
Technical Report
CMU/SEI-90-TR-14
ESD-TR-90-215

CASE Tool Integration and
Standardization

Paul F. Zarrella

December 1990

Technical Report
CMU/SEI-90-TR-14

ESD-TR-90-215
December 1990

CASE Tool Integration and Standardization

Paul F. Zarrella

CASE Technology Project

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1990 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-90-TR-14 i

Table of Contents

1 Introduction 1

2 Integration Issues 5
2.1 Single-Vendor Tool Integration 5

2.1.1 Problems 5
2.1.2 Resolutions 6

2.2 Multiple-Vendor Tool Integration 7
2.2.1 Problems 7
2.2.2 Resolutions 8

2.3 Operating Environment Integration 9
2.3.1 Problems 9
2.3.2 Resolutions 9

2.4 Development Process Integration 10
2.4.1 Problems 11
2.4.2 Resolutions 13

2.5 End-User Integration 15
2.5.1 Problems 15
2.5.2 Resolutions 16

3 Standardization Issues 17

4 Standards Efforts 19

5 Outlook/Conclusions 23

Glossary 25

References 29

ii CMU/SEI-90-TR-14

CMU/SEI-90-TR-14 iii

List of Figures

Figure 1-1 Levels of CASE Integrations 2
Figure 2-1 Types of Integration 12
Figure 2-2 Full IPSE Model 14

iv CMU/SEI-90-TR-14

CMU/SEI-90-TR-14 1

CASE Tool Integration and Standardization

Abstract: CASE tool users are faced with the task of coordinating tools and
data from a variety of sources spanning the entire software development life cy-
cle.Despite much discussion and increased standardization activity, complete,
transparent CASE tool integration is still a long way from realization. There are
a number of factors which have complicated the tool integration scenario and
a number of actions being taken in an attempt to resolve the problems. The im-
plications of these concerns can be examined from the perspectives of single-
vendor, multiple-vendor, operating environment, development process, and
end-user integration. In addition to specific technical and methodological solu-
tions, standards efforts are viewed as a possible path to tool integration. To
date, formal efforts have done little to resolve the integration problems, but de
facto standards may well become the cornerstone of future CASE tool evolu-
tion.

1 Introduction

On the surface, Computer Aided Software (Systems) Engineering (CASE) appears to have the
potential to improve software development productivity, reduce software maintenance costs,
and enhance overall product quality. Some tools offer automation services covering all phases
of the development life cycle, including analysis and design, code generation and version con-
trol functions. Despite the existence of numerous tools which facilitate development, a major
impediment to realization of a comprehensive solution is the current state of tool integration.

One single term that appears in most (if not all) descriptions, discussions, and reviews of
CASE tools, is the word “integrated.” There are major differences in interpretation of this seem-
ingly simple term. CASE tools are referred to as integrated simply because they share a similar
user interface or because a vendor offers several tools to support more than one phase of the
software development life cycle. Some speak of CASE tool integration in terms of the support
of shared data storage [26]; others describe a fully supported development life cycle [17]
where all tools interface to a common framework/database in a distributed environment [22].

Analysis of CASE tool integration is generally separated into three functional areas: data, con-
trol, and presentation integration (see Figure 1-1). Along these lines, CASE tools cannot yet
be defined as fully integrated. In a limited sense, most CASE tools/toolsets can be defined as
data integrated (or “joined”) with an underlying design database. The tools may share this “dic-
tionary,” but may be limited by any level of scope, interoperation, or environmental capabilities.
These tools may not represent or interact with the multiple representations or phases of ob-
jects required in coordinated, heterogeneous data storage. Most tools do not support the ex-
ternal control interfaces and formats that are required for automatic inter-tool process/data
flow.

2 CMU/SEI-90-TR-14

Figure 1-1 Levels of CASE Integrations

Part of the integration roadblock stems from the lack of a concise set of broadly accepted
CASE tool standards. Each vendor has invested significant amounts of time and money in the
development of proprietary tool interfaces. Each would like to provide the basis of industry
standard. Realistically, vendors want to expend the least amount of effort necessary to adhere
to any finalized standard without supporting multiple conflicting standards. To this end, ven-
dors are examining alternative approaches to standardization, including forming vendor part-
nerships and lobbying for acceptance of specific standards.

CASE vendors might come to agreement on standards if there was specific indication of what
CASE users wanted/needed from the technology. This would be aided by accumulating user

No Integration

Tool A

Private data

Tool B Tool A Tool BTranslator

Data Exchange

Tool A Tool B

Translator

Presentation Integration
(Common Tool Access)

Common User Interface

Tool A Tool C

Control Integration
(Trigger Mechanism)

Common User Interface

Tool B

Triggers

Tool A Tool C

Data Integration
(Data Sharing)

Common User Interface

Tool B

Shared Project
Data (Repository)

Full Integration

Common User Interface

Tool A Tool CTool B

Trigger Mechanism

Metadata

Shared Project
Data (Repository)

© CASE OUTLOOK - V89/N2-Mar/Apr'89

Levels of CASE Integration

CMU/SEI-90-TR-14 3

feedback detailing findings from the adoption/usage of CASE tools. Unfortunately, the (limited)
available results from CASE tool adoptions provide contradictory information [21]. One of the
main reasons that users aren’t adopting CASE tools in the numbers necessary to influence
standardization is because of the lack of integration/standards [10], [16]. Given this dichotomy,
emerging standards will either be determined by default, or will continue to be dynamically re-
defined. Each of these approaches to standardization presents its own set of problems.

One thing is clear: different levels of product integration and standardization affect a user’s de-
cision whether or not to adopt and use CASE tools. This report addresses the issues, prob-
lems, and resolution efforts related to CASE tool integration and standardization from the us-
ers’ perspective.

4 CMU/SEI-90-TR-14

CMU/SEI-90-TR-14 5

2 Integration Issues

As previously mentioned, there are different viewpoints on what constitutes CASE tool inte-
gration and from what perspective CASE tool integration should be considered. With this in
mind, the discussion of tool integration will be approached from several different aspects rel-
ative to the perspective of the end-user. Five areas of integration are examined here, namely:

• Single-vendor tool integration

• Multiple-vendor tool integration-

• Operating environment integration

• Development process integration

• End-user integration

2.1 Single-Vendor Tool Integration

The initial form of CASE tool integration is “internal” integration, that is, integration of the tools
and data of a single vendor. Some vendor tools use a local data dictionary; others fashion a
toolset joined together around a central, shared dictionary. The data dictionary is usually some
form of (relational) database which offers a vendor a way to provide reliable data storage and
access for the tools. This form of integration is generally of a proprietary nature [1].

2.1.1 Problems

A single-vendor approach limits users to the range of tools afforded by the particular vendor.
Most CASE vendors do not offer a full life-cycle complement of (integrated) tools, nor do they
produce tools for both the personal computer and workstation/mainframe environments. When
a single vendor offers a set of tools, the user may be constrained by varying degrees of use-
fulness/value derived from the different tools. Many users find it unacceptable to be restricted
to a single-vendor CASE tool solution[16, 18] due (at least in part) to these limitations.

Some tools, even though from the same vendor, use localized (non-distributed) data dictionar-
ies to store tool objects. This creates problems with data content consistency between tools
and users and puts the burden of data synchronization and reconciliation on the user. Also,
end-user tools are often precluded from interfacing with the dictionary directly as most data
dictionaries are proprietary in nature, use unpublished proprietary interfaces or use incompat-
ible or proprietary database technologies.

The single-vendor aspect also impacts the amount of flexibility or modification in a toolset from
which a user can benefit. If a vendor allows a user to modify the interfaces/objects of such a
nonstandard toolset, it could very well further widen the “compatibility gap” with other (vendor)
tools. Even if conversion capabilities are developed to allow a database/interface to be adapt-

6 CMU/SEI-90-TR-14

ed to a standard format, the ultimate responsibility for adapting the modifications may be left
to the user.

The use of relational databases as the basis of a CASE data dictionary [2, 4] is also problem-
atic. Relational databases cannot readily accommodate the flexible, complex object/data
types (e.g., code segments, design diagrams, user processes) required by CASE technology.
This is due to limitations of the relational model wherein the database is generally unable to
handle the amount of data that it takes to implement a fine-grained object management system
(i.e., objects are composed of data items and interrelationships that are more complex than
the level afforded by a singular file or character string representation). The problem here is ac-
tually a function of data size relative to performance characteristics. Since relational databas-
es cluster data by type rather than by the relationships within the data, the large amount of
data required by CASE greatly increases the amount of time required to process database
transactions.

2.1.2 Resolutions

Some vendors have merged in an effort to acquire leverage from each other’s tool offerings
and to fill in the technology/product gaps [20]. This solution changes the scope of the problems
encountered in the original single-vendor situation, but eventually it, too, fails to solve the prob-
lem. In most cases, upper limits or gaps exist where the product sets remain lacking.

Some vendors are expanding on the concept of shared data dictionaries (or “encyclopedias”).
This will help alleviate the problem of database reconciliation, although, if not carefully imple-
mented, it could negatively affect the performance profile of the toolset. Multiple (distributed)
tools/users attempting concurrent access to a shared dictionary could exceed the limitations
of the development environment. Shared toolset databases, while not explicitly solving the sin-
gle-vendor limitation, provide a common basis for internal tool integration and a means of tran-
sition to external integration.

Efforts are currently underway to expand the integration of object-oriented databases (OODB)
with CASE tools. An OODB is the basis of next-generation “repository” products currently un-
der development by both IBM and DEC (see Section 2.2). OODBs differ from relational data-
bases by storing data maintenance and access rules along with the object data. This technol-
ogy would provide extended capabilities (e.g., multiple object views, modifiable rules, and ob-
ject types) and would enhance the distribution/performance aspects of a shared data
dictionary (or repository) [2] (see discussion of Integrated Project Support Environment (IPSE)
below). Universal acceptance of OODB technology is impeded by the fact that the technology
is relatively new (no single data model) and by the prior commitment to relational databases
of many vendors, users, and standards organizations.

CMU/SEI-90-TR-14 7

2.2 Multiple-Vendor Tool Integration

Another form of integration is “external” integration. This is when a vendor integrates tools with
those of another vendor. This integration can be of the form of “access control” and/or “data
control.” In access control, the vendor allows the tools to be invoked/controlled by tools from
other vendors and returns appropriate messages/codes to the invoking process. In data con-
trol, the vendor allows these external tools to (in)directly manipulate the data contained in the
internal dictionary. This section focuses primarily on the data control aspect of external inte-
gration. Access control is discussed as part of the “Process Integration” section below.

2.2.1 Problems

Many vendors realize the importance of publishing their tool/data interfaces to promote greater
acceptance and usage by the CASE community [11, 26]. This helps other vendors (and users)
integrate their own tools with the vendor tools, but does not address the larger problem of data
incompatibility as the meaning associated with the data is still not fully described. Not only
might the format of the data be different, but the contents of the dictionaries may be inconsis-
tent. The weaknesses of relational databases are exacerbated when objects are transformed.
Since data rules are imposed by the tools (as opposed to the database), the consistency of
objects (the “view”) may be distorted as semantic meaning is lost or misinterpreted when mov-
ing the data between tools.

Some vendors have developed (or are developing) import/export utilities and tool extensions
to deal with the problems of data dictionaries that cannot be shared by different tools or among
multiple users (e.g., IBM (External Source Format), Interactive Development Environments
(IDE) (Visible Connections), Cadre (Teamwork/ACCESS)). However, there is an inherent
problem of data loss/mismatch when attempting to merge two (possibly) incompatible data
sets. Insufficient data may be either exported or imported. Data objects/relationships used by
the exporting tool may be extraneous to the importing tool or may not fit into its data model
(e.g., type, format, naming conventions).

Another problem with external integration directly underlines the importance of the selection
and acceptance of standards. Vendor integration of the tool/data interfaces of another vendor
is a very costly proposition. The cost ultimately includes the indirect support and maintenance
associated with the tools and interfaces of another vendor. The costs are multiplied exponen-
tially by the number of nonstandard interfaces and the number of platforms and environments
supported by these other vendors. It is highly unlikely that smaller CASE vendors will be able
to continue to compete in this type of environment for very long.

Ultimately, given the current state of standardization efforts, end-users may have to act as sys-
tems integrators and write the code necessary to effectively integrate a set of vendor tools.
This, of course, assumes that the tool interfaces are documented by the vendors and that the
user can expend the time/cost necessary to implement the tool integration. In the interim, us-
ers are left to manually coordinate changes between tool databases.

8 CMU/SEI-90-TR-14

2.2.2 Resolutions

Work is underway by IBM, DEC, and others to define a central data repository that would take
steps to solving the data incompatibility issue [3, 27]. A repository is a common shared data-
base that stores the rules (or relationships) associated with CASE data objects. The data itself
may reside in the repository or may be contained in local databases distributed throughout an
application network. Many tool vendors are currently lining up to support the repository con-
cept [6, 14] although they are still maintaining their own separate proprietary product lines as
an insurance measure. The repository approach, even as a de facto standard, allows users to
effectively “mix and match” tools from different cooperating vendors in order to choose the
most appropriate tools for their specific process.

The IBM repository, defined as an integral part of the IBM Application Development/Cycle (AD/
Cycle) environment, could help advance the ranks of CASE tool users [10, 14]. Not all users
may be willing to immediately fall in line with the IBM solution as it will (initially, at least) run
only on IBM platforms and could require a significant start-up expense [3, 27]. Also, the IBM
methodology may be incompatible with some existing CASE implementations; users may not
be interested in investing their CASE efforts in a proprietary solution. Finally, there may be
problems caused by the timing and delays associated with the IBM product. Some users are
already too far into multi-year projects to allow them to reorganize their data to fit with a DB2
based repository in the near term. It is unclear whether or not IBM will offer a repository impor-
tation facility.

The DEC repository approach, VAX Common Data Dictionary/Plus (CDD/Plus), is not the
clear choice either, although DEC is considered to be further advanced toward the repository
model than IBM [27]. DEC has a working version of the repository but is constrained by prob-
lems similar to those of IBM. Since the DEC repository is currently offered only under VMS,
users are locked into a DEC platform offering for central repository management. Also, CDD/
Plus uses yet another proprietary interface which discourages massive third party acceptance
although DEC, like IBM, relies heavily on such vendor partnerships.

In the meantime, some vendors have formed (or are forming) strategic partnerships, mergers,
or acquisitions to complement their toolsets (e.g., Mentor Graphics and Microtec Research (in-
tegration of development tools into CASE environment); Cadre Technologies and MicroCASE
(expansion of CASE tool product functions); Transform Logic and Nastec (merger of comple-
mentary product lines)). These vendors are teaming up to add to their existing tool offerings
and, in some cases, to attempt to indirectly effect a CASE tool standard. As yet, no one part-
nership has had a significant impact on the standards process; this solution simply transforms
the problems encountered by the CASE user in a single-vendor situation into the problems of
a two (or three) vendor situation.

CMU/SEI-90-TR-14 9

2.3 Operating Environment Integration

When discussing CASE tool integration, the operating environment should also be consid-
ered. This includes both the base computing environment and the add-on tools and utilities
that compose the development support environment. Some CASE tools have versions that run
on a personal computer (e.g., Excelerator (Index Technology), Teamwork (Cadre Technolo-
gies)), while others are targeted to workstations or mainframes (e.g., Software through Pic-
tures (StP) (IDE), Procase C Environment (Procase Corporation)). Tools are also developed
for use on a specific target operating system. The choice of system generally has to do with
considerations for the technical (real-time) or commercial (Management Information Systems
(MIS)) application to be hosted by the toolset.

2.3.1 Problems

Basically, tools are tied into their environment by virtue of the specific operating system or
hardware platform upon which the tools are hosted. The tools may use specific features of the
operating system or support toolset that are unavailable on other systems (e.g., windowing
system variants, UNIX system variants). This makes it harder (or in some cases impossible)
for these tools to be rehosted to other environments. Ultimately, these tools cannot be consid-
ered “as is” as part of an integrated offering.

There are also problems associated with scalability when considering a move from one envi-
ronment to another. Some tools might suffer from performance degradation or from environ-
ment limitations (e.g., memory requirements, CPU characteristics, data storage facilities).
Tools developed for a single-user PC environment may not support multi-user projects. This
problem may be one of concurrence or of project/data size. It may be impossible to run multi-
ple instantiations of the tool, or for the tool to handle the increased amount of data access re-
quests.

Another environmental issue is CASE tool integration with a configuration management sys-
tem. Due to the nature and extent of the data that needs to be handled by a toolset, no viable
CASE offering (regardless of the scope of the toolset) can overlook the importance of main-
taining an ordered version control history for data objects. Some CASE tools integrate a simple
versioning scheme for file objects, but the concept must be extended to include all data types
as object granularity becomes finer than the file level and as the need evolves for control over
a set of object types more varied than simple source code. Extension of CASE tools to include
configuration support must be given careful consideration so as not to provoke the scalability
problems (particularly, data storage and performance limitations) previously outlined.

2.3.2 Resolutions

One possible solution to the environment integration issue is the emergence of a standard for
the UNIX operating system. The UNIX system shows promise as a “cross-over” operating sys-
tem catering to the needs of both the technical and commercial markets [5, 7]. In this respect,

10 CMU/SEI-90-TR-14

CASE tool vendors would be relieved of the burden of maintaining separate product lines for
multiple operating systems by targeting the UNIX system. This would also alleviate many of
the rehosting issues facing the vendors as product porting would become an issue of hardware
(UNIX system platform) only. Environment transparency and tool/database distribution would
be enhanced through the accessibility of existing network support functions (e.g., NFS, TCP/
IP).

Sun Microsystems is an obvious proponent of the UNIX operating system. Sun has expanded
interest in the CASE market with the introduction of Network Software Environment (NSE), a
proprietary configuration management system. Although not actually a CASE tool vendor, Sun
is trying to leverage off of the tool/workspace management concepts of NSE by encouraging
tool vendors to offer products for the Sun systems as third party offerings.

In addition, DEC has reaffirmed its support for both ULTRIX (DEC’s version of the UNIX oper-
ating system) and VMS by focusing on the development of tools designed to run in a distrib-
uted, heterogeneous environment [25, 27]. This was the basis of the DEC partnership with
Atherton Technology aimed at integrating DEC CASE tools and, currently, an object-oriented
version of the CDD/Plus repository with the Atherton BackPlane IPSE (see Chapter 2) for the
VAX environment [5, 8]. By teaming with Atherton, DEC inherits the integration services of an
IPSE and still maintains control over the specifics of the CASE toolset and database. DEC
aims to leverage its own platform offerings on the possible acceptance of the Atherton product
as a standard for CASE tool integration.

IBM has also entered into an agreement with Atherton to rehost the BackPlane to AIX (IBM’s
version of the UNIX operating system) [5]. This will, again, help strengthen the position of the
UNIX system (as well as the IPSE and, specifically, the Atherton BackPlane) in CASE integra-
tion efforts. The agreement provides IBM with an IPSE/repository offering (even if limited to
AIX) in the interim while it attempts to consolidate the various components and support plat-
forms of the AD/Cycle environment.

In the support environment area, several vendors of change control software are working with
CASE tool vendors to integrate their product lines. Some analysts contend that the object-ori-
ented repositories of future CASE offerings will implement change control implicitly as part of
the supporting methodology [15]. This will help to lessen the potential for scalability problems;
configuration management functions would simply become a part of the set of object relation-
ships. Regardless of how it is implemented, change control (and impact analysis), extended
to all levels of tools/data, will support the rapid modeling/prototyping attributes of CASE.

2.4 Development Process Integration

CASE tools are also working into the framework of the development process. These tools are
no longer targeted specifically to the analysis/design phase of software development. CASE
tools are being considered to help combine the various phases of the entire life cycle (e.g.,
project management, analysis and design, configuration management) in anticipation of

CMU/SEI-90-TR-14 11

smoothing process transitions. Some vendors are (re)examining the feasibility of the IPSE and
of Integrated CASE (I-CASE).

IPSE offerings allow for tool data, control, and presentation integration (see Figure 1-1, Figure
2-1). Data integration refers to the coordination of access to the underlying tool database(s).
Control integration refers to the coordination of access to the CASE tools, themselves. Pre-
sentation integration refers to the coordination of the user interface (discussed further in the
“User Integration” section below). The basis of data integration is the repository. The basis of
control integration is the software “backplane” (or executive) that provides interfaces to the
tools (see). This allows for mixed operating system support and, in some cases, for mixed
platform support. In theory, the IPSE allows for data locking and version control via an update
transaction mechanism.

I-CASE tools center around a shared encyclopedia. The encyclopedia scales between the dic-
tionary and the repository in terms of complexity. In addition to holding data objects, the ency-
clopedia stores and maintains the meanings associated with the objects which are then used
to derive other objects (e.g., draw diagrams, generate code). In this respect, the encyclopedia
is similar to the repository although the encyclopedia, as an extension of a dictionary, does not
necessarily store object rules nor is it necessarily designed around object-oriented technology.

2.4.1 Problems

One problem facing process integration is tool flexibility. Users are insisting that tools allow for
easy modification and adaptation to their particular process and methods. Most CASE tools
remain closed to such customization and those tools that do claim an “open” interface gener-
ally allow modification of only the presentation characteristics. In order for CASE tools to be
fully integrated, users must be able to modify the characteristic behavior of the tool (e.g., de-
sign rules, object types, process), not just the display interface [9]. Users should not have to
abide by a strictly imposed process for software development (e.g., waterfall model, spiral
model) if they are best served by some internally developed or hybrid process. Also, tools must
be capable of adapting to evolutionary changes in the software engineering process/model.

12 CMU/SEI-90-TR-14

Figure 2-1 Types of Integration

Another problem encountered is that most CASE tools support only very specific design meth-
odologies. Also, the methodology supported by the tools is usually strictly enforced. This re-
quires that users select and learn a new methodology or choose from a limited set of tools that
support their current methodology. Users may find that the methodology selected is inappro-
priate for their organization or that specific methods are replaced in the future by more appro-
priate methodologies. Also, many users already have some set of methods in place that do
not match one of the accepted formal offerings. In the interest of accommodation of such
methods, CASE tools need to be able to expand beyond the traditional “bottom up” or “top

CMU/SEI-90-TR-14 13

down” design approaches and allow configuration modifications to support alternative (“middle
out”) methods.

Work on IPSE/I-CASE has been going on for several years. Many vendors see the value of
such a tool framework, but few are actively looking to integrate their tools into existing back-
planes. Again, the issue of standards comes into play. The IPSE must be tightly integrated with
respect to the control interfaces involved in a proper implementation. All of the tools in the
IPSE must use standard protocols to support the various control mechanisms (e.g., invocation
format, parameter passing, results notification). Most vendors cannot be convinced to expend
effort to adhere to an interface that may be superceded in the near future. Since no one vendor
can currently define a standard for IPSE/I-CASE integration by offering a comprehensive set
of single-vendor CASE tools, no single version of these technologies has been able to claim
market dominance.

Users are faced with a similar interface-support dilemma. Some users (e.g., Boeing, EDS,
NASA) with an internally developed CASE toolset have gone in the direction of developing
their own internal IPSE/backplane variant. The effort required on the part of an end-user to in-
tegrate a set of proprietary tools to a vendor backplane could be greater than that required to
develop a specific, tailored tool interface. Users may not be willing/able to wait for a standard
to emerge or to integrate their tools into a (potentially) nonstandard vendor backplane. By
adopting a private solution, the user maintains control over the backplane definition as well as
data, interface, and expansion characteristics (i.e., flexibility).

2.4.2 Resolutions

Several comprehensive methodology/toolset offerings are becoming available from large sys-
tems/CASE vendors. IBM’s AD/Cycle and DEC’s CDD/Plus are examples of a combination of
methods, central data storage technology, and CASE support tools that are available from (or
in support of) such vendors. Each offers the user a consistent set of methods and an outside
vendor following that is developing tools to support these methods. Each will also offer the
consistency of a central data repository, although neither offering has actually advanced to the
point of a fully implemented object-oriented design. Again, the choices presented are mutually
exclusive. Each vendor is attempting to define the standard by default, by lining up as many
users/vendors behind their products as possible. Ultimately, users may have to live with limited
flexibility but may gain from a wider set of tool choices.

14 CMU/SEI-90-TR-14

Figure 2-2 Full IPSE Model

With the emergence of CASE in the technical market, and the demands of a new set of users,
a new emphasis has been focused on the area of IPSEs. Vendors are now looking with re-
newed interest to incorporation of all aspects of the development life cycle into a seamless
product line. Vendors realize that no one company can afford to provide a comprehensive set
of CASE tools that spans all of the phases of the life cycle. Cooperation is necessary. So, while
not all vendors are supporting all life-cycle phases, most are looking to some form of standard-
ization to define the product interfaces which they must eventually support [9]. In the manner
of de facto standardization, IBM, DEC, and Atherton are now likely to end up supporting a
common IPSE standard, namely, ATIS (see Section 4). This does not preclude any or all of
these vendors from supporting multiple IPSE standards in the future.

Operating System

Data Repository
Data Integration Services

User Interface
Task Management Services

Tool S
lots

Message Server N
etw

ork

Presentation
Manager

X Windows

Other

FULL IPSE MODEL

Source: Hewlett-Packard, Software Engineering Systems;
as printed in SOFTWARE MAGAZINE, October 1989,
Sentry Publishing Co., Inc., Westborough, MA 01581

CMU/SEI-90-TR-14 15

Work is also progressing in the area of I-CASE. I-CASE is similar in nature to the IPSE, but is
targeted more at the commercial (MIS) marketplace. The emphasis of I-CASE is on the inte-
gration (via a shared data encyclopedia) of the front-end phases of the development life cycle
that lead to support of code generation (e.g., planning, analysis, design). This is a significant
difference as progress on the code generation phase of real-time CASE lags well behind that
of the commercial market.

Another term used in the CASE arena is “framework.” Frameworks are essentially extensions
of tool backplanes. They provide for the life-cycle integration goals of IPSE/I-CASE via “plug-
in” tool integration with a tool management executive. The executive handles the overhead in-
volved with coordination of the tool suite (e.g., user presentation, tool registration and instan-
tiation, error reporting). At the bottom end of the framework is a common data interface/repos-
itory, messaging system, and operating system services manager. These interfaces unburden
the tool modules of the particulars of the host environment and allow for a broader, more in-
terchangeable product set.

Hewlett-Packard has also been heavily involved in the definition of a framework- type product
(SoftBench). The product not only provides a foundation for integration of HP CASE tools, but
also provides end-users with an interface protocol (Encapsulator) allowing for simplified inte-
gration of proprietary (or third party) tools into the framework [22]. Although a major effort in
process integration, the HP framework concentrates on the presentation and control integra-
tion and tool messaging aspects of the framework concept while ignoring (at least initially) the
issue of data integration (i.e., no common data repository).

2.5 End-User Integration

Finally, more emphasis is being applied to integration of CASE tools with the users them-
selves. The concept of integration with the end-user ranges from something as simple as
maintaining a consistent user interface to something as complex as providing support for an
expert system interface to aid in detailed design. In particular, a standardized user interface
(also known as presentation integration; see Figure 1-1, Figure 2-1) would help enhance user
acceptance of CASE tools.

2.5.1 Problems

One of the basic concerns of integrating CASE tools in general is the issue of a consistent user
interface/presentation [9, 22]. The learning curve associated with CASE adoption is very steep
and requires a significant investment on the part of the adopting organization. This investment
is more than just the cost of the tools. It involves the time and cost of comprehensive training
and support (both from the vendor and from the users). Standardized user interfaces and tool
function will help keep these costs under control and offer greater tool/choice flexibility to the
users.

16 CMU/SEI-90-TR-14

2.5.2 Resolutions

Some vendors are looking at a standardized user presentation format in order to decrease the
learning curve and provide smoother transition between different vendor offerings. Vendors
also realize that most users operate in a diverse network of heterogeneous systems and that
commonality among these systems is an important consideration in selection of a standard.
Some vendors have chosen X-windows as a standard upon which windowing systems for
tools presentation are built (e.g., OpenLook (Sun), DECwindows (DEC), Motif (Open Software
Foundation (OSF))). This provides a definitive “look and feel” to the diverse toolset offerings
and, as found in the HP Encapsulator product, allows the familiar user interface to be extended
to user-integrated tools as well. Although no set standard has been officially declared, X-win-
dow acceptance is an example of how support by a wide range of vendors (e.g., Sun, DEC,
HP) for a particular interface can drive the standards definition process.

In addition to the underlying system, user interface consistency is becoming more of an issue
to CASE vendors. There is a general feeling that the user interface contributes significantly to
the acceptance and learning time for a product. Since the user interface is the easiest of the
integration areas on which to standardize, vendors must use caution not to promote a “quick
and dirty” solution. If the vendors do not carefully analyze the requirements of the user inter-
face, without taking into account the context of the tool usage, they may end up with an inter-
face standard that promotes consistency at the expense of ease of use [12].

CMU/SEI-90-TR-14 17

3 Standardization Issues

As previously mentioned, one of the main obstacles to user acceptance of CASE tools is the
lack of approved standards. Users are unwilling to expend a significant amount of effort, time,
and expense to adopt CASE tools and then discover that the tools are incompatible with their
process or that the tools are ultimately incompatible with the finalized standard. Users are wary
of being locked out from CASE technology advances that may be reflected in tools that are
incompatible with their own.

In a study done in 1986, it was found that there were approximately 250 tool interconnection
standards efforts in progress, with at least 19 of them directed specifically at the CASE arena
[19, 24],.Most of these standards are still under consideration and range from government
backed efforts (e.g., CAIS-A, SIGMA) to industry efforts (e.g., ATIS, CDIF) to ad hoc standards
committees.

One problem facing standardization is the “wait and see” attitude expressed by some CASE
tool vendors. These vendors are unwilling to support any specific standards effort or partici-
pate in several conflicting efforts in an attempt to “hedge their bets.” In these regards, they re-
duce the risk that they will adopt the wrong standard and also maintain the possibility that their
interfaces already meet or approximate the (yet to be agreed upon) standard. This posture ac-
tually detracts from the standards efforts as failure to work actively toward a single standard
is, in essence, a position against standardization.

As was previously discussed, there is also the chance of the emergence of de facto standards.
Many users and vendors are resigning themselves to the fact that the most immediate possi-
bility for a standard will be the basic acceptance of the technology of one of the major CASE
vendors [3, 19]. Irrespective of any bias in the community, in the MIS area at least, this prob-
ably means that IBM (and AD/Cycle) will prevail. While there are always inherent problems in
this type of standards adoption, at least there would be a focal point on which to build the for-
ward process of enhancing the CASE market. More users would be able to get started on their
own CASE adoptions and a wider range of integrated tools would result.

The overall standards effort is further confounded by the fact that different standards would
address different integration interfaces. Some standards focus primarily on repository specifi-
cations (e.g., IRDS), others on portability (e.g., PCTE), others on data exchange (e.g., CDIF),
etc. Many of the standards efforts overlap, but not all members of each standards body belong
to all of the standards bodies. Thus, different viewpoints and agendas are driving standards
for similar functions which will most probably result in incompatible standards definitions.

The emergence of multiple standards for each of the different areas of tool integration is a very
likely possibility. Since most of the standards efforts had been progressing virtually indepen-
dently of each other (at least until the inception of the International Workshop on CASE
(IWOC) Standards Coordination Committee), it could very well come to pass that the first de-
fined standards predominate the industry or that no real consensus emerges at all.

18 CMU/SEI-90-TR-14

In addition to the problems presented above, there are standards issues that are not specifi-
cally addressed by the standards committee(s). The first is the question of metrics. While there
are conflicting reports from users concerning productivity increases, no hard metrics can be
cited to support the claims. By focusing on this issue, a clearly defined set of metrics could be
developed that could be used to quantify tool results. This will help users to measure their
progress with respect to both productivity and quality.

Another issue is that of reporting standards. Granted, with the issuance of DOD-STD-2167A,
a standard reporting format for military software applications emerged. However, that standard
should be addressed to determine if it is applicable to the CASE market and whether or not it
complements the activities of the CASE standards efforts. Any standard reporting format
should define more than how to print out design diagrams; it should create a framework for
extraction of pertinent development cycle information (e.g., usage metrics, configuration man-
agement histories, object relationships).

CMU/SEI-90-TR-14 19

4 Standards Efforts

It would be impractical to list the activities of all of the current standards initiatives or to itemize
the charter or specifications of each effort. Instead, several major standards efforts are pre-
sented with a brief introduction and summary of the state of the effort.

ATIS/CATIS/CIS
A Tool Integration Standard (ATIS) was originally developed by Atherton Technology to define
the interface to the common data repository of the company’s Software BackPlane, an IPSE
[6, 8]. The “A” in ATIS originally stood for “Atherton,” but was replaced after the strategic
agreement with DEC and the subsequent changes in the repository model.

ATIS currently defines the object-oriented interface to the DEC CDD/Plus repository. Due to
the Atherton agreement with IBM, it is now expected that IBM will participate in the definition
of the next version of the interface to include provisions for the AD/Cycle repository. Simply
put, the success of the standard is directly related to industry acceptance of some combination
of a Atherton-DEC-IBM IPSE model.

The Common Application and Tools Interface Standard (CATIS) is based upon ATIS, but fo-
cuses on the properties of an object management system (e.g., object distribution and locking,
flexible data types, versioning) rather than on the specific repository interface of ATIS [23]. The
divergence is based upon the contention that current database technology cannot effectively
support full storage of all object data in a central repository.

The CASE Integration Services (CIS) standard is an off-shoot from CATIS [4]. It supports the
object-oriented integration approach, but differs in the control mechanism. While ATIS sup-
ports a single point of control (the repository), CIS promotes spreading the control out among
several integration services components for data and task management (e.g., message han-
dling, data security, configuration management, repository). This version of the standard had
solid industry backing but was endangered by the conflicting interests of its supporters. It now
appears that the future of this standards effort is in jeopardy due to the withdrawal of support
from several of the key participants (HP, Sun, Cadre, IDE).

CAIS/CAIS-A (MIL-STD-1838/MIL-STD-1838A)
The Common Ada Programming Support Environment (APSE) Interface Set (CAIS) standard
was developed by the DoD in response to the interface incompatibility of the independently
developed Ada Language System (ALS) and Ada Integrated Environment (AIE) APSEs [2,
30]. The primary focus of the CAIS standards proposal was tool portability. A later version
(CAIS-A) added a focus on tool data exchange.

The CAIS-A standard defines a layer that interfaces the tools of the APSE to the Kernel Ada
Programming Support Environment (KAPSE) and, ultimately, to the host system. Thus, CAIS-
A provides tools with common DBMS and operating system services of the host.

20 CMU/SEI-90-TR-14

The CAIS-A standard has received lukewarm acceptance by the industry. It is similar in nature
to the European PCTE standard (see overview of PCTE below) and will possibly merge with
that effort in the future.

CDIF
The CASE Data Interchange Format (CDIF) is a proposed extension (only) to the Electronic
Data Interchange Format (EDIF) used for data exchange between CAD tools [4, 13]. This stan-
dards effort focuses on the specification of requirements for CASE tool data exchange inte-
gration and was originally proposed by Cadre Technologies, Inc.

Although CDIF was originally intended as a quick solution to the data integration problem, a
full standard is still years from completion. An Electronic Industries Association (EIA) commit-
tee overseeing CDIF expects that a draft of the standard should be available in the first half of
1991.

IEEE (P1175)
This is a tool interconnection standards proposal sponsored by the IEEE [24, 28]. The propos-
al acknowledges that there is no one constant way to solve the software development problem
and that tool advances require users to adopt and mix tools from different sources as part of
their toolkit. The proposal advances the concept of better tool integration at the information
transfer level.

The proposal addresses the specifications of a Standard Text Language (STL) that describes
the information that is transferred between tools. Also, because organizations may undergo a
“culture” change (e.g., learning a new methodology, converting information) to use tools, the
standard provides a reference model for tool to organization interconnections. And, because
the tools require a specific support platform, the standard provides a reference model for tool
to platform interconnections.

IEEE Standards Board approval is currently expected in September 1991.

IRDS (ANSI/ISO)
The Information Resource Dictionary Standard (IRDS) focuses on the issue of data integration
via a centralized repository [4]. This standard defines the data dictionary interface to a rela-
tional database. It specifies four levels to the framework; the definition schema, the data model
(object types, attributes and relationships), the database contents, and the underlying data-
base.

Two versions of the standard have emerged: a version that has already been approved by
ANSI (1988) and a version (in final draft form) that is promoted by the International Standards
Organization (ISO). The ANSI version is based on an entity-relationship data model while the
ISO version can support different data models by using a simpler relational view of data based
on SQL.

CMU/SEI-90-TR-14 21

PCTE/PCTE+
The Portable Common Tools Environment (PCTE) standard is a European standards effort
aimed at defining the tool support interfaces for an IPSE [2, 29]. PCTE was originally designed
to address the issues of interoperability of tools and data between environments. It defines in-
terfaces that provide for a distributed database, a distributed architecture, and an extended,
uniform user interface.

PCTE+ was implemented to (among other things) reduce the original constraints of UNIX op-
erating system compatibility required by PCTE; add security, accounting, and versioning ex-
tensions; and, refine the object management system so that type definitions are represented
as objects.

PCTE is similar in nature to CAIS but differs in that PCTE provides interfaces for tools written
in both Ada and C, while CAIS supports only Ada. PCTE has been better received by industry
and includes supporters (e.g., European Computer Manufacturers Association (ECMA),
NATO) and interested parties (e.g., HP, IBM) from both the commercial and military markets.

SIGMA
The Software Industrialized Generator and Maintenance Aids (SIGMA) standard is a broad-
based Japanese effort aimed at all levels of tool integration (e.g., portability, data exchange,
repository architecture) [4, 19]. The standard is designed to create a seamless software de-
velopment environment.

The effort was originally well supported and represented by both Japanese government and
industry. A prototype system was completed in 1989 as part of an initial five year development
plan, and the effort has now entered its “commercialization” stage. However, there are con-
cerns about future acceptance of the technology. The current tools are lacking in some areas
of coverage of the development life cycle and are generally not well integrated. Also, the effort
is seen to mainly benefit large mainframe vendors who will now control evolving CASE tool
standardization efforts (for SIGMA).

22 CMU/SEI-90-TR-14

CMU/SEI-90-TR-14 23

5 Outlook/Conclusions

In the next five years, vendor consolidation and restructuring will bring about some limited im-
provement in CASE tool integration. For the most part, though, the status quo will prevail. Ven-
dor partnerships will continue to adapt their tools to meet privately agreed upon interfaces and
then struggle for elusive industry acceptance. The effects of tool integration and standardiza-
tion efforts will remain limited. Much discussion will surround each new tool, each new part-
nership, and each new tool adoption and productivity claim. The bottom line, however, is that
the limited integration progress and the conflicting reports about CASE will keep users con-
fused about the future direction of the technology and apprehensive about the selection of a
toolset.

In the long term, the standards dilemma itself may bring vendors into alignment over integra-
tion issues. IBM (and/or DEC) will most likely force standardization by default in the commer-
cial CASE market. Although it is more difficult to predict what will happen in the less mature
technical CASE market, DEC is already firmly established in this area and is poised for expan-
sion. These de facto standards should, at least, cause other vendors to finally come to stan-
dards “realization.” That is, as the larger vendors get users to start accepting their products
and as these vendors then start touting their particular definition of a standard, other vendors
will be forced to join up with the standard or quickly consolidate to accept other (hopefully well
defined) standard(s). In this respect, the divergent groups will have to put their differences
aside and come to closure or they will be isolated from the CASE mainstream. There is always
the possibility that in the interim, one of the vendor partnerships will hit upon an acceptable
standard and preempt the larger vendor(s), but this scenario is highly unlikely/unpredictable.

24 CMU/SEI-90-TR-14

CMU/SEI-90-TR-14 25

Glossary

AD/Cycle (Application Development/Cycle)
IBM CASE methodology/framework (incorporates common data repository) based on
the IBM Systems Application Architecture (SAA) development environment

ATIS (A Tool Integration Standard)
Atherton-DEC[-IBM] CASE standards effort which addresses object-oriented repository
interface specification

Backplane
Tool coordination facility providing “plug-in” tool (control) integration with a tool
management executive

CAIS[-A] (Common APSE Interface Set)
U.S. DoD CASE standards effort which addresses tool portability and data exchange
specifications (similar to PCTE+ standards effort)

CASE (Computer Aided Software (Systems) Engineering)
Collection of tools supporting formalized methods designed to automate and enhance
the software development process

CATIS (Common Application and Tools Interface Standard)
CASE standards effort which addresses object management system (repository)
architecture specification (derivative of ATIS standards effort)

CDD/Plus (Common Data Dictionary/Plus)
DEC CASE tool data repository developed for VAX environment (incorporates
distributed access capabilities)

CDIF (CASE Data Interchange Format)
EIA CASE standards effort which addresses tool data exchange specification
(derivative of EDIF CAD standard)

CIS (CASE Integration Services)
CASE standards effort which addresses object-oriented data and task management
specifications (derivative of CATIS standards effort)

Commercial CASE
The set of CASE tools/methodologies that support IS/MIS software development efforts
(specifically, data-driven tasks)

26 CMU/SEI-90-TR-14

Configuration Management System
Set of tools that facilitate the collection, maintenance and logical ordering of software
module versions and releases

Control Integration
The mechanism for coordinating CASE tool execution and information reporting
allowing tools to “trigger” a sequence of pipelined tasks

Data Integration
The mechanism for sharing data objects between/among CASE tools, allowing direct
and/or indirect access to local/public data storage facilities

Dictionary
Database for CASE tool data storage (a basic element of all CASE tools), possibly
shared by multiple tools

Encyclopedia
Shared database for CASE tool data storage (the basis of I-CASE tool integration)

Flexibility
Customization characteristics of a CASE tool (e.g., modification of user interface, object
relationships and/or supported methodology)

Framework
Tool coordination facility providing data, control, and presentation integration for life-
cycle CASE tools (similar to IPSE)

I-CASE (Integrated CASE)
Tool coordination facility providing data integration for life-cycle CASE tools in support
of code generation (incorporates common data encyclopedia)

IPSE (Integrated Project Support Environment)
Tool coordination facility providing data, control, and presentation integration for life-
cycle CASE tools (incorporates common data repository)

IRDS (Information Resource Dictionary Standard)
ANSI/ISO CASE standards effort which addresses repository interface specification

Methodology
Formalized approach used to perform a task (or set of tasks) and to outline the
deliverable results (an integral part of CASE technology)

CMU/SEI-90-TR-14 27

DOD-STD-2167A
U.S. DoD specification/requirements standard directed toward software development
and delivery for military applications

NFS (Network File System)
Distributed file system management protocol originally developed at Sun Microsystems
(provides client workstations with transparent access to remote server files)

NSE (Network Software Environment)
Sun Microsystems distributed configuration management system (allows data sharing
between/among multiple software development projects)

Object Management System
Database of non-redundant project data, providing automatic maintenance of
associated object links

OODB (Object-oriented Database)
Database that combines data storage with object relationship/rule processing (basis of
advanced CASE tool repositories)

P1175
IEEE CASE standards effort which addresses architecture and tool data exchange
specifications

PCTE[+] (Portable Common Tools Environment)
European CASE standards effort which addresses tool portability and data exchange
specifications (similar to CAIS-A standards effort)

Platform
Computer system specification incorporating type/version of operating system software
and hardware/CPU

Presentation Integration
The mechanism for maintenance of a consistent CASE tool user interface allowing
common tool invocation/option functions

Process
The collection of the functional activities related to the various phases of the software
development life cycle

Repository
Enhanced (object-oriented) database for CASE tool data storage (incorporates object
relationship/rule processing)

28 CMU/SEI-90-TR-14

Scalability
Ability of a CASE tool to function properly in an extended environment (e.g., number of
users, size of project, network distribution)

SIGMA (Software Industrialized Generator and Maintenance Aids)
Japanese CASE standards effort which addresses general (CASE) tool integration
specifications

Software Life Cycle
The collection of software development phases representing the full term (from
inception to completion) of a project

Spiral Life-Cycle Model
Model of software development life cycle defining process step reiteration and
interaction with multiple development phases in a “spiral” configuration

TCP/IP (Transmission Control Protocol/Internet Protocol)
Connection-oriented, end-to-end reliable stream protocol for multi-network applications
and the underlying data transmission protocol

Technical CASE
The set of CASE tools/methodologies that support real-time/embedded systems
software development efforts (specifically, event-driven tasks)

View
Specific representation or interpretation of data by a CASE tool (e.g., design diagram,
document, code segment)

Waterfall Life-Cycle Model
Model of software development life cycle defining process step flow from one phase of
development to another in a series of “waterfalls”

X-windows
Computer windowing system originally developed at MIT (potentially a standard basis
for CASE tool presentation integration)

CMU/SEI-90-TR-14 29

References

1 Acly, E. “Looking Beyond CASE.” IEEE Software, 5, 2 (Mar 1988), 39-44.

2 Brown, A. W. Database Support for Software Engineering. New York: Wiley, 1989.

3 Carlyle, R. “Is Your Data Ready for the Repository?” Datamation, 36,1 (Jan 1990), 43-47.

4 Chappell, C., Downes, V., & Tully, T. “Real-Time CASE: The Integration Battle.” Ovum, 1989.

5 Cortese, A. “CASE Standard Comes Overseas for UNIX Arena.” Computerworld, 24, 2 (Jan
1990), 23-25.

6 Cortese, A. “DEC Challenges IBM CASE Strategy.” Computerworld, 23, 41 (Oct 1989), 120.

7 Cureton, B. “The Future of UNIX in the CASE Renaissance.” IEEE Software, 5, 2 (Mar 1988).

8 Feuche, M. Atherton, “DEC to Boost CASE Standard.” MIS Week, 9, 19 (May 1988), 33.

9 Forte, G. “In Search of the Integrated CASE Environment.” C/A/S/E Outlook 89, 2 (1989).

10 Gibson, S. “CASE Buyers Await Repository.” Computerworld, 23, 20 (May 1989), 2.

11 Gibson, S. “Some Win, Some Lose When Repository Debuts.” Computerworld, 23, 11 (Mar 1989),
141.

12 Grudin, J. “The CASE Against User Interface Consistency.” Communications of the ACM,32, 10
(Oct 1989), 1164-174.

13 Hecht, A., & Harris, M. A CASE Standard Interchange Format: Proposed Extension to EDIF 2 0
0, Cadre Technologies Inc.

14 Hewett, J. “AD/Cycle.” Ovum Software Europe (Feb 1990).

15 Jander, M. Change “Control Meets CASE.” Computer Decisions, 20, 10 (Oct 1988), 81-84.

16 Margolis, N. “CASE Fights to Beat ‘All Talk, No Action’ Image.” Computerworld, 22, 52 (Dec
1988), 45-48.

17 Martin, J. “Integrated CASE Tools a Must for High-Speed Development.” PC Week, 6, 3 (Jan
1990), 78.

18 Mason, J. “Integration of CASE Remains a Distant Dream.” PC Week, 6, 6 (Feb 1989), 90.

19 Myers, E. “CASE Standards Connecting: Efforts Worldwide Attempting Coordination.” Software
Magazine, 9, 12 (Oct 1989), 23-27.

20 Pallatto, J. “CASE Tool Developers Join Forces; Consolidation Seen as Key to Product Integra-
tion.” PC Week, 6, 30 (Jul 1989), 55.

21 Pallatto, J. “Study Relates Success of CASE Tools; Productivity Increases With Team Use.” PC
Week 6, 1 (Jan 1989), 43-45.

30 CMU/SEI-90-TR-14

22 Phillips, B. “A CASE for Working Together.” ESD: The Electronic System Design Magazine, 19,
12 (Dec 1989), 55-58.

23 Phillips, B. “Software and CASE.” Electronic Design, 37, 1 (Jan 1989), 64-72.

24 Poston, R. M. “Proposed Standard Eases Tool Interconnection.” IEEE Software, 6, 6 (Nov 1989),
69-71.

25 Roach, G. T. “CASE: DEC’s View; Part 1: A look at DEC’s CASE Strategy.” DEC Professional, 8,
5 (May 1989), 48-54.

26 Wasserman, A. I. “Integration and Standardization Drive CASE Advancements.” Computer De-
sign, 27, 22 (Dec, 1988), 86.

27 Yourdon, E. “DEC’s CASE Environment.” American Programmer, 3, 1 (Jan. 1990), 4-14.

28 “A Standard Reference Model for Computing System Tool Interconnections.” IEEE Computer So-
ciety Task Force on Professional Computing Tools (Feb 1990).

29 “Introducing PCTE+.” Independent European Programme Group (Apr 1989).

30 Hitchon, C., Judd, M., Pritchett, G., and Thall, R. “Introduction to CAIS; Common Ada Program-
ming Support Environment.” (APSE) Interface Set (MIL-STD-1838A) (Sep 1989).

