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Abstract 
This paper presents a dynamic cash flow management problem with uncertain parameters in a finite 

planning horizon via two-stage stochastic programming. We propose a risk-neutral mixed-integer two-

stage stochastic programming model and risk-averse versions based on the minimax regret and 

conditional value-at-risk criteria. The models support decisions in cash management that deals with 

different grace periods, piecewise linear yields and uncertainty in the exchange rate of external sales. 

The developed approach is applied to a real-world stationery company in Brazil. Numerical results 

assess the trade-off between risk and return, showing that the optimization models generate effective 

solutions for the company’s treasury with reduced risks, which might be appealing for companies from 

other sectors as well. 

Keywords: Cash flow management, mixed-integer programming, stochastic programming, minimax 

with regret, conditional value-at-risk, stationery industry. 

 

 

1. Introduction 

One of the main challenges faced by financial managers is to establish effective policies to perform 

operations involving foreign exchange transactions, which are usually based on exchange rate forecasts 

with inherent uncertain values (Perdomo and Botelho, 2007). This type of uncertainty is one of the 

main risk factors in the international market, as the fluctuations in the exchange rate may generate 

significant variations in financial investments. The exchange rate is one of the most difficult economic 

variables to predict and it depends on the evolution of economic fundamentals – trade balance, 

productivity and overall growth which itself is already uncertain. Furthermore, as it is a financial asset 

price, it also depends on the mood of the market and the perception of the country risk. 

Most companies depend on the exchange rate in some way, either because they export part of their 

production or because they use imported inputs. Setting the forecasts for the exchange rate, even based 

on economic theory and a detailed observation of the economic situation, is a difficult task. In recent 

years, this task was particularly painful for some companies in Brazil. For example, in 2014, it was 

expected that the exchange rate in Brazil in 2016 would be at BRL 2.55 per US dollar (USD), according 

to the Focus survey of the Central Bank. In 2015, the forecast for 2016 was BRL 3.20 per dollar and 

earlier in 2016, the forecast for 2016 was BRL 4.10 per dollar. This did not happen - the exchange rate 

in Brazil in 2016 was BRL 3.25 per dollar. This high unpredictability incurred losses for many sectors 

of the economy, thereby reducing the confidence of entrepreneurs and consumers. 



During the 2008 financial crisis, the Federal Reserve (Fed) cut interest rates rapidly to zero, resulting 

in the dollar being at its most undervalued level in decades. In 2014, when the economy was 

recovering, the Fed began to show signs that it would normalize its monetary policy, causing an 

intensive realignment of exchange rates. In less than a year, the dollar appreciated no less than 20% 

against the major global currencies, a trend that naturally affected emerging currencies such as the 

Brazilian Real. Thus, large exchange variations have significant impacts on companies, especially 

when considering the predictability of their cash flows. There are many risks and uncertainties on the 

horizon and the volatility of the exchange rate will continue at high levels. 

In order to handle uncertainty and risk in this context, this paper develops risk-neutral and risk-averse 

stochastic programming (SP) models to support tactical decisions in cash-flow management problems 

that encompass grace periods, piecewise linear yields and uncertainty in the exchange rate of external 

sales. The risk-averse models are based on the minimax with regret and on the conditional value-at-

risk (CVaR) criteria. Whereas the minimax with regret model provides solutions from a worst-case 

perspective when the probabilities of the scenarios are not known (or not reliable), the CVaR model 

aims at minimizing the risk of a solution influenced by a bad scenario with a low probability of 

occurrence. The risk-averse models are particularly appealing for providing less risky solutions, which 

might be reflected by the mitigation of the profit dispersion across a finite set of scenarios. The 

performance of the models is analyzed vis-a-vis a real-world stationery company in Brazil. 

The developed risk-neutral and risk-averse stochastic programming models are based on deterministic 

network flow models with gains and losses, which have been used to represent cash flow management 

problems in different settings, as discussed in Golden et al. (1979), Crum et al. (1979), Srinivasan and 

Kim (1986), Pacheco and Morabito (2011) and Righetto et al. (2016). The aim of these network flow 

models is to maximize the cash return of the financial resources at the end of a multi-period and finite 

planning horizon. The importance of addressing uncertainty in cash flow management problems has 

also been addressed in the specialized literature (see, e.g., Mulvey and Vladimirou, 1992; Mulvey et 

al., 1995; Gitman and Chad, 2014 and the references therein). 

It is worth mentioning that the first attempt in addressing uncertainty in cash-flow 

management problems – with the practical characteristics aforementioned – was due to Righetto 

et al. (2016). Differently from this current paper in which uncertainty is addressed via stochastic 

programming, Righetto et al. (2016) applies Robust Optimization (RO) to handle cash multipliers and 

exchange rates uncertainties in which the main goal is to analyze the trade-off between the profit 

deterioration and the probability of constraint violation. On the other hand, the stochastic-induced 

model that we develop here is always feasible for all outcomes (scenarios) simultaneously, since the 

recourse actions adjust the first-stage decisions to the materialized scenarios. Therefore, we evaluate 

the probability of a given solution falling within a pre-determined interval, instead of determining the 

probability of constraint violation. This ends up being more appealing from the decision-maker 

viewpoint because s(he) can adopt a solution according to its profitability range. The CVaR analysis 

we examine here also help us to understand what a risk-averse solution implies in terms of 

stability across the scenarios, worst-case/best-case performance, and so forth, providing additional 

rich managerial insights for the cash-flow management problem. As the performance metrics in 

Righetto et al. (2016) and here are built upon rather different modelling paradigms, a vis-à-vis 

comparison is not straightforward and, for this 



reason, we solely pointed out the potential advantages of the methodologies presented in both papers 

in the conclusions. 

The remainder of this paper is organized as follows. Section 2 develops the risk-neutral two-stage 

stochastic programming model for a cash flow management problem. Section 3 develops the minimax 

regret model and a CVaR formulation for this problem. Section 4 presents the scenario generation 

method. The performance and analysis of the models based on the considered company are discussed 

in Section 5. Final remarks and future research are pointed out in Section 6. 

2. Risk-neutral cash flow optimization model

In this section, we present the risk-neutral two-stage stochastic programming model for the cash flow 

management under exchange rate (BRL/USD) uncertainty. The stochastic model is an extension of the 

deterministic mixed-integer programming model to cash-flow management presented in Righetto et 

al. (2016) with the addition of scenarios. 

When cash inflows and outflows have a deterministic characteristic, i.e., there is a low probability that 

the expected cash inflows and outflows are not carried out, the deterministic model serves the purpose 

of maximizing cash resources at the end of the planning horizon. Nevertheless, there are companies 

that show significant uncertainties in cash inflows and outflows. In the cash budget, cash-in (accounts 

receivable) events are forecasted and some uncertainty factors may be present, such as demand itself, 

which may or may not occur, affecting the expected cash-in sales and the cash inflows from sales made 

overseas, for example (see Corcoran, 1978; Tsai, 2011 and Tangsucheeva and Prabhu, 2014). These 

cash inflows depend on the exchange rate that may be quite different from that anticipated in the cash 

budget, affecting the cash balance of a certain period of time and, as a consequence, the remaining 

periods. The exchange rate is the uncertainty that this paper will incorporate into the deterministic 

model using stochastic programming. The exchange rate causes significant uncertainties in Brazilian 

companies, especially in cash inflows, as foreign market sales in USD have to be converted to BRL in 

order to be transferred to the exporter´s current account in Brazil.  

In this paper, the timing of payments to suppliers and from customers are not being considered because 

they are indirectly already being treated when we considered both the cash-in and cash-out amount. 

We considered cash-in and cash-out to be the money that actually entered and left the bank account, 

and not the face value of an invoice. For this reason, we do not discuss the timing of payments 

to suppliers and from customers. We are not concerned with calculating the cash cycle of the 

company, but rather with the investment and financing decisions, considering the cash-in and cash-out 

that really modified the balance of bank account. 

Basically, the optimization model supports tactical decisions in a dynamic cash 

management considering grace periods for investments and piecewise linear yields that depend on 

the amount of investment. A grace period is considered as a period that the investors do not 

withdraw the money from the bank. For example, when the investor invests some money in an 

asset with a specific remuneration, but this remuneration is just paid if he/she leaves the money 

invested for two months with no withdraw during this period. It is possible to define a grace period 

as a provision in most loan contracts which allows payment to be received for a certain period of time 

after the actual due date. In 



this paper, we consider that the problem has grace periods represented by piecewise linear functions 

with only two segments, as the present case study uses only two types of yields. However, the 

optimization model presented in the following can be easily extended to consider piecewise linear 

functions with more than two segments.  

Various assets of different levels of liquidity are taken into account, as well as the possibility of making 

conversions between them. Figure 1 presents an illustrative cash flow example considering a planning 

horizon of n time periods and three assets: a, b and c. Asset a is money, while assets b and c are 

financial investments easily converted into cash, but a is assumed to be more liquid than b, which 

consequently is assumed to be more liquid than c, and cash disbursements are made only with asset a. 

The initial balances of assets a, b and c are known and it is supposed that all transactions take place at 

the beginning of each time period and their returns are available at the end of each period. In the 

optimization model we consider only three assets, as this is the case of the studied company, but the 

model can be easily extended to consider an arbitrary number of asset classes. 

The problem is thus represented in a graph 𝐺𝐺 = (𝑁𝑁,𝐴𝐴,𝑊𝑊), in which 𝑁𝑁 is the set of nodes, 𝐴𝐴 is the set 

of arcs connecting two nodes in 𝑁𝑁 and  𝑊𝑊 = �𝑤𝑤𝑖𝑖𝑖𝑖� is the matrix of multipliers for each arc (𝑖𝑖, 𝑗𝑗) in A, 

with the set of nodes 𝑁𝑁 = �𝑠𝑠,𝑑𝑑, 𝑧𝑧, 1,2, … ,𝑛𝑛, 1�, 2�, … ,𝑛𝑛�, 1� , 2�, … ,𝑛𝑛��. Nodes s and d are the supply 

(accounts receivable or cash-in) and the demand (accounts payable or cash-out) nodes, respectively. 

We also define 𝑁𝑁− = 𝑁𝑁\{𝑠𝑠,𝑑𝑑}. Nodes 1 to 𝑛𝑛 represent the cash nodes (asset 𝑎𝑎) in periods 𝑡𝑡 =1 to n, 

respectively (in the figure, periods 𝑡𝑡 =i to i+2). Nodes 1� to 𝑛𝑛� and nodes 1� to 𝑛𝑛� correspond to two 

investment options: without a grace period (asset 𝑏𝑏) and with two grace periods (asset 𝑐𝑐) in periods 𝑡𝑡 =1 to n, respectively.  

The horizontal reverse arcs (𝑖𝑖 + 1, 𝑖𝑖) are the loan banks, while the horizontal arcs (𝑖𝑖, 𝑖𝑖 + 1), for 𝑖𝑖 =

1,2, … ,𝑛𝑛 − 1; (𝚤𝚤,̅ 𝚤𝚤̅+ 1), for 𝚤𝚤̅ = 1�, 2� , … ,𝑛𝑛� − 1; and (𝚤𝚤,̿ 𝚤𝚤̿+ 1), for 𝚤𝚤̿ = 1�, 2�, … ,𝑛𝑛� − 1, show the 

investment flows of the funds for each asset and period. Note that the horizontal arcs (𝚤𝚤,̿ 𝚤𝚤̿+ 1), for 𝚤𝚤̿ =
1�, 2�, … ,𝑛𝑛� − 1, and the diagonal arcs (𝑖𝑖, 𝚤𝚤̿+ 2), for 𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2, represent investment flows in the 

asset with a grace period. These flows are considered as an investment decision because there could 

be a decision to withdraw resources from this asset by the model. Therefore, maintaining the money 

in this specific class of asset that generates interest is an investment decision. There is no investment 

decision for asset b because the model, considering interest paid on this asset, does not allocate funds 

to it. In Figure 1, the vertical arcs (𝑖𝑖, 𝚤𝚤)̅, (𝑖𝑖, 𝚤𝚤)̿, (𝚤𝚤,̅ 𝑖𝑖) and (𝚤𝚤,̿ 𝑖𝑖) represent the conversion flows of funds 

between the three levels of liquidity assets, a, b, and c. The arcs in set A, (𝑛𝑛, 𝑧𝑧), (𝑛𝑛�, 𝑧𝑧) and (𝑛𝑛�, 𝑧𝑧) 

correspond to the inflows of the last period regarding assets a, b and c to node z, respectively. Node z 

is the goal node. The objective is to maximize the total inflow for this node.  

Note in the figure that the multipliers in the horizontal arcs (𝑖𝑖, 𝑖𝑖 + 1), (𝚤𝚤,̅ 𝚤𝚤̅+ 1), and (𝚤𝚤,̿ 𝚤𝚤̿+ 1) 

correspond to the percentage yields for each asset a, b and c, respectively, for each period. The 

multipliers in the diagonal arcs (𝑖𝑖, 𝚤𝚤̿+ 2) are the percentage yields for asset c with a grace period, while 

the ones in the horizontal reverse arcs (𝑖𝑖 + 1, 𝑖𝑖) are the percentage interest paid by bank loans. The 

multipliers in the vertical arcs (𝑖𝑖, 𝚤𝚤)̅, (𝑖𝑖, 𝚤𝚤)̿ are the percentage cost of conversion from asset a to b, and 

from a to c, while the ones in arcs (𝚤𝚤,̅ 𝑖𝑖) and (𝚤𝚤,̿ 𝑖𝑖) are the percentage cost of conversion from asset b to 



a, and from c to a. The values in arcs (𝑠𝑠, 𝑖𝑖) and (𝑖𝑖,𝑑𝑑) represent the total inflows and outflows of cash, 

respectively, in each period. 

Figure 1. The network flow with both the loans and investments with a grace period for three assets 

a, b and c, and three generic periods i, i+1 and i+2 (Adapted from Righetto et al., 2016). 



Following the two-stage stochastic programming framework, we consider that both cash-in and cash-

out are random variables approximately by a set of realizations or scenarios 𝓒𝓒 = {𝟏𝟏,𝟐𝟐, … ,𝑪𝑪}, with 

corresponding probability of occurrence given by 𝝅𝝅𝖈𝖈, such that  ∑ 𝝅𝝅𝖈𝖈 = 𝟏𝟏𝒄𝒄∈𝓒𝓒  and 𝝅𝝅𝖈𝖈 > 𝟎𝟎 hold. In this 

paper, the first-stage variables are the decisions related to investments, loans or keeping the money in 

cash for the first periods and these decisions are independent from the scenarios. The second-stage 

decision variables refer to the same set of decisions, but from the remaining periods. The complete list 

of parameters and decision variables are depicted as follows.  

Parameters: 𝑎𝑎     cash (the highest liquidity asset); 𝑏𝑏 investment without grace periods; 𝑐𝑐 investment with two grace periods; 𝛼𝛼𝑖𝑖𝑖𝑖  yield for asset 𝑎𝑎, (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖, 𝑖𝑖 + 1), 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 1 and (𝑛𝑛,𝑍𝑍); 𝛽𝛽𝑖𝑖𝑖𝑖 yield for asset 𝑏𝑏, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̅ 𝚤𝚤̅+ 1) and (𝑛𝑛�,𝑍𝑍), 𝚤𝚤̅ = 1,� 2� , … ,𝑛𝑛� − 1; 𝜀𝜀𝑖𝑖𝑖𝑖 yield for asset 𝑐𝑐, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1), (𝑖𝑖, 𝚤𝚤̿+ 2) and (𝑛𝑛�,𝑍𝑍), 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐 < 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖, 𝚤𝚤̿ = 1� , … ,𝑛𝑛� − 1, 𝑖𝑖 =

 1,2, … ,𝑛𝑛 − 2 (𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐 is a decision variable defined below); 𝜅𝜅𝑖𝑖𝑖𝑖    yield for asset 𝑐𝑐, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1), (𝑖𝑖, 𝚤𝚤̿+ 2) and (𝑛𝑛�,𝑍𝑍), 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐 < 𝑀𝑀, 𝚤𝚤̿ = 1�, … ,𝑛𝑛� − 1, 𝑖𝑖 =

  1,2, … ,𝑛𝑛 − 2; 𝛾𝛾𝑖𝑖𝑖𝑖      interest paid by bank loans, (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖 + 1, 𝑖𝑖), 𝑖𝑖 = 2, … ,𝑛𝑛; 𝑐𝑐𝑎𝑎𝑎𝑎      unit cost of conversion from asset 𝑎𝑎 to 𝑏𝑏; 𝑐𝑐𝑎𝑎𝑐𝑐      unit cost of conversion from asset 𝑎𝑎 to 𝑐𝑐; 𝑐𝑐𝑎𝑎𝑎𝑎      unit cost of conversion from asset 𝑏𝑏 to 𝑎𝑎; 𝑐𝑐𝑐𝑐𝑎𝑎      unit cost of conversion from asset 𝑐𝑐 to 𝑎𝑎; 𝑎𝑎0        initial balance of asset 𝑎𝑎; 𝑏𝑏0      initial balance of asset 𝑏𝑏; 𝑐𝑐0      initial balance of asset 𝑐𝑐; 𝑠𝑠𝑖𝑖𝑐𝑐      inflow of cash in period  𝑖𝑖 = 1,2, … ,𝑛𝑛 and in scenario 𝑐𝑐 ∈ 𝒞𝒞; 𝑑𝑑𝑖𝑖𝑐𝑐      outflow of cash in period 𝑖𝑖 = 1,2, … ,𝑛𝑛 and in scenario 𝑐𝑐 ∈ 𝒞𝒞; 𝜋𝜋𝔠𝔠      probability of scenario 𝑐𝑐 ∈ 𝒞𝒞; 𝑤𝑤𝑖𝑖𝑖𝑖      multipliers of flows in all arcs (𝑖𝑖, 𝑗𝑗) (except the arcs for 𝑤𝑤𝑖𝑖𝑖𝑖2  defined just below); 𝑤𝑤𝑖𝑖𝑖𝑖2       multipliers of flows in arcs (𝑖𝑖, 𝑗𝑗) used only for asset 𝑐𝑐, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1), (𝑖𝑖, 𝚤𝚤̿+ 2)  and 

(𝑛𝑛�,𝑍𝑍), 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐 < 𝑀𝑀, 𝚤𝚤̿ = 1� , … ,𝑛𝑛� − 1, 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 2; 𝑢𝑢      maximum bank loan limit; 𝑙𝑙      minimum requirement of asset 𝑎𝑎; 𝑞𝑞      minimum requirement of asset 𝑏𝑏; 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖     maximum limit to asset 𝑐𝑐 receive yield 𝜀𝜀𝑖𝑖𝑖𝑖 and minimum to asset c receive yield 𝜅𝜅𝑖𝑖𝑖𝑖, (𝑖𝑖, 𝑗𝑗) =

 (𝚤𝚤,̿ 𝚤𝚤̿+ 1), (𝑖𝑖, 𝚤𝚤̿+ 2) and (𝑛𝑛�,𝑍𝑍), 𝚤𝚤̿ = 1�, … ,𝑛𝑛� − 1, 𝑖𝑖 = 1,2, … , 𝑛𝑛 − 2; 𝑀𝑀      is a large enough number that is bound for the active c receive yield 𝜅𝜅𝑖𝑖𝑖𝑖,  
    (𝑖𝑖, 𝑗𝑗) =      (𝚤𝚤,̿ 𝚤𝚤̿+ 1), (𝑖𝑖, 𝚤𝚤̿+ 2) and (𝑛𝑛�,𝑍𝑍), 𝚤𝚤̿ = 1� , … ,𝑛𝑛� − 1, 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 2. 

Decision Variables: 



𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐      Flow of financial resources that node 𝑖𝑖 receives in scenario 𝑐𝑐 ∈ 𝒞𝒞, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑖𝑖 ∈ 𝑁𝑁−, 𝑗𝑗 ∈ 𝑁𝑁−;  𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐1   Amount invested less than or equal to 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 in scenario 𝑐𝑐 ∈ 𝒞𝒞, whose yield is represented by 

multiplier 𝑤𝑤𝑖𝑖𝑖𝑖; 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐2   Amount invested higher than 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 in scenario 𝑐𝑐 ∈ 𝒞𝒞, whose yield is represented by multiplier 𝑤𝑤𝑖𝑖𝑖𝑖2 ; 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐1       Binary variable equals 1, if 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐 < 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖, (𝚤𝚤,̿ 𝚤𝚤̿+ 1), 𝚤𝚤̿ = 1�, 2�, … ,𝑛𝑛� − 1, and  

(𝑖𝑖, 𝚤𝚤̿+ 2), 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 2, for all 𝑐𝑐 ∈ 𝒞𝒞; 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐2 = 1− 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐1  binary variable equals 1, if 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐 < 𝑀𝑀, (𝚤𝚤,̿ 𝚤𝚤̿+ 1), 𝚤𝚤̿ = 1�, 2�, … ,𝑛𝑛� − 1, and 

(𝑖𝑖, 𝚤𝚤̿+ 2), 𝑖𝑖 = 1,2, … ,𝑛𝑛 − 2, for all 𝑐𝑐 ∈ 𝒞𝒞 (to simplify the model presentation, we explicitly 

define variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖1  and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖2  such that 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖1 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖2 = 1, instead of replacing 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐2  by 1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐1  

in the model. In cases in which the asset has more than two grace periods, i.e. more than two 

segments/slopes, one could define additional variables 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖3 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖4 , …, such that 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖1 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖2 +𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖3 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖4 + ⋯ = 1, in a similar way). 

The first-stage decision variables are those 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 in which 𝑖𝑖 ∈ 𝑃𝑃 and 𝑃𝑃 is a subset of here-and-now 

periods, i.e., those associated to the decisions that must be taken under partial information or before 

uncertainties are revealed. For example, if 𝑃𝑃 = �1, 1� , 1��, then the variables of the first-stage are those 

of the first period, which is equivalent to define 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 for all 𝑖𝑖, such that (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑖𝑖 = 1, 1,� 1�, satisfying 

the so-called nonanticipativity constraints given by 𝑓𝑓𝑖𝑖𝑖𝑖1 = 𝑓𝑓𝑖𝑖𝑖𝑖2 =. . . = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖  . In this case, the remaining 

decision variables 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 are second-stage ones.  

Similarly, other sets of  𝑃𝑃 can be used to define the first-stage, for example, if 𝑃𝑃 = �1, 1�, 1� , 2, 2� , 2��, 
the decisions of the first two periods are variables of the first-stage and we should impose  𝑓𝑓𝑖𝑖𝑖𝑖1 =𝑓𝑓𝑖𝑖𝑖𝑖2 =. . . = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 , for (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑖𝑖 = 1, 1,� 1�, 2, 2� , 2�. Thereby, the variables of one or more consecutive 

periods may be considered as first-stage variables using this formulation. The same rationale is 

applied to the decision variables 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐1 , 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐2 , 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐1  and 𝑥𝑥𝑖𝑖𝑖𝑖𝑐𝑐2 . 

It should be noted that an alternative way to define the first-stage variables would be simply by 𝑓𝑓𝑖𝑖𝑖𝑖 , 
(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 and 𝑖𝑖 ∈ 𝑃𝑃, while the second-stage variables 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 and 𝑖𝑖 ∉ 𝑃𝑃. However, for the sake 

of simplicity considering presentation and computational implementation of this model and other 

models of this section, we did not choose this representation in this paper. 

Finally, the risk-neutral two-stage stochastic programming with recourse, where the recourse 

represents the decisions of investments and hire bank loans (to contract loans from the bank) after the 

uncertainty of the exchange rate is revealed, can be posed as follows. 𝑀𝑀𝑎𝑎𝑥𝑥imize 

 �𝜋𝜋𝔠𝔠�𝑤𝑤𝑛𝑛−1,𝑧𝑧𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 + 𝑤𝑤𝑛𝑛−1,𝑧𝑧2 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 + 𝑤𝑤𝑛𝑛𝑧𝑧𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛𝑧𝑧2 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠2 + 𝑤𝑤𝑛𝑛�𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠 + 𝑤𝑤𝑛𝑛�,𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛�𝑧𝑧2 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠2  �  (1)𝔠𝔠∈𝒞𝒞  

in which the multipliers are given by 



𝑤𝑤𝑖𝑖𝑖𝑖 =

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧ 1 + 𝛼𝛼𝑖𝑖𝑖𝑖 , (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖, 𝑖𝑖 + 1) and (𝑛𝑛,𝑍𝑍) 

1 + 𝛽𝛽𝑖𝑖𝑖𝑖, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̅ 𝚤𝚤̅+ 1) and (𝑛𝑛�,𝑍𝑍)         

1 + 𝜀𝜀𝑖𝑖𝑖𝑖 , (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1), and (𝑛𝑛�,𝑍𝑍), 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐1 < 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖, 𝔠𝔠 ∈ 𝒞𝒞 

(1 + 𝜀𝜀𝑖𝑖𝑖𝑖)2, (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖, 𝚤𝚤̿+ 2), 0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝑐𝑐1 < 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖, 𝔠𝔠 ∈ 𝒞𝒞          

1− 𝐶𝐶𝑎𝑎𝑎𝑎 , (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖, 𝚤𝚤)̅         

1− 𝐶𝐶𝑎𝑎𝑐𝑐, (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖, 𝚤𝚤̿+ 2) 

1− 𝐶𝐶𝑎𝑎𝑎𝑎, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̅ 𝑖𝑖)         

1− 𝐶𝐶𝑐𝑐𝑎𝑎, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝑖𝑖)         11+𝛾𝛾𝑖𝑖𝑖𝑖 , (𝑖𝑖, 𝑗𝑗) = (𝑖𝑖 + 1, 𝑖𝑖) 

0,   otherwise,      

      (2) 

and 𝒘𝒘𝒊𝒊𝒊𝒊𝟐𝟐 = 𝟏𝟏 + 𝜿𝜿𝒊𝒊𝒊𝒊, (𝒊𝒊, 𝒊𝒊) = (𝒊𝒊,̿ 𝒊𝒊̿+ 𝟏𝟏), (𝒊𝒊, 𝒊𝒊̿+ 𝟐𝟐) and (𝒏𝒏�,𝒁𝒁), 𝒍𝒍𝒍𝒍𝒊𝒊𝒊𝒊 ≤ 𝒇𝒇𝒊𝒊𝒊𝒊𝒄𝒄𝟏𝟏 < 𝑴𝑴, 𝖈𝖈 ∈ 𝓒𝓒        (3)   

Subject to the following constraints: 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 − � 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥𝑖𝑖∈𝑁𝑁−𝑖𝑖∈𝑁𝑁− −𝑎𝑎0 − 𝑠𝑠𝑖𝑖𝔠𝔠 + 𝑑𝑑𝑖𝑖𝔠𝔠, 𝑖𝑖 = 1, 𝔠𝔠 ∈ 𝒞𝒞  (4) 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 − � 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥𝑖𝑖∈𝑁𝑁−𝑖𝑖∈𝑁𝑁− − 𝑏𝑏0, 𝑖𝑖 = 1 � , 𝔠𝔠 ∈ 𝒞𝒞  (5) 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 − � 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥𝑖𝑖∈𝑁𝑁−𝑖𝑖∈𝑁𝑁− − 𝑐𝑐0, 𝑖𝑖 = 1�, 𝔠𝔠 ∈ 𝒞𝒞          (6) 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 − � 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥𝑖𝑖∈𝑁𝑁−𝑖𝑖∈𝑁𝑁− − 𝑠𝑠𝑖𝑖𝔠𝔠 + 𝑑𝑑𝑖𝑖𝔠𝔠, 𝑖𝑖 = 2,3, … ,𝑛𝑛, 𝔠𝔠 ∈ 𝒞𝒞  (7) 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 − � 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥𝑖𝑖∈𝑁𝑁−𝑖𝑖∈𝑁𝑁− 0, 𝑖𝑖 = 2�, 3� , … ,𝑛𝑛�, 𝔠𝔠 ∈ 𝒞𝒞  (8) 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠1 + � 𝑤𝑤𝑖𝑖𝑖𝑖2𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠2𝑖𝑖∈𝑁𝑁− − � 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥𝑖𝑖∈𝑁𝑁−𝑖𝑖∈𝑁𝑁− 0, 𝑖𝑖 = 2� , 3�, … , 𝑛𝑛�, 𝔠𝔠 ∈ 𝒞𝒞  (9) 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 + 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 = 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠, 𝔠𝔠 ∈ 𝒞𝒞  (10)      𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠1 + 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠2 = 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠, 𝔠𝔠 ∈ 𝒞𝒞          (11) 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠1 + 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠2 = 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠, 𝔠𝔠 ∈ 𝒞𝒞  (12) 

0 ≤ 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 < 𝑙𝑙𝑙𝑙𝑛𝑛−1,𝑧𝑧,𝔠𝔠𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 , 𝔠𝔠 ∈ 𝒞𝒞  (13) 𝑙𝑙𝑙𝑙𝑛𝑛−1,𝑧𝑧,𝔠𝔠𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 ≤ 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 < 𝑀𝑀𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 , 𝔠𝔠 ∈ 𝒞𝒞  (14) 

0 ≤ 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠1 < 𝑙𝑙𝑙𝑙𝑛𝑛𝑧𝑧𝔠𝔠𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠1 , 𝔠𝔠 ∈ 𝒞𝒞          (15) 𝑙𝑙𝑙𝑙𝑛𝑛𝑧𝑧𝔠𝔠𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠2 ≤ 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠2 < 𝑀𝑀𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠2 , 𝔠𝔠 ∈ 𝒞𝒞  (16) 

0 ≤ 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠1 < 𝑙𝑙𝑙𝑙𝑛𝑛�𝑧𝑧𝔠𝔠𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠1 , 𝔠𝔠 ∈ 𝒞𝒞  (17) 𝑙𝑙𝑙𝑙𝑛𝑛�𝑧𝑧𝔠𝔠𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠2 ≤ 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠2 < 𝑀𝑀𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠2 , 𝔠𝔠 ∈ 𝒞𝒞  (18) 𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 + 𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 = 1, 𝔠𝔠 ∈ 𝒞𝒞     (19) 𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠1 + 𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠2 = 1, 𝔠𝔠 ∈ 𝒞𝒞    (20) 𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠1 + 𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠2 = 1, 𝔠𝔠 ∈ 𝒞𝒞 (21)



𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠1 + 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠2 = 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠, (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1) and (𝑖𝑖, 𝚤𝚤̿+ 2), 𝚤𝚤̿ = 1�, … ,𝑛𝑛� − 1, 𝑖𝑖 = 1, … ,𝑛𝑛 − 2, 𝔠𝔠 ∈ 𝒞𝒞               (22)

0 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠1 < 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝔠𝔠𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠1 , (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1) and (𝑖𝑖, 𝚤𝚤̿+ 2), 𝚤𝚤̿ = 1� , … ,𝑛𝑛� − 1, 𝑖𝑖 = 1, … , 𝑛𝑛 − 2, 𝔠𝔠 ∈ 𝒞𝒞  (23) 𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝔠𝔠𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠2 ≤ 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠2 < 𝑀𝑀𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠2 , (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1) and (𝑖𝑖, 𝚤𝚤̿+ 2), 𝚤𝚤̿ = 1�, … , 𝑛𝑛� − 1, 𝑖𝑖 = 1, … ,𝑛𝑛 − 2, 𝔠𝔠 ∈ 𝒞𝒞  (24) 𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠1 + 𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠2 = 1  (25) 

0 ≤ 𝑓𝑓𝑖𝑖+1,𝑖𝑖,𝔠𝔠 ≤ 𝑢𝑢, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1, 𝔠𝔠 ∈ 𝒞𝒞  (26) 𝑓𝑓𝑖𝑖,𝑖𝑖+1,𝔠𝔠 ≥ 𝑙𝑙, 𝑖𝑖 = 1, 2, … ,𝑛𝑛, 𝔠𝔠 ∈ 𝒞𝒞          (27) 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠 ≥ 𝑙𝑙, 𝔠𝔠 ∈ 𝒞𝒞          (28) 𝑓𝑓𝑖𝑖,𝑖𝑖+1,𝔠𝔠 ≥ 𝑙𝑙, 𝑖𝑖 = 1�, 2� , … ,𝑛𝑛�, 𝔠𝔠 ∈ 𝒞𝒞          (29) 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠 ≥ 𝑞𝑞, 𝔠𝔠 ∈ 𝒞𝒞          (30) 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 ≥ 0, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝔠𝔠 ∈ 𝒞𝒞          (31) 𝑓𝑓𝑖𝑖𝑖𝑖1 = 𝑓𝑓𝑖𝑖𝑖𝑖2 =. . . = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 , (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴, 𝑖𝑖 ∈ 𝑃𝑃  (32) 𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 ,𝑥𝑥𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 , 𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠1 , 𝑥𝑥𝑛𝑛𝑧𝑧𝔠𝔠2 , 𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠1 , 𝑥𝑥𝑛𝑛�𝑧𝑧𝔠𝔠2  ∈ [0,1], 𝔠𝔠 ∈ 𝒞𝒞  (33) 𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠1 , 𝑥𝑥𝑖𝑖𝑖𝑖𝔠𝔠2  ∈ [0,1], (𝑖𝑖, 𝑗𝑗) = (𝚤𝚤,̿ 𝚤𝚤̿+ 1) and (𝑖𝑖, 𝚤𝚤̿+ 2), 𝚤𝚤̿ = 1�, … ,𝑛𝑛� − 1, 𝑖𝑖 = 1, … ,𝑛𝑛 − 2, 𝔠𝔠 ∈ 𝒞𝒞.  (34) 

The objective function (1) maximizes the expected amount of financial resources on node 𝑧𝑧. The first 

two terms of the objective function, 𝑤𝑤𝑛𝑛−1,𝑧𝑧𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 + 𝑤𝑤𝑛𝑛−1,𝑧𝑧2 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 , are the flow of resources that reach 

the terminal node 𝑧𝑧 through the penultimate node of asset a. These flows reach node 𝑧𝑧, multiplied by 𝑤𝑤𝑛𝑛−1,𝑧𝑧 or by 𝑤𝑤𝑛𝑛−1,𝑧𝑧2 , depending on the amount invested. The constraints that determine the yield of 

flow 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠 are (10), (13), (14), (20) and (33). The third and fourth terms of the objective function 𝑤𝑤𝑛𝑛𝑧𝑧𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛𝑧𝑧2 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠2 , are the flow of resources that achieve the terminal node 𝑧𝑧 through the last node of 

asset a. They also depend on the amount invested and the constraints that determine the yield of flow 𝑓𝑓𝑛𝑛𝑧𝑧,𝔠𝔠 are (11), (15), (16), (21) and (33). The fifth term of the objective function (1) is the flow of 

resources that achieve node 𝑧𝑧 through asset b. The last two terms of the objective function 𝑤𝑤𝑛𝑛�,𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠1 +𝑤𝑤𝑛𝑛�𝑧𝑧2 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠2 , are the flows that achieve the terminal node 𝑧𝑧 through asset c. These flows depend on the 

amount invested for the determination of their yield and their constraints are (12), (17), (18), (22) 

and (33).  

Constraint (4) represents the balance of flow for node 1. This constraint considers the initial balance 

for asset 𝑎𝑎, the cash inflow 𝑠𝑠𝑖𝑖𝑐𝑐 and the cash outflow 𝑑𝑑𝑖𝑖𝑐𝑐, the movement of the asset over time and the 

bank loan. Constraint (5) ensures the balance of the flow for node 1� and the initial balance for asset 𝑏𝑏. Constraint (6) is the balance of the flow for node 1� in which the movements of asset 𝑐𝑐, as well its 

initial balance, are taken into account. Constraint (7) is the balance of the flow for the remaining nodes 

2,3, … ,𝑛𝑛, which entails the inflow and outflow of cash, 𝑠𝑠𝑖𝑖𝑐𝑐 and 𝑑𝑑𝑖𝑖𝑐𝑐, respectively, the movement of 

asset 𝑎𝑎 and the bank loans. Constraints (8) and (9) are the balance of flow for nodes 2� , 3�, … ,𝑛𝑛� and 

2�, 3�, … ,𝑛𝑛�, respectively. 

Constraints (23), (24), (25) and (34) model the piecewise linear convex function. Constraint (26) is 

the maximum indebtedness limit and the non-negativity condition of the bank loans. Constraints (27) 

and (28) ensure the minimum balance of cash, while expressions (29) and (30) indicate the minimum 

balance for investments in asset b. As stated before, these minimum balances are necessary to 

guarantee a minimum liquidity condition for any type of eventuality in the economy, such as a 



restriction of credit by the bank sector. Constraint (31) reflects the non-negativity of all the flow 

variables for arcs (𝑖𝑖, 𝑗𝑗).  

Constraint (32) is the nonanticipativity constraint that defines the first-stage variables. This constraint 

ensures that for all scenarios 𝔠𝔠 ∈ 𝒞𝒞  , flow 𝑓𝑓𝑖𝑖𝑖𝑖𝔠𝔠 for assets 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐 for the first periods of the planning 

horizon in set P are the same. 

  

3. Risk-averse cash flow optimization models   

Here, we develop a minimax regret model and a CVaR formulation for the considered cash flow 

management problem. The minimax with regret model aims to determine the best deviation of the 

worst-case of optimality among all possible decisions in all scenarios considered (Kouvelis and Yu, 

1997). This model is indicated to represent conservative decisions of risk aversion and/or when the 

probabilities of the scenarios are not known. 

In order to formulate the minimax with regret model for the cash flow problem, the wait-and-see 

solutions 𝑊𝑊𝔠𝔠∗ for all scenarios  𝔠𝔠 = 1,2, … ,𝒞𝒞 need to be determined.  After this, the maximum 

difference among the number of terminal nodes of the two-stage with recourse model and the solutions 𝑊𝑊𝔠𝔠∗ taking into account all scenarios 𝔠𝔠, is minimized. The minimax with regret problem can be 

formulated as follows: 𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑙𝑙𝑖𝑖𝑧𝑧𝑀𝑀 Θ                                                                                                                                                       (36) 

Subject to the following constraints: (2)–(34)  Θ ≥ 𝑊𝑊𝔠𝔠∗ − (𝑤𝑤𝑛𝑛−1,𝑧𝑧𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 +𝑤𝑤𝑛𝑛−1,𝑧𝑧2 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 + 𝑤𝑤𝑛𝑛𝑧𝑧𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛𝑧𝑧2 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠2 + 𝑤𝑤𝑛𝑛�𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠 + 𝑤𝑤𝑛𝑛�,𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛�𝑧𝑧2 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠2 ),𝔠𝔠 ∈ 𝒞𝒞                                                                              (37) Θ ≥ 0                                                                                                                                                          (38) 

The objective function plus constraints (𝟑𝟑𝟑𝟑) and (𝟑𝟑𝟑𝟑) ensure that the maximum deviation (regret) 

between the value of the objective function of the wait-and-see problem (𝑾𝑾𝖈𝖈∗) and the value of the 

two-stage problem (the second term of the right-hand-side of constraint (37)) is minimized. Note that 

this is accomplished by minimizing variable 𝚯𝚯 ≥ 𝟎𝟎 in (36) under constraint (37). Note also that 𝚯𝚯 ≥ 𝟎𝟎 

ensures that just the most unfavorable deviations are considered. 

The minimax with regret does not take into account the probability of occurrence of each scenario and 

because of this, the solution of the model may be influenced by a scenario of low probability of 

occurrence. In order to overcome this issue, this paper also develops a measure widely used as a risk 

measure called conditional value-at-risk (CVaR) (Rockafellar and Uryasev, 2002). The CVaR is also 

known as mean excess loss, mean shortfall or tail VaR (value-at-risk). The CVaR model for the cash 

flow problem maximizes the difference among the value-at-risk, VaR, represented by 𝜼𝜼, and a set of 

weighted expected losses lower than VaR with confidence level 𝜶𝜶. The 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝜶𝜶 optimization problem 

may be formulated as follows: 𝑀𝑀𝑎𝑎𝑥𝑥𝑖𝑖𝑙𝑙𝑖𝑖𝑧𝑧𝑀𝑀                𝜂𝜂 − 1

1 − 𝛼𝛼�𝜋𝜋𝔠𝔠𝑣𝑣𝔠𝔠𝒞𝒞
𝔠𝔠=1                                                                                                        (39) 



Subject to the following constraints: (2)–(34) 𝑣𝑣𝔠𝔠 ≥  𝜂𝜂 − �𝑤𝑤𝑛𝑛−1,𝑧𝑧𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠1 + 𝑤𝑤𝑛𝑛−1,𝑧𝑧2 𝑓𝑓𝑛𝑛−1,𝑧𝑧,𝔠𝔠2 +𝑤𝑤𝑛𝑛𝑧𝑧𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛𝑧𝑧2 𝑓𝑓𝑛𝑛𝑧𝑧𝔠𝔠2 + 𝑤𝑤𝑛𝑛�𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠 + 𝑤𝑤𝑛𝑛�,𝑧𝑧𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠1 + 𝑤𝑤𝑛𝑛�𝑧𝑧2 𝑓𝑓𝑛𝑛�𝑧𝑧𝔠𝔠2  �,𝔠𝔠 ∈ 𝒞𝒞  (40) 𝜈𝜈𝔠𝔠 ≥ 0, 𝔠𝔠 ∈ 𝒞𝒞  (41) η ∈ ℝ .         (42) 

The 𝜈𝜈𝔠𝔠 is a continuous variable that represents the excess of loss beyond the VaR, 𝜂𝜂, for each scenario 𝔠𝔠 ∈ 𝒞𝒞. Confidence level 𝛼𝛼 is used to reflect the risk preference of the decision maker. Higher values of 

α indicate greater risk aversion and CVaR controls the largest deviations of expected losses in relation 
to VaR.  

There are other two-stage stochastic programming models that could be used to evaluate the behavior 

of optimal solutions, especially the trade-off between risk and return, such as mean-risk models or 

restricted recourses (see, e.g., Shapiro (2012), Alem and Morabito (2013), Homem-de-Mello and 

Pagnoncelli (2015) and the authors cited therein).  However, the choice of the CVaR model in this 

paper was an attempt to implement a stochastic optimization approach for the cash flow problem that 

is adopted in many practical applications, but which has not yet been applied to a cash management 

problem in a non-financial company. Studies on these other stochastic models are interesting topics 

for future research. 

4. Scenario generation

For the exchange rate scenario generation, each simulated scenario is considered a trajectory over time 

that follows a stochastic Markov process in which a specific variable has unpredictable values. In this 

way, the present state of the process is what matters to predict the future value of these variable. 

Application of Markov process may be seen in Cyert, Davidson, and Thompson (1962). This means 

that the price on the spot market contains all the relevant information to study the future behavior of 

it. The Wiener process or Brownian motion is a particular case of the Markov process whose 

increments are independent from any other time interval and the variation of a process, in a finite time 

interval, follows a normal distribution with a variance that increases linearly in this interval (Hull, 

2003). The scenario generation for the exchange rate is based on the Monte Carlo simulation using the 

Geometric Brownian Motion (GMB) according to the follow stochastic equation: 𝒅𝒅𝒅𝒅 = 𝜶𝜶𝒅𝒅𝒅𝒅𝜶𝜶 + 𝝈𝝈𝒅𝒅𝒅𝒅𝝈𝝈 (43) 

in which 𝒅𝒅𝝈𝝈 is an incremental Wiener process, 𝒅𝒅𝝈𝝈 = 𝜺𝜺𝜶𝜶√𝒅𝒅𝜶𝜶, 𝜺𝜺𝜶𝜶 is a random variable which follows a 

standard normal distribution, 𝑵𝑵(𝟎𝟎,𝟏𝟏), 𝛂𝛂 is the-risk free interest rate historically and 𝛔𝛔 is the volatility 

of the exchange rate. Applying Itô’s lemma and a logarithmic transformation, the discrete equation of 

price simulation can be obtained in any future moment 𝜶𝜶, of exchange rate 𝑿𝑿𝐭𝐭 as follows: 

𝐗𝐗𝐭𝐭 = 𝐗𝐗𝟎𝟎𝓮𝓮��𝛂𝛂−𝛔𝛔𝟐𝟐𝟐𝟐 �∆𝐭𝐭+𝛔𝛔√∆𝐭𝐭𝐍𝐍(𝟎𝟎,𝟏𝟏)�
.  (𝟒𝟒𝟒𝟒) 

The Monte Carlo simulation of the exchange rate prices using the above equation is done by choosing 

random values and obtaining a standard normal distribution N(0,1), thus yielding the corresponding 



price 𝐗𝐗𝐭𝐭. An important feature of Equation (44) is that the discretization in relation to its continuous 

form is exact and precise. In other words, small increments of time ∆𝐭𝐭 are not necessary to obtain a 

good approximation. Any size of ∆𝜶𝜶 can be used in which the simulation equation (75) remains valid 

(Hull, 2003). This technique for scenario generation has been used in various areas of knowledge, such 

as financial engineering (Breeden and Ingram, 2010; Brandimarte, 2014). 

The uncertain parameters in both cash-in and cash-out are the exchange rates, which are used to 

determine the amount (BRL) of receipts and payments in US dollars (USD). That is, the variation of 

the exchange rate changes the cash-in and cash-out arising from sales in foreign markets. The initial 

exchange rate of the simulation was BRL 2.40. The volatility of the exchange rate for the scenario 

generation follows a uniform distribution between [9%, 34%], and this interval was obtained from 

historical data taken from BM&FBovespa statistics (www.bmfbovespa.com.br).  

The risk-free interest rate for the scenario generation follows a uniform distribution between the range 

of [7.10%, 32.40%], which was also obtained from BM&FBovespa statistics. Note that the scenario 

generation method used in this paper provides the achievements for the stochastic parameters but does 

not determine the number of scenarios that will be incorporated in the stochastic programming model. 

Especially in mixed-integer problems, it is essential to determine the tradeoff between accuracy and 

computational tractability of the scenarios generation method. On the one hand, incorporating a large 

number of scenarios improves the accuracy of the stochastic programming model, but may increase 

the computational difficulty. Moreover, dealing with few scenarios is computationally simpler, but the 

random variable may be misrepresented. To deal with this compromise, we used the internal stability 

analysis, which provides the minimum number of scenarios that must be generated to observe the 

stabilization of the value of the objective function of the stochastic programming model. First, samples 

of increasing and varying sizes are generated, for example, 10, 50, 100, ..., 600.  Afterwards, various 

stochastic programming models are solved, and the corresponding optimal values of the objective 

function are analyzed. Figure 2 shows that from 200 scenarios on the optimal value of the model (2)-

(34) varies no more than 0.2%, suggesting that from this number of scenarios there is a stabilization 

of the objective function value. Therefore, in this study, 200 scenarios were established to generate the 

numerical tests. 

 

Figure 2. Internal stability analysis for the scenario generation test. 

http://www.bmfbovespa.com.br/


Figure 3 shows the evolution of the 200 scenarios generated with a unit step of one working day for 

the exchange rate between BRL and USD using the method described in this section. As the cash flow 

is managed by month, the monthly exchange rate of each scenario was established obtaining the 

exchange rate generated every 21 days from each scenario, which is the average number of working 

days of each month. Figure 4 shows the 200 scenarios for the 12 months used in the numerical tests. 

The scenarios were considered equiprobable.  
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Figure 3. Scenario evolution for the exchange rate BRL/USD. 

 

 

Figure 4. Scenarios for the 12 months of the cash planning horizon. 

 

 

5.   Numerical Results 

In this section, we evaluate the neutral and risk-averse approaches using real data extracted from a 

benchmark company of the stationery sector studied in Righetto et al (2016). The models were coded 

in the General Algebraic Modeling System (GAMS 23.0.2) and solved via the CPLEX 12.1 

optimization system with all parameters fixed at their default values. The computation experiments 

were run in an Intel(R) Core(TM) i3-3110M, 2.40GHz and 4GB of RAM. For the sake of simplicity, 

the monetary amounts are presented in thousands of BRL. 
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5.1. Case study and data description 

As mentioned, our case study is based on a stationery company in São Paulo State, Brazil. This case 

study was first presented in Righetto et al. (2016) and, for the sake of brevity, we summarize only the 

most important information regarding the company and other details of the data set are provided in 

Appendix A. 

Basically, the studied company has more than two thousand employees, with an annual revenue from 

Brazilian and international markets of approximately five hundred million BRL. The commercial 

portfolio in the Brazilian market has more than five thousand customers. Domestic sales have a typical 

seasonality, which is the concentration of cash-in in January, February, March and April of each year, 

which is the so-called ‘‘back-to-school” period. The amount of cash-in in these months depends mostly 

on the sales plan policy that the company adopts. The main sales period of the company is from August 

to December. To manage inventory and customer supply logistics problems, the company finances its 

customers through payment terms, facilitating purchases by customers in those months. This strategy 

is critical to supply customers for the main sales period.  

The first-stage decision variables correspond to the first period of the planning horizon. Both cash-in 

and cash-out come from the internal market quoted in BRL and the external market quoted in USD. 

The exchange rates to convert the dollars received from the foreign market are from the scenarios 

generated in the previous section. Table 1 presents the cash-in and cash-out in BRL and USD used as 

parameters to run the stochastic programming models. The computational time to run the stochastic 

models was less than one minute. 

Table 1. Cash-in and cash-out in thousands of BRL and USD. 

Period 
Cash-in Cash-out 

BRL USD BRL USD 

1       11,088 1,540 62,411 11,144 

2          6,952 1,557 5,479 978.50 

3          9,371 1,484 12,606 2,251 

4       10,192 1,455 13,440 2,400 

5         9,381 1,345 10,751 1,919 

6       15,070 2,127 29,999 5,357 

7          9,400 1,424 6,505 1,161 

8       15,883 2,214 12,132 2,166 

9       13,221 1,839 4,211 751.98 

10     105,591 14,739 35,482 6,336 

11       86,818 12,500 66,753 11,920 

12       93,588 13,020 98,024 17,504 

The values of cash-in and cash-out in USD are multiplied by each exchange rate generated by scenarios 

in order to generate both cash-in and cash-out in BRL of each scenario. For the computational results, 

two hundred scenarios generated by the methodology developed in the previous section were 

considered and they were used for risk neutral two-stage stochastic programming model, called RN, 

minimax with regret, called minimax and CVaR. For the latter, α ∈ {0.7; 0.75; 0.80; 0.85; 0.95; 0.96; 



0.97; 0.98; 0.99} was considered. 

 

5.2. Performance measures 

As the company’s treasury does not use stochastic models for cash management neither does it include 

statistical analyses in its reports, it is important to show to the company the attractiveness of the 

proposed framework based on stochastic models. One way to do this is by showing the financial 

manager that the solutions generated by the stochastic models outperform the deterministic ones and 

that the consequent implications of using them to support tactical decisions of the company may result 

in rewards. 

For this purpose, we analyze the expected profit (EP) given by the stochastic programming model vis-

à-vis some performance measures that are typically evaluated considering the independent solutions 

of the scenarios, such as the worst-case (WC) and the best-case (BC) profits, the profit standard 

deviation (SD), and the probability “𝑃𝑃𝑃𝑃” that the  "Profit"  is less than a specified threshold, say, t, i.e., ℘𝑡𝑡 = 𝑃𝑃𝑃𝑃[Profit < 𝑡𝑡]. In this case, ℘𝑡𝑡 is simply defined by the relative frequency of the solutions in 

the sample of 200 scenarios whose optimal value (profit) is less than the threshold. In particular, we 

define a threshold of BRL 120 million, which is the value set as a goal for the company’s treasury at 

the end of the planning horizon. 

We also present the β-index analysis to compare two sets of solutions regarding risk-aversion. We 

evaluate 𝛽𝛽 = COV/VAR, in which COV is the covariance between the solution set comprising two 

hundred scenarios generated by the RN model and the solution set composed by the two hundred 

scenarios generated by a given risk-averse model. VAR is the variance of the two hundred scenario set 

generated by the RN model (Gitman, 2014). When 𝛽𝛽 is less than 1 (greater than 1), we say that the 

corresponding risk-averse model provides less (more) risky solutions in comparison to the reference 

RN solutions. If 𝛽𝛽 = 1, both models provide solutions within the same risk level. 

Finally, we also propose two additional metrics, the so-called Cash Flow at Risk (CFaR) and the 

Conditional Cash Flow at Risk (CCFaR), attempting to provide useful managerial insights. The CFaR 

is the maximum decrease of the amount of cash flow generated in the planning horizon, which occurred 

due to the impact of changes in market rates in a given set of exposures and a certain confidence level. 

In the specific case of this paper, the exposures are both cash-in and cash-out in USD. The exchange 

rate BRL by USD is the market rate and the confidence level is 95%. To calculate the CFaR, the 

stochastic solutions corresponding to each exchange rate scenario were sorted in ascending order and 

the solution corresponding to the desired 95% confidence level (percentile) was identified.  Figure 6 

shows that the value of BRL 116.8 million represents the CFaR0.95 for a set of cash flow solutions. The 

CCFaR is evaluated as the average of values that exceed the CFaR within a desired confidence level. 

In Figure 5, the value of CCFaR0.95 is BRL 114.4 million. More details concerning these measures are 

found in Lee (1999) and Fonseca (2006). 

  



Figure 5. CFaR0.95 and CCFaR0.95 for a cash flow solution set. 

5.3. EVPI and VSS analysis 

For the risk neutral model, both the Expected Value of Perfect Information (EVPI) and the Value of 

Stochastic Solution (VSS) were evaluated to verify if the randomness of the parameters is important 

for the decision maker. The results in thousands of BRL are as follows (Table 2): RN = 123,133; WS 

= 124,347; EEV = 121,983; EVPI = 1,213; and VSS = 1,149, revealing that it is possible to obtain a 

significant gain through the acquisition of perfect information about the future (it means investing in 

more information, news, demand forecast and so on). In absolute terms, for the studied company, the 

amount of BRL 1.2 million is a reduction in its financial expenses of around 10%, which generates a 

profit increase in this percentage, which is representative for the studied company.  Furthermore, the 

worst-case value for the wait-and-see solutions is 5.44% better in comparison to the solutions provided 

by the RN model. This figure represents a difference of around BRL 6 million. The expected profit of 

the WS solutions is slightly better than in the RN approach though, showing that the WS solutions may 

improve more pessimistic situations, but not necessarily have advantages from the best-case point of 

view. The results of the standard deviation also reveal that both the WS and EEV solutions have a 

lower profit dispersion in comparison to the RN solutions. 

Another important indicator for the financial manager is the probability of the solutions of the models 

being below a certain target set by the company’s management. Solution values below, for example, 

BRL 120 million are considered bad by the company's management and measuring the probability of 

these events happening is important for the financial manager. As expected, under uncertainty, this 

probability is substantially higher than under perfect information about the future. In particular, the 

usage of the expected value solution as the first-stage decision variables (EEV) results in overall bad 

performances. In particular, the risk of not achieving the profit’s goal increases by 50% in this case. 



Table 2. Statistical indicators of RN, WS and EEV solutions in amount in thousands of BRL. 

Expected 

Profit 

(EP) 

Worst 

Case 

Profit 

(WC) 

Best 

Case 

Profit 

(BC) 

Profit 

Standard 

Deviation 

(SD) 

Probability (%) 

Profit less than 

BRL 120 million 

(℘120) 

RN    123,133    110,532    134,493    3,955 14.50 

WS    124,347    116,544    130,979    2,741 6.500 

EEV    121,983    110,552    130,973    3,195 21.00 

The overall results suggest that it might be worth investing in more accurate information on the 

future exchange rates. However, under uncertainty, the incorporation of all the scenarios 

simultaneously in the problem via the RN approach result in a more effective cash management 

policy, particularly if we adopt the expected value approach given by the EEV methodology. 

5.4 Results and statistics of RN and risk aversion models 

Table 3 summarizes the main results and performance measures for the RN, minimax and CVaR 

models. The profit distributions across the 200 scenarios for the RN, minimax and CVaR under a 

confidence level 0.70 and 0.95 are also depicted in Figure 6. As expected, there is a profit reduction as 

robustness is enforced either via the minimax or the CVaR criteria. However, it is possible to obtain 

much less risky solutions, as observed by both the standard deviation and the 𝛽𝛽-index. The p rofit 

distributions also revealed that risk-aversion is enforced mostly by reducing the difference between 

profit worst- and best-cases, leading to narrower profit distribution ranges. In many cases, the profit 

reduction is only marginal given the improvement in terms of the profit standard deviation reduction 

for both risk-averse approaches.  

Concerning the RN approach, the results reveal that most solutions are between BRL 120 and BRL 

125 million. Moreover, 37.5% of the solutions are above BRL 125 million and only 14.5% of the 

solutions are below the target set by company. Considering a 95% confidence level, the worst cash 

flow result is BRL 116.8 million and the average cash results lower than the CFaR are BRL 114.4 

million.  Although the RN best-case profit is substantially greater than those provided by the risk-

averse models, one needs to consider that the profit standard deviation is also greater. The profit 

distribution also shows that due to its greater dispersion of solutions, the RN model has the highest 

probability of obtaining values above BRL 125 million. 

As the minimax approach takes into account the most unfavorable deviation to compute the optimal 

values, it often leads to worse expected profits in comparison to those from the risk-neutral approach. 

Surprisingly, in our particular application, the profit reduction of 8.49% might be compensated by the 

decrease of 10.59% in the profit standard deviation and a smaller 𝛽𝛽-index, suggesting that minimax indeed provides more stable solution across the 200 scenarios. The 

occurrence of values below the target of BRL 120 million is 95.5%, which is much higher than the 

same measure of the RN model. The probability of the values being between BRL 120 and BRL 125 

million is only 4.5%. Both metrics CFaR and CCFaR are also worse in comparison to the RN values.  

Remind that the confidence level has a risk-aversion role for the CVaRα approach. In fact, larger values 



of α give more weight to worse (lower-profit) scenarios, whose implication is twofold. First, expected 

profit is reduced because of the incorporation of more scenarios with lower potential for financial 

gains. Second, the risk of larger deviations is naturally mitigated because 𝑣𝑣𝔠𝔠 is deeper penalized. For 

example, worse deviations are 33 times more penalized in CVaR0.99 than in CVaR0.70, approximately, 

which explains the profit deterioration of 7.14% for CVaR0.99. 

In general, CVaRα yields a good tradeoff between profit and risk, which can be confirmed by the 

dramatic reduction in the profit standard deviation and by the 𝛽𝛽-index that does not lead to relevant 

profit losses. On average, 4% of the profit loss is necessary to obtain a 34% of dispersion reduction. 

In particular, notice that CVaR0.70 mitigates the risk (standard-deviation) by 26.22% in exchange of an 

expected profit only 1.35% lower, showing the attractiveness of the CVaR approach, even for less 

conservative decision-makers. Moreover, in this case, the worst-case performance, as well as both 

CFaR and CCFaR, have also a slightly better performance in comparison to the RN solution and the 

company can ensure that the probability of generating a profit within target is exactly ℘�120 = 69.5%.   

Table 3. Results and performance measures for the RN, minimax and CVaR approaches. 

Approach EP 

Profit 

reduction 

(%) 

℘120 ℘�120 ℘�125 WC BC SD 

Risk 

reduction 

(%) 

𝛽𝛽 CFaR0.95 CCFaR0.95

RN 123,133 * 14.5 48.0 37.5 110,532 134,493 3,955 * 1 116,776 114,387

Minimax 112,677 8.49 95.5 4.50 * 104,090 124,016 3,536 10.59 0.88 106,994 106,034

CVaR0.70  121,469 1.35 15.0 69.5 15.5 110,545 131,496 2,918 26.22 0.71 116,789 114,399 

CVaR0.75 120,554 2.09 18.0 73.0 9.0 107,388 130,977 3,206 18.94 0.76 114,532 112,107 

CVaR0.80 120,946 1.78 15.0 70.5 14.5 110,548 131,329 2,856 27.79 0.69 116,791 114,402 

CVaR0.85 119,631 2.84 14.5 82.0 3.5 110,550 130,436 2,237 43.44 0.50 116,793 114,404 

CVaR0.90 119,059 3.31 70.0 22.5 7.5 110,552 127,719 2,560 35.27 0.58 116,795 114,406 

CVaR0.95 117,870 4.27 79.0 20.0 1.0 110,554 125,400 2,312 41.54 0.50 116,796 114,408 

CVaR0.96 117,471 4.60 83.5 14.5 2.0 110,555 126,703 2,377 39.90 0.50 116,360 114,389 

CVaR0.97 116,765 5.17 89.0 11.0 * 110,556 124,469 2,093 47.08 0.43 115,844 114,252

CVaR0.98 115,733 6.01 88.5 11.0 0.5 110,560 126,041 2,587 34.59 0.55 114,219 113,492 

CVaR0.99 114,336 7.14 94.5 5.5 * 110,561 123,277 2,690 31.98 0.59 112,423 112,216

Notes. Profits are given in thousands of BRL. Profit reduction (Risk reduction) is evaluated with reference to the RN 

profit (standard deviation).  ℘�120 = 𝑃𝑃𝑃𝑃[120 < Profit ≤ 125] and ℘�125 = 𝑃𝑃𝑃𝑃[Profit > 125]. 

For α varying between 0.7 and 0.85, the CVaR solutions are mostly concentrated between BRL 120 

million and BRL 125 million. Interestingly, for α values varying in this range, values below BRL 120 
million have occurrence probabilities almost identical to those of the RN model. For α values between 
0.90 and 0.97, the highest concentration of the solutions is between BRL 115 million and BRL 120 

million, while for α = 0.98 and α = 0.99, the concentration of the solutions is between BRL 110 million 
and BRL 115 million. These results confirm that it is not worth increasing the α values more than 0.85, 

despite the substantial improvements in the dispersion of the solutions, as the probability of not 

achieving the company’s financial goals increase. All in all, the CVaR model provides solutions with 

reduced standard deviation, which helps the financial manager to take more assertive decisions on the 

cash-flow under uncertainty.  



Depending on the risk policy of a particular company, the CVaR model may or may not be favored 

over the RN model, as the great advantage of using it, in the case of the cash flow problem, is its 

assertiveness. However, these results also indicate that the risk-neutral approach might be a good 

choice for supporting cash-flow decisions under exchange-rate uncertainty since it practically has the 

same probability of occurrence of values below the target of BRL 120 million as the CVaR model, 

with α varying between 0.7 and 0.85, and has a high probability of occurrence of values above BRL 

125 million, which is not the case of the CVaR model. The minimax regret model proved to be very 

conservative and did not arouse interest in the company´s treasury. All analyses were performed with 𝑃𝑃 = �1, 1�, 1��, i.e., with the first stage variables equal to the first period. Further analysis could have 

been performed with 𝑃𝑃 = �1, 1�, 1�, 2, 2�, 2�� similarly. However, some preliminary investigations along 

these lines did not show significant advantages when using more periods as the first-stage variables. 

Figure 6. Profit distributions of the RN, minimax and CVaR models, for α = 0.70 and 0.95. 

6. Conclusion

This study proposed stochastic programming models to properly represent and solve the problem of 

maximizing financial resources available at the end of a cash planning horizon in companies under 

exchange rates uncertainties. In addition to the risk-neutral model, we also presented a minimax regret 

and a CVaR version to provide less risky solutions, which might be appealing in volatile markets. The 

overall results revealed that the exchange rate randomness is representative for the proposed cash flow 

management problem. The comparisons amongst the stochastic models suggested that there is no 

reason to apply the minimax approach, as its solutions are completely dominated by the CVaR 

solutions in terms of profits and lower dispersion. On the other hand, CVaR is a good choice for 

supporting tactical decisions in an uncertain and risky environment, because it reduces the dispersion 

of the solution values at negligible profit losses, and it possesses the advantage of generating more 



assertiveness for the financial manager. However, depending on the risk policy of a company, the 

CVaR model may or may not be favored over the RN model, as the latter presents similar results in 

terms of probability of occurrence of values below the targets as the CVaR model, and it has a high 

probability of occurrence of values above higher amounts. 

According to the best of our knowledge, there is no optimization under uncertainty methodology (RO 

or SP) that is unrestrictedly recommended for general problems. In general, both SP and RO 

may present advantages and disadvantages depending on the problem that is being modelled, the 

available input data, and the type of analysis that is required. When the problem naturally poses hard 

constraints in such a way data variation due to uncertainty might imply infeasible solutions, RO 

can be more appealing than SP. But if we are interested in providing relatively good decisions 

regardless the outcome and, at the same time, we can guarantee that any outcome could be properly 

accommodated using contingency decisions, SP might be a suitable modelling paradigm. In 

addition, we know that RO does not require any knowledge on the underlying distribution of the 

random variables, whereas SP does. Investing in a good scenario generating technique to provide a 

set of the realizations for the random variables, as we have done in this paper, might be 

advantageous, though, as more accurate approximations for the uncertainty may result in more 

appealing and assertive decisions, mainly if we compare with (overconservative) robust-induced 

solutions based on worst-case perspectives.  

In this context, it would be interesting to study a systematic way to compare our stochastic 

programming approach for the cash-flow problem under uncertainty to an alternate robust 

optimization method (as in Righetto et al. 2016) in order to understand the relative strengths and 

weaknesses of each approach in terms of managerial implications (Alem et al., 2018; Cuvelier 

et al.; 2018). Other interesting research perspectives arose from this study. For example, 

additional computational experiments with examples from other companies using our proposed 

framework could help to obtain more conclusive evaluations on the performance of the cash 

flow models, as well as to make comparisons between the models and the solutions used by the 

treasurer. Moreover, the extension of the model for considering the possibility of correlation 

(possibly lagged) between accounts receivable and accounts payable, as well as the development of 

a multistage stochastic programming approach for the cash flow problem can bring relevant 

contributions to the analysis of this problem.  
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Appendix 

Table A.1 shows the yield for assets b and c per month (net of taxes) and the interest rate per month 

for the bank loan. For αij, the yield is zero. The initial balance for asset a is BRL 1.994. For asset b, 

the initial balance is zero. For asset c, the initial balance is BRL 100,000. The unit conversion costs 

between the assets are considered null, i.e., 𝐶𝐶(𝑎𝑎,𝑎𝑎) = 𝐶𝐶(𝑎𝑎,𝑐𝑐) = 0, 𝐶𝐶(𝑎𝑎,𝑎𝑎) = 𝐶𝐶(𝑐𝑐,𝑎𝑎) = 0, 𝐶𝐶(𝑎𝑎,𝑎𝑎) = 𝐶𝐶(𝑎𝑎,𝑐𝑐) =

0, and 𝐶𝐶(𝑎𝑎,𝑎𝑎) = 𝐶𝐶(𝑐𝑐,𝑎𝑎) = 0. The bank loan limit for the company is BRL 100,000. It is assumed that 

once the loan has been taken out, the payment amount plus the interest rate should be made 

immediately. Therefore, the options for financial transactions of this planning horizon are threefold: 

(i) to maintain the current account balance; (ii) to allocate funds available for financial investments;

and (iii) to use the line of credit to cover negative net cash flows. If there is a negative cash flow, the

cash needs should be covered using the available options: (i) previous cash balance; (ii) financial

investment redemption; or (iii) loans. As input data, it is assumed that all transactions occur at the

beginning of each period.

Table A.1. Monthly yields and interest rates for each type of assets (in percentage). 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

 𝛽𝛽𝑖𝑖𝑖𝑖  0.54 0.56 0.49 0.52 0.53 0.41 0.47 0.42 0.42 0.47 0.38 0.42 



 𝜀𝜀𝑖𝑖𝑖𝑖 0.57 0.59 0.52 0.55 0.56 0.43 0.49 0.45 0.45 0.49 0.40 0.45 𝜅𝜅𝑖𝑖𝑖𝑖 0.58 0.61 0.53 0.56 0.57 0.45 0.51 0.46 0.46 0.51 0.41 0.46 

 𝛾𝛾𝑖𝑖𝑖𝑖 0.76 0.80 0.70 0.74 0.75 0.59 0.66 0.60 0.60 0.66 0.54 0.60 
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