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We extend previous work on the vacuum energy of a massless scalar field in the presence of singular
potentials. We consider a single sphere defined by the so-called δ-δ0 interaction. Contrary to the Dirac
δ-potential, we find a nontrivial one-parameter family of potentials such that the regularization procedure
gives an unambiguous result for the Casimir self-energy. The procedure employed is based on the zeta
function regularization and the cancellation of the heat kernel coefficient a2. The results obtained are in
agreement with particular cases, such as the Dirac δ or Robin and Dirichlet boundary conditions.
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I. INTRODUCTION

Quantum vacuum fluctuations are known to give rise to
forces between two distinct bodies as well as pressure on
the surface of a single object. This macroscopic manifes-
tation of the vacuum state associated to quantum fields
has been investigated and measured in some special cases,
achieving a level of concordance between theory and
experiments that has astonished the community (see
Refs. [1,2] for general reviews). From a quantum field
theoretical point of view, the zero point energy due to the
quantum vacuum fluctuations carries divergences. The
appearance of the Casimir energy has stressed the impor-
tance of dealing with divergences and acquiring a deep
understanding of their nature to the point of extracting the
finite part of the zero point fluctuations, isolating the
different divergent contributions and obtaining a physically
meaningful result. After regularization and renormaliza-
tion, the part of the quantum vacuum energy that encloses
the quantum vacuum interaction between two objects is in
general unambiguous and leads to a finite force between the
bodies [1,3–5]. However, in general, the self-energy of a

single object is only unambiguously defined for the case
of massive quantum vacuum fluctuations. In the case of
massless quantum fields the self-energy is only defined in a
unique way for a few cases involving special geometries
and boundary conditions. For example, it is well known
that in the dilute case the Casimir energy, that can also be
calculated as the sum of the van der Waals interactions,
is unambiguously identified once the surface and volume
divergences are removed [6–9]. Perfectly conducting
bodies, as well as dielectric geometries such as spheres or
cylinders have been computed resulting on finite answers
for the Casimir stress on the surface [10–13].
In all the cases mentioned above, different techniques

for regularizing the vacuum self-stress and extracting the
divergences have been used. From the ζ-function regulari-
zation, to point splitting, analytic continuation or the
calculation of heat kernel coefficients, several methods
are used to understand the meaning and nature of the
infinities arising from summing the frequencies of vacuum
fluctuations of the zero-point. The difficulties that the study
of the self-energies carries have been discussed broadly, in
particular in spheres with a singular potential. Bordag et al.
were the first ones discussing these divergences by com-
puting the heat kernel coefficients [14]. Furthermore,
Bordag, Kirsten, Vassilevich, and others, have given
analytic formulas that enable the characterization of the
infinities and the ambiguities appearing in the calculation
of quantum vacuum self-energies in terms of the heat kernel
coefficients [15,16].
In a recent paper [17], we calculated the interaction

energy between two concentric spherical shells mimicked
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by singular potentials of the type δ-δ0 on the surfaces. In
this case the total vacuum energy can be written as

E0 ¼ E1 þ E2 þ Eint; ð1Þ

being Eint the interaction energy, that we can calculate
unambiguously, and E1 and E2 the self-energies of the first
and second body respectively, that we need to study in
order to check whether they are finite or they present
irremovable ambiguities. Since the divergent contributions
depend on the characteristics of the body, like the radius of
the sphere, a renormalization procedure is needed in order
to give a meaningful result. Therefore, if the self-energy of
each sphere separately is not uniquely defined and we
consider concentric spheres, the total quantum vacuum
energy will be, as well, not well defined.
In this paper we focus on the pressure on a single sphere,

thus extending the work of our previous paper [17]. In the
latter, we studied the sign of the interaction energy for a
massless scalar field in the presence of two concentric δ-δ0
spheres employing the TGTG representation of the energy.
The same representation was used in [18], where the
pressure acting on a dielectric sphere enclosed within a
magnetodielectric cavity was studied. Although the sign of
the interaction pressure was determined for quite general
inhomogeneous permittivities and permeabilities, the self-
pressure of the sphere was only well defined in the known
dilute limit [14]. Indeed, there are a few cases in which the
self-energy has an unambiguous meaning [19]. One is the
aforementioned dilute limit [13,14], a magnetodielectric
object when the speed of light is the same inside and
outside [20–25] or a perfectly conducting spherical or
cylindrical shell [10,11]. For a massless scalar field, an
unambiguously finite result is found up to second order for
the δ-potential weak limit [26], as well as for Dirichlet and
Neumann boundary conditions. For these boundary con-
ditions a cancellation of the divergences occurs when the
whole space is considered [1].However, for Robin boundary
conditions this is no longer the case, and the cancellation
only occurs for certain values of the parameter [15].
In this paper we employ the zeta function regularization

for in order to analyze the divergences. Within this
approach, the energy is expressed in terms of the zeta
function associated with a Schrödinger-type operator P

E0ðsÞ ¼
μ2s

2

X
n

ω1−2s
n ¼ μ2s

2
ζP

�
s −

1

2

�
; ð2Þ

where μ is a parameter with dimensions of mass introduced
to keep the right dimensions and ℏ ¼ c ¼ 1. The zeta
function associated with the operator determining the
modes of the system is

ζPðsÞ ¼
X
n

λ−sn ; PφnðxÞ ¼ λnφnðxÞ: ð3Þ

In our case, we have P ¼ −Δþ Vδ-δ0 ðrÞ, where the
potential represents a spherical singular interaction. From
the asymptotic behavior of the eigenvalues of this operator,
indeed, for any second order elliptic differential operator
[27], the sum (2) is divergent for s ¼ 0 and it needs to be
regularized to find a meaningful result. Once the diver-
gences are identified, we need to renormalize the resulting
expression. Bordag, Kirsten, Vassilevich and their collab-
orators demonstrated that the self-energy for massless
scalar fields is defined in a unique way only if the heat
kernel coefficient a2 of the operator P given above is
identically zero.
The aim of this paper is to study a complicated enough

interaction to obtain nontrivial systems for which a2 ¼ 0,
unlike what happens for the δ-potential, and simple enough
to proceed in an analytic way. The δ-δ0 potential is chosen
since it has two couplings that will enable, for certain
particular cases, the cancellation of the a2 heat kernel
coefficient. This point interaction was introduced in [28]
and studied in different contexts over the years [29–32],
where many analytical results have been obtained.
The paper is organized as follows. In Sec. II we show

basic previous results concerning the δ-δ0 potential con-
centrated in a spherical shell obtained in [33]. In Sec. III we
compute the quantum vacuum energy for a three-dimen-
sional spherical shell mimicked by a radial δ-δ0 potential
using the zeta function regularization, and obtain those
particular values for the couplings that give rise to a heat
kernel coefficient a2 identically zero. Section IV shows the
numerical results for the finite quantum vacuum self-energy
and pressure when it is unambiguously defined (a2 ¼ 0).
Finally, in Sec. V we present our conclusions and further
comments. At the end, we include Appendices A and B
where we present the derivation of the matching conditions
and Jost function of the δ-δ0 interaction as well as some
particular cases that enable us to check our calculations by
obtaining results already published by other authors.

II. δ-δ0 POTENTIAL ON A SPHERICAL SHELL

Let us consider a single spherical shell defined by the
singular potential

Vδ-δ0 ðrÞ ¼ λ0δðr − r0Þ þ 2λ1δ
0ðr − r0Þ; r0 ∈ Rþ: ð4Þ

The system of units chosen implies that ½λ0� ¼ L−1, and
½λ1� ¼ 1. The scalar field satisfies the Klein-Gordon equa-
tion which, after taking its time Fourier transform, is

½−Δþ Vδ-δ0 ðrÞ�φðxÞ ¼ ω2φðxÞ: ð5Þ

Due to the spherical symmetry of the system, the solutions
can be written as
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φðxÞ ¼
X∞
l¼0

Xl
m¼−l

ρlðrÞYlmðθ;ϕÞ; ð6Þ

where Ylmðθ;ϕÞ are the spherical harmonics. The non-
relativistic Schrödinger Hamiltonian in Eq. (5) has been
studied in detail in [33], where the potential Vδ-δ0 ðrÞ is
defined by matching conditions on the surface of the sphere
with radius r0 over the space of field modes as

�
ρlðrþ0 Þ
ρ0lðrþ0 Þ

�
¼
�
α 0

β̃ α−1

��
ρlðr−0 Þ
ρ0lðr−0 Þ

�
: ð7Þ

The prime here, and throughout the text, indicates deriva-
tive with respect to the argument and r�0 denotes the limit to
r0 taken from the right or from the left, respectively. We
have also defined

α ¼ 1þ λ1
1 − λ1

; β̃ ¼ λ̃0
1 − λ21

; λ̃0 ¼ −
4λ1
r0

þ λ0: ð8Þ

In Appendix A we show a derivation of the matching
conditions (7). These conditions are ill defined if λ1 ¼ �1.
In these cases we can write [31]

ρlðr−0 Þ ¼ 0; ρ0lðrþ0 Þ−Dþρlðrþ0 Þ ¼ 0 if λ1 ¼þ1;

ρlðrþ0 Þ ¼ 0; ρ0lðr−0 ÞþD−ρlðr−0 Þ ¼ 0 if λ1 ¼−1; ð9Þ

where D� ¼ 4=ðλ0 ∓ 4r−10 Þ. (Notice that there is a typo in
Eq. (30) in [17]).
The eigenvalues are not known for this problem, so the

explicit summation shown in (3) cannot be performed.
However, in [33] the scattering problem for the radial δ-δ0
potential was solved. Therefore, using Cauchy’s formula,
we can employ the following expression to study the
Casimir self-energy,

E0ðsÞ ¼ −μ2s
cos πs
π

X∞
l¼0

ν

Z
∞

0

dκ κ1−2s
∂

∂κ
log flðκÞ; ð10Þ

in terms of the Jost function flðκÞ, where the volume
energy has already been subtracted [34]. For each value of
the angular momentum this function satisfies [35]

flðωÞ
f�lðωÞ

¼ e−2iδlðωÞ; ð11Þ

being δlðωÞ the scattering phase shift. The latter has been
computed in [33] for the potential (4). In Appendix A we
prove that the Jost function can be written as

flðκÞ ¼ 1þ λ0r0 − 2λ1
λ21 þ 1

IνðyÞKνðyÞ−
2λ1y
λ21 þ 1

ðIνðyÞKνðyÞÞ0;

ð12Þ

where it is assumed that

ω ¼ iκ; ν ¼ lþ 1

2
; y ¼ κr0: ð13Þ

By turning off the coefficient of the δ0 term in the potential,
this expression reduces to the known result of the
Jost function corresponding to a spherical shell with a
δ-potential on its surface [14],

flðκÞ ¼ 1þ r0λ0IνðyÞKνðyÞ: ð14Þ

III. ZETA FUNCTION REGULARIZATION

The zeta function is connected with the heat kernel KðtÞ
through the Mellin transform

ζðsÞ ¼ 1

ΓðsÞ
Z

∞

0

ts−1KðtÞdt; ð15Þ

where

KðtÞ ¼
X
n

e−λnt: ð16Þ

At s ¼ 0 this expression is exponentially decreasing for
large t. The trouble comes when t is small. For that we use
the asymptotic expansion [16]

KðtÞ ∼ 1

ð4πtÞ3=2
X
n

an=2tn=2: ð17Þ

Taking these expressions into account and computing the
Casimir energy for massless scalar field as in Eq. (2), we
find the result

Eas
0 ðsÞ ¼ −

a2
32π2

�
1

s
þ 2 logðμr0Þ

�
þ Ean

0 þOðsÞ; ð18Þ

where the superindex -as stands for asymptotic and -an for
the analytic part. The presence of the log term does not allow
us to prescribe a proper renormalization procedure without
ambiguities for massless quantum fluctuations.1 The only
way to get a universal answer for the Casimir self-stress is to
make sure this term is not present in the computation of the
energy. Therefore, we look for those cases where a2 ¼ 0

1For the case of massive quantum fluctuations with mass m
the condition Eren

0 ðm → ∞Þ ¼ 0, ensures that there are no
ambiguities.
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which can be identified as the coefficient of the divergent
term in the vacuum energy since s → 0.
The coefficient a2 can be computed analyzing the

behavior of the zeta function given in Eq. (2) if we take
into account Eqs. (15) and (17). In particular,

an ¼ Res
s¼3

2
−n
ðð4πÞ32ΓðsÞζðsÞÞ; 2n ∈ N≥0: ð19Þ

In our particular case, the self-energy of our configuration
is given by the expression in Eq. (10) which is not well
defined for s ¼ 0. Performing an analytic continuation of
the function E0ðsÞ in s, enables the identification of the
divergence of the vacuum energy as a simple pole at s ¼ 0.
To do so, we subtract and add the asymptotic behavior of
the Jost function and define

Efin
0 ¼−

1

π

X∞
l¼0

ν

Z
∞

0

dκκ
∂

∂κ
ðlogflðκÞ− logfasl ðκÞÞ; ð20Þ

as the finite part of the energy at s ¼ 0 and

Eas
0 ðsÞ¼−μ2s

cosπs
π

X∞
l¼0

ν

Z
∞

0

dκ κ1−2s
∂

∂κ
logfasl ðκÞ; ð21Þ

the asymptotic one. The study of the latter at s ¼ 0 gives
the pole that corresponds to the a2 coefficient. Since the
main contribution comes from large l, we use the uniform
asymptotic expansion of the modified Bessel functions (see
for example [36]) in Eq. (12) where y≡ zν.
The number of terms we subtract in Eq. (20) is

determined by requiring this quantity to become finite.
We achieve that by expanding the Jost function up to third
order in 1=ν making use of the mentioned uniform
asymptotic expansion. This allows us to write the argument
of the logarithm as

fasl ðκÞ ≈ 1þ xðνÞ;

where xðνÞ is a function of ν such that xðνÞ → 0 when
ν → ∞. Then, we expand the logarithm in Eq. (21) as a
power series,

log fasl ðκÞ≡ log fasl ðzÞ ¼
XN¼3

n¼1

X3n
i¼n

Cn;i
tiðzÞ
νn

; ð22Þ

where t ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
and z ¼ κr0=ν. Subtracting the first

three terms (N ¼ 3) of the asymptotic expansion is enough
to isolate the analytic part of the zeta function. The first
nonzero coefficients Cn;i are

C1;1 ¼
λ0r0

2ðλ21 þ 1Þ ; C1;3 ¼ −
λ1

λ21 þ 1
;

C2;2 ¼ −
λ20r

2
0

8ðλ21 þ 1Þ2 ; C2;4 ¼
λ0λ1r0

2ðλ21 þ 1Þ2 ;

C2;6 ¼ −
λ21

2ðλ21 þ 1Þ2 ;

C3;3 ¼
2λ30r

3
0 þ 3ðλ21 þ 1Þ2ð4λ1 þ λ0r0Þ

48ðλ21 þ 1Þ3 ;

C3;5 ¼ −
2λ20λ1r

2
0 þ 3ðλ21 þ 1Þ2ð9λ1 þ λ0r0Þ

8ðλ21 þ 1Þ3 ;

C3;7 ¼
120λ1ðλ21 þ 1Þ2 þ λ0ð5λ41 þ 18λ21 þ 5Þr0

16ðλ21 þ 1Þ3 ;

C3;9 ¼ −
λ1ð105λ41 þ 218λ21 þ 105Þ

24ðλ21 þ 1Þ3 :

For λ1 ¼ 0, i.e., δ-potential, we obtain the coefficients
Xn;i found in [37,14], although there is a minus sign
missing in the coefficient X2;2 in [14].

A. Heat kernel coefficient a2
The purpose of this section is to analyze E0ðsÞ as s → 0

in order to discuss the divergences. The relevant term is
Eas
0 ðsÞ since Efin

0 is analytic at s ¼ 0 and gives no
contribution to the residues of E0ðsÞ.
The integral to be computed in (21) after performing the

change of variables z ¼ κr0=ν is

I ¼ ðr0μÞ2s
r0

ν1−2s
Z

∞

0

dz z1−2s
∂

∂z
log fasl ðzÞ;

which can be easily solved using

Z
∞

0

zn

ðz2 þ 1Þb dz ¼
Γ
�

nþ1
2

�
Γ
�
b − n

2
− 1

2

�
2ΓðbÞ :

Now we perform the sum over ν in Eas
0 ðsÞ. This can be

written in terms of the Hurwitz zeta function for the three
values of n

X∞
l¼0

ν1−nþ1−2s ¼
X∞
l¼0

ν2−n−2s ¼ ζ

�
nþ 2s − 2;

1

2

�
;

that satisfies the following identity involving the Riemann
zeta function

ζ

�
nþ 2s − 2;

1

2

�
¼ ð22sþn−2 − 1Þζðnþ 2s − 2Þ:

From this zeta function, n ¼ 1 gives a finite contribution
and it vanishes for n ¼ 2. It is the term n ¼ 3 of the zeta
function the one that brings out a divergence. For s → 0,
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ζ

�
1þ 2s;

1

2

�
¼ 1

2s
þ ðγ þ 2 log 2Þ þOðs1Þ:

where γ is Euler’s constant [36]. We substitute the above
back in the integral shown in Eq. (21) and identify the a2
coefficient of the singularity. We find

a2¼
2πð128λ31þ140λ20λ1r

2
0−35λ30r

3
0−224λ0λ

2
1r0Þ

105ðλ21þ1Þ3r0
; ð23Þ

and the finite term in Eq. (18) is given by

Ean
0 ¼ 1

5040πr0ðλ21þ1Þ3 ð−64λ
3
1ð12γ−1þ36log2Þ−420λ20λ1r

2
0ð2γ−1þ log64Þþ210λ30r

3
0ðγ−1þ log8Þ

−21λ0r0ð5λ41ð−12logAþ1þ log8Þ−2λ21ð60logA−13þ81log2Þ−60logAþγð5λ41−54λ21þ5Þþ5þ15log2ÞÞ: ð24Þ

A is the Glaisher’s constant [36]. For λ1 ¼ 0, δ-potential,
we recover the results found in [14,37]. From (23), we find
that there is a family of parameters that make a2 vanish and
therefore defines the self-stress over the sphere without
ambiguities. By making a2 ¼ 0 we find that

λ1 ¼
1

24

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42

ffiffiffiffiffi
30

p
þ 224

3

q
−

142=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffiffiffi
30

p þ 16
3
p þ 14

�
λ0r0:

There are other two combinations of the couplings such that
a2 ¼ 0, but they involve complex solutions. Consequently,
the self-energy is properly defined if

c0λ1 ¼ λ0r0; c0 ≃ 1.20818671192: ð25Þ

IV. RENORMALIZED ENERGY AND PRESSURE

Once a2 ¼ 0, the renormalized energy is unambiguously
defined

Eren
0 ¼ Efin

0 þ Ean
0 : ð26Þ

In contrast to Efin
0 and Ean

0 , this quantity is uniquely defined
since it does not depend on the number of terms subtracted.
As we have stated, the renormalization is completely
determined if the heat kernel coefficient a2 ¼ 0 [1]. For
the δ-potential this is only possible for the trivial case
λ0 ¼ 0 [14], although the weak limit can be computed until
second order [26]. Studying the divergences using Green’s
functions it is shown that they come from the surface term
only [38].

A. Pressure on the sphere

The pressure acting on the surface of the sphere can be
obtained from Eren

0 . To define this pressure we make use of
the principle of virtual work. For our spherically symmetric
system [39,40]

pren
0 ¼ −

1

4πr20

∂Eren
0

∂r0
: ð27Þ

For the case in Eq. (25), where the self-energy is well
defined, the finite and analytic parts of the renormalized
energy become

Efin
0 ¼ 1

πr0

X∞
l¼0

ν2
Z

∞

0

dzðlog flðzÞ − log fasl ðzÞÞ ð28Þ

and

Ean
0 ¼ Fðλ1; c0Þ

5040πðλ21 þ 1Þ3r0
; ð29Þ

where the function Fðλ1; c0Þ is obtained from Eq. (24)
when λ0r0 ¼ λ1c0. Both terms have the same dependence
on r0 and therefore,

sgnpren
0 ¼ sgnEren

0 : ð30Þ

Indeed, Eren
0 can be written as Eren

0 ¼ eren0 =r0, being eren0 a
numerical constant independent of r0. Then,

Eren
0 ¼ eren0

r0
; p ¼ eren0

4πr40
: ð31Þ

B. Numerical evaluation

Now we compute Eren
0 when a2 ¼ 0. The finite part of

the energy can be calculated only numerically and for that
we use a code in the interpreted programming language
PYTHON. We use the expression in Eq. (28), noting that the
boundary term vanishes for both zero and infinity.
First, note that if (25) holds there are no bound states in

the quantum mechanical sense. That is to say, with our
potential in (5) we cannot have ω2 < 0. For the latter we
should change the integration contour in order to avoid the
poles along the imaginary axis [35]. The absence of bound
states can be proved with Proposition 2 in [33]. This result
states that the quantum mechanical system admits bound
states with angular momentum from 0 to lmax, being
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lmax ¼
�
−
1

2
þ λ1 −

λ0r0
2

λ21 þ 1

�
: ð32Þ

For the δ-potential case we deduce that there are no bound
states unless the potential is deep enough, λ0r0 < −1, as
expected. For the δ − δ’ potential however, and under the
condition in (25), there exist no bound states regardless of
the value of λ0. This can be easily proved noting that in this
case

lmax ¼ −
1

2

�
1þ ð2 − c0Þ

λ1
λ21 þ 1

�
; λ1 ¼

λ0r0
c0

; ð33Þ

which is always negative since c0 ∈ ð0; 2Þ. Indeed, this is
clear if λ1 ≤ 0. If λ1 > 0 we have λ1=ðλ21 þ 1Þ ≤ 1=2. Note
that for λ1 ¼ 1=2, where lmax ¼ 0 there is no zero-mode
either, see Sec. 4.2 of [33]. In addition, from [33] we know
that bound states for positive values of λ0 are only possible
for two spatial dimensions.
We plot the renormalized vacuum energy (26) as a

function of λ1, Fig. 1, using Eqs. (28) and (29). Note that
only positive values are obtained, i.e., self-repulsion which
tends to expand the sphere. A similar behavior for the
energy was found for the interaction energy between two
concentric δ-δ0 spheres [17]. For instance, the result is not
symmetric under the change λ1 → −λ1, contrary to what
happens in the δ-δ0 plates [30]. In addition, the maximum
values of the energy are found when we approach λ1 ¼ �1
corresponding to Dirichlet and Robin boundary conditions,
see Eq. (9). In particular, we have

ρlðr−0 Þ ¼ 0; ρ0lðrþ0 Þ þ
4r0

4− c0
ρlðrþ0 Þ ¼ 0 if λ1 ¼ þ1;

ρlðrþ0 Þ ¼ 0; ρ0lðr−0 Þ þ
4r0

4þ c0
ρlðr−0 Þ ¼ 0 if λ1 ¼ −1:

Consequently, we have found a system, combination
of Dirichlet and Robin boundary conditions (inside and

outside the sphere) whose renormalized self-energy is well
defined. Notice that this is a nontrivial result since we know
that for Dirichlet or Neumann boundary conditions a2 ≠ 0
when only the interior or exterior region is considered [1].
Moreover, since they only depend on odd powers of the
extrinsic curvature, when the interior and exterior of the
sphere are considered, the divergences cancel each other.
For Robin boundary conditions even powers are also
present, and the cancellation only occurs for special values
of the Robin parameter [15].
Furthermore, the value of the self-energy and the self-

pressure are of the same order of magnitude that the
one found for Dirichlet boundary conditions, where
Eren
0 ≃ 0.0028168=r0. However, the result presented here

is significantly lower than the one found for Neumann
boundary conditions, where Eren

0 ≃ −0.2238216=r0. It is
worth noting that δ-δ0 interaction imposes Dirichlet boun-
dary conditions in the so-called strong limit: λ0 → ∞ and
λ1 ¼ 0. However, although we have Neumann boundary
conditions in the limits λ1 → �1 and λ0 → ∞, we cannot
impose these boundary conditions at both sides of the
spherical shell with the δ-δ0 interaction (9).
In the limit λ1 → �∞ the self-energy goes to zero. This

is in agreement with previous results [41] since this case
corresponds to the case with no potential [notice that the
fields and their derivatives become continuous at the
boundary, Eq. (7)].
In Appendix B, we include consistency checks of our

calculations. To do so, we have obtained the weak limit
formula first computed in [26] for a Dirac δ spherical shell,
and reproduced the numerical results in [42] for a spherical
shell in the decoupled limit (λ1 → �1).

V. CONCLUSIONS

In this paper we have added another example to the short
list of simple configurations in which the Casimir self-
energy for a massless field is unambiguously defined. This
occurs due to a particular cancellation between the Dirac δ
and the δ0 interaction, Eq. (25). A similar cancellation arises
when considering the Dirac δ and other type of singular
interaction defined by imposing matching conditions such
that the derivative is continuous and there is a finite
discontinuity in the radial function [43].
For the one-parameter family of values in which the

energy and pressure are well defined we only find positive
values of both quantities. This leads to self-repulsion which
tends to expand the sphere. The first example of self-
repulsion was found by Boyer [10], ruling out the idea that
the Casimir energy could stabilize the electron.
In Appendix B we have tested our results with the Dirac

δ weak limit and Robin-Dirchlet boundary conditions. It is
worth mentioning that our values of energy and pressure
are similar to the ones obtained for a Dirichlet sphere. In
addition, from this approach we see that we do not need to
consider the interior and the exterior in an independent way.

FIG. 1. Renormalized energy (26) for r0 ¼ 1, Eren
0 ¼ eren0 =r0,

and a2 ¼ 0, i.e., c0λ1 ¼ λ0.
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This is clear for matching conditions, but we also obtain
this in the limit when we approach boundary conditions,
even though a Jost function only sees the exterior region for
any opaque potential.
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APPENDIX A: SINGULAR δ-δ0 INTERACTION
IN 3D

1. Calculation of the matching conditions
for the 3D spherical shell

In this appendix we will obtain the matching
conditions that define the δ-δ0 spherical shell. From (5)
the Schrödinger Hamiltonian that characterizes the one-
particle of the quantum vacuum fluctuations is given by

Hδ-δ0 ¼ −Δþ Vδ-δ0 ðrÞ: ðA1Þ

Since the potential depends only on the radial coordinate,
the previous Hamiltonian is spherically symmetric. Hence
the eigenvalue problem

½−Δþ Vδ-δ0 ðrÞ�ψðxÞ ¼ EψðxÞ; ðA2Þ

is separable in spherical coordinates. Writing2 ψðxÞ ¼
ρlðrÞYl;mðΩÞ Eq. (A2) becomes

�
−∂2r −

2

r
∂r þ

lðlþ 1Þ
r2

þ Vδ−δ0

�
ρlðrÞ ¼ EρlðrÞ: ðA3Þ

Now, introducing the reduced radial function

ulðrÞ ¼ rρlðrÞ

we end up obtaining a one-dimensional Schrödinger
Hamiltoninan over the semiaxis r ∈ ð0;∞Þ for each angu-
lar momentum

Hl ¼ −∂2r þ
lðlþ 1Þ

r2
þ Vδ-δ0 ðrÞ: ðA4Þ

Finally, Eq. (A2) can be written for each angular momen-
tum l in terms of the reduced radial function as

HlulðrÞ ¼ EulðrÞ; ðA5Þ

which is nothing but a collection of nonrelativistic one-
dimensional Hamiltonians over the semiaxis3 ð0;∞Þ. Since
the potential in (A2) depends on the radial coordinate r our
problem has spherical symmetry. As a consequence of the
spherical symmetry, the matching conditions that define
Vδ-δ0 in each Hl must be the same for any value of l,
otherwise the spherical symmetry would not hold (see
Ref. [41]). In particular, when l ¼ 0 our reduced
Hamiltoninan becomes

Hl¼0 ¼ −∂2r þ λ0δðr − r0Þ þ 2λ1δ
0ðr − r0Þ: ðA6Þ

This Hamiltonian has been previously studied in literature.
The most rigorous study was done by Kurasov in Ref. [28],
where the previous one-dimensional Hamiltoninan is con-
sidered over the whole real line. For the sake of simplicity,
and without loss of generality we can consider the change
of variable x ¼ r − r0, and write

Hl¼0 ¼ −∂2x þ λ0δðxÞ þ 2λ1δ
0ðxÞ; ðA7Þ

where now x ∈ ð−r0; 0Þ ∪ ð0;∞Þ. To follow Kurasov’s
work we must assume that the δ0-term in Eq. (A7) is the
generalized derivative of the Dirac-δ in the distributional
sense. The term generalized derivative is used since we
necessarily have discontinuous wave functions and the
standard theory of distributions cannot be applied. In this
sense, it is convenient to define

ūð0Þ ¼ uð0þÞ þ uð0−Þ
2

:

where uð0þÞ and uð0−Þ are the values of the reduced radial
function evaluated at zero when this point is approached
from the positive and negative axes respectively. In order to
find the matching conditions at r ¼ r0 (x ¼ 0), we inte-
grate, in the neighborhood of r0, the differential equation
Hl¼0uðxÞ ¼ EuðxÞ between −ε and ε and then we make
the limit ε → 0. With Hl¼0 given in (A7) we get,

2As usual, Yl;mðΩÞ are the spherical harmonics, and Ω ¼
ðθ;ϕÞ are the usual spherical angular coordinates.

3The one-dimensional Hamiltonian Hð0Þ
l ¼−∂2rþlðlþ1Þr−2

over the semiaxis ð0;∞Þ is essentially self-adjoint for any l > 0.
For the case l ¼ 0 we choose the self-adjoint extension that
maintains the scale invariance (see Appendix A in Ref. [44]).
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−
Z

ε

−ε

d2

dx2
uðxÞdxþ λ0

Z
ε

−ε
δðxÞuðxÞdx

þ 2λ1

Z
ε

−ε

�
d
dx

δðxÞ
�
uðxÞdx ¼

Z
ε

−ε
EuðxÞdx; ðA8Þ

The function uðxÞ has a discontinuity at x ¼ 0 (r ¼ r0) that
corresponds to the radius of the sphere, and therefore the
integral in the second term of the expression above may not
be well defined. However, since the values uð0þÞ and uð0−Þ
are well defined and finite, we adopt an average prescrip-
tion (previously used for example in Refs. [45,46]) and takeZ

ε

−ε
δðxÞuðxÞdx ¼ ūð0Þ:

In the third term we use integration by parts, the boundary
term vanishes and we are left with

−
Z

ε

−ε
δðxÞ duðxÞ

dx
dx ¼ −ū0ð0Þ:

Grouping all terms together in (A8) we find a discontinuity
in the first derivative,

u0ð0þÞ−u0ð0−Þ¼ λ0
2
ðuð0þÞþuð0−ÞÞ−λ1ðu0ð0þÞþu0ð0−ÞÞ

ðA9Þ

The condition for the finite jump discontinuity of the
function at zero is obtained by integrating twice the same
differential equation. Considering x0 a variable in the same
domain as x we writeZ

ε

−ε

Z
x

−ε
Hl¼0uðx0Þdx0dx ¼ −

Z
ε

−ε

Z
x

−ε
Euðx0Þdx0dx.

We follow the same procedure taking into account that now
we cannot throw the boundary term. Instead, it gives a
contribution to the discontinuity in the radial function,

2λ1

Z
ε

−ε

Z
x

−ε

d
dx0

ðδðx0Þuðx0ÞÞdx0dx

¼ 2λ1

Z
ε

−ε
δðxÞuðxÞdx ¼ 2λ1ūð0Þ: ðA10Þ

The other term different from zero comes from the second
derivative in the Hamiltonian. As a consequence we get,

−ðuð0þÞ − uð0−ÞÞ þ λ1ðuð0þÞ þ uð0−ÞÞ ¼ 0;

giving rise to one of the equations we were looking for,

uð0þÞ ¼ 1þ λ1
1 − λ1

uð0−Þ: ðA11Þ

Inserting this result in (A9) and grouping terms we find,

u0ð0þÞ ¼ λ0
1 − λ21

uð0−Þ þ 1 − λ1
1þ λ1

u0ð0−Þ: ðA12Þ

Equations (A11) and (A12) can be rewritten as

�
uð0þÞ
u0ð0þÞ

�
¼
 1þλ1

1−λ1
0

λ0
1−λ2

1

1−λ1
1þλ1

!�
uð0−Þ
u0ð0−Þ

�
; ðA13Þ

which can be used as a definition of the potential Vδ-δ0 for
Hl¼0 by just replacing 0� by r�0 . As we discussed above,
spherical symmetry forces us to maintain the definition of
Hl as the Hamiltonian

Hð0Þ
l ¼−∂2r þ

lðlþ 1Þ
r2

; r∈ ð0; r0Þ ∪ ðr0;∞Þ ðA14Þ

equipped with the matching condition

�
ulðrþ0 Þ
u0lðrþ0 Þ

�
¼
 1þλ1

1−λ1
0

λ0
1−λ2

1

1−λ1
1þλ1

!�
ulðr−0 Þ
u0lðr−0 Þ

�
; ðA15Þ

for any angular momentum l, that fixes the space of
reduced radial wave functions. When we consider the full
radial function ρlðrÞ ¼ ulðrÞ=r, we recover the β̃ that
shows in Eq. (7).
To demonstrate that this matching condition defines

self-adjoint operators Hl, we just need to prove their self-
adjointness. We focus on the conditions ensuring that the
resultingoperator is symmetric. The analysis of the domainof
the adjoint operator needed for proving the self-adjointness
can be found in Appendix A of [41], where von Neumann’s
theory is used. Alternatively, Asorey, Marmo, and Ibort
developed a geometrical theory of self-adjoint extensions
for Laplace and Dirac operators, and demonstrated that the
symmetry condition for these operators is enough to built all
the self-adjoint extensions (see Refs. [47,48]). Their idea can
be used to study singular potentials, and was originally
developed by Boya and Sudarshan in Ref. [49]. Let
ulðrÞ; vlðrÞ ∈ L2ðð0; r0Þ ∪ ðr0;∞ÞÞ, and let us denote the
scalar product of reduced radial wave functions as

hul; vli≡
Z

r−
0

0

u�lðrÞvlðrÞdrþ
Z

∞

rþ
0

u�lðrÞvlðrÞdr: ðA16Þ

From the previous definition the obstruction for the operator

Hð0Þ
l ¼ −∂2r þ

lðlþ 1Þ
r2

;

acting on the radial wave functions belonging to a subspace4

of L2ðð0; r0Þ ∪ ðr0;∞ÞÞ, to be self-adjoint is the quantity

4As mentioned, this subspace if properly defined in [41].
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Σðul; vlÞ≡ hul; Hð0Þ
l vli − hHð0Þ

l ul; vli: ðA17Þ

It is of note, that the quantity in Eq. (A17) is nothing but the
probability current through the spherical shell centered at the
origin of radius r0 for a fixed angular momentum. In general,
for any pair of functions ulðrÞ;vlðrÞ∈L2ðð0;r0Þ∪ðr0;∞ÞÞ
where no matching condition at r ¼ r0 is imposed, the

probability flux Σðul; vlÞ is nonzero and hence Hð0Þ
l is not

a self-adjoint operator over the appropriate subspace of
L2ðð0; r0Þ ∪ ðr0;∞ÞÞ. This problem can be solved by
restricting the space of reduced radial wave functions through
matching or boundary conditions that ensure the cancellation
of the boundary probability flux Σ. Taking into account that
the term lðlþ 1Þr−2 obviously verifies

hul;lðlþ 1Þr−2vli − hlðlþ 1Þr−2ul; vli ¼ 0; ðA18Þ

then

Σðul; vlÞ ¼ −ðhul; ∂2rvli − h∂2rul; vliÞ:

Integration by parts twice enables us twowrite the probability
current Σðul; vlÞ as

Σðul;vlÞ¼Φ†ðul;r−0 ÞJΦðvl;r−0 Þ−Φ†ðul;rþ0 ÞJΦðvl;rþ0 Þ;

J¼
�
0 −1
1 0

�
; Φðf;r�0 Þ≡

�
fðr�0 Þ
f0ðr�0 Þ

�
;

f¼ ul;vl ðA19Þ

The self-adjointness ofHð0Þ
l is only ensured in the domain

of reduced radial functions that verify Σðu;vÞ¼0. Taking

Eq. (A19) into account, Hð0Þ
l is self adjoint for domains of

functions satisfying a matching condition of the form

Φðf; rþ0 Þ ¼ MΦðf; r−0 Þ ðA20Þ

as long as the 2 × 2 complexmatrixM satisfies the condition

M†JM ¼ J: ðA21Þ

It is a straightforward calculation to check that Kurasov’s
definition of the δ-δ0 potential through the matching con-
dition defined by the matrix

 1þλ1
1−λ1

0

λ0
1−λ2

1

1−λ1
1þλ1

!
; ðA22Þ

leaves invariant the symplectic quadratic formJ given above.
Therefore, we conclude that the one-dimensional matching
conditions used to define the δ-δ0 potential are valid to define
the δ-δ0 spherical shell matching conditions for the reduced
radialwave functions. From thematching conditions over the

reduced radial functions is then straightforward to implement
the matching conditions given in Eq. (7).
The matching conditions obtained here coincide with the

ones found in [28]. In this reference the procedure is based
on constructing the appropriate theory of distributions for
discontinuous functions. Within this context, the matching
conditions (A15) arise when imposing that the Hamiltonian
with the δ-δ0 interaction acting on a square integrable
function results in another square integrable function. This
is explained in the first part of the proof of Theorem 1. It is
then proved that for discontinuous functions the resulting
Hamiltonian is also self-adjoint. Although the derivation
based on integrating the differential equation presented
here leads to the same matching conditions, some technical
points described in [28] should be considered for the δ0
interaction in order to have a consistent derivation [50].
Indeed, in [45] the matching conditions for the nth
derivative of the delta function are also presented integrat-
ing the Schrödinger equation. However, there are some
flaws arising from the discontinuity of the test functions
and the final result leads to a operator which is not self-
adjoint for odd n > 1 [50,51].

2. Calculation of the phase shift and Jost function
for the δ-δ0 spherical shell

As we have indicated, the Jost function of the scattering
problem completely determines the self-energy in this
context of vacuum fluctuations around classical configu-
rations (10). This function can be easily obtained using the
matching conditions (7). First, note that the radial part of
the field can be written as

ρlðrÞ ¼
	
A1jlðωrÞ þ B1ylðωrÞ r < r0;

A2jlðωrÞ þ B2ylðωrÞ r > r0;
ðA23Þ

being jlðxÞ and ylðxÞ the spherical Bessel functions of the
first and second kind, respectively The regularity condition
at the origin imposes B1 ¼ 0. As it is proved in [33], the
tangent of the phase shift is given by

tan δlðωÞ ¼ −B2=A2;

which determines the Jost function (11). In addition, the
solution for r → ∞ defines the Jost function

ρlðrÞ ¼ flðωÞhð2Þl ðωrÞ þ f�lðωÞhð1Þl ðωrÞ; ðA24Þ

being hð1;2Þl the spherical Hankel functions of the first and
second kind, respectively. Noting that the Hankel functions
are related to the Bessel functions by

hð1Þl ðxÞ ¼ jlðxÞ þ iylðxÞ; hð2Þl ðxÞ ¼ jlðxÞ − iylðxÞ

we conclude that
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flðωÞ ¼
A2

2
þ 1

2
iB2:

The coefficients fA2; B2g are written imposing in (A23) the
matching conditions (7) [33]:

�
A2

B2

�
¼
�
jlðx0Þ ylðx0Þ
j0lðx0Þ y0lðx0Þ

�−1
A1

�
α 0

β̃ α−1

��
jlðx0Þ
j0lðx0Þ

�

being x0 ≡ ωr0 and the derivative defined over the argu-
ment. Note that we can drop any global factor independent
of ω in flðωÞ since it does not contribute to the energy (10).
Finally, the Jost function given in (12) is obtained using
the relation between the Bessel and Hankel functions
with complex arguments ω ¼ iκ and the modified Bessel
functions [36].

APPENDIX B: CONSISTENCY CHECKS

In this section we compare our results with previous
work. This can be done for particular values of fλ0; λ1g
where our potential simplifies to well-known cases. First,
we assume λ1 ¼ 0 and small values of the δ coupling, i.e.,
the weak limit for the δ-potential. In [26] it is proved that,
expanding the log in the total energy, an unambiguously
finite energy is obtained in second order of the coupling:

Eð2Þ
0 ¼ r0

32π
λ20: ðB1Þ

Our results are plotted in Fig. 2. Note that the third order
term of the expansion is unambiguously divergent. Indeed,
this was first proved in [14] and can be seen from our
expressions. Specifically, from (18) we know that the
divergence is proportional to a2. For the δ-potential we
have already mentioned that a2 ≠ 0 except for the trivial
case. In fact, a2 is proportional to λ30 as we can see from
(23). In particular, the third order term [26] is

Eð3Þ
0 ¼ r20

24π
λ30ζð1Þ: ðB2Þ

Although the integral is convergent, the sum over the
angular momentum is divergent. This is why the Riemann
zeta function ζðzÞ is evaluated at z ¼ 1. In Fig. 2 we can see
that the result is in good agreement for small values of λ0.
When the third order term becomes relevant the difference

between Eð2Þ
0 and Eren

0 grows larger. Note that in our case
the sum is computed until certain lmax. In consequence
ζð1Þ is only evaluated up to that lmax.
We can also verify the case λ1 → �1 and λ0 ¼ 0 making

use of known results for the electromagnetic field. In this
case we approach the boundary conditions satisfied by the
transverse electric (TE) mode and the transverse magnetic
(TM) mode of the electromagnetic field in the presence of a
perfectly conducting spherical shell [42]. Indeed, due to the

spherical symmetry of the system, the electromagnetic
problem reduces to two independent scalar problems,
one for each polarization. The only difference is that for
the electromagnetic field there is no contribution from
l ¼ 0 [52]. In particular, in [42] it is found that for the TE
mode adding the scalar l ¼ 0 term, TE0, the renormalized
term of the zeta function inside and outside the sphere,
2eren0 , is

2eren0 ðTE0
inÞ ≃ 0.00889; 2eren0 ðTE0

outÞ ≃ −0.00326:

For the TM mode plus the l ¼ 0 contribution, TM0, this
term inside and outside is

2eren0 ðTM0
inÞ ≃ 0.02805; 2eren0 ðTM0

outÞ ≃ −0.07223:

Note that the sum of the previous four terms would give
Boyer’s result for a perfectly conducting sphere [10] if the
l ¼ 0 contribution were removed [42]. For each mode we
have a scalar problem satisfying Dirichlet (TE0) or Robin
(TM0) boundary conditions. For the latter, the Robin
boundary conditions are the ones in Eq. (9) for λ0 ¼ 0.
Consequently, in a system with Robin inside and Dirichlet
outside the renormalized energy should be

eren0 ≃
0.02805 − 0.00326

2
≃ 0.012395:

FIG. 2. Weak limit for the δ-potential, λ1 ¼ 0 and small λ0.

Note that both Eð2Þ
0 and Eð3Þ

0 are positive quantities.
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With Dirichlet inside and Robin outside

eren0 ≃
0.00889 − 0.07223

2
≃ −0.03167:

Bearing in mind Eq. (9), the previous systems can be
reached with our potential setting λ0 ¼ 0 and λ1 → ∓1,
respectively. From our code we obtain

λ0 ¼ 0; λ1 → −1; eren0 ≃ 0.01241;

λ0 ¼ 0; λ1 → þ1; eren0 ≃ −0.03166:

We want to point out that in these cases a2 ≠ 0 so the
renormalized vacuum energy is not properly defined.
Nevertheless, this part of the zeta function can be computed
in order to check our findings.
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