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Casimir energy of N magnetodielectric δ-function plates

Venkat Abhignan
Department of Physics, National Institute of Technology, Tiruchirapalli - 620015, India

To investigate Casimir electromagnetic interaction in N bodies, we implement multiple δ-function
plates with electric and magnetic properties. We use their optical properties to study the Casimir
energy between the plates by implementing multiple scattering formalism. We initially solve Green’s
functions for two and three plates configurations to obtain their reflection coefficients. Further, the
coefficients are implemented in multiple scattering formalism, and a simple method was obtained to
depict energy density distribution in the multiple scattering expansions using diagrammatic loops.
The Casimir energy for N bodies depends on multiple scattering parameter ∆; this parameter
was distributed into nearest neighbour scattering and next-to-nearest neighbour scattering terms
represented by different loops depending on reflection, transmission and propagation distance. In
this manner, the Casimir energy density was generalized to N plates by identifying a systematic
pattern in the representation of diagrammatic loops.

I. INTRODUCTION

Quantum electrodynamic fluctuations in a vacuum confined between two parallel perfectly electrically conducting
plates were shown to have a force between them [1]. This force was later generalized for two dielectric slabs [2]. Even
though exact results have been obtained for perfectly conducting boundaries, it is generally accepted that calculating
Casimir energies and their corresponding forces is a difficult process for dielectric bodies due to the non-additivity
property of the interaction.
Casimir energies can be described in terms of reflection coefficients of the configurations, for example, using multiple

scattering formalism [3]. Using the optical Fresnel coefficients, Casimir force for parallel multilayered configurations
has been pursued by Tomaš [4, 5]. The central idea revolves around using the recurrence relations among Fresnel
coefficients of neighbourhood media in an iterative manner and extending the result to N bodies. Primarily, the
Casimir force acting on a particular planar region is calculated in studies of all the multilayered systems. However,
no closed-form expression was solved for N bodies, to our understanding. Increasing the number of layers leads to
cumbersome expressions and becomes challenging when concerned with multilayered dielectric cavities. Beyond this,
without using recursive relations, the Casimir energy for N dielectric cavities separated by plasma sheets was recently
attempted by Allocca et al. [6]. They studied Barton’s model [7] for plasma sheets to obtain interaction energy for
two, three dielectric cavities, and further inductively, the result was extended to N dielectric cavities.
In this context, we are interested in studying the Casimir interaction of discrete N plates in a vacuum with

magnetodielectric properties, while primarily continuous dielectric bodies were studied previously. We utilise δ-
function plates [8] to obtain Green’s functions and deduce Casimir energy using multiple scattering formalism [9–12].
The physical relevance of δ-function plates has been discussed previously, and the most interesting aspect is their
nontrivial boundary conditions [8, 13]. Balian and Duplantier were instrumental in developing Green’s functions based
on multiple scattering formalism [9] and computing Casimir energies for perfectly conducting thin conductors [10].
Recently, the finite part of Casimir energy was derived using multiple scattering formalism for two disjoint bodies by
Kenneth and Klich, implementing Lippmann-Schwinger scattering theory [11, 14] and by Emig et al. [12].
We initially solved for Green’s functions for N = 1, 2, 3 δ-function plates configurations. We extract the reflection

coefficients for these configurations by representing the different regions of the Greens function in a matrix repre-
sentation. We obtain Casimir energies for N = 2, 3, 4, 5 δ-function plates using these reflection coefficients and their
corresponding multiple scattering parameters (∆12···N ’s) from the multiple scattering formalism. Interpreting these
multiple scattering parameters for N = 3, 4, 5 δ-function plates in a diagrammatic manner, the pattern for N plates
seems to be exhibiting.
We theorise that Casimir energy ∆E(12···N) ofN plates configuration can be represented using the multiple scattering

parameter ∆12···N such as

∆E(12···N)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
12···N

]

+ ln
[

∆E
12···N

]

]

, (1)

where the integration is over all frequencies and lateral wavenumbers. The parameter ∆12···N can be distributed
into nearest neighbour scattering parameter ∆ij for all j = i + 1 (i ∈ [1, N − 1] where i and j are adjacent plates)
and next-to-nearest neighbour, next-to-next-to-nearest neighbour, · · · scattering parameter ∆ik for all k ≥ i + 2
(i ∈ [1, N − 2] where i and k are not adjacent plates). These parameters give the different possible ways the paths of
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FIG. 1: Visualizing ∆123 with optical properties, ri are reflection coefficients and ti are transmission coefficients of
the plates. lij is the distance between the plates where i and j are adjacent plates.
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FIG. 2: Visualizing ∆1234 with optical properties, ri are reflection coefficients and ti are transmission coefficients of
the plates. lij is the distance between the plates where i and j are adjacent plates.

propagation contribute to the energy. They can be obtained in terms of the optical properties of the plates, reflection
coefficients ri, transmission coefficients ti and with exponential dependence on the distance between the plates lij
described diagrammatically by loops (Expressions derived in Sec. V). For instance, the multiple scattering parameter
for N = 3 plates configuration can be obtained, such as

∆123 = ∆12∆23 +∆13 (2)

and diagrammatic loop distribution of this multiple scattering parameter can be visualized using Fig. 1. Similarly,
for N = 4 plates configuration, the multiple scattering parameter can be obtained as

∆1234 = ∆12∆23∆34 +∆12∆24 +∆13∆34 +∆14 (3)

and the diagrammatic loop distribution is visualized in Fig. 2.

We compare some of the primary existing works implementing different approaches in the table below:
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Tomaš [4, 5] Allocca et al. [6] This work
Configuration Multilayered dielectric

cavities.
Multilayered dielectric

cavities with plasma sheets
as boundaries.

Discrete magnetodielectric
δ-function plates in

vacuum.
Casimir energy Force was derived in the

form of Fresnel coefficients
obtained from recurrent
relations for stacks of

layers.

Derived in the form of
their so-called generating

function (multiple
scattering parameter
∆12···N in our work)

obtained from computing
“determinants” related to
the transition matrix.

Derived from multiple
scattering formalism
regarding reflection

coefficients obtained from
Green’s functions.

In Sec.II, we introduce the necessary formalism to handle Maxwell’s equations in a medium with electric and
magnetic properties. Further, electric and magnetic Green’s functions are defined, representing the TE and TM
modes. In Sec. III, Green’s functions are solved for a system of one, two and three δ-function plates configurations
with electric and magnetic properties in a vacuum. In Sec. IV, Casimir force is derived between two and three δ-plates
using the stress tensor method in terms of their optical properties. In Sec.V, we derive the Casimir energy between
N = 2, 3, 4, 5 δ-plates and generalize it to N plates using multiple scattering formalism. Further, we study a particular
instance where we consider N plates, which are perfectly dielectric.

II. MAXWELL’S EQUATIONS WITH TE AND TM MODES

The standard Maxwell’s equations for the monochromatic components of electric and magnetic fields E(r;ω) and
H(r;ω) in absence of currents and charges, proportional to exp (−iωt) are

∇×E = iωB, (4a)

−∇×H = iω(D+P). (4b)

These equations imply that ∇ ·B = 0, ∇ · (D+P) = 0 and here P is the source of external polarization independent
of the polarization in the materials due to E and H. Further here, non-linear responses are neglected in the presence
of electric and magnetic materials with boundaries, and macroscopic fields D and B respond linearly to E and H as

D(r;ω) = ε(r;ω) ·E(r;ω), (5a)

B(r;ω) = µ(r;ω) ·H(r;ω). (5b)

ε is dielectric permittivity and µ magnetic permeability of the materials. The Maxwell’s equations decouple and can
be combined to obtain second order differential equations for electric field

[

−ε(r;ω) +
1

ω2
∇× µ(r;ω)

−1
·∇×

]

·E(r, ω) = P(r, ω), (6)

and magnetic field in a similar manner. These correspond to transverse electric (TE) and transverse magnetic (TM)
modes rewritten in the form of Green’s dyadics Γ and Φ [8, 15] such as

[

−ε(r;ω) +
1

ω2
∇× µ(r;ω)−1 ·∇×

]

· Γ(r, r′;ω) = 1δ(3)(r− r
′), (7)

by correlating the field and source as

E(r;ω) =

∫

d3r′Γ(r, r′, ω) ·P(r′, ω). (8)

Green’s dyadics Γ and Φ can be expressed in form of scalar Green’s function gE and gH , respectively. The scalar
components γij of dyadic γ in Fourier space can be derived and represented as a matrix such as

γ(z, z′;k⊥, ω) =











1
ε⊥(z)

∂
∂z

1
ε⊥(z′)

∂
∂z′ g

H(z, z′) 0 1
ε⊥(z)

∂
∂z

ik⊥

ε||(z′)
gH(z, z′)

0 ω2gE(z, z′) 0

− ik⊥

ε||(z)
1

ε⊥(z′)
∂
∂z′ g

H(z, z′) 0 − ik⊥

ε||(z)
ik⊥

ε||(z′)
gH(z, z′)











−δ(z−z′)







1
ε⊥(z)

0 0

0 0 0
0 0 1

ε||(z)






, (9)
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from using a two-point correlation function

Γ(r, r′;ω) =

∫

d2k⊥
(2π)2

eik⊥·(r−r
′)⊥γ(z, z′;k⊥, ω), (10)

where ε(z) = ε⊥(z)1⊥+ε||(z) ẑ ẑ and µ(z) = µ⊥(z)1⊥+µ||(z) ẑ ẑ. Electric Green’s function gE referring to TE mode
and gH magnetic Green’s function referring to TM mode can be defined to satisfy the differential equations such as

[

−
∂

∂z

1

µ⊥(z)

∂

∂z
+

k2⊥
µ||(z)

− ω2ε⊥(z)

]

gE(z, z′) = δ(z − z′) (11)

and
[

−
∂

∂z

1

ε⊥(z)

∂

∂z
+

k2⊥
ε||(z)

− ω2µ⊥(z)

]

gH(z, z′) = δ(z − z′), (12)

respectively. As a direct consequence of Eq. (8), the correlations can be interpreted as [16]

δE(r;ω)

δP(r′;ω)
= Γ(r, r′;ω). (13)

The electric and magnetic field at two distinct points in space can also be correlated using the Green’s dyadic in form
of Green’s functions, and these correlations are expressed as

1

τ
〈E(r;−ω)E(r′;ω)〉 =

1

i
Γ(r, r′;ω), (14a)

1

τ
〈H(r;−ω)H(r′;ω)〉 =

1

i
Γ(r, r′;ω)

∣

∣

∣

E↔H,ε↔µ
, (14b)

where τ is the system’s average observed time.

III. δ-FUNCTION PLATES

In our analysis the interest is in thin δ-function plates [8, 17] with electric and magnetic properties

ε(z) = 1+ λei(ω)δ(z − ai), (15a)

µ(z) = 1+ λgi(ω)δ(z − ai), (15b)

at positions z = ai in vacuum up to an infinite extent in x− y axis. Since we consider disjoint objects the latter term
in dyadic γ in Eq. (9) containing δ(z − z′) can be neglected in this case, since it does not contribute. The material
properties of δ-function plates, with planar symmetry (homogeneous and isotropic on the plane) are described by the
matrix

λ(ω) =







λ⊥(ω) 0 0
0 λ⊥(ω) 0
0 0 λ‖(ω)






. (16)

The boundary conditions satisfying the planar interface at z = ai are derived from implementing an Amperian loop
integral and a Gaussian surface integral across the plate. Additional nontrivial contributions to the electric field
boundary conditions are obtained due to δ-functions such as

E2(k⊥, z;ω)
∣

∣

z=a+δ

z=a−δ
= −iωλ⊥

giH1(k⊥, ai), (17a)

E1(k⊥, z;ω)
∣

∣

z=a+δ

z=a−δ
= iωλ⊥

giH2(k⊥, ai), (17b)

E3(k⊥, z;ω)
∣

∣

z=a+δ

z=a−δ
= −ik⊥λ

⊥
eiE1(k⊥, ai). (17c)
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Similarly, the magnetic field boundary conditions are derived such as

H2(k⊥, z;ω)
∣

∣

z=a+δ

z=a−δ
= iωλ⊥

eiE1(k⊥, ai), (18a)

H1(k⊥, z;ω)
∣

∣

z=a+δ

z=a−δ
= −iωλ⊥

eiE2(k⊥, ai), (18b)

H3(k⊥, z;ω)
∣

∣

z=a+δ

z=a−δ
= −ik⊥λ

⊥
giH1(k⊥, ai). (18c)

Setting λ = 0 would reduce these equations to the traditional well-known boundary conditions for electric and magnetic
field in vacuum. The presence of δ-plates with magnetoelectric properties modifies these boundary conditions on the
interface making them nontrivial. And δ-function plates have boundary constraints

λ
‖
eiE3(k⊥, ai;ω) = 0, (19a)

λ
‖
giH3(k⊥, ai;ω) = 0. (19b)

These reveal that λ
‖
ei = 0 and λ

‖
gi = 0 unless E3(k⊥, ai;ω) = 0 and H3(k⊥, ai;ω) = 0 at z = ai. These boundary

conditions on electric and magnetic field govern the boundary conditions on TE mode and TM mode from Eq.(11)
and (12), which in turn dictate the boundary conditions on the electric Green’s function gE and magnetic Green’s
function gH . The boundary conditions on gE are

gE(z, z′)
∣

∣

∣

z=ai+δ

z=ai−δ
=

λ⊥
gi

2

[

{

∂

∂z
gE(z, z′)

}

z=ai+δ

+

{

∂

∂z
gE(z, z′)

}

z=ai−δ

]

, (20a)

∂

∂z
gE(z, z′)

∣

∣

∣

∣

z=ai+δ

z=ai−δ

= ζ2
λ⊥
ei

2

[

gE(ai + δ, z′) + gE(ai − δ, z′)
]

. (20b)

Similarly, the boundary conditions on gH are

gH(z, z′)
∣

∣

∣

z=ai+δ

z=ai−δ
=

λ⊥
ei

2

[

{

∂

∂z
gH(z, z′)

}

z=ai+δ

+

{

∂

∂z
gH(z, z′)

}

z=ai−δ

]

, (21a)

∂

∂z
gH(z, z′)

∣

∣

∣

∣

z=ai+δ

z=ai−δ

= ζ2
λ⊥
gi

2

[

gH(ai + δ, z′) + gH(ai − δ, z′)
]

, (21b)

in vacuum where ω → iζ switching to imaginary frequencies using Euclidean rotation. ζ is the Matsubara frequency,
useful in finite temperature calculations.
The magnetic Green’s functions g1,H , g2,H and g3,H are solved using its differential Eq.(12) and boundary conditions

in Eq.(21) for the configuration of one plate with optical properties λ⊥
e1, λ

⊥
g1 at z = a1, two plates with optical properties

λ⊥
e1, λ

⊥
g1 at z = a1, λ

⊥
e2, λ

⊥
g2 at z = a2 and three plates with optical properties λ⊥

e1, λ
⊥
g1 at z = a1, λ

⊥
e2, λ

⊥
g2 at z = a2,

λ⊥
e3, λ

⊥
g3 at z = a3, respectively. Illustratively, the solution for gH for these configurations in different regions of z− z′

space is shown in Fig. (3a), (3b) and (4). The solution for g1,H of one plate with the subscript label in Fig. (3a)
representing the different regions in z − z′ space is

g1,H
11

(z, z′) =
tH1
2κ

e−κ(a1−z)e−κ(z′−a1), z < a1 < z′ (22a)

g1,H
12

(z, z′) =
1

2κ
e−κ|z−z′| +

rH1
2κ

e−κ(z−a1)e−κ(z′−a1), z, z′ > a1 (22b)

and

g1,H
21

(z, z′) =
1

2κ
e−κ|z−z′| +

rH1
2κ

e−κ(a1−z)e−κ(a1−z′), z, z′ < a1, (23a)

g1,H
22

(z, z′) =
tH1
2κ

e−κ(z−a1)e−κ(a1−z′), z′ < a1 < z. (23b)

Here, the reflection and transmission coefficients at plate are

rHi = −
λ⊥
giζ

2

λ⊥
giζ

2 + 2κ
+

λ⊥
eiκ

λ⊥
eiκ+ 2

, tHi = 1−
λ⊥
giζ

2

λ⊥
giζ

2 + 2κ
−

λ⊥
eiκ

λ⊥
eiκ+ 2

(24)
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z
=
z
′

11

21 22

12

z
=

a
1

z′ = a1

(a) Labels for the Green’s function of one plate
(λ⊥

e1, λ
⊥

g1 at z = a1).

3331

11 13

32

21 22 23

12

z
=

a
1

z
=

a
2

z′ = a2

z′ = a1

z
=
z
′

(b) Labels for the Green’s function of two plates
(λ⊥

e1, λ
⊥

g1 at z = a1 and λ⊥

e2, λ
⊥

g2 at z = a2).

FIG. 3: Different labels for the regions in the z − z′ space for the Green’s functions of thin magnetodielectric plates.

3331

11 13

42

24

41

32

21 22 23

12 14

43 44

34

z
=

a
1

z
=

a
2

z
=

a
3

z′ = a3

z′ = a2

z′ = a1

z
=
z
′

FIG. 4: Labels for the Green’s function of three plates (λ⊥
e1, λ

⊥
g1 at z = a1, λ

⊥
e2, λ

⊥
g2 at z = a2 and λ⊥

e3, λ
⊥
g3 at z = a3).

for i = 1 and κ =
√

k2⊥ + ζ2. Perhaps, a better representation of this Green’s function g1,H is from construction of
matrices A, BH and C in relation with regions in Fig. 1a such as

A =
[

e−κ(z′−a1) e−κ(a1−z′)
]

, BH =

[

tH1 rH1
rH1 tH1

]

andC =

[

e−κ(a1−z)

e−κ(z−a1)

]

. (25)

BH
ij represents the element of a matrix BH in ith row, jth column and the regions in Green’s function can be obtained
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from

gN,H

ij
=

{

1
2κe

−κ|z−z′| + 1
2κAiB

H
ijCj if i+ j − 2 = N,

1
2κAiB

H
ijCj if i+ j − 2 6= N,

(26)

for i = 1, · · · , N + 1, j = 1, · · · , N + 1 and N denotes the number of plates. This representation is helpful in un-
derstanding the propagation of multiple paths possible in different regions of z − z′ space, as can be seen further in
Green’s function of two and three plates. When concerned with one plate Green’s function, the physical interpreta-
tion of reflection and transmission coefficients r1, t1 can be explained by considering a point of source and path of
propagation. When the point of observation, z < z′ the point of source, the Green’s function can be regrouped as

a1 < z < z′, g1,H =
(

e−κ(a1−z) + rH1 e−κ(z−a1)
) e−κ(z′−a1)

2κ
, (27a)

z < z′ < a1, g1,H =
(

tH1 e−κ(a1−z)
) e−κ(z′−a1)

2κ
. (27b)

The terms outside the parenthesis refer to the source and terms in parenthesis give reflection and transmission

amplitudes of the propagator by R<,H
1 ≡ rH1 and T<,H

1 ≡ tH1 (Superscript < denoting z < z′ and subscript 1 in R, T
indicating one plate). Similarly, when z > z′ the Green’s function across the planar interface is

a1 > z > z′, g1,H =
(

e−κ(z−a1) + rH1 e−κ(a1−z)
) e−κ(a1−z′)

2κ
, (28a)

z > z′ > a1, g1,H =
(

tH1 e−κ(z−a1)
) e−κ(a1−z′)

2κ
. (28b)

These give the reflection and transmission amplitudes R>,H
1 ≡ rH1 and T>,H

1 ≡ tH1 . These reflection coefficients can

also be obtained from matrix BH , where R<,H
1 = BH

12 and R>,H
1 = BH

21. And transmission coefficients can be obtained

from BH
11 and BH

22. Transmission amplitudes T<,H = T>,H for all configurations, but R<,H
1 = R>,H

1 only in the case
of one plate, which differ for the case of two plate and three plate reflection amplitudes RH

12, R
H
123, as can be seen

further.

Similarly, the solution for g2,H of two plates with the subscript label in Fig.(3b) represents the different regions in
z − z′ space is:

g2,H
11

(z, z′) =
tH1 e−κa tH2

2κ∆H
12

e−κ(a1−z)e−κ(z′−a2), z < a1 < a2 < z′,

(29a)

g2,H
12

(z, z′) =
tH2

2κ∆H
12

e−κ(a2−z)e−κ(z′−a2) +
rH1 e−κa tH2

2κ∆H
12

e−κ(z−a1)e−κ(z′−a2), a1 < z < a2 < z′,

(29b)

g2,H
13

(z, z′) =
1

2κ
e−κ|z−z′| +

rH2
2κ

e−κ(z−a2)e−κ(z′−a2) +
tH2 e−κa rH1 e−κa tH2

2κ∆H
12

e−κ(z−a2)e−κ(z′−a2), a1 < a2 < z, z′

(29c)

and

g2,H
21

(z, z′) =
tH1

2κ∆H
12

e−κ(a1−z)e−κ(z′−a1) +
tH1 e−κa rH2

2κ∆H
12

e−κ(a1−z)e−κ(a2−z′), z < a1 < z′ < a2, (30a)

g2,H
22

(z, z′) =
1

2κ
e−κ|z−z′| +

rH1
2κ∆H

12

e−κ(z−a1)e−κ(z′−a1) +
rH1 e−κa rH2

2κ∆H
12

e−κ(z−a1)e−κ(a2−z′)

+
rH2

2κ∆H
12

e−κ(a2−z)e−κ(a2−z′) +
rH1 e−κa rH2

2κ∆H
12

e−κ(a2−z)e−κ(z′−a1), a1 < z′, z < a2, (30b)

g2,H
23

(z, z′) =
tH2

2κ∆H
12

e−κ(z−a2)e−κ(a2−z′) +
rH1 e−κa tH2

2κ∆H
12

e−κ(z−a2)e−κ(z′−a1), a1 < z′ < a2 < z (30c)
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and

g2,H
31

(z, z′) =
1

2κ
e−κ|z−z′| +

rH1
2κ

e−κ(a1−z)e−κ(a1−z′) +
tH1 e−κa rH2 e−κa tH1

2κ∆H
12

e−κ(a1−z)e−κ(a1−z′), z, z′ < a1 < a2,

(31a)

g2,H
32

(z, z′) =
tH1

2κ∆H
12

e−κ(z−a1)e−κ(a1−z′) +
rH2 e−κa tH1

2κ∆H
12

e−κ(a2−z)e−κ(a1−z′), z′ < a1 < z < a2,

(31b)

g2,H
33

(z, z′) =
tH2 e−κa tH1

2κ∆H
12

e−κ(z−a2)e−κ(a1−z′), z′ < a1 < a2 < z.

(31c)

The reflection and transmission coefficients at each plate are defined in Eq. (24) for i = 1, 2. Multiple scattering
parameter here is

∆H
12 = 1− rH1 e−κarH2 e−κa, (32)

with a = a2 − a1 is the distance between the plates. Similar to matrices in Eq. (25), this Green’s function g2,H can
be represented by constructing matrices A, BH and C such as

A =

[

e−κ(z′−a2)
[

e−κ(z′−a1) e−κ(a2−z′)
]

e−κ(a1−z′)

]

,

BH =

































tH1 e−κatH2
∆H

12

[

tH2
∆H

12

rH1 e
−κatH2
∆H

12

]

rH2 +
tH2 e−κarH1 e−κatH2

∆H
12











tH1
∆H

12

tH1 e
−κarH2
∆H

12





















rH1 e
−κarH2
∆H

12

rH1
∆H

12

rH2
∆H

12

rH2 e
−κarH1
∆H

12





















rH1 e
−κatH2
∆H

12

tH2
∆H

12











rH1 +
tH1 e

−κarH2 e
−κatH1

∆H
12

[

rH2 e
−κatH1
∆H

12

tH1
∆H

12

]

tH2 e
−κatH1
∆H

12

































andC =













e−κ(a1−z)
[

e−κ(a2−z)

e−κ(z−a1)

]

e−κ(z−a2)













. (33)

Different regions in Green’s function g2,H
ij

can be obtained here from Eq. (26) for N = 2. The reflection coefficients

of two plates configuration can be obtained here from R<,H
12 = BH

13 and R>,H
12 = BH

31. And transmission coefficients

of two plates configuration are T<,H
12 = T>,H

12 = BH
11 = BH

33. The remaining terms describe the multiple possible ways
for the path of propagation depending on z and z′ with an exponential dependence on the length of propagation.
The reflection coefficients are not the same when z < z′ and z > z′, but the path of propagation defined in the terms
BH

11, B
H
12 and BH

21 are same as BH
33, B

H
23 and BH

32, respectively where the matrix is symmetric around the anti-diagonal
terms BH

ij for i+ j − 2 = N .

The solution for g3,H of three plates with the subscript label in Fig. (4) representing the different regions in z − z′
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space is:

g3,H
11

(z, z′) =
tH1 e−κa tH2 e−κb tH3

2κ∆H
123

e−κ(a1−z)e−κ(z′−a3), z < a1 < a2 < a3 < z′, (34a)

g3,H
12

(z, z′) =
tH2 e−κb tH3
2κ∆H

123

e−κ(a2−z)e−κ(z′−a3) +
rH1 e−κa tH2 e−κb tH3

2κ∆H
123

e−κ(z−a1)e−κ(z′−a3), a1 < z < a2 < a3 < z′,

(34b)

g3,H
13

(z, z′) =
tH3 ∆H

12

2κ∆H
123

e−κ(a3−z)e−κ(z′−a3) +
rH2 e−κb tH3 ∆H

12

2κ∆H
123

e−κ(z−a2)e−κ(z′−a3)

+
tH2 e−κa rH1 e−κa tH2 e−κb tH3

2κ∆H
123

e−κ(z−a2)e−κ(z′−a3), a1 < a2 < z < a3 < z′, (34c)

g3,H
14

(z, z′) =
1

2κ
e−κ|z−z′| +

rH3
2κ

e−κ(z−a3)e−κ(z′−a3) +
tH3 e−κb rH2 e−κb tH3 ∆H

12

2κ∆H
123

e−κ(z−a3)e−κ(z′−a3)

+
tH3 e−κb tH2 e−κa rH1 e−κa tH2 e−κb tH3

2κ∆H
123

e−κ(z−a3)e−κ(z′−a3), a1 < a2 < a3 < z, z′. (34d)

and

g3,H
21

(z, z′) =
tH1 e−κa tH2

2κ∆H
e−κ(a1−z)e−κ(z′−a2) +

tH1 e−κa tH2 e−κb rH3
2κ∆H

123

e−κ(a1−z)e−κ(a3−z′), z < a1 < a2 < z′ < a3,

(35a)

g3,H
22

(z, z′) =
tH2

2κ∆H
123

e−κ(a2−z)e−κ(z′−a2) +
tH2 e−κb rH3
2κ∆H

123

e−κ(a2−z)e−κ(a3−z′)

+
rH1 e−κa tH2
2κ∆H

123

e−κ(z−a1)e−κ(z′−a2) +
rH1 e−κa tH2 e−κb rH3

2κ∆H
123

e−κ(z−a1)e−κ(a3−z′), a1 < z < a2 < z′ < a3,

(35b)

g3,H
23

(z, z′) =
1

2κ
e−κ|z−z′| +

rH3 ∆H
12

2κ∆H
123

e−κ(a3−z)e−κ(a3−z′)

+
rH3 e−κb rH2 ∆H

12

2κ∆H
123

e−κ(a3−z)e−κ(z′−a2) +
rH3 e−κb tH2 e−κa rH1 e−κa tH2

2κ∆H
123

e−κ(a3−z)e−κ(z′−a2)

+
tH2 e−κa rH1 e−κa tH2 e−κb rH3

2κ∆H
123

e−κ(z−a2)e−κ(a3−z′) +
rH2 e−κb rH3 ∆H

12

2κ∆H
123

e−κ(z−a2)e−κ(a3−z′)

+
rH2 ∆H

12

2κ∆H
123

e−κ(z−a2)e−κ(z′−a2) +
tH2 e−κa rH1 e−κa tH2

2κ∆H
123

e−κ(z−a2)e−κ(z′−a2), a1 < a2 < z, z′ < a3, (35c)

g3,H
24

(z, z′) =
tH3 ∆H

12

2κ∆H
123

e−κ(z−a3)e−κ(a3−z′) +
tH3 e−κb rH2 ∆H

12

2κ∆H
123

e−κ(z−a3)e−κ(z′−a2)

+
tH3 e−κb tH2 e−κa rH1 e−κa tH2

2κ∆H
123

e−κ(z−a3)e−κ(z′−a2), a1 < a2 < z′ < a3 < z, (35d)
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and

g3,H
31

(z, z′) =
tH1 ∆H

23

2κ∆H
123

e−κ(a1−z)e−κ(z′−a1) +
tH1 e−κa rH2 ∆H

23

2κ∆H
123

e−κ(a1−z)e−κ(a2−z′)

+
tH1 e−κa tH2 e−κb rH3 e−κb tH2

2κ∆H
123

e−κ(a1−z)e−κ(a2−z′), z < a1 < z′ < a2 < a3, (36a)

g3,H
32

(z, z′) =
1

2κ
e−κ|z−z′| +

rH1 ∆H
23

2κ∆H
123

e−κ(z−a1)e−κ(z′−a1)

+
rH1 e−κa rH2 ∆H

23

2κ∆H
123

e−κ(z−a1)e−κ(a2−z′) +
rH1 e−κa tH2 e−κb rH3 e−κb tH2

2κ∆H
123

e−κ(z−a1)e−κ(a2−z′)

+
tH2 e−κb rH3 e−κb tH2 e−κa rH1

2κ∆H
123

e−κ(a2−z)e−κ(z′−a1) +
rH2 e−κa rH1 ∆H

23

2κ∆H
123

e−κ(a2−z)e−κ(z′−a1)

+
rH2 ∆H

23

2κ∆H
123

e−κ(a2−z)e−κ(a2−z′) +
tH2 e−κb rH3 e−κb tH2

2κ∆H
123

e−κ(a2−z)e−κ(a2−z′), a1 < z, z′ < a2 < a3, (36b)

g3,H
33

(z, z′) =
tH2

2κ∆H
123

e−κ(z−a2)e−κ(a2−z′) +
tH2 e−κa rH1
2κ∆H

123

e−κ(z−a2)e−κ(z′−a1)

+
rH3 e−κb tH2
2κ∆H

123

e−κ(a3−z)e−κ(a2−z′) +
rH3 e−κb tH2 e−κa rH1

2κ∆H
123

e−κ(a3−z)e−κ(z′−a1), a1 < z′ < a2 < z < a3,

(36c)

g3,H
34

(z, z′) =
tH3 e−κb tH2
2κ∆H

123

e−κ(z−a3)e−κ(a2−z′) +
tH3 e−κb tH2 e−κa rH1

2κ∆H
123

e−κ(z−a3)e−κ(z′−a1), a1 < z′ < a2 < a3 < z,

(36d)

and

g3,H
41

(z, z′) =
1

2κ
e−κ|z−z′| +

rH1
2κ

e−κ(a1−z)e−κ(a1−z′) +
tH1 e−κa rH2 e−κa tH1 ∆H

23

2κ∆H
123

e−κ(a1−z)e−κ(a1−z′)

+
tH1 e−κa tH2 e−κb rH3 e−κb tH2 e−κa tH1

2κ∆H
123

e−κ(a1−z)e−κ(a1−z′), z, z′ < a1 < a2 < a3, (37a)

g3,H
42

(z, z′) =
tH1 ∆H

23

2κ∆H
123

e−κ(z−a1)e−κ(a1−z′) +
rH2 e−κa tH1 ∆H

23

2κ∆H
123

e−κ(a2−z)e−κ(a1−z′)

+
tH2 e−κb rH3 e−κb tH2 e−κa tH1

2κ∆H
123

e−κ(a2−z)e−κ(a1−z′), z′ < a1 < z < a2 < a3, (37b)

g3,H
43

(z, z′) =
tH2 e−κa tH1
2κ∆H

123

e−κ(z−a2)e−κ(a1−z′) +
rH3 e−κb tH2 e−κa tH1

2κ∆H
123

e−κ(a3−z)e−κ(a1−z′), z′ < a1 < a2 < z < a3,

(37c)

g3,H
44

(z, z′) =
tH3 e−κb tH2 e−κa tH1

2κ∆H
123

e−κ(z−a3)e−κ(a1−z′), z′ < a1 < a2 < a3 < z. (37d)

Matrices A, BH and C can be defined for this cumbersome expression of Green’s function as
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A =

[

e−κ(z′−a3)
[

e−κ(z′−a2) e−κ(a3−z′)
] [

e−κ(z′−a1) e−κ(a2−z′)
]

e−κ(a1−z′)

]

,

BH =
1

∆H
123













tH1 e
−κatH2 e

−κbtH3 B′
12 B′

13
rH3 ∆H

123+tH3 e−κbrH2 e−κbtH3 ∆H
12

+tH3 e−κbtH2 e−κarH1 e−κatH2 e−κbtH3
B′

21 B′
22 B′

23 B′
24

B′
31 B′

32 B′
33 B′

34
rH1 ∆H

123+tH1 e−κarH2 e−κatH1 ∆H
23

+tH1 e−κatH2 e−κbrH3 e−κbtH2 e−κatH1
B′

42 B′
43 tH3 e

−κbtH2 e
−κatH1













andC =



























e−κ(a1−z)
[

e−κ(a2−z)

e−κ(z−a1)

]

[

e−κ(a3−z)

e−κ(z−a2)

]

e−κ(z−a3)



























(38)

with

B′
12 =

[

tH2 e
−κbtH3 rH1 e

−κatH2 e
−κb tH3

]

, B′
34 =

[

tH3 e
−κbtH2 e

−κarH1

tH3 e−κbtH2

]

, (39)

B′
13 =

[

tH3 ∆H
12 rH2 e

−κbtH3 ∆H
12+tH2 e−κarH1 e

−κatH2 e
−κbtH3

]

, B′
24 =

[

tH3 e−κbrH2 ∆H
12+tH3 e−κbtH2 e−κarH1 e−κatH2

tH3 ∆H
12

]

, (40)

B′
21 =

[

tH1 e
−κatH2

tH1 e
−κatH2 e

−κbrH3

]

, B′
43 =

[

rH3 e
−κbtH2 e

−κatH1 tH2 e
−κatH1

]

, (41)

B′
22 =

[

tH2 rH1 e−κatH2

tH2 e
−κbrH3 rH1 e

−κatH2 e
−κbrH3

]

, B′
33 =

[

rH3 e
−κbtH2 e

−κarH1 tH2 e−κarH1

rH3 e
−κbtH2 tH2

]

, (42)

B′
31 =

[

tH1 ∆H
23

tH1 e−κarH2 ∆H
23+tH1 e−κatH2 e−κbrH3 e−κbtH2

]

, B′
42 =

[

tH1 ∆H
23 rH2 e

−κatH1 ∆H
23+tH2 e

−κbrH3 e
−κbtH2 e

−κatH1

]

, (43)

B′
23 =

[

rH3 e
−κbrH2 ∆H

12+rH3 e
−κbtH2 e

−κarH1 e
−κatH2 rH2 ∆H

12+tH2 e
−κarH1 e

−κatH2

rH3 ∆H
12 tH2 e−κarH1 e−κatH2 e−κbrH3 +rH2 e−κbrH3 ∆H

12

]

(44)

and

B′
32 =

[

tH2 e
−κbrH3 e

−κbtH2 e
−κarH1 +rH2 e

−κarH1 ∆H
23 rH1 ∆H

23

rH2 ∆H
23+tH2 e

−κbrH3 e
−κbtH2 rH1 e

−κarH2 ∆H
23+rH1 e

−κatH2 e
−κbrH3 e

−κbtH2

]

. (45)

Different regions in Green’s function g3,H
ij

can be obtained here from Eq. (26) for N = 3. Further, multiple scattering
parameters here are

∆H
123 = (∆H

12∆
H
23 − rH1 e−κatH2 e−κbrH3 e−κbtH2 e−κa) and∆H

23 = 1− rH2 e−κbrH3 e−κb, (46)

with b = a3 − a2 is the distance between the plates. The relevance of these two plates multiple scattering parameters
∆H

12, ∆
H
23 and three plates multiple scattering parameter ∆H

123 can be seen further in the evaluation of energy (Sec.
V), where they give all paths of propagation contributing to the energy. The reflection coefficients of three plates

configuration can be obtained here from R<,H
123 = BH

14 and R>,H
123 = BH

41. And transmission coefficients of three plates

configuration here are T<,H
123 = T>,H

123 = BH
11 = BH

44.
Similarly, gE can be obtained for these configurations by solving differential equation in Eq. (11) and using boundary

conditions in Eq. (20). However, gE have similar expressions as gH , obtained by replacing superscripts H → E and
by swapping λ⊥

ei ↔ λ⊥
gi as can be deduced from the boundary conditions.
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IV. CASIMIR FORCE FROM STRESS TENSOR METHOD

Here, we are interested in calculating the force on a plate in two plates and three plates configurations from stress
tensor formalism that is based on conservation of electromagnetic momentum [18]. This is calculated using their
Green’s functions solved in previous section and relating them with their Green’s dyadic from Eq. (9). From the
Maxwell’s equations in Eq. (4) one can derive the force density f across the surface of a volume V , which measures
the flux of momentum density of the electromagnetic field when integrated over volume V from implementing the
Gauss law. This stress from electromagnetic radiation on the surface of volume V is given as

f = −∇ ·T. (47)

Here T is the stress tensor constituting the force of a plate at z = ai,

T = 1
1

2
(D ·E+B ·H)− (DE+BH) (48)

and integration volume V can be represented by a thin film with surfaces z = ai − δ and z = ai + δ enclosing the
plate, by taking the limit δ → 0. The force on the surface of plate is given as

F = −
1

τ

∫ ∞

−∞

dω

2π

∮

V

dS ·T(r, ω), (49)

for τ = 2T → ∞. The fluctuations of quantum vacuum dictate that mean value of the field 〈E〉 = 0 do not contribute
and only bilinear description of fields in Eq. (14) contribute to the flux tensor. The Casimir force, a manifestation of
quantum vacuum from flux tensor is obtained as

F = −
1

2T

∫ ∞

−∞

dω

2π

∮

V

dS · 〈T(r, ω)〉. (50)

The Casimir pressure or force per unit area on the plate at z = ai is

P =
F · ẑ

A
=

1

i

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

T33(ai + δ)− T33(ai − δ)
]

, (51)

where

T33(z) =
1

2

[

E2
1 + E2

2 − E2
3

]

∣

∣

∣

∣

z

+
1

2

[

H2
1 +H2

2 −H2
3

]

∣

∣

∣

∣

z

(52)

from Eq. (48). Using this expression initially we are interested in measuring the force between two plates F
2-δ

(Superscript 2-δ refers to force on two plates), using the Green’s function of two plates in regions of Fig. 1(b). The
force on plate at z = a2 is derived from

P 2-δ|z=a2
=

F
2-δ · ẑ

A

∣

∣

∣

∣

z=a2

=
1

i

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

T33(a2 + δ)− T33(a2 − δ)
]

, (53)

where

T33(a2 + δ) =
1

2i

[

∂∂′g2,H
13

(a2, a2)− ζ2g2,E
13

(a2, a2)− k2⊥g
2,H

13
(a2, a2)

]

+
1

2i

[

∂∂′g2,E
13

(a2, a2)− ζ2g2,H
13

(a2, a2)− k2⊥g
2,E

13
(a2, a2)

]

(54)

and

T33(a2 − δ) =
1

2i

[

∂∂′g2,H
22

(a2, a2)− ζ2g2,E
22

(a2, a2)− k2⊥g
2,H

22
(a2, a2)

]

+
1

2i

[

∂∂′g2,E
22

(a2, a2)− ζ2g2,H
22

(a2, a2)− k2⊥g
2,E

22
(a2, a2)

]

. (55)
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Implementing two plate Green’s function force between the two plates can be obtained as

P 2-δ|z=a2
=

F
2-δ · ẑ

A

∣

∣

∣

∣

z=a2

= −
1

2π2

∫ ∞

0

κ3dκ

[

rH1 rH2 e−2κa

∆H
12

+
rE1 r

E
2 e

−2κa

∆E
12

]

. (56)

Similarly, the force between three plates F3-δ is obtained by involving the Green’s function of three plates in regions
of Fig. 2. The calculation of force on the plate at z = a3 from Eq. (51) involves

T33(a3 + δ) =
1

2i

[

∂∂′g3,H
14

(a3, a3)− ζ2g3,E
14

(a3, a3)− k2⊥g
3,H

14
(a3, a3)

]

+
1

2i

[

∂∂′g3,E
14

(a3, a3)− ζ2g3,H
14

(a3, a3)− k2⊥g
3,E

14
(a3, a3)

]

(57)

and

T33(a3 − δ) =
1

2i

[

∂∂′g3,H
23

(a3, a3)− ζ2g3,E
23

(a3, a3)− k2⊥g
3,H

23
(a3, a3)

]

+
1

2i

[

∂∂′g3,E
23

(a3, a3)− ζ2g3,H
23

(a3, a3)− k2⊥g
3,E

23
(a3, a3)

]

. (58)

Further, the force between the three plates is evaluated as

P 3-δ|z=a3
=

F
3-δ · ẑ

A

∣

∣

∣

∣

z=a3

=

−
1

2π2

∫ ∞

0

κ3dκ

[

rH2 rH3 e−2κb∆H
12

∆H
123

+
rE2 r

E
3 e

−2κb∆E
12

∆E
123

+
rH1 (tH2 )2rH3 e−2κae−2κb

∆H
123

+
rE1 (t

E
2 )

2rE3 e
−2κae−2κb

∆E
123

]

. (59)

V. CASIMIR ENERGY FROM MULTIPLE SCATTERING FORMALISM

Here we are interested in calculating the Casimir energy between two plates (∆E(12)), three plates (∆E(123)), four
plates (∆E(1234)) and five plates (∆E(12345)) configurations from multiple scattering formalism. From the Green’s
functions in Sec. III, the reflection coefficients of one plate, two plates and three plates configurations are used to
calculate these energies of multiple plates. The total energy E(12···i,i+1···N) between two disjoint bodies (12 · · · i) and
(i+ 1 · · ·N) can be decomposed as [19]

E(12···i,i+1···N) = E0 +∆E(12···i) +∆E(i+1···N) +∆E(12···i)(i+1···N). (60)

Here E0 is the energy of the background vacuum which is usually infinite, ∆E(12···i), ∆E(i+1···N) are self-energies of
the bodies, and ∆E(12···i)(i+1···N) is the interaction energy. Self-energy can be interpreted as the energy needed to
create the bodies independently. The “finite part” of this total energy E(12···i,i+1···N) after removing the divergent
parts (E0 and ∆Ei, i ∈ [1, N ]) is what we are interested in calculating ∆E(12···i,i+1···N), which is responsible for the
Casimir force and the Casimir interaction energy ∆E(12···i)(i+1···N) is usually finite.
Multiple scattering formalism predicts this Casimir interaction energy ∆E(12···i)(i+1···N) between the two disjoint

planar bodies (12 · · · i) and (i+1 · · ·N) with reflection coefficients R(12···i) and R(i+1···N) (with superscript H denoting
TM mode and E for TE mode, subscript (12 · · · i) and (i+1 · · ·N) denoting the optical properties of the two bodies),
respectively as

∆E(12···i)(i+1···N)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

1−R<,H

(12···i)e
−κLR>,H

(i+1···N)e
−κL

]

+ ln
[

1−R<,E

(12···i)e
−κLR>,E

(i+1···N)e
−κL

]

]

(61)
where L is the distance between the bodies. This assumes that Casimir interaction energy can be represented only
using reflection coefficients alone.
The Casimir energy between two plates ∆E(12) with reflection coefficients R(1) = r1, R(2) = r2 (Eq. (24) for

i = 1, 2) and distance l12 between them, can be easily evaluated as

∆E(12)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
12

]

+ ln
[

∆E
12

]

]

, (62)
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where ∆12 is multiple scattering parameter of two plates in Eq. (32) such as

∆12 = 1− r1e
−κl12r2e

−κl12 . (63)

In this case of two plate, ∆E(12) = ∆E(1)(2) since self-energies of plates ∆E(1) and ∆E(2) are infinite. This expression

for energy can be checked by finding the force and comparing with F
2-δ between the two plates (Eq. (56)) where

P 2-δ|z=a2
= −

1

A

∂∆E(12)

∂a
(64)

with a = l12.
The Casimir energy between three plates ∆E(123) with reflection coefficients R(1) = r1, R(2) = r2, R(3) = r3 (Eq.

(24) for i = 1, 2, 3) and with distances l12, l23 between them, respectively can be evaluated from using Eq. (60) such
as

E(123) = E0 +∆E(12) +∆E(3) +∆E(12)(3) = E0 +∆E(1) +∆E(23) +∆E(1)(23). (65)

Considering the finite terms in this expression, energy can be solved as

∆E(123)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
12

]

+ ln
[

∆E
12

]

+ ln
[

1−R<,H
12 R>,H

3 e−2κl23
]

+ ln
[

1−R<,E
12 R>,E

3 e−2κl23
]

]

=
1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
23

]

+ ln
[

∆E
23

]

+ ln
[

1−R<,H
1 R>,H

23 e−2κl12
]

+ ln
[

1− R<,E
1 R>,E

23 e−2κl12
]

]

. (66)

Reflection coefficients R<
12 and R>

23 can be obtained from matrix B of two plates Green’s function. The Casimir energy
for three plates is derived as

∆E(123)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
123

]

+ ln
[

∆E
123

]

]

, (67)

where ∆123 is multiple scattering parameter of three plates in Eq. (46) which can be defined as Eq. (2) with

∆13 = −rH1 e−κl12tH2 e−κl23rH3 e−κl23tH2 e−κl12 (68)

and using this we define the generalized multiple scattering parameter such as

∆ij = 1− rie
−κlijrje

−κlij (69)

for all j = i + 1 (nearest neighbour scattering, i ∈ [1, N − 1] where i and j are adjacent). These terms in ∆123 can
be visualized in Fig. 1 where ∆12 and ∆23 are loops between bodies (1)− (2) and (2)− (3), respectively. Term ∆13

in Eq.(68) refers to loop between (1) − (3) with initial reflection with r1, propagation with exponential dependence
of length l12, transmission with t2, propagation of length l23, reflection with r3, again propagation of length l23,
transmission with t2, propagation of length l12 and this propagation continues. Further, these loops representation
can be seen for multiple scattering parameters ∆1234, ∆12345 of N = 4, 5 configurations. Similarly, this expression of
energy for three plates can be checked by finding the force and comparing it with F

3-δ between the three plates (Eq.
(59)) where

P 3-δ|z=a3
= −

1

A

∂∆E(123)

∂b
. (70)

with a = l12 and b = l23.
In a similar manner, Casimir energy between four plates ∆E(1234) with reflection coefficients R(1) = r1, R(2) = r2,

R(3) = r3, R(4) = r4 (Eq. (24) for i = 1, 2, 3, 4) and with distances l12, l23, l34 between them, respectively can be
evaluated as

∆E(1234)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
1234

]

+ ln
[

∆E
1234

]

]

, (71)
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where multiple scattering parameter of four plates is defined in Eq. (3). Here ∆ij for j = i+1 is defined in Eq. (69),
∆13 is same as in Eq.(2),

∆24 = −r2e
−κl23t3e

−κl34r4e
−κl34t3e

−κl23 (72)

and

∆14 = −r1e
−κl12t2e

−κl23t3e
−κl34r4e

−κl34t3e
−κl23t2e

−κl12 . (73)

Using this we define

∆ik = −rie
−κli,i+1ti+1e

−κli+1,i+2ti+2 · · · e
−κlk−1,krke

−κlk−1,k · · · ti+1e
−κli,i+1 (74)

for all k ≥ i + 2 (next-to-nearest neighbour, next-to-next-to-nearest neighbour, · · · scattering, i ∈ [1, N − 2] where i
and k are not adjacent). This Casimir energy between four plates ∆E(1234) was evaluated from using Eq. (60) such
as

E(1234) = E0+∆E(12)+∆E(34)+∆E(12)(34) = E0+∆E(1)+∆E(234)+∆E(1)(234) = E0+∆E(123)+∆E(4)+∆E(123)(4).
(75)

We compared the Casimir energy obtained for three plates from multiple scattering formalism with Casimir force
obtained from the stress tensor method in Eq. (70). This ensures the multiple scattering formalism for disjoint
many bodies we have implemented and also checks the reflection coefficients (R12 and R23 in Eq. (66)) obtained for
two plates configuration. From different ways of obtaining Casimir energy for four plates in Eq. (75), we check the
reflection coefficients obtained for three plates configuration (R234 and R123 in ∆E(1)(234) and ∆E(123)(4), respectively)
implementing only reflection coefficients for two plates configuration (R12 and R23 in ∆E(12)(34)). For five plates the
multiple scattering parameter can be obtained, such as

∆12345 = ∆12∆23∆34∆45 +∆12∆24∆45 +∆13∆34∆45 +∆12∆23∆35 +∆13∆35 +∆12∆25 +∆14∆45 +∆15, (76)

where the Casimir energy between five plates ∆E(12345) was evaluated from using Eq. (60) such as

E(12345) = E0 +∆E(123) +∆E(45) +∆E(123)(45) = E0 +∆E(12) +∆E(345) +∆E(12)(345). (77)

These multiple scattering parameters can be visualized using a simple diagrammatic way, such as in Figs. 2 and 5
with each term described by loops. These results for ∆ are similar to the expressions obtained by Allocca et al. [6]
for N = 2, 3, 4, 5 (Multiple scattering parameter ∆12, ∆123, ∆1234, ∆12345 here referred to as generating function ∆1,
∆2, ∆3, ∆4, respectively in Ref. [6, 20]). Further, using this similar approach of separating partitions such as in Eq.s
(2), (3) and (76), Casimir energy of N δ-plates can be generalized such as Eq. (1) where ∆12···N can be evaluated
from the discussion above.

A. Perfectly dielectric N δ-function plates

For analysis of our results, we consider a simple case of N perfect electrically conducting (λei → ∞, λgi = 0)
δ-function plates with distances lij between the nearest plates {i, j} and optical properties rHi = 1, rEi = −1, tHi =
tEi = 0. In this case, the Casimir energy for N δ−function plates is obtained from Eq. (1) as

∆E(12···N)

A
=

1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

[

ln
[

∆H
12∆

H
23 · · ·∆

H
N−1,N

]

+ ln
[

∆E
12∆

E
23 · · ·∆

E
N−1,N

]

]

=
1

2

∫ ∞

−∞

dζ

2π

∫

d2k⊥
(2π)2

2 ln
[

(1− e−2κl12)(1− e−2κl23) · · · (1 − e−2κlN−1,N )
]

= −
π2

720

N−1
∑

i=1

1

l3i,i+1

. (78)

This result is straightforward since only the nearest neighbour scattering ∆ij is present. For the more specific case
of uniform distances between the perfectly conducting dielectric plates lij = d, the Casimir energy of N plates is
∆E(12···N) = (N − 1)∆E(12), where Casimir energy between nearest two plates is ∆E(12)/A = −π2/720d3 [1] and

consecutively, the force is F
2-δ · ẑ/A = π2/240d4 [2] from Eq. (64). This shows that increasing the dielectric plates

leads to intensifying of the Casimir force as demonstrated by Allocca et al. [6]. The result in Eq. (78) was shown
previously for scalar case by considering N δ-function plates satisfying Dirichlet boundary conditions [21].
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l12 l23 l34 l45

r1 r2
t2

r3
t3

r4
t4

r5

∆12345

∆12∆23∆34∆45

∆12∆24∆45

∆13∆34∆45

∆12∆23∆35

∆13∆35

∆12∆25

∆14∆45

∆15

FIG. 5: Visualizing ∆12345 with optical properties, ri are reflection coefficients and ti are transmission coefficients of
the plates. lij is the distance between the plates where i and j are adjacent plates.

VI. CONCLUSIONS

The Casimir energy for N = 2, 3, 4, 5 δ−function plates was derived using the multiple scattering formalism and by
implementing the optical properties of plates. The pattern seems generic, and the result for N plates was predicted
by extrapolation and organising Casimir energy density derived from multiple scattering parameter ∆ into nearest
neighbour scattering and next-to-nearest neighbour scattering terms. Visualization of the distribution of scattering
terms in multiple scattering parameter using diagrammatic loops appears to be an easy way to obtain N plates result.

Green’s functions were derived for two and three δ−function plates configurations, using which their reflection
coefficients were obtained. Multiple scattering formalism was utilised to derive the Casimir energy between two,
three, four and five plates configurations. In the case of Casimir energy for two plates configuration, reflection
coefficients of a single plate were used. In the case of Casimir energy for three plates, reflection coefficients of a single
plate and two plates configurations were used. In the case of Casimir energy for four plates, reflection coefficients
of a single plate and three plates configurations were used. Similarly, in the case of Casimir energy for five plates,
reflection coefficients of two plates and three plates configurations were used. For the case of two and three plates
configurations, the Casimir energy was checked with force derived from the stress tensor method. Further, one can
obtain an exact closed-form expression for N plates. It may also be interesting to expand the matrices defined in Sec.
III in order to derive Green’s functions for N plates in a systematic manner. Investigating the Casimir energy for
three plates configuration may also have relevance in the context of Casimir pistons [22–25].
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[5] M. S. Tomaš, “Casimir effect across a layered medium,” International Journal of Modern Physics: Conference Series,

vol. 14, pp. 561–565, 2012.
[6] A. Allocca, S. Avino, S. Balestrieri, E. Calloni, S. Caprara, M. Carpinelli, L. D’Onofrio, D. D’Urso, R. De Rosa, L. Errico,

G. Gagliardi, M. Grilli, V. Mangano, M. Marsella, L. Naticchioni, A. Pasqualetti, G. P. Pepe, M. Perciballi, L. Pesenti,
P. Puppo, P. Rapagnani, F. Ricci, L. Rosa, C. Rovelli, D. Rozza, P. Ruggi, N. Saini, V. Sequino, V. Sipala, D. Stornaiuolo,
F. Tafuri, A. Tagliacozzo, I. Tosta e Melo, and L. Trozzo, “Casimir energy for n superconducting cavities: a model for the
YBCO (GdBCO) sample to be used in the archimedes experiment,” The European Physical Journal Plus, vol. 137, no. 7,
p. 826, 2022.

[7] G. Barton, “Casimir effects for a flat plasma sheet: I. energies,” Journal of Physics A: Mathematical and General, vol. 38,
no. 13, pp. 2997–3019, 2005.

[8] P. Parashar, K. A. Milton, K. V. Shajesh, and M. Schaden, “Electromagnetic semitransparent δ-function plate: Casimir
interaction energy between parallel infinitesimally thin plates,” Phys. Rev. D, vol. 86, p. 085021, Oct 2012.

[9] R. Balian and B. Duplantier, “Electromagnetic waves near perfect conductors. i. multiple scattering expansions. distribution
of modes,” Annals of Physics, vol. 104, no. 2, pp. 300–335, 1977.

[10] R. Balian and B. Duplantier, “Electromagnetic waves near perfect conductors. ii. casimir effect,” Annals of Physics,
vol. 112, no. 1, pp. 165–208, 1978.

[11] O. Kenneth and I. Klich, “Opposites attract: A theorem about the Casimir force,” Phys. Rev. Lett., vol. 97, p. 160401,
Oct 2006.

[12] T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, “Casimir forces between arbitrary compact objects,” Phys. Rev. Lett.,
vol. 99, p. 170403, Oct 2007.

[13] K. A. Milton, P. Parashar, M. Schaden, and K. V. Shajesh, “Casimir interaction energies for magneto-electric δ-function
plates,” Nuovo Cimento C Geophysics Space Physics C, vol. 36, pp. 193–204, May 2013.

[14] O. Kenneth and I. Klich, “Casimir forces in a t-operator approach,” Phys. Rev. B, vol. 78, p. 014103, Jul 2008.
[15] J. Schwinger, L. L. DeRaad, and K. A. Milton, “Casimir effect in dielectrics,” Annals of Physics, vol. 115, no. 1, pp. 1–23,

1978.
[16] I. Brevik, P. Parashar, and K. V. Shajesh, “Casimir force for magnetodielectric media,” Phys. Rev. A, vol. 98, p. 032509,

Sep 2018.
[17] K. Shajesh, P. Parashar, and I. Brevik, “Casimir–Polder energy for axially symmetric systems,” Annals of Physics, vol. 387,

pp. 166–202, 2017.
[18] J. Schwinger, L. Deraad, K. Milton, W. Tsai, and J. Norton, Classical Electrodynamics. Advanced book program, Avalon

Publishing, 1998.
[19] K. V. Shajesh and M. Schaden, “Many-body contributions to Green’s functions and Casimir energies,” Phys. Rev. D,

vol. 83, p. 125032, Jun 2011.
[20] L. Rosa, S. Avino, E. Calloni, S. Caprara, M. De Laurentis, R. De Rosa, G. Esposito, M. Grilli, E. Majorana, G. P. Pepe,

S. Petrarca, P. Puppo, P. Rapagnani, F. Ricci, C. Rovelli, P. Ruggi, N. L. Saini, C. Stornaiolo, and F. Tafuri, “Casimir
energy for two and three superconducting coupled cavities: Numerical calculations,” The European Physical Journal Plus,
vol. 132, p. 478, Nov 2017.
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