language.

2. Analyse and reformulate the equations defining
the physical model as an abstract algorithm for
solving the problem.

3. Study and modify the properties of the solver to
increase its accuracy and speed, for instance by
improving the convergence rate.

4. Code the solver as a program in the domain spe-
cific language.

5. Carefully choose a configuration of library com-
ponents to achieve optimal numerical and algo-
rithmic properties.

6. Do domain specific optimisations to the solver
program to increase speed and reduce resource
usage.

These software processes for computational mod-
elling is used in the SAGA (Scientific computing and
algebraic abstractions) project. It encompasses case
studies and tool development, some of which are re-
ported here.

In the accompanying paper [23] we discuss the bene-
fits of the coordinate free domain language compared to
more traditional numerical domain languages. In [29]
we showed that using this methodology it is possible to
reduce program code size by up to 90%, with a corre-
sponding gain in software development productivity.

The abstractions developed for coordinate free pro-
gramming naturally are collection oriented and thus al-
low data parallelism in a natural way, see the accompa-
nying paper [28].

General compiler optimisation technology is un-
aware of the abstractions of new domain specific lan-
guages, such as the coordinate free language. There-
fore we cannot expect programs in these languages to
be optimised as well as those written in a more tradi-
tional (numerical) domain oriented language. We pro-
pose a user-controlled code modification and optimisa-
tion tool, CodeBoost, see the accompanying paper [15],
to take into account properties of new domain oriented
languages.

Our hope is that exploring technologies like the
above may aid in broadening the approaches taken
to write numerical software. Further, that algebraic
software methodologies and coordinate free numerics,
within the broader field of object oriented numerics
(OON) [3,61], may be accepted as an important ap-
proach to the development and understanding of nu-
merical software.

Acknowledgements

Thanks to Hans Munthe-Kaas for initiating this area
of research with me and providing many useful discus-

272 M. Haveraaen / Case study on algebraic software methodologies for scientific computing

sions, and to Helmer André Friis for many good dis-
cussions and useful input. Also special thanks to the
partners of the ESPRIT-IV SAGA project, Jan Heer-
ing and Phil Grant, to Victor Aarre, Dinesh, Kristin G.
Frøysa, Helge Gunnarsli, John Simmons, Kristian J.
Stewart, Steinar Søreide, John V. Tucker, Eric G. Wag-
ner, Mike Webster and others involved in SAGA, Sap-
phire and Sophus or who otherwise have contributed
to the theme of the project. In addition, Jan Heering,
Krister Åhlander and the referees provided valuable
feedbacks on various versions of these papers. This
work has in part been financed by the European Union
through the ESPRIT-IV LTR project SAGA, by The
Research Council of Norway (NFR), by the Nether-
lands Organisation for Scientific Research (NWO), and
by grants of computing resources from the Norwegian
Supercomputer Committee.

References

[1] J.C. Adams, W.S. Brainerd and J.T. Martin, Fortran 90 Hand-

book: Complete ANSI/ISO Reference, Intertext Publications,
1992.

[2] K. Åhlander, An extendable PDE solver with reusable com-
ponents, in: ASME 2nd International Symposium on Com-

putational Technologies for Fluid/Thermal/Structural/ Chem-

ical Systems with Industrial Applications, volume 397-1 of
PVP (Pressure Vessels and Piping), V.V. Kudriavtsev, C.R.
Kleijn and S. Kawano, eds, American Society of Mechanical
Engineers, New York, NY, 1999, pp. 39–46.

[3] E. Arge, A.M. Bruaset and H.P. Langtangen, Object-oriented
numerics, in: Numerical Methods and Software Tools in Indus-

trial Mathematics, M. Dæhlen and A. Tveito, eds, Birkhäuser,
Boston, 1997, pp. 7–26.

[4] J. Backus, Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs,
Communications of the ACM 21(8) (1978), 613–641.

[5] D. Barstow, ed., The Programming Language Ada – Reference

Manual, Springer LNCS 155, 1983.
[6] J. Bergstra, J. Heering and P. Klint, eds, Algebraic Specifica-

tion, ACM Press Frontier Series, Addison Wesley, 1989.
[7] M. Bidoit, D. Sannella and A. Tarlecki, Architectural speci-

fications in CASL, in: Algebraic Methodology and Software

Technology, volume 1548 of Lecture Notes in Computer Sci-

ence, A.M. Haeberer, ed., Springer, 1999, pp. 341–357.
[8] G.E. Blelloch, Vector models for data-parallel computing,

MIT Press, Cambridge, Mass., 1990.
[9] B. Boehm, Software Engineering Economics, Prentice-Hall,

1981.
[10] L. Bougé, The data parallel model: A semantic perspective,

in: The Data Parallel Programming Model, volume 1132 of
Lecture Notes in Computer Science, G.-R. Perrin and A. Darte,
eds, Springer, 1996, pp. 4–26.

[11] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler, Making
the future safe for the past: Adding genericity to the Java
programming language, in: Proceedings of the Conference

on Object Oriented Programming Systems, Languages, and

Applications (OOPSLA ’98), 1998.

[12] T. Bräunl, Structured SIMD programming in Parallaxis, Jour-

nal on Structured Programming 10(2) (July 1989), 121–132.
[13] M.C. Chen, Y.-I. Choo and J. Li, Crystal: Theory and prag-

matics of generating efficient parallel code, in: Parallel Func-

tional Languages and Compilers, B. Szymanski, ed., ACM
Press, New York / Addison Wesley, Reading, Mass., 1991,
pp. 255–308.

[14] V. Čyras and M. Haveraaen, Modular programming of recur-
rencies: a comparison of two approaches, Informatica 6(4)
(1995), 397–444.

[15] T. Dinesh, M. Haveraaen and J. Heering, An algebraic pro-
gramming style for numerical software and its optimisation,
Scientific Programming 8(4) (2000), 247–259.

[16] A. Field and P. Harrison, Functional Programming, Addison
Wesley, Wokingham UK, 1988.

[17] USA standard FORTRAN: approved March 7, 1966, Published
by United States of America Standards Institute, 1966.

[18] E. Gamma, R. Helm, R. Johnson and J. Vlissides, De-

sign patterns: elements of reusable object-oriented software,
Addison-Wesley professional computing series, Addison-
Wesley, Reading, Mass, 1995.

[19] D. Garlan and D.E. Perry, eds, Special issue on software ar-
chitecture, IEEE Transactions on Software Engineering 21(4)
(April 1995), 269–386.

[20] J.A. Goguen, A categorical manifesto, Mathematical Struc-

tures in Computer Science 1 (1991), 49–67.
[21] J. Gosling, B. Joy and G. Steele, The Java Language Specifi-

cation, Addison-Wesley, 1996.
[22] P. Grant, J. Sharp, M. Webster and X. Zhang, Experiences

of parallelising finite element problems in a functional style,
Software – Practice and Experience 25(9) (Sep. 1995), 947–
974.

[23] P.W. Grant, M. Haveraaen and M.F. Webster, Coordinate free
programming of computational fluid dynamics problems, Sci-

entific Programming 8(4) (2000), 211–230.
[24] J.V. Guttag and J.J. Horning, Report on the Larch shared lan-

guage, Sci. Comput. Programming 6(2) (1986), 103–134.
[25] J.V. Guttag and J.J. Horning, Larch: Languages and tools

for formal specification, Texts and monographs in computer
science, Springer, 1993.

[26] M. Haveraaen, Distributing programs on different parallel ar-
chitectures, in: Proceedings of the 1990 International Confer-

ence on Parallel Processing, volume II Software, D.A. Padua,
ed., The Pennsylvania State University Press, University Park
and London, 1990, pp. 288–289.

[27] M. Haveraaen, Efficient parallelisation of recursive problems
using constructive recursion, in: Euro-Par 2000 – Parallel

Processing, volume 1900 of Lecture Notes in Computer Sci-

ence, A. Bode, T. Ludwig and R. Wismüller, eds, Springer
Verlag, 2000, pp. 758–761.

[28] M. Haveraaen, Machine and collection abstractions for user-
implemented data-parallel programming, Scientific Program-

ming 8(4) (2000), 231–246.
[29] M. Haveraaen, H.A. Friis and T.A. Johansen, Formal software

engineering for computational modeling, Nordic Journal of

Computing 6(3) (1999), 241–270.
[30] M. Haveraaen, V. Madsen and H. Munthe-Kaas, Algebra-

ic programming technology for partial differential equations,
in: Norsk Informatikk Konferanse – NIK’92, A. Maus and
F. Eliassen et al., eds, Tapir, Norway, 1992, pp. 55–68.

[31] M. Haveraaen and S. Søreide, Solving recursive problems in
linear time using constructive recursion, in: Norsk Informatikk

Konferanse – NIK’98, S. Storøy and S. Hadjerrouit et al., eds,
Tapir, Trondheim, Norway, 1998, pp. 310–321.

M. Haveraaen / Case study on algebraic software methodologies for scientific computing 273

[32] H. Herrlich and G.E. Strecker, Category Theory. An Introduc-

tion, Allyn and Bacon, 1973.
[33] C.A.R. Hoare, Proofs of correctness of data representations,

Acta Informatica 1(4) (1972), 271–281.
[34] P. Hudak, Building domain-specific embedded lan-

guages, Computing Surveys, 28(4es): only available
via http://www.acm.org/pubs/articles/journals/surveys/1996-
28-4es/a196-hudak/a196-hudak.html, December 1996.

[35] K.E. Iverson, A Programming Language, John Wiley and
Sons, Inc., 1962.

[36] B. Liskov, CLU Reference Manual, Springer LNCS 114, 1981.
[37] B. Liskov, A. Snyder, R. Atkinson and C. Schaffert, Abstrac-

tion mechanisms in CLU, Communications of the ACM 20(8)
(1977).

[38] B. Lisper, Data parallelism and functional programming, in:
The Data Parallel Programming Model, volume 1132 of Lec-

ture Notes in Computer Science, G.-R. Perrin and A. Darte,
eds, Springer, 1996, pp. 220–251.

[39] M.E. Mace, Memory storage patterns in parallel processing,
volume 30 of The Kluwer International Series in Engineering

and Computer Science, Kluwer Academic Publishers, Boston,
MA, 1987.

[40] B. Meyer, Design by contract, in: Advances in object-oriented

software engineering, D. Mandrioli and B. Meyer, eds, Pren-
tice Hall, Englewood Cliff N.J., 1991, pp. 1–50.

[41] R. Milner et al., The Definition of Standard ML (revised), MIT
Press, Cambridge, Mass, 1997.

[42] J. Morris, Types are not sets, in: Proceedings of the ACM Sym-

posium on the Principles of Programming Lanugages, October
1973, pp. 120–124.

[43] J.H. Morris, Real programming in functional languages, in:
Functional Programming and its Applications, J. Darling-
ton, P. Henderson and D. Turner, eds, Crest advanced cours-
es from Cambridge University Press, Cambridge University
Press, 1982, pp. 129–176.

[44] P.D. Mosses, CoFI: The common framework initiative for
algebraic specification and development, in: TAPSOFT’97:

Theory and Practice of Software Development, volume 1214
of Lecture Notes in Computer Science, M. Bidoit and
M. Dauchet, eds, Springer-Verlag, 1997, pp. 115–137.

[45] H. Munthe-Kaas and M. Haveraaen, Coordinate free numer-
ics – closing the gap between ‘pure’ and ‘applied’ mathemat-
ics? Zeitschrift fur Angewandte Mathematik und Mechanik

76(1) (1996), pp. 487–488.

[46] The NAG library of numerical algorithms: MARK 10, 1984.
[47] D.C. Parnas, On the criteria to be used in decomposing systems

into modules, Communications of the ACM 15(12) (1972),
1053–1058.

[48] G.-R. Perrin and A. Darte, eds, The Data Parallel Program-

ming Model, volume 1132 of Lecture Notes in Computer Sci-

ence, Springer, 1996.
[49] W. Pree, Design patterns for object-oriented software devel-

opment, ACM Press books, ACM Press, New York, 1994.
[50] D. Sannella, S. Sokolowski and A. Tarlecki, Toward formal

development of programs from algebraic specifications: pa-
rameterisation revisited, Acta Informatica 29(8) (1992), 689–
736.

[51] B. Schutz, Geometrical Methods of Mathematical Physics,
Cambridge University Press, 1980.

[52] S. Smale, Some remarks on the foundations of numerical anal-
ysis, SIAM Rev. 32(2) (June 1990).

[53] B. Stroustrup, The C++ Programming Language, (3rd ed.),
Addison-Wesley, 1997.

[54] B. Szymanski, ed., Parallel Functional Languages and Com-

pilers, ACM Press, New York / Addison Wesley, Reading,
Mass., 1991.

[55] A. van Wijngaarden, Numerical analysis as an independent
science, BIT 6 (1966), 66–81.

[56] R. Walters, Categories and Computer Science, Number 28
in Cambridge computer science texts, Cambridge University
Press, Cambridge, GB, 1991.

[57] K. Weihrauch, Computability, volume 9 of EATCS Mono-

graphs on Theoretical Computer Science, Springer-Verlag,
Berlin, 1987.

[58] A.N. Whitehead, A Treatise on Universal Algebra, with Ap-

plications I, Cambridge University Press, 1898. Reprinted by
Hafner Publishing Company, New York, 1960.

[59] N. Wirth, Algorithms + data structures = programs, Prentice-
Hall series in automatic computation, Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

[60] M. Wolfe, ed., High Performance Compilers for Parallel Com-

puting, Addison Wesley, Reading, Mass., 1996.
[61] M. Wong, K. Budge, J. Peery and A. Robinson, Object-

oriented numerics: A paradigm for numerical object-oriented
programming, Computers in Physics 7(6) (Nov/Dec 1993),
655–663.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

