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Surface distortion splits surface plasmons asymmetrically in energy with a net lowering of zero-point
energy. We contrast this with the symmetrical distortion of electronic energy levels. We use conformal
mapping to demonstrate this splitting and find that surface corrugation always leads to a decrease in the
zero-point energy of a metallic surface, but the decrease is not strong enough to drive a surface
reconstruction on its own. A second metallic surface in proximity to the first gives a more significant
lowering of energy, sufficient to drive the instability of a mercury thin film. This mechanism provides a
fundamental length scale limit to planar nanostructures.
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Introduction.—Casimir forces [1,2] arise from zero-point
quantum fluctuations of the electromagnetic field and play
a central role in biology, adhesion, friction, wetting, and a
host of other phenomena. Here we are concerned with the
impact of Casimir forces on the stability of surfaces in the
presence of distortion. Surface plasmons will be our focus.
Let us contrast Casimir bonding with electronic bond
formation. When two hydrogen atoms interact, their atomic
energy levels will split symmetrically, E → E� t forming
bonding and antibonding states. The symmetric and anti-
symmetric modes will be lowered and raised in energy: to a
first approximation the shifts are of equal and opposite
sign; those occupying the lower energy level are respon-
sible for the chemical bonding. Two helium atoms do not
form an electronic bond as both the upper and lower levels
are equally populated.
The electromagnetic dipole modes of two helium atoms

in close proximity also split, but if we consider the zero-
point energy, all modes are occupied. So why is the Casimir
force attractive? It is the second order derivative controlling
the time dependence in the equations governing the
electromagnetic fields, which constitutes the important
difference compared to the first order time derivative of
the time-dependent Schrödinger equation, although their
spatial parts are similar. As such, the frequency dependence
appears as ω2 for harmonic fields after a Fourier transform.
When eigenmodes are coupled together due to interaction,
it is this quantity which is approximately equally split by
the interaction of levels: ω2 � Δ so that even though each
mode is equally populated as in the electronic case, there is
a net lowering of energy of−ℏΔ2=8ω3 after taking a square
root. This applies to any splitting of degenerate electro-
magnetic modes such as those between two spheres as
discussed above [3], two plasmonic surfaces in proximity
[4], or the corrugation of a plasmonic surface where a band

gap is opened [5], accounting for the almost universal
attractive nature of dispersion forces. Exceptions can occur
where the interaction is not between degenerate levels [6].
When a surface is periodically distorted, band gaps are

opened and the ensuing asymmetric splitting of levels [3,4]
will favor distortion, leading to structural instability. Other
more powerful forces may oppose distortion, but we show
that Casimir instability sometimes wins. Recent develop-
ment of nanofabrication and measurement techniques
already bring some elaborate designs of fluctuation-related
phenomena into reality [6–14], such as Casimir torque [12],
nonmonotonic Casimir force in gratings [13], and strong
Casimir force reduction [14]. These works reveal that
geometric modifications offer an excellent platform to
manipulate Casimir forces. However, theoretical studies
of Casimir force and energy require a reliable and tractable
method to calculate their electromagnetic scattering matri-
ces [15–17]. Owing to its computational speed and accu-
racy, we employ a method based on transformation optics
to investigate the role of Casimir energy and demonstrate
that asymmetric splitting of plasmonic modes makes a
negative contribution to the surface energy of a single
surface. Introducing a second surface boosts the asymmet-
ric splitting and the negative Casimir contribution creates
instabilities for both a gold cavity system and a mercury
thin film.
Asymmetric splits of plasmonic modes.—We first intro-

duce a conformal mapping technique that can calculate the
scattering matrix of corrugated surfaces very efficiently [5]
(see Sec. I in Supplemental Material for details [18]). We
start from a single corrugated surface with its profile given
by a conformal mapping z ¼ Γ ln ðew − iw0Þ

−1, which
transforms a flat surface (with the air-metal boundary at
u ¼ u0 in the slab frame as shown in Fig. 1(a) to a
corrugated surface. Here, w ¼ u0 þ iv and z ¼ xþ iy
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are the surface coordinates in the slab and metasurface
frame, respectively. As shown in Fig. 1(a), the parameter Γ
determines the corrugation period a ¼ 2πΓ, and the modu-
lation strength A, defined as the distance between the top of
the protrusion and the average position, is proportional to
w0 (jw0j ≤ eu0). When w0 is small, the profile of the
corrugated surface is almost a sinusoidal function with
A ¼ Γw0=e

u0 . We use the Drude model to describe the
metal throughout this work.
To confirm the asymmetric split of plasmonic modes, we

calculate the eigenfrequencies of the plasmonic modes for
the corrugated surface by finding the zeros of detðR−1

1
Þ in

the real frequency axis for a given wave vector. Here, R1 is
the reflection matrix of the surface in Fig. 1(a) using a
Fourier representation. The dimension of R1 is 2ð2ncg þ 1Þ,
where ncg is the cutoff of the basis of Bloch wavenumber
G ¼ 2π=a, and the factor 2 outside the bracket accounts for
two polarizations. Low-index gold surfaces reconstruct to
rather complex surface unit cells [32–35], and in order to
investigate whether the asymmetric splits of plasmonic
modes play a role in the reconstruction, we choose our
geometric parameters to mimic the surface profile of the
reconstructed Au(100) surface with a corrugation period
a ¼ 14.4 Å and modulation strength A ¼ 1.44 Å [32].
Figures 1(b)–1(c) shows the plasmonic dispersion of such
a corrugated plasmonic surface (subtracting the surface
plasmon frequency ωsp) and we note that the corrugation

splits the plasmonic modes to lower (red squares) and upper
(blue circles) plasmonic branches. The sum of their
frequencies is shown by magenta dots in Figs. 1(b)–1(c).
We see that in the kzΓ ¼ 0.0 plane, the downshift in
frequency of the lower branch is larger than the upshift
of the upper branch, indicating that their sum is negative
with respect to 2ωsp. This confirms the aforementioned
argument that the second order time derivative in Maxwell
equations makes the sum of ω negative. Such asymmetric
split increases when ky approaches the Brillouin zone (BZ)
boundary [Fig. 1(b)]. Along the homogeneous z direction,
kz increases without bound in a continuum model.
However, the corrugation-induced split becomes almost
symmetric when kz increases to a large value, as shown in
Fig. 1(c). Two plasmonic modes and the sum of their
frequencies as a function of kz for kyΓ ¼ 0.5 are shown in
Fig. 1(c). kz is normalized by the Fermi wave number kF,
and its value is kFΓ ¼ 2.78. We see that the asymmetric
split approaches zero when kz > 0.3kF, indicating that the
corrugation induced splitting effect rapidly approaches zero
when kz is large.
Plasmonic contributions to reconstructed gold

surfaces.—The difference in plasmonic zero-point energies
should be considered when we consider the change of the
ground state surface energy during a surface reconstruction
process. We see that the corrugation induced asymmetric
splits of plasmonic modes are significant in a certain region
of the BZ, and in order to quantify such plasmonic mode
contributions to the zero-point energy (per unit area), we
use the following expression:

E ¼
1

ð2πÞ2

Z
þπ=a

−π=a

dky

Z
þkzc

−kzc

dkz
ℏ

2π

Z
ωp

0

dωKsgðω; ky; kzÞ;

ð1Þ

Ksgðω; ky; kzÞ ¼
X
i

Im½lnðλiÞ�; ð2Þ

where λi are eigenvalues of reflection matrix R1 and kzc is
the chosen cutoff value of kz. Equation (2) and detðR−11 Þ do
essentially the same task of capturing the plasmonic modes
in the complex frequency plane [19,20] (see Sec. II A in the
Supplemental Material [18]). We plot in Fig. 2(a) the
calculated Ksg as a function of ω for the flat (dashed lines)
and corrugated gold (solid lines) surfaces. When the loss is
small (γ ¼ 1 × 10−4 meV), the Ksg for the flat surface is a
step function, with the sharp change occurring at ωsp, as
shown by the gray dashed line in Fig. 2(a). Corrugations
induce two additional steplike features [solid gray line in
Fig. 2(a)], indicating the emergence of two plasmonic
modes in accordance with the results in Fig. 1. Increasing γ
to 35 meV, the step edges are smoothed, but the salient
features of plasmonic modes remain, as shown by the blue
lines in Fig. 2(a). This confirms that the Ksg defined in
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FIG. 1. (a) The schematic picture of a corrugated surface with
its period a and modulation strength A defined herein. Its profile
in the metasurface frame is generated from the slab frame using a
conformal mapping. (b)–(c) The eigenfrequencies of two plas-
monic modes for a corrugated surface with respect to ωsp in the
kzΓ ¼ 0.0 plane (b) and kyΓ ¼ 0.5 plane (c) are plotted by filled
squares and circles. The magenta triangles show the sum of
these two modes. The geometric parameters are Γ ¼ 2.291 Å,
w0 ¼ 0.557, and u0 ¼ 0. We use a Drude model with
ωp ¼ 9.0 eV and γ ¼ 1 e–4 meV.
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Eq. (2) successfully captures the plasmonic modes of these
surfaces.
We then perform the integral (1) to investigate sum of

plasmonic mode frequencies up to the bulk plasmon
frequency ωp. As a control calculation, we confirm that
the kernel function and integral method successfully
reproduces the essential physics for a flat gold surface
(See Sec. II B in the Supplemental Material [18]). We then
apply Eq. (1) to investigate the zero-point energy plasmonic
contributions of a corrugated surface. Figure 2(b) shows the
corrugation induced change of zero-point energy ΔE½¼
Eðw0Þ − E0� for different values of kzc. For a fixed cutoff
kzc, the decrease of zero-point energy converges to a finite
number with the increase of ncg (> 6), indicating that the
energy differences between flat and corrugated surfaces
approach a converged result for a reasonable number of
Fourier components along the corrugation (y) direction,
and then the only physically meaningful cutoff is kzc. The
asymmetric split of plasmonic modes shown in Fig. 1

suggests that the decrease of surface energy should approach
a finite number when kz is large enough, which is confirmed
in Fig. 2(b). We see that the change of zero-point energy
converges to−0.18 meV=Å2 when kzc > 0.2kF, confirming
that the splitting of plasmonic modes under geometric
corrugations decreases the zero-point energy. We note that
there is always a momentum cutoff above which we need to
go beyond a continuum model, and we need to solve the
plasmon problem using quantum many-body formulations.
For Au, that cutoff is ∼0.6kF (see Sec. II C in Supplemental
Material [18]), and the classical approach here converges (at
kzc ∼ 0.2kF) well before this limit.
Casimir energy of a metallic cavity.—We see that the

zero-point energy of a corrugated surface is lower than that
of flat surface due to the asymmetric splitting of plasmonic
modes. However, the decrease is small compared with the
typical surface energy change in a reconstruction process,
e.g., 26.5 meV=Å2 for the Au (100) surface [32], and hence
the zero-point energy of a single air-metal boundary cannot
drive metal surface reconstruction. We will show below that
Casimir energy change can induce surface corrugation in a
metal cavity system defined in Fig. 3(a). The distance L
between two surfaces is defined based on the average
position. Before performing rigorous calculations, we first
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FIG. 3. (a) The schematic picture of the metallic cavity with one
corrugated surface and one flat surface. (b) The coefficients Cw as
a function of the corrugation period a calculated by PFA and
Lifshitz formula are shown by blue stars and red circles,
respectively. The filled and open markers are results for L ¼
15 and 25 nm, respectively.
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FIG. 2. (a) The Ksg as a function of frequency for kyΓ ¼ 0.1
and kzΓ ¼ −0.8. The cutoff in Fourier order is ncg ¼ 3, which
already reaches convergence. The gray and blue lines correspond
to γ ¼ 1 × 10−4 meV and γ ¼ 35 meV, respectively. (b) The
decreases of surface energy for four different cutoff values of kzc
are shown by solid gray, red, magenta, and blue lines. The dashed
line highlights the convergent value −0.18 meV=Å2.
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estimate the role of corrugations under the proximity force
approximation (PFA) [16,36]. PFA calculates the Casimir
energy by discretizing the corrugated surface into several
small flat sectors and add the plane-plane Casimir energy
contributions together to give the total energy [21–27]. The
fact that the Casimir energy between two perfect mirrors is
proportional to−L−3 can give us an intuitive understanding
of the corrugation effect. Since the dependence of Casimir
energy is not linear in L, the protruded portion lowers the
Casimir energy more than the increase of energy of the
concave region, giving an overall decrease of Casimir
energy when corrugations are present. To characterize this,
we define the quantity Cw as Eðw0Þ ¼ E0 þ CwA

2, where
E0 is the Casimir energy for the cavity containing two flat
surfaces (w0 ¼ 0) and Eðw0Þ is that of the cavity with one
corrugated surface (w0 ≠ 0) with L fixed. Symmetry
requires that there is no linear term in A (see Sec. III in
the Supplemental Material [18]). The calculatedCw by PFA
as a function of a for L ¼ 15 and 25 nm is shown by filled
and open stars in Fig. 3(b). We see thatCw is negative for all
a, and the magnitude of Cw for L ¼ 15 nm is larger than
those for L ¼ 25 nm, consistent with the intuitive under-
standing. We also note that Cw does not change much when
varying a owing to the way PFA handles the problem.
We then calculate the corrugation induced change in

Casimir energy rigorously using the conformal mapping
technique. The Casimir energy of such a cavity system can
be calculated using the Lifshitz mode counting function
Kcvðω ¼ iξ; ky; kzÞ ¼ ln det½I −R1PR2P� in the integral
(1) without any cutoffs in frequency and wave numbers,
where R1 and R2 are reflection matrices of surface O1 and
O2 using the Fourier basis and Pgg0 ¼ expðikgxLÞδgg0 is the
propagation phase matrix. In our formulation, the integral is
performed as usual in the imaginary frequency axis. The
calculated Cw for L ¼ 15 and 25 nm are shown by filled
and open red dots in Fig. 3(b). When a is large as compared
to A, the PFA results agree well with the rigorous Lifshitz
result. This shows that PFA can give reasonably reliable
Casimir energies when the modulation period is in the
micron scale. However, corrugation always increases the
surface area, and the surface energy due to bond breaking
must increase correspondingly. Whether a metal surface
can lower its surface energy by corrugation is then a
competition between the decrease due to Casimir energy
[Fig. 3(b)] and the increase due to electronic surface energy.
We can express the change of energy to the leading order as
ΔE ¼ ðCw þ CsfÞA

2, where Cw and Csf are contributions
from Casimir energy and intrinsic surface energy, respec-
tively. The intrinsic surface energy contribution Csf is
proportional to the increase of surface area and equal to
2π2γsf=a

2, where γsf is the surface tension coefficient.Csf is
positive and decays parabolically in a, while the Casimir
energy contribution Cw is almost a negative constant for
a in the micron scale. Therefore, the surface will be

corrugated if another surface O2 is placed close enough
to the surface.
It is important to note that the values of Cw calculated by

the Lifshitz formula are much more negative than those by
PFA when the modulation period is less than 100 nm,
indicating that corrugations induce a Casimir energy
decrease more rapidly than pairwise additive estimations
like the PFA. This shows that the surface will be MORE
corrugated than the results predicted by PFA because of the
additional lowering in energy that is computed accurately
by our method. Such a disagreement is partly because PFA
ignores the corrugation-induced asymmetric splits in plas-
monic modes of a single surface. Figure 3 shows the zero-
point energy lowering due to the coupling with another
surface, while the result in Fig. 2 is an intrinsic single
boundary lowering in zero-point energy. Both of them
share the same mechanism if we understand them as the ω2

eigenvalue perturbation problem.
Instabilities of a mercury film.—We now consider

another example of a pair of metal-dielectric boundaries.
We consider the stability of a mercury film with a thickness
d, embedded between two dielectric media ε1 and ε2 (see
inset of Fig. 4). We assume that the upper surface has a
corrugated profile A sinð2πy=aÞ, and again express the
change of energy as ΔE ¼ ðCw þ CsfÞA

2, where Cw here is
the contribution from the Casimir energy change due to the
coupling of the plasmons at the two metal-dielectric
interfaces. As Csf is positive and decays parabolically in
a, while Cw is almost a negative constant for the micron
size a, a mercury film with a given thickness will become
unstable because the Casimir energy will dominate when
the corrugation period a is larger than a critical value.
To quantify the instability, we calculate Cw within PFA

a ( m)

Stable

d
 (

n
m

)

d
a2

1

2 = 1

2 = 2

2 = 3

Unstable

FIG. 4. The Cw þ Csf ¼ 0 line in the thickness d and period a
plane for ε2 ¼ 1, 2, and 3 are shown by solid blue, red, and
magenta lines, respectively. The inset is the schematic picture of
the thin film embedded between two dielectric media ε1 and ε2.
The parameters of mercury used are ωsp ¼ 6.83 eV, and surface

tension coefficient γsf ¼ 27.6 meV=Å2 taken from Ref. [40].
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together with quasistatic approximation and then plot the
Cw þ Csf ¼ 0 line by the solid blue line in Fig. 4 for
ε1 ¼ ε2 ¼ 1, which confirms the above statements [37].
The mercury film is usually placed on some substrate, so
we also plot the Cw þ Csf ¼ 0 line for ε2 ¼ 2 and 3 by the
solid red and magenta line, respectively, while keeping
ε1 ¼ 1. Compared with the ε2 ¼ 1 case, we see that the
critical values of a increase as ε2 increases. All these results
show that a flat thin mercury film is unstable against
corrugation in the large scale. In other words, the Casimir
energy contributed by surface plasmons due to surface
corrugations provides a fundamental scale limit to planar
nanostructures. This is also an example of a Rayleigh-
Taylor instability [38,39].
Conclusions.—We demonstrated that surface corruga-

tions induce plasmonic modes of metal surfaces to split
unevenly because the equation of motion of plasmons is
second order in time which is generally true for electro-
magnetic excitations. Such an asymmetric split always
decreases the zero-point energy of a single air-metal
interface and can give rises to the decrease of the
Casimir energy for a cavity system consisting of two
metallic surfaces. It also contributes to the instability of
a mercury thin film against corrugation. Since such an
asymmetric mode splitting is intrinsic to the coupling of
plasmonic modes, their contributions can be observed in
other hybridized plasmonic systems, leading to one kind of
electromagnetic bonding, and can cause the attraction of
neutral metallic objects. Last but not least, accurate
calculations of zero-point and Casimir energies of complex
interfaces usually require a formidable amount of computer
resources, and our calculations are made tractable by the
conformal mapping technique which can provide an
excellent platform to investigate other electromagnetic
fluctuation-type problems.

K. D. and J. B. P. acknowledge support from the Gordon
and Betty Moore Foundation. D. O. acknowledges support
from the Imperial College President’s Scholarship. K. D.
and C. T. C. acknowledge funding from Research Grants
Council (RGC) Hong Kong through Grants No. AoE/P-02/
12 and No. 16303119.

*phchan@ust.hk
†j.pendry@imperial.ac.uk

[1] J. N. Israelachvili, Intermolecular and Surface Forces

(Academic, San Diego, 1998).
[2] A.W. Rodriguez, F. Capasso, and S. G. Johnson, Nat.

Photonics 5, 211 (2011).
[3] P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I.

Stockman, Nano Lett. 4, 899 (2004).
[4] F. Intravaia, C. Henkel, and A. Lambrecht, Phys. Rev. A 76,

033820 (2007).
[5] J. B. Pendry, P. A. Huidobro, and K. Ding, Phys. Rev. B 99,

085408 (2019).

[6] R. Zhao, L. Li, S. Yang, W. Bao, Y. Xia, P. Ashby, Y. Wang,
and X. Zhang, Science 364, 984 (2019).

[7] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[8] H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W.M.

Mansfield, andC. S. Pai, Phys.Rev. Lett.101, 030401 (2008).
[9] A. Lambrecht and V. N. Marachevsky, Phys. Rev. Lett. 101,

160403 (2008).
[10] J. N. Munday, F. Capasso, and V. A. Parsegian, Nature

(London) 457, 170 (2009).
[11] A. A. Banishev, J. Wagner, T. Emig, R. Zandi, and U.

Mohideen, Phys. Rev. Lett. 110, 250403 (2013).
[12] D. A. T. Somers, J. L. Garrett, K. J. Palm, and J. N. Munday,

Nature (London) 564, 386 (2018).
[13] L. Tang, M. Wang, C. Y. Ng, M. Nikolic, C. T. Chan,

A.W. Rodriguez, and H. B. Chan, Nat. Photonics 11, 97
(2017).

[14] F. Intravaia, S. Koev, I. W. Jung, A. A. Talin, P. S. Davids,
R. S. Decca, V. A. Aksyuk, D. A. R. Dalvit, and D. Lopez,
Nat. Commun. 4, 2515 (2013).

[15] L. M. Woods, D. A. R. Dalvit, A. Tkatchenko, P. Rodriguez-
Lopez, A. W. Rodriguez, and R. Podgornik, Rev. Mod.
Phys. 88, 045003 (2016).

[16] A. Lambrecht, P. A. Maia Neto, and S. Reynaud, New J.
Phys. 8, 243 (2006).

[17] M. T. H. Reid, A. W. Rodriguez, J. White, and S. G.
Johnson, Phys. Rev. Lett. 103, 040401 (2009).

[18] See Supplemental Materials at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.046802 for
numerical details, which includes Refs. [5,19–31].

[19] J. B. Pendry and L. M. Moreno, Phys. Rev. B 50, 5062
(1994).

[20] F. Wijnands, J. B. Pendry, F. J. Garcia-Vidal, P. M. Bell, P. J.
Roberts, and L. Martin Moreno, Opt. Quantum Electron. 29,
199 (1997).

[21] D. E. Krause, R. S. Decca, D. López, and E. Fischbach,
Phys. Rev. Lett. 98, 050403 (2007).

[22] H. Gies and K. Klingmüller, Phys. Rev. Lett. 96, 220401
(2006).

[23] C. D. Fosco, F. C. Lombardo, and F. D. Mazzitelli, Phys.
Rev. D 84, 105031 (2011).

[24] L. P. Teo, M. Bordag, and V. Nikolaev, Phys. Rev. D 84,
125037 (2011).

[25] M. Hartmann, G.-L. Ingold, and P. A. Maia Neto, Phys. Rev.
Lett. 119, 043901 (2017).

[26] R. B. Rodrigues, P. A. Maia Neto, A. Lambrecht, and S.
Reynaud, Phys. Rev. Lett. 96, 100402 (2006).

[27] R. B. Rodrigues, P. A. Maia Neto, A. Lambrecht, and S.
Reynaud, Phys. Rev. A 75, 062108 (2007).

[28] M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 73, 451
(1983).

[29] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K.
Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).

[30] L. Li andC.W.Haggans, J. Opt. Soc.Am.A 10, 1184 (1993).
[31] P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779

(1996).
[32] X.-Q. Wang, Phys. Rev. Lett. 67, 3547 (1991).
[33] J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B

42, 9307 (1990).
[34] Ch. Wöll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys.

Rev. B 39, 7988 (1989).

PHYSICAL REVIEW LETTERS 126, 046802 (2021)

046802-5

https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1021/nl049681c
https://doi.org/10.1103/PhysRevA.76.033820
https://doi.org/10.1103/PhysRevA.76.033820
https://doi.org/10.1103/PhysRevB.99.085408
https://doi.org/10.1103/PhysRevB.99.085408
https://doi.org/10.1126/science.aax0916
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.101.030401
https://doi.org/10.1103/PhysRevLett.101.160403
https://doi.org/10.1103/PhysRevLett.101.160403
https://doi.org/10.1038/nature07610
https://doi.org/10.1038/nature07610
https://doi.org/10.1103/PhysRevLett.110.250403
https://doi.org/10.1038/s41586-018-0777-8
https://doi.org/10.1038/nphoton.2016.254
https://doi.org/10.1038/nphoton.2016.254
https://doi.org/10.1038/ncomms3515
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1103/RevModPhys.88.045003
https://doi.org/10.1088/1367-2630/8/10/243
https://doi.org/10.1088/1367-2630/8/10/243
https://doi.org/10.1103/PhysRevLett.103.040401
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.046802
https://doi.org/10.1103/PhysRevB.50.5062
https://doi.org/10.1103/PhysRevB.50.5062
https://doi.org/10.1023/A:1018506222632
https://doi.org/10.1023/A:1018506222632
https://doi.org/10.1103/PhysRevLett.98.050403
https://doi.org/10.1103/PhysRevLett.96.220401
https://doi.org/10.1103/PhysRevLett.96.220401
https://doi.org/10.1103/PhysRevD.84.105031
https://doi.org/10.1103/PhysRevD.84.105031
https://doi.org/10.1103/PhysRevD.84.125037
https://doi.org/10.1103/PhysRevD.84.125037
https://doi.org/10.1103/PhysRevLett.119.043901
https://doi.org/10.1103/PhysRevLett.119.043901
https://doi.org/10.1103/PhysRevLett.96.100402
https://doi.org/10.1103/PhysRevA.75.062108
https://doi.org/10.1364/JOSA.73.000451
https://doi.org/10.1364/JOSA.73.000451
https://doi.org/10.1364/JOSAA.12.001068
https://doi.org/10.1364/JOSAA.10.001184
https://doi.org/10.1364/JOSAA.13.000779
https://doi.org/10.1364/JOSAA.13.000779
https://doi.org/10.1103/PhysRevLett.67.3547
https://doi.org/10.1103/PhysRevB.42.9307
https://doi.org/10.1103/PhysRevB.42.9307
https://doi.org/10.1103/PhysRevB.39.7988
https://doi.org/10.1103/PhysRevB.39.7988


[35] U. Harten, A. M. Lahee, J. P. Toennies, and Ch. Wöll, Phys.
Rev. Lett. 54, 2619 (1985).

[36] B. V. Derjaguin, Kolloid Z. 69, 155 (1934).
[37] N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Phys.

Lett. 26A, 307 (1968).

[38] J. W. S. Rayleigh, Proc. London Math. Soc. s1–14, 170
(1883).

[39] G. I. Taylor, Proc. R. Soc. Ser. A 201, 192 (1950).
[40] B.-O. Kim, G. Lee, E. W. Plummer, P. A. Dowben, and A.

Liebsch, Phys. Rev. B 52, 6057 (1995).

PHYSICAL REVIEW LETTERS 126, 046802 (2021)

046802-6

https://doi.org/10.1103/PhysRevLett.54.2619
https://doi.org/10.1103/PhysRevLett.54.2619
https://doi.org/10.1007/BF01433225
https://doi.org/10.1016/0375-9601(68)90665-8
https://doi.org/10.1016/0375-9601(68)90665-8
https://doi.org/10.1112/plms/s1-14.1.170
https://doi.org/10.1112/plms/s1-14.1.170
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1103/PhysRevB.52.6057

