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Abstract

In this paper we present the results of the MIE/GMDS-2000 Workshop ‘Case-Based Reasoning for Medical
Knowledge-based Systems’. While in many domains Cased-Based Reasoning (CBR) has become a successful
technique for knowledge-based systems, in the medical field attempts to apply the complete CBR cycle are rather
exceptional. Some systems have recently been developed, which on the one hand use only parts of the CBR method,
mainly the retrieval, and on the other hand enrich the method by a generalisation step to fill the knowledge gap
between the specificity of single cases and general rules. And some systems rely on integrating CBR and other
problem solving methodologies. In this paper we discuss the appropriateness of CBR for medical knowledge-based
systems, point out problems, limitations and possible ways to cope with them. © 2001 Elsevier Science Ireland Ltd.
All rights reserved.
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1. Introduction

Cased-Based Reasoning (CBR) has become
a successful technique for knowledge-based
systems in many domains, while in the medi-
cal field some more problems still arise. In
this paper, we are going to discuss the appro-
priateness of CBR for medical knowledge-

based systems and to point out its problems,
limitations and possible ways how they can
partly be overcome.

Case-Based Reasoning means to retrieve
former, already solved problems similar to
the current one and to attempt to modify
their solutions to fit for the current problem
(Fig. 1 shows the Cased-Based Reasoning
cycle developed by Aamodt [1]). The underly-
ing idea is the assumption that similar prob-
lems have similar solutions. Though this
assumption is not always true, it holds for
many practical domains.
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CBR fulfils two main tasks [1,2]: the first is
the retrieval, which means to search for or to
calculate the most similar cases. If the case
base is rather small, a sequential calculation
is possible, otherwise faster non-sequential
indexing [2,3] or classification algorithms (e.g.
ID3 [4] or Nearest Neighbour match [5])
should be applied. For this task much re-
search has been undertaken in the recent
years and for nearly every sort of application
problem it has actually become correspond-
ingly easy to find a suitable, sophisticated
CBR retrieval algorithm. The second task,
the adaptation (reuse and revision), means a
modification of solutions of former similar
cases to fit for a current one. If there are no
important differences between a current and
a similar case, a simple solution transfer is
sufficient. Sometimes only few substitutions
are required, but in other situations the adap-
tation is a very complicated process. So far,
no general adaptation methods or algorithms
have been developed. The adaptation is still
absolutely domain dependent.

1.1. Why Cased-Based Reasoning for
medical decision making?

Especially in medicine, the knowledge of
experts does not only consist of rules, but of
a mixture of textbook knowledge and experi-
ence. The latter consists of cases, typical and
exceptional ones, and the reasoning of physi-
cians takes them into account [6]. Medical
knowledge based systems therefore contain
two knowledge types: objective knowledge,
which can be found in textbooks, and subjec-
tive knowledge, which is limited in space and
time and changes frequently.

Both sorts of knowledge can clearly be
separated: objective textbook knowledge can
be represented in forms of rules or functions,
while subjective knowledge is contained in
cases. The problem of updating the change-
able subjective knowledge can partly be
solved by incrementally incorporating new
up-to-date cases [6].

So, the arguments for the use of case-ori-
ented methods can be summarised as follows:
1. Reasoning with cases corresponds with

the typical decision making process of
physicians.

2. Incorporating new cases means automati-
cally updating parts of the changeable
knowledge.

3. Objective and subjective knowledge can be
clearly separated (of course they can be
used together in one system).

4. As cases are routinely stored, integration
into a Hospital Information System (HIS)
is easy.

2. Medical Cased-Based Reasoning systems

In medicine, CBR has mainly been applied
for diagnostic and partly for therapeutic
tasks. Related methods have been used in
further fields: case-oriented methods for tu-

Fig. 1. The Cased-Based Reasoning cycle developed by
Aamodt.
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toring (e.g. D3 [7]) and retrieval methods to
search for similar images (e.g. MACRAD
[8]). In this paragraph just three medical case-
based decision support systems are men-
tioned. For further systems we refer to Ref.
[9].

One of the earliest medical decision sup-
port systems that applies CBR is CASEY
[10]. It deals with heart failure diagnosis. The
systems reasoning functionality follows three
steps: a search for similar cases, a determina-
tion process concerning differences and their
evidences between a current and a similar
case, and a transfer of the diagnosis of the
similar to the current case or—if the differ-
ences between both cases are too impor-
tant—an attempt to explain and modify the
diagnosis. If no similar case can be found or
if all modification attempts fail, CASEY uses
a rule-based domain theory. The most inter-
esting aspect of CASEY is the ambitious
attempt to solve the adaptation task by gen-
eral adaptation operators. However, as many
features have to be considered in the heart
failure domain and as consequently many
differences between cases can occur, not all
differences between former similar and cur-
rent cases can be handled by the developed
general adaptation operators.

The FLORENCE system [11] deals with
health care planning in a broader sense, for
nursing, which is a less specialised field. It
fulfils all three basic planning tasks: diagno-
sis, prognosis, prescription. Diagnosis is not
used in the common medical sense as the
identification of a disease, but it seeks to
answer the question: ‘‘What is the current
health status of this patient?’’ Rules concern-
ing weighted health indicators are applied.
The health status is determined as the score
of the indicator weights. Prognosis seeks to
answer the question: ‘‘How may the health
status of this patient change in the future?’’
Here a Cased-Based approach is used. The

current patient is compared to a similar pre-
vious patient for whom the progression of the
health status is known. Similar patients are
searched for first concerning the overall
status and subsequently concerning the indi-
vidual health indicators. As the further devel-
opment of a patient not only depends on his
situation (current health status, basic and
present diseases), but additionally on further
treatments, several individual projections for
different treatments are generated. Prescrip-
tion seeks to answer the question: ‘‘How may
the health status of this patient be im-
proved?’’ The answer is given by using gen-
eral knowledge about likely effects of
treatments and also by considering the out-
come of using particular treatments in similar
patients. That means it is a combination of a
rule-based and a Cased-Based approach.

The most interesting aspect of medic [12] is
its memory organisation. MEDIC is a
schema-based diagnostic reasoner on the do-
main of pulmonology. Schemata represent
the problem solvers knowledge. These are
packets of procedural knowledge about how
to achieve a goal or a set of goals. The
memory does not only consist of schemata,
but additionally of diagnostic memory organ-
isation packets of individual cases of diagno-
sis and of scenes. A scene represents an
instantiation of a schema in a particular case.
This memory organisation and retrieval al-
lows a reasoner to find the most specific
problem-solving procedures available.

3. Problems of Cased-Based Reasoning for
medical applications

To use Cased-Based Reasoning a few prob-
lems have to be solved: a representation form
for cases has to be determined, and an appro-
priate retrieval algorithm has to be selected.
Moreover, an infinite growth of the case base
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should be avoided e.g. by clustering cases
into prototypes and removing redundant
ones, or by restricting the case base to a fixed
number of cases and updating it during ex-
pert consultation sessions [8]. However, the
main problem of the CBR method is the
adaptation task. Little research has been un-
dertaken on this topic and only formal adap-
tation models [13], but no general methods
have been developed so far. The adaptation
still depends on domain and application
characteristics. Sometimes no adaptation is
necessary, because e.g. the field and the cases
are as unspecialised as in FLORENCE.
Sometimes the adaptation is a simple solution
transfer or only a little bit more, sometimes
just a few constraints have to be checked (e.g.
in GS.52 [14]), but in other situations many
differences between current and former simi-
lar cases have to be considered (e.g. in
CASEY). Adaptation is not only a problem
for medical applications. However, in
medicine it increases, because cases often
consist of an extremely large number of fea-
tures. In non-medical CBR applications, the
adaptation is usually solved by a set of spe-
cific adaptation rules, which usually have to
be acquired during expert consultation ses-
sions. As these rule sets have to consider all
possible important differences between cur-
rent and former similar cases, for medical
applications it is mostly impossible to gener-
ate such sets. So, some adaptation solutions
have been developed that are not limited to,
but are rather typical for medical domains.

3.1. Focusing on retrie�al

An idea to avoid the adaptation problem is
to build retrieval-only systems. These are
programs that only retrieve similar cases and
present them as information to the user.
Some of them additionally point out impor-
tant differences between current and similar

cases. The justification for giving up the
adaptation task is that in some application
domains it is much too complicated or even
impossible to acquire adaptation knowledge
[15] and that physicians are interested to get
information about former similar cases, but
wish to reason about current patients them-
selves [8]. Examples of successful retrieval-
only systems are mainly in the fields of
images [8] and of organ function courses [16].

3.2. Multi Modal Reasoning

Multi Modal Reasoning represents another
way to avoid the adaptation problem, mainly
by combining CBR retrieval with other rea-
soning methodologies, to provide decision
support. The interest in multi modal ap-
proaches involving CBR is recently increas-
ing in different application areas [17,18]
including the medical one [19,20]. Different
reasoning methods can be combined in the
same application, or one form of reasoning
can be used to support another, or it can be
possible to switch among alternative reason-
ing paradigms. CBR is well suited for inte-
gration with Rule Based Reasoning (RBR) or
Model Based systems. Particular attention
has received the combination of CBR with
RBR, since rules are the most common ex-
plicit knowledge representation formalism for
intelligent systems.

Different levels of integration between
RBR and CBR are possible. Usually RBR
and CBR are applied in mutually exclusive
situations, where RBR deals with knowledge
on standard or typical problems, while CBR
faces exceptions. In this view, RBR is usually
applied first; when it fails to provide the user
with a reliable solution, CBR allows one to
retrieve similar cases from a library of pecu-
liar and non-standard situations [20–22].
Sometimes, RBR can be applied to routine
problems, MBR to more complex ones, and
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CBR on a few remaining cases, to improve
system performances [23]. Other approaches
suggest to making use of the differences in
generality between rules and cases. Rules are
used as an ‘abstract’ description of a situa-
tion, while cases represent a further ‘speciali-
sation’. Cases assist RBR by instantiating
and by providing suitable contexts to rules,
while rules assist CBR by permitting the ex-
traction of more general concepts from con-
crete examples [24]. The resulting architecture
may be more flexible than previously, as it is
possible to decide ‘a priori’ which method
should be applied first, or to select the most
convenient one in a dynamic way, depending
on the situation at hand [19,24]. In particular,
the rule base and the case memory can be
searched in parallel for applicable entities.
Then the best entity (i.e. rule or case) to reuse
(and therefore the reasoning paradigm to ap-
ply) can be selected on the basis of its suit-
ability for solving the current problem [19].
Finally, RBR can support CBR just in the
adaptation phase, by providing some general
adaptation rules [25].

3.3. Generalised cases

As one reason for the adaptation problem
is the extreme specificity of single cases, an
idea is to generalise from single cases into
abstracted prototypes or classes [19]. Though
the main ideas for this generalisation are to
structure the case base, to decrease the stor-
age amount by erasing redundant cases, to
speed-up the retrieval and sometimes to learn
more general knowledge, additionally it can
at least partly help to solve the adaptation
problem. An example is the diagnostic system
for dysmorphic syndromes GS.52 [14] de-
scribed in Section 4.3.

The idea to partly solve the adaptation
task by generalising can only work for diag-
nostic tasks where abstracted typical cases

represent diagnoses and additional specific
features of former single cases can be ne-
glected. Abstracted cases fill the gap between
general rules and specific cases. If a hierarchy
of abstracted cases exists (as in MEDIC),
adaptation can be seen as a top down search
to find the most specific case that fits for the
current problem [13].

4. Examples

4.1. Retrie�al-only: time course prognoses of
the kidney function

As intensive care patients are often no
longer able to maintain adequate fluid and
electrolyte balances due to impaired organ
functions or because they are ventilated,
physicians need objective criteria for the
monitoring of the kidney function and to
diagnose therapeutic interventions as neces-
sary. At our intensive care unit the renal
function monitoring system NIMON [26] was
developed that daily prints a renal report that
consists of 13 measured and 33 calculated
parameter values. However, the interpreta-
tion of all reported parameters is quite com-
plex and needs special knowledge of the renal
physiology. Our aim was to develop a system,
called ICONS [16], that gives an automatic
interpretation of the renal state to elicit im-
pairments of the kidney function on time. In
the domain of fluid and electrolyte balance,
neither prototypical courses in ICU settings
are known nor exists complete knowledge
about the kidney function. So we had to
design our own method to deal with course
analyses of multiple parameters.

The method consists of three main steps:
two data abstractions plus CBR retrieval. We
have got the idea of abstracting many
parameters into one single parameter from
RÉSUMÉ [27] where the course of this single
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parameter is analysed by means of a com-
plete domain theory. The comparison of
parameter courses with well-known course
pattern is performed in some medical
knowledge based systems ([28] and in VIE-
VENT [29]). As no such pattern are yet
known for the kidney function, we use sin-
gle courses and incremently learned proto-
types instead of well-known course pattern
to compare with. We attempt to learn
course pattern by structuring the case base
by prototypes.

As the interpretation of all NIMON
parameters is too complex, we decided to
abstract them. For this data abstraction we
have defined states of the renal function
which determine states of increasing severity
starting with a normal kidney function and
ending with a renal failure. Based on these
definitions, we ascertain the appropriate
state of the kidney function per day. Based
on the sequence of assessments of transi-
tions of the state of a day to the state of
the, respectively next day, we generate four
different trends. These trends describe
courses of states. Subsequently, we use
Cased-Based Reasoning retrieval to search
for similar courses. We present the current
course in comparison to similar ones to the
user, the course continuations of the similar
courses serve as prognoses (Fig. 2). As there
may be too many different aspects between
both patients, the adaptation of a similar to
the current course is not done automatically.
ICONS [16] offers only diagnostic and prog-
nostic support, the user has to decide about
the relevance of all displayed information
(e.g. additional renal syndromes and courses
of single kidney function parameter values).

4.1.1. Retrie�al
The parameters of the trend descriptions

are used to search for similar courses. Since
the aim is to develop an early warning sys-

tem, a prognosis is needed. Since there are
many different possible continuations for
the same previous course, it is necessary to
search for similar courses and different pro-
jections. Therefore, we have divided the
search space into nine parts corresponding
to the possible continuation directions
within 3 days. Each direction forms an own
part of the search space. During the re-
trieval these parts are searched separately
and each part may provide at most one sim-
ilar course. The retrieval consists of two
steps for each projection part. First we
search with an activation algorithm [30] con-
cerning qualitative features. Subsequently,
we check the retrieved cases with an adapt-
ability criterion that looks for sufficient sim-
ilarity, since even the most similar course
may differ from the current one signifi-
cantly. If several courses are selected in the
same projection part, in a second step a
sequential similarity measure concerning the
quantitative features is used. It is a variation
of TSCALE [31] and goes back to Tversky
[32].

4.2. Multi Modal Reasoning: managing
diabetic patients

At the University of Pavia we have devel-
oped a Multi Modal Reasoning (MMR)
methodology, that performs a tight integra-
tion of CBR, RBR and MBR, with the aim
of suggesting a therapy properly tailored on
the single patient’s needs, in the field of type
1 diabetic patients management. This
methodology allows the exploitation of the
implicit knowledge embedded in patients’
visits (past cases) and in monitoring data,
respectively through Case-Based retrieval
and model identification. On the other hand
the explicit domain knowledge is formalised
in a set of production rules, and in the re-
sulting model itself.
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Fig. 2. Comparative presentation of a current and a similar course. In the lower part of each course the (abbreviated)
kidney function states are depicted. The upper part of each course shows the deduced trend descriptions.

4.2.1. Application domain
Type 1 diabetic patients suffer from a im-

paired functionality of the pancreatic beta
cells, and need to inject themselves exogenous
insulin 3–4 times a day to regulate blood
glucose metabolism. Such an intensive ther-
apy may lead to hypoglicemic episodes:
Blood Glucose Level (BGL) has therefore to
be frequently tested and logged. In order to
improve the quality of care, the implicit
knowledge about patients’ histories (and
physicians’ expertise) needs to be kept, man-

aged and distributed across the institution,
and to be integrated with the other available
knowledge sources, i.e. the explicit domain
knowledge, formalised in knowledge bases or
rule sets. It seems therefore of interest to
provide instruments for managing all avail-
able knowledge types, and for supporting
decisions in therapy planning, since revising
insulin administration is a complex task, that
can be correctly afforded only by customising
general indications on the basis of the single
patient’s features [33].
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4.2.2. Multi Modal Reasoning paradigm
The backbone structure of the decision

support procedure we have implemented is
based on the following reasoning tasks (Fig.
3):
1. Identification of metabolic problems,
2. Generation of a set of suggestions, able to

cope with the identified metabolic prob-
lems, and selection of the most suitable
ones,

3. Application of the selected suggestions to
the current insulin protocol and selection
of additional library protocols that could
also fit the situation at hand.

The reasoning paradigm described above is
completed resorting to the combination of a
rule system, a Case Based retrieval system,
and a model of the glucose–insulin interac-
tion. In particular, the RBR system is able to
schedule the tasks execution; in each task
different methods are used, and the results
are then deployed in the following steps. The
methods used for the different tasks are out-
lined below.

4.2.2.1. Identification of metabolic problems.
The RBR fires some specialised procedures
for data analysis and metabolic indicators
extraction. The raw data are first analysed
through a Temporal Abstractions (TA) tech-
nique [34]: in particular, state abstractions
(e.g. low, normal, high values) are extracted
and aggregated into intervals called episodes.
From the most relevant episodes of hypo-
glycemia, hyperglycemia and normoglycemia,
the so-called BGL modal day is derived [34].
The BGL modal day is an indicator able to
summarise the average response of the pa-
tient to a certain therapy: it consists of the
probability distributions of each BGL state
abstraction in the different periods of the day
(i.e. before breakfast, before lunch, etc.).
Problems are identified when the probability
of an undesired BGL state (hypo/hyper-
glycemia) in a certain time period is over a
suitable threshold. Such threshold is com-
puted relying on the Case Based retrieval
tool. Case Based retrieval is implemented as a
two-step procedure: a classification step, and
an actual retrieval step. In the problem iden-

Fig. 3. The Multi Modal Reasoning methodology developed for managing type 1 diabetic patients.
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tification task, only classification is exploited.
The input case is classified relying on a tax-
onomy of prototypical classes, that describe
the most common situations a paediatric dia-
betic patient may incur in. Through a Naive
Bayes technique [35], the most probable
classes are found. Classification results are
used to choose the thresholds associated to
each class.

4.2.2.2. Suggestion, generation and selection.
A number of rules are applied to propose
suitable solutions to the problems derived in
task 1. Such a reasoning task is therefore
performed by the RBR tool (see [36] for
further details).

4.2.2.3. Application of the selected suggestions
to the current insulin protocol. The RBR sys-
tem typically suggests default solutions that
consist in small variations of the current pro-
tocol insulin doses, as it is meant to be con-
servative enough to be safely applicable in a
variety of different situations. However,
when possible, a model is used to calculate
the optimal insulin doses related to the daily
insulin schedule proposed at step 2. Such
model is a stochastic version of the model
proposed by Deutsch et al. [37]. It is able to
predict the steady-state BGL, obtained in
response to a certain therapeutic protocol, on
the basis of the current patient steady-state
BGL and of the former insulin protocol. In
our implementation, the steady-state BGL is
represented through the modal day, i.e.
through a set of probability distributions.
The resulting dynamic model is therefore a
Markov chain that is used to compute the
optimal insulin doses according to decision
theory. Having defined a utility function for
the BGL, that is maximum for normo-
glycemia and minimum for hypos and hy-
pers, the doses that maximise the expected
utility function are chosen. Unfortunately,

not always the model turns out to give reli-
able predictions. This problem may be easily
detected during the model parameters iden-
tification. When this situation holds, the
MMR system also performs the CBR re-
trieval step, restricted to the most probable
classes. Retrieval resorts to suitable Nearest
Neighbour techniques [35]. Some simple
statistics are calculated on the retrieved cases,
to set the insulin adjustments width that will
then be applied to the current protocol.
Therefore, MBR and Case Based retrieval are
used in a mutual exclusive way to specialise
the rules behaviour.

After having adapted the current protocol
to the problem at hand, similar protocols can
be retrieved from a library of past protocols.

4.2.3. First e�aluation results
A first evaluation procedure of the MMR

methodology described above was carried out
resorting to a patient’s data set, provided by
the paediatric department at Policlinico S.
Matteo. The results obtained may be sum-
marised as follows:
1. It is usually possible to obtain a model

that leads to reliable predictions when
dealing with ‘simple’ situations (i.e. cases
in which the correct therapeutic strategy
can be easily identified). Obviously, when
the model can be exploited, it provides the
optimal insulin doses adjustments. In par-
ticular, simple situations correspond to all
situations in which a clear causal effect of
insulin dosages on the BGL can be de-
tected in the data.

2. On more complex situations (such as ‘brit-
tle control’ or ‘Somogyi effects’ [38]), the
model cannot be effectively used; in these
examples, the possibility of exploiting past
cases similar to the current one, retrieved
through the CBR methodology, is very
helpful for the definition of a proper ther-
apy. In comparison to the application of



R. Schmidt et al. / International Journal of Medical Informatics 64 (2001) 355–367364

RBR with no integration, the exploitation
of retrieval results leads to a sharper and
more suitable insulin doses adjustment,
customised for the patient at hand.

3. On the other hand, when the case library
content is poor, the retrieval results may
lead to an unfit rule specialisation. In this
condition, only RBR can provide a reli-
able (even if maybe too conservative) solu-
tion. Nevertheless, the CBR methodology
enables an easy knowledge storing and
upgrading. The overall system will auto-
matically improve its competence during
routine clinical practice, as new cases will
be stored in the HIS without requiring an
additional work load to physicians, and
will contribute to reduce the competence
gaps. Through the memorisation of new
information, the system is therefore able
to learn how to cope with more and more
complex situations.

4.3. Generalised cases: diagnosis of
dysmorphic syndromes

GS.52 [14] is a prototype-based expert sys-
tem which is routinely used in the children
hospital of the University of Munich for
many years. It is a diagnostic support system
for dysmorphic syndromes. Such a syndrome
means a non-random combination of differ-
ent disorders. The major problems are the
high variability of the syndromes (hundreds),
the high number of case features (between 40
and 130) and the continuous knowledge mod-
ifications of dysmorphic syndromes. This
means there are so many differences between
a current and a similar case that an adapta-
tion that takes all of them into account is
impossible. So, for all cases with the same
dysmorphic syndrome a prototype is created,
which contains the most frequent observed
features of these cases (Table 1). Such an
abstracted prototypical case represents a dys-

Table 1
Portion of an example of a generated prototype

Diminished postnatal growth rate 77%
Hypercalcaemia 30%
Prenatal onset 75%
Mild microcephaly 67%
Full cheeks 46%

63%Anteverted nares
17%Prominent lips

Long philtrum 17%
Fullness of peri-o. region 75%

25%Medial eyebrow flare

The numbers are the relative frequency in percentages
the features occured in the cases of the prototype.

morphic syndrome and usually contains only
up to 20 features. For a current case the most
similar prototypes are calculated. Subse-
quently, for the adaptation only few con-
straints have to be checked.

The prototypes are acquired by an expert
consultation session. An experienced physi-
cian selects a new or an existing syndrome
and typical cases for this syndrome. Subse-
quently, GS.52 determines the relevant fea-
tures and their relative frequencies.

Diagnostic support occurs by searching for
the most adequate prototypes for a current
case. A similarity value between each proto-
type and the current case is calculated and
the prototypes are ranked according to these
values.

We evaluated the similarity measure of
Tversky and the measure of Rosch and
Mervis. Tversky [32] determines the similarity
between a case and a prototype by adding up
the number of shared features and subtract-
ing the number of features of the prototype
which the case does not share with the proto-
type. In contrast to him Rosch and Mervis
[39] ignore those case features which the pro-
totype does not share. Our experiment (Fig.
4) shows that their measure performed better
than Tversky’s, which indicates to ignore
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those features of the current case the proto-
type under consideration does not share.

The result additionally indicates to present
the most probable syndromes rather than to
produce the one and only diagnosis. For both
measures the correct diagnosis was always
among the first 10, mostly among the first
five and in majority, the first position. GS.52
contains about 230 diagnoses and more than
800 symptoms.

GS.52 differs from typical CBR systems,
because cases are clustered into prototypes,
which represent diagnoses, and the retrieval
searches only among these prototypes. The
sequential retrieval considers every prototype,
calculates a similarity value for each proto-
type and ranks them according to these val-
ues. The adaptation consists of two
examinations of the probable prototypes: a
plausibility check with general rules (con-
straints) and a check of evidences for specific
syndromes (some syndromes are nearly a
proof for or against some diagnoses).

5. Conclusion

Cased-Based Reasoning seems to be a suit-
able technique for medical knowledge based
systems. However, the adaptation task is the

bottleneck that has to be solved. Though
adaptation is sometimes a rather easy task (as
in FLORENCE), in many medical applica-
tions it may become an insurmountable
difficulty. In this paper we have presented
three possible solutions, all of them are
justified for specific applications and none of
them is an ultimate solution. Retrieval-only
systems are especially useful for visualisation
tasks, e.g. of images or organ function
courses, because the users wish to see and
interpret all specific details themselves [8].
Solving the adaptation by generalising is re-
stricted to diagnostic problems where the fol-
lowing condition holds: the more abstracted
a case the more typical are its features. This
means to adapt by searching top down in a
hierarchy of abstracted cases: the further
down cases are placed in the hierarchy, the
more specific and less typical are their addi-
tional features [13]. Combining CBR with
rule- and model-based components should
not really be seen as a solution for the adap-
tation problem, but as an opportunity to
incorporate CBR subtasks (mainly the re-
trieval) into more complex methodologies in-
stead of applying the complete CBR cycle,
with the further advantage of making use of
all available knowledge types.
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