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Ca2+/CaM serine/threonine kinase II (CaMKII) is a central molecule in mechanisms of

synaptic plasticity and memory. A vital feature of CaMKII in plasticity is its ability to switch

to a calcium (Ca2+) independent constitutively active state after autophosphorylation
at threonine 287 (T287). A second pair of sites, T306 T307 in the calmodulin (CaM)

binding region once autophosphorylated, prevent subsequent CaM binding and inactivates
the kinase during synaptic plasticity and memory. Recently a synaptic molecule called

Ca2+/CaM-dependent serine protein kinase (CASK) has been shown to control both sets

of CaMKII autophosphorylation events and hence is well poised to be a key regulator
of memory. We show deletion of full length CASK or just its CaMK-like and L27 domains

disrupts middle-term memory (MTM) and long-term memory (LTM), with CASK function in

the α′/β′ subset of mushroom body neurons being required for memory. Likewise directly
changing the levels of CaMKII autophosphorylation in these neurons removed MTM and

LTM. The requirement of CASK and CaMKII autophosphorylation was not developmental
as their manipulation just in the adult α′/β′ neurons was sufficient to remove memory.

Overexpression of CASK or CaMKII in the α′/β′ neurons also occluded MTM and LTM.

Overexpression of either Drosophila or human CASK in the α′/β′ neurons of the CASK
mutant completely rescued memory, confirming that CASK signaling in α′/β′ neurons

is necessary and sufficient for Drosophila memory formation and that the neuronal

function of CASK is conserved between Drosophila and human. At the cellular level
CaMKII overexpression in the α′/β′ neurons increased activity dependent Ca2+ responses

while reduction of CaMKII decreased it. Likewise reducing CASK or directly expressing a
phosphomimetic CaMKII T287D transgene in the α′/β′ similarly decreased Ca2+ signaling.

Our results are consistent with CASK regulating CaMKII autophosphorylation in a pathway

required for memory formation that involves activity dependent changes in Ca2+ signaling
in the α′/β′ neurons.

Keywords: CASK, CaMKII, memory, Drosophila, mushroom body, calcium imaging, autophosphorylation, disease

model

INTRODUCTION

Changes in neural activity and Ca2+ signaling in neural cir-

cuits of memory centers encode information during memory

formation. One molecule critical for these processes is Ca2+/CaM

serine/threonine kinase II (CaMKII) whose activity is acutely

sensitive to changes in Ca2+ during long-term potentiation

(LTP) underlying hippocampal memory formation (Lisman et al.,

2002). Further features that endow CaMKII with its central role

in memory formation are its abundance in structures known to

be required for memory. For instance, CaMKII is the main pro-

tein in the hippocampal post-synaptic density (PSD) (Kelly et al.,

1984) and is similarly enriched in the mushroom body memory

center of Drosophila (Takamatsu et al., 2003; Hodge et al., 2006).

Finally CaMKII has also been dubbed “the molecular memory

switch”; because after it associates with Ca2+/CaM it undergoes a

conformational change exposing a T286 on mammalian CaMKII

and T287 on Drosophila CaMKII that can be autophosphory-

lated (Figure 1A), resulting in a Ca2+ independent constitutively

active kinase (Lisman and Zhabotinsky, 2001). Pharmacological

blockade or knockout of CaMKII results in mice with deficits in

LTP and memory (Silva et al., 1992a,b). Mice expressing Ca2+

dependent CaMKII-T286A have no LTP and memory and those

expressing CaMKII-T286D also have abnormal LTP and memory

(Mayford et al., 1996; Yasuda and Mayford, 2006). A second pair

of autophosphorylation events within the CaM binding domain

(TT305/6 equivalent to Drosophila TT306/7, Figure 1B) occur

when Ca2+/Calmodulin (CaM) dissociates from CaMKII and

are inhibitory as autophosphorylation prevents subsequent CaM

binding and hence inhibits CaMKII function. Mice with blocked

inhibitory sites (CaMKII-TT305/6AA) show enhanced LTP while

CaMKII-TT305/6DD expression also disrupts LTP and memory

(Elgersma et al., 2002). In Drosophila, there is no CaMKII null,

which would be expected to be lethal (Park et al., 2002; Mehren

and Griffith, 2004), however peptide inhibition of CaMKII

led to synaptic defects and memory deficits in the courtship-

conditioning assay (Griffith et al., 1993, 1994). Therefore, the
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FIGURE 1 | A model of how CASK regulates CaMKII

autophosphorylation during memory. (A) The large oblong

represents a hypothetical neuron shifting between a state of high

synaptic activity (high [Ca2+], in green) and low synaptic activity (low

[Ca2+], in red) on the right. The small oblong within the neuron

represents a single subunit of the CaMKII dodecamer holoenzyme.

Under conditions of high Ca2+, Ca2+/Calmodulin (CaM) binds CaMKII

via the CaM binding site that contains the inhibitory T306 T307 sites

hence blocking them from autophosphorylation. This also promotes

T287 autophosphorylation (pT287) and the switch to persistently high

kinase activity after Ca2+ levels fall. Under conditions of low synaptic

activity and hence low [Ca2+], there is low probability of CaM binding

to CaMKII allowing CASK to promote autophosphorylation of the

inhibitory T306 T307 (pT306 pT307) sites. This renders the kinase

inactive and even if there is a subsequent increase in Ca2+/CaM, CaM

binding is blocked by pT306 pT307 in the CaM site. Eventually

phosphatases will act to remove phosphorylation events and return

endogenous CaMKII to its basal state. Therefore, in the absence of

CASK there is a decrease in inhibitory pT306 pT307 and an increase

in pT287 constitutively active CaMKII, conversely increased CASK

promotes inhibitory pT306 pT307 decreasing pT287 and endogenous

CaMKII activity. (B) Neurons expressing transgenic CaMKII with

inhibitory phosphorylation sites mutated to blocking residues (T306A

T307A) or with too little CASK due to mutation (depicted by the

orange ⊥) result in a form of CaMKII that is unable to switch off. This

causes abnormally high transgenic CaMKII activity that subsequently

interferes with the physiology of the neuron disrupting memory.

(C) Predicted domain structure of CASK isoforms, the short isoform

CASK-α contains PDZ, SH3, and GUK domains while the long isoform

CASK-β contains additional CaMK-like (CamK), Calmodulin binding

domain (CaMBD) and L27 domains at its N-terminus. The CASK-β null

contains a N-terminal deletion that removes a large portion of the

5′UTR and the complete first coding exon including translational start

site for CASK-β but leaves the downstream promoter and whole of

CASK-α intact (Slawson et al., 2011). The uas-CASK line (Lu et al.,

2003; Hodge et al., 2006; Slawson et al., 2011) used in this study

expresses the full-length long isoform of CASK (CASK-β).

control of CaMKII and its autophosphorylation is critical for

synaptic plasticity and memory in Drosophila and mammals. But

the mechanism of regulation of CaMKII autophosphorylation

during memory formation is still unclear.

One molecule that in addition to CaM regulates CaMKII

autophosphorylation is CASK (Ca2+/CaM-dependent serine

protein kinase, Figure 1C), a membrane-associated guanylate

kinase (MAGUK) scaffolding protein that contains a CaMK-

like and Lin-2/Lin-7 (L27) domain in addition to the canonical

PDZ [Post-synaptic density protein (PSD95), Drosophila disc

large tumor suppressor (Dlg1), and Zonula occludens-1 protein

(Zo-1)], SH3 (SRC Homology 3), and GUK (guanylate kinase)

domains with the CaMK and GUK domains likely kinase dead

in Drosophila (Hata et al., 1996; Lu et al., 2003). The CaMK

domain of CASK has low levels of Ca2+/CaM independent activ-

ity against neurexin that unlike other kinases is magnesium

independent (Mukherjee et al., 2008). Again the GUK domain

of mammalian CASK encodes a pseudokinase. Two isoforms of

CASK are present in flies, a long form, CASK-β and a short iso-

form, CASK-α (Figure 1C). The long form CASK-β contains the

additional N-terminal CaMK-like and L27 domains, while the

short form CASK-α contains just the canonical PDZ, SH3, and

GUK domains which are common to both isoforms, and shows

homology to the vertebrate MPP protein (Slawson et al., 2011).

CASK-β associates with CaMKII at synapses and in the absence

of Ca2+/CaM promotes TT306/7 phosphorylation (Figure 1A),

inactivating the kinase (Lu et al., 2003). Deletion of CASK in

mice results in lethality, preventing their use in modeling CASK

function in synaptic plasticity and memory (Atasoy et al., 2007).

Flies completely lacking CASK are viable, have decreased levels

of synaptic CaMKII-TT306/7 autophosphorylation and display

abnormal habituation (Lu et al., 2003). Furthermore, CASK

mutants increase T287 autophosphorylation thereby endowing

CASK with the ability to regulate the CaMKII switch to Ca2+

independence (Hodge et al., 2006). CASK is expressed throughout

the fly brain including the mushroom bodies (Martin and Ollo,

1996; Lu et al., 2003). In this study we determine the role of CASK

and CaMKII autophosphorylation in memory and measure the

accompanying changes in mushroom body Ca2+ signaling.

MATERIALS AND METHODS

DROSOPHILA STOCKS

Flies were grown on cornmeal molasses agar medium under

standard conditions. CASK-β null, uas-CASK (10,20MI), uas-

CaMKII, uas-CaMKII-T287D, uas-CaMKII-T287A, uas-CaMKII-

TT306/7AA, Df(3R)x307, and Df(3R)x313 (Lu et al., 2003;

Slawson et al., 2011) were kind gifts from Dr. Leslie Griffith

(Brandeis University, US). uas-CASK-RNAi flies (stock #104793)

were obtained from the Vienna Drosophila Stock Center

(VDRC). OK107-Gal4, c305a-Gal4, MB247-Gal4, and wildtype

flies [CantonSw-, (CSw-)] were from Dr. Scott Waddell (Oxford

University, UK). All CASK and CaMKII mutants, Gal4, and UAS

lines were outcrossed with the CSw- line for at least six gener-

ations prior to behavioral experiments. GCaMP3.1 flies were a

gift from Dr. Loren Looger (Janelia farm, VA, US). MB247-Gal4;

tubulin-Gal80ts and OK107-Gal4; tubulin-Gal80ts were obtained

from Dr. Yi Zhong (Cold Spring Harbor Laboratories, US).
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uas-CaMKII-RNAi and CaMKII-Gal4 flies were obtained from

Dr. Sam Kunes (Harvard University, US).

CLONING

Human CASK cDNA isolated from human cerebellum was

obtained from imaGenes (IMAGE full-length cDNA clone

IRCMp5012G0614D, http://www.imagenes-bio.de) in a pCR4-

TOPO vector. Forward (5′-CACC ATG GCC GAC GACGAC-3′)

and reverse (5′-CTA ATA GAC CCA GGA GAC AGG-3′) primers

(0.4 µL at 0.5 µM, Invitrogen), dNTPs (200 µM), and CASK

cDNA (1 µl) was added to ddH2O (13.4 µl) before addition

of High fidelity Phusion DNA polymerase (0.2 µl, Finnzymes).

The following reaction conditions were then used for PCR:

98◦C for 30 s, 98◦C for 10 s, 61◦C for 20 s, 72◦C for 60 s (25

cycles), 72◦C for 5 min. The resultant PCR product was used for

pENTR™ directional TOPO® cloning (Invitrogen) to create the

plasmid pEntr-CASK. This was used to transfect α-Select Gold

E. Coli (Bioline). This plasmid was then sequenced (Geneservice,

London, http://www.geneservice.co.uk) and used in the Gateway

LR cloning reaction (Invitrogen) with a pTW plasmid. The plas-

mid pTW-CASK was used for germline transformation (Bestgene,

US) by microinjection into Drosophila embryos.

BEHAVIOR EXPERIMENTS

Behavior experiments were carried out at 25◦C, 70% relative

humidity and under dim red light. For Gal80ts (TARGET) experi-

ments the flies were grown at 18◦C that allowed Gal80ts inhibition

of Gal4. Adult flies were collected everyday in the evening and

maintained for another three days at 30◦C. These flies were

trained and tested at 30◦C that relieved Gal80ts inhibition allow-

ing the expression of transgenes (McGuire et al., 2003). To

measure learning (2 min memory) a mixed population of about

one hundred 2–3 days (4 days for TARGET experiments) day

old flies received one cycle of training during which they were

exposed sequentially to one odor [conditioned stimulus, CS+;

3-octanol (1:100) or 4-methyl-cyclohexanol, 1:67] paired with

electric shock (60V DC) (unconditioned stimulus, US) and then

to a second odor (CS-odor) without electric shock. The flies were

then allowed to choose between the two odors for 120 s in the T-

maze (Tully and Quinn, 1985). To measure middle-term memory

(MTM) flies were given one cycle of training and then stored in

food containing vials for 3 h before they were tested as in learn-

ing experiments. A performance index (PI) was calculated as the

number of flies avoiding the CS+ minus number of flies avoid-

ing the CS-, divided by the total number of flies that participated

in the test. A score of 1.0 would be equivalent to 100% learning,

where all the flies avoided the CS+. In contrast a 50:50 distribu-

tion would give a PI of zero (no learning). For long-term memory

a custom built maze was used which allowed simultaneous train-

ing of several batches of flies. The flies were administered five

cycles of training either with an inter-cycle interval of 15 min

(spaced) or without any inter-cycle interval (massed). They were

then kept at 18◦C until tested. Prior to testing, the flies were

moved to 25◦C and allowed to acclimatize for at least 1 h. For

long-term memory (LTM), memory was assessed 24 h after train-

ing. All statistical analysis for behavioral data was performed and

plotted with Graphpad Prism (Graphpad software, Inc) software.

CALCIUM IMAGING

Ca2+ imaging on dissected adult brains was performed as

described previously (Ruta et al., 2010; Tessier and Broadie, 2011).

Briefly, the fly brains were dissected in HL3.1, tethered to the

bottom of a petri dish containing 5 ml of HL3.1. Images were col-

lected using an Axio Examiner Z1 microscope (Zeiss) using a 10×

water immersion objective and Axiovision software. The brains

were stimulated by gently adding 500 µl of 65 mM KCl in HL3.1

to the dish while the images were captured at 340 msec/frame.

IMAGE ANALYSIS

Image analysis was performed using the single channel ratio

analysis of the physiology module of AxioVs40 V 4.8.0.0 (Zeiss).

Regions of interest were selected by drawing around the mush-

room bodies α′/β′ neurons and the fluorescence values were

obtained. An initial reference fluorescence (Fo) value of was cal-

culated by averaging the fluorescence of first ten frames. Percent

change in fluorescence, %�F/F, was calculated for each time

point, which is given by [(F-Fo/Fo) × 100], where F is fluores-

cence at a given time. A ratio table was generated and the values

were plotted as a function of number of time.

WESTERN BLOTTING AND RNAi VALIDATION

Extracts were prepared by freezing ten fly heads from either

wildtype or Elav-Gal4 > uas-RNAi in liquid nitrogen followed

by homogenization in 50 µl of lysis buffer (50 mM Tris,

pH 7.4, 150 mM NaCl, 1% Triton-x-100, 5 mM EDTA, 0.1%

SDS, 1 mM Na2VO3, and complete mini protease inhibitor

(Amersham Biosciences). The homogenate was incubated on

ice for 10 min and then centrifuged at 14000 rpm. Supernatant

was collected and mixed with 50 µl sample buffer. 15 µl

of this sample were loaded per well. Following transfer to

a nitrocellulose membrane, the membrane was probed with

rabbit anti-CASK 1:800 antibodies. Bands were visualized

using horseradish peroxidase-conjugated secondary antibod-

ies (Amersham Biosciences) and enhanced chemiluminescence

reagents (ECL, Amersham Biosciences). In order to validate

the RNAi constructs, the CASK sequence from VDRC and the

CaMKII sequence (Ashraf et al., 2006) were used in BLAST

searches of the NCBI database and only the appropriate gene of

interest came up as a significant hit suggesting no off-targets.

IMMUNOHISTOCHEMISTRY

Immunohistochemistry was performed essentially according to

previously published protocols (Hodge et al., 2006). Briefly, the

fly adult brains were dissected for 4–8 days old flies in HL3.1.

The isolated brains were then fixed in 4% paraformaldehyde

for 1 h followed by two washes with HL3.1-Tx (HL3.1 contain-

ing 0.1% Triton-X-100) for a total of 1 h. The brains were then

blocked for 1 h with 0.1% bovine serum albumen (BSA) and 0.1%

normal goat serum (NGS) in HL3-Tx. Brains were incubated

overnight at 4◦C with 1:40 dilution of a rabbit anti-CASK anti-

body (Lu et al., 2003) or 1:100 mouse anti-CaMKII (Takamatsu

et al., 2003). Following an overnight washing HL3.1-Tx at 4◦C

the brains were then incubated with 1:400 anti-rabbit Alexa-648

or with 1:400 goat anti-mouse Alexa-488 (Invitrogen) secondary

antibodies overnight. Following an overnight HL3.1-Tx wash the
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brains were mounted in Vectashield (Vector laboratories) and

stored at 4◦C in the dark until they were imaged using a Leica TCS

SP5 confocal microscope (Wolfson Bioimaging facility, University

of Bristol). The images were then examined using Velocity imag-

ing software (PerkinElmer) and projections were generated using

the image processing software ImageJ (NIH).

SENSORIMOTOR CONTROLS

The odor acuity and shock reactivity were determined for all

genotypes used in this study, as described previously (Tully et al.,

1994). Briefly, for odor acuity ∼80–100 flies were introduced into

the T-maze. After 90 s the flies were taken to the choice point

where they were allowed 2 min to make a choice between pure

odors and air. The flies were then collected and counted. The

percent avoidance was calculated by dividing the flies that chose

odor by the total number of flies that participated in the test. For

shock reactivity, flies were introduced into the shock chamber.

After 90 s of rest they were given a 60 V DC electric shock from

which time they were allowed to escape to a similar tube without

electric shock on the other side. They were given 2 min to make a

choice and then collected and counted. The percent shock avoid-

ance was calculated by dividing the number of flies that avoided

the shock by escaping the shock tube by the total number of flies

in the experiment. The flies that remained in the central chamber

were considered to have escaped the electric shock.

RESULTS

CASK-β ISOFORM CONTAINING CaMKII-LIKE AND L27 DOMAINS IS

REQUIRED FOR MIDDLE-TERM MEMORY

In order to see if CASK plays a role in learning and memory

flies were tested using the olfactory aversive conditioning assay

(Tully and Quinn, 1985). We used deficiency lines: Df(3R)x307

and Df(3R)x313 which contain large chromosomal deficiencies

both lacking CASK [called camguk (cmg) or caki]. A cross between

the two lines generates transheterozygote flies with only a short

fragment of chromosome deleted that includes the whole of the

CASK locus, therefore null for both CASK-α and CASK-β (Martin

and Ollo, 1996). All CASK mutant genotypes learned to avoid

the shock-paired odor similar to controls when tested 2 min after

training (Figure 2A). In order to investigate the role of the dif-

ferent CASK isoforms in learning (2 min memory) we used a

mutant (CASK-β null) that completely removes the long iso-

form of CASK (CASK-β) but leaves the short (CASK-α) isoform

intact (Figure 1C; Slawson et al., 2011). These mutant flies also

did not show any defects in 2 min memory tested after 2 min of

administering one training cycle (Figure 2B).

The majority of the CASK and CaMKII mutant genotypes

tested showed normal shock reactivity and olfactory acuity

demonstrating that any performance deficit was due to a defect in

signal processing required for memory as opposed to a peripheral

defect preventing the fly from being able to perform the behav-

ioral task (Table 1). CASK-β null, Df(3)x313/Df(3)x307 and the

CASK heterozygous control deficiency line Df(3)x313/+ reacted

abnormally to electric shock. However, all the CASK and CaMKII

mutant genotypes showed normal learning confirming that these

flies are healthy and have mushroom bodies that are capable of

detecting odor, respond to shock normally and able to support

FIGURE 2 | CASK is not required for learning. (A) Q2Learning or initial

(2 min) short-term memory (STM) was measured immediately after

administering one cycle of shock-odor training. Flies lacking all forms of

(Continued)

Frontiers in Neural Circuits www.frontiersin.org March 2013 | Volume 7 | Article 52 | 4

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Malik et al. CASK and CaMKII in memory

FIGURE 2 | Continued

CASK [Df(3)x307/Df(3)x313] learned equally well to heterozygote negative

controls [Df(3)x307/+ or Df(3)x313/+]. Data were analyzed using One-Way

ANOVA followed by a Tukey’s post-hoc test. In all figures the numbers

denote n (typically ∼100 flies used for each n), n.s. is not significant

(p > 0.05), ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001. The brackets below the

significance label denote the genotypes being compared. (B) Flies lacking

CASK-β (CASK-β null), learned equally well to avoid the shock-paired odor as

wildtype negative control. (C) Compared to wildtype, pan-neuronal

(elav-Gal4) expression of uas-CASK-RNAi leads to reduced CASK-β

immunofluorescence in whole mount adult brains. (D) Western blot of cell

lysates from wildtype or elav-Gal4, uas-CASK-RNAi heads showed a similar

reduction in CASK-β. Quantification of the intensity of the CASK-β band

showed a ∼50% reduction in CASK-β expression in elav-Gal4,

uas-CASK-RNAi. (E) Flies with targeted reduction of CASK throughout their

mushroom body (OK107-Gal4 > uas-CASK-RNAi ) or just in the adult

mushroom body (OK107-Gal4; Gal80ts
> uas-CASK-RNAi ) displayed

learning comparable to heterozygous wildtype negative controls. (F) Flies

with targeted reduction of CASK in the mushroom body α′/β′ neurons

(c305-Gal4 > uas-CASK-RNAi ) or just in the adult mushroom body α′/β′

neurons (c305a-Gal4; Gal80ts
> uas-CASK-RNAi ) displayed learning

comparable to heterozygous wildtype negative controls. (G) Flies with

targeted reduction of CASK in the mushroom body α/β and γ neurons

(MB247-Gal4 > uas-CASK-RNAi ) or just in the adult mushroom body α/β

and γ neurons (MB247-Gal4; Gal80ts
> uas-CASK-RNAi ) displayed learning

comparable to heterozygous wildtype negative controls. (H) Flies with

targeted reduction of CASK in CaMKII neurons (CaMKII-Gal4 >

uas-CASK-RNAi ) displayed learning comparable to heterozygous wildtype

negative controls. All data were analyzed using One-Way ANOVA followed

by a Tukey’s post-hoc test.

initial learning, therefore the data shown in Figures 2A,B are neg-

ative controls for this issue. In addition none of the flies displayed

any obvious developmental defect and neither displayed a wing

phenotype or sluggishness (Park et al., 2002). This was reflected

in the fact they were wildtype for peripheral controls (Table 1)

and learning (Figures 2, 4), so therefore were able to choose to

move away from the shock-paired odor in the T-maze the same as

wildtype flies (Figures 2, 4).

Finally, we decided to investigate the effect of mushroom body

specific reduction of CASK on learning. Drosophila mushroom

bodies consist of three different classes of intrinsic neurons (α/β,

α′/β′, and γ) that extend their axons into the five lobes of neu-

ropil (Davis, 2011). We used a CASK-RNAi line which reduces

the expression of CASK by ∼50% (Figures 2C,D) to test if reduc-

tion of CASK in the mushroom body has an effect on learning in

flies. Expression of CASK-RNAi transgene in either all mushroom

body neurons [OK107-Gal4 (Connolly et al., 1996)], mushroom

body α′/β′ neurons [c305a-Gal4 (Krashes et al., 2007)], mush-

room body α/β and γ neurons [MB247-Gal4 (Zars et al., 2000)],

or using a CaMKII-Gal4 [that expresses in the mushroom body

α/β, α′/β′, and dorsal anterior lateral (DAL) neurons, (Chen et al.,

2012)] drivers did not lead to a significant decrease in 2 min

memory (Figures 2E–H).

We then tested flies 3 h after one cycle of training

(Figure 3A), CASK-β null reduced MTM to a similar extent

as Df(3)x307/Df(3)x313. This showed that deletion of CASK-

β alone was sufficient to cause the MTM defect, indicating an

important role for the CaMK-like and L27 domains of CASK

in MTM. Flies with CASK knockdown in either all mushroom

body neurons (Figure 3B) or just α′/β′ neurons (Figure 3C) sim-

ilarly showed a drastic reduction in MTM, while restricting

Table 1 | The sensorimotor controls for CASK and CaMKII transgenic

flies (Malik et al.) Q8.

Odor avoidance Percent shock

avoidance
MCH OCT

Mean ± SEM Mean ± SEM Mean ± SEM

WT Control 0.77 ± 0.06 0.69 ± 0.03 62.9 ± 3.8

MB247/+ 0.6 ± 0.08 0.59 ± 0.03 62.7 ± 3.5

c305a/+ 0.59 ± 0.03 0.54 ± 0.04 93.9 ± 2.1

OK107/+ 0.65 ± 0.05 0.58 ± 0.07 87 ± 2

CASK-RNAi/+ 0.59 ± 0.07 0.68 ± 0.1 85.7 ± 1.7

MB247 > CASK-RNAi 0.58 ± 0.05 0.84 ± 0.07 73.4 ± 3.7

c305a > CASK-RNAi 0.61 ± 0.03 0.83 ± 0.11 79.4 ± 3.2

OK107 > CASK-RNAi 0.63 ± 0.06 0.87 ± 0.04 79 ± 2.4

MB247;G80 > 0.64 ± 0.04 0.61 ± 0.05 75.7 ± 4.1

CASK-RNAi

OK107;G80 > 0.71 ± 0.02 0.65 ± 0.05 78.5 ± 3.5

CASK-RNAi

Df(3)x307/+ 0.65 ± 0.03 0.53 ± 0.1 72 ± 5.6

Df(3)x313/+ 0.6 ± 0.05 0.52 ± 0.07 41.5 ± 1.4*

Df(3)x307/Df(3)x313 0.63 ± 0.08 0.72 ± 0.05 43.5 ± 8.9*

T287D/+ 0.61 ± 0.07 0.61 ± 0.05 70 ± 6.1

MB247 > T287D 0.59 ± 0.05 0.64 ± 0.16 64.9 ± 5.4

c305a > T287D 0.65 ± 0.13 0.66 ± 0.04 61.5 ± 11.7

OK107 > T287D 0.87 ± 0.02 0.73 ± 0.03 69 ± 2.6

MB247;G80 > T287D 0.7 ± 0.03 0.61 ± 0.11 75.5 ± 7.6

OK107;G80 > T287D 0.7 ± 0.07 0.68 ± 0.08 81 ± 3.1

CaMKII-Gal4 > T287D 0.48 ± 0.04 0.51 ± 0.12 93 ± 3.5

CASK-β null 0.61 ± 0.07 0.53 ± 0.08 35.9 ± 3.6*

CASK;CASK-β null 0.53 ± 0.05 0.52 ± 0.09 37 ± 6.9*

c305a;CASK-β null 0.49 ± 0.09 0.49 ± 0.04 72.5 ± 1.7

c305a > 0.63 ± 0.06 0.65 ± 0.07 60.3 ± 4.4

CASK;CASK-β null

CASK/+ 0.64 ± 0.1 0.56 ± 0.05 73.1 ± 3.6

MB247 > CASK 0.57 ± 0.06 0.64 ± 0.12 93.2 ± 2.3

c305a > CASK 0.86 ± 0.03 0.59 ± 0.05 71.9 ± 3.2

OK107 > CASK 0.86 ± 0.03 0.59 ± 0.05 82.2 ± 2.2

T306A T307A/+ 0.56 ± 0.03 0.55 ± 0.1 92.5 ± 1

MB247 > T306A T307A 0.55 ± 0.07 0.64 ± 0.05 89.8 ± 3.7

c305a > T306A T307A 0.56 ± 0.06 0.6 ± 0.02 91.8 ± 1.7

OK107 > T306A T307A 0.62 ± 0.03 0.57 ± 0.03 88.8 ± 1.4

CaMKII/+ 0.64 ± 0.05 0.6 ± 0.11 79.6 ± 2.4

MB247 > CaMKII 0.58 ± 0.02 0.52 ± 0.08 87 ± 3.8

c305a > CaMKII 0.67 ± 0.14 0.52 ± 0.04 82.7 ± 2.8

OK107 > CaMKII 0.74 ± 0.08 0.5 ± 0.03 92.9 ± 1.2

CaMKII-Gal4 > CaMKII 0.48 ± 0.03 0.51 ± 0.11 93 ± 3.5

T287A/+ 0.43 ± 0.04 0.61 ± 0.08 85.5 ± 2.2

MB247 > T287A 0.59 ± 0.14 0.41 ± 0.08 72.5 ± 7.5

c305a > T287A 0.51 ± 0.12 0.53 ± 0.07 66.8 ± 1.8

OK107 > T287A 0.59 ± 0.14 0.6 ± 0.05 69.5 ± 7.6

CaMKII-RNAi/+ 0.62 ± 0.12 0.6 ± 0.06 90.5 ± 0.5

MB247 > CaMKII-RNAi 0.57 ± 0.08 0.55 ± 0.12 95.8 ± 2.4

c305a > CaMKII-RNAi 0.62 ± 0.07 0.55 ± 0.12 92.3 ± 0.3

OK107 > CaMKII-RNAi 0.63 ± 0.12 0.54 ± 0.12 89 ± 4

CASK and CaMKII transgenic flies showed normal odor acuity for 3-Octanol

(OCT) and methyl-cyclohexanol (MCH). However, some of the CASK genotypes

have reduced shock reactivity compared to wildtype negative control (*p < 0.05).
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FIGURE 3 |Q3 Continued
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FIGURE 3 | CASK functions in the mushroom body α′/β′ neurons during

middle-term memory formation. (A) MTM measured 3 h post-training was

completely removed in CASK-β null flies. Similarly transheterozygous

[Df(3)x313/Df(3)x307] flies that lack both α-CASK and β-CASK have a similar

reduction in MTM compared to wildtype or heterozygote negative controls

[Df(3)x313/+ or Df(3)x307/+]. (B) Flies with uas-CASK-RNAi expressed

throughout their mushroom body using OK107-Gal4 show a reduction in

MTM compared to heterozygous wildtype negative controls. Adult specific

reduction in mushroom body CASK using OK107-Gal4; Gal80ts was sufficient

to reduce MTM. (C) Flies expressing uas-CASK-RNAi in their α′/β′ mushroom

body neurons (c305a-Gal4) show a reduction in MTM. Reduction of CASK

just in the adult α′/β′ neurons using Gal4-c305a; Gal80ts was sufficient to

cause the reduction in MTM. (D) Reduction of CASK in α/β and γ neurons

using MB247-Gal4 did not affect MTM. Adult specific reduction of CASK in

α/β and γ neurons using MB247-Gal4; Gal80ts also did not affect MTM.

(E) CASK-RNAi expression using CaMKII-Gal4 also lead to a MTM defect

compared to wildtype. (F) Flies that contained Gal80ts in combination with

either Gal4-OK107 (G) c305a-Gal4 (H) MB247-Gal4 were reared and tested at

18◦C, a temperature that prevented the expression of the CASK-RNAi (hence

these are negative control experiments) displayed MTM similar to

heterozygous wildtype controls. (I) MTM was completely removed in flies

overexpressing full-length CASK throughout their mushroom body.

(J) Overexpression of CASK in α′/β′ neurons was sufficient to cause the

decrease in MTM. (K) α/β and γ neuron overexpression of CASK did not

affect MTM. (L) Expression of CASK in mushroom body α′ /β′ neurons in a

CASK-β null background (c305a-Gal4, uas-CASK; CASK-β null) rescued the

reduction in MTM seen in the CASK-β null mutants [uas-CASK; CASK-β null

and c305a-Gal4; CASK-β null (the positive controls) compared to wildtype (the

negative control)] to the same level as wildtype. (M) Overexpression of

human CASK in the mushroom bodies α′/β′ neurons in a fly otherwise

completely lacking CASK-β rescued the reduction in MTM seen in the CASK-β

null mutants (uas-CASK; CASK-β null and Gal4-c305a; CASK-β null compared

to wildtype) to the same level as wildtype. All data were analyzed using

One-Way ANOVA followed by a Tukey’s post-hoc test.

expression to the remaining α/β and γ neurons had no effect

(Figure 3D). This suggests CASK specifically controls memory

formation via the α′/β′ neurons. In order to distinguish the

role of CASK in mushroom body development as opposed to

an acute physiological role in signaling underlying memory we

restricted the reduction of CASK to just the adult mushroom

body using the TARGET system (McGuire et al., 2003). Reduction

of CASK specifically in the adult mushroom body was sufficient

to cause the reduction in MTM showing that the effects are post-

developmental (Figure 3B). Again we confirmed that this deficit

in MTM resulted from a function of CASK in the adult α′/β′

neurons (Figure 3C) as opposed to the adult α/β and γ neurons

(Figure 3D). The negative control flies reared and tested at 18◦C,

conditions where there was no transgene expression (Shuai et al.,

2010) showed normal MTM (Figures 3F–H).

As previous work has showed that CASK influences plastic-

ity and behavior via regulation of CaMKII autophosphorylation

(Lu et al., 2003; Hodge et al., 2006) we used the CaMKII-specific

promoter that appears to express in the mushroom body α/β,

α′/β′, and DAL neurons and has been used to follow the changes

in CaMKII transcription occurring during LTM (Chen et al.,

2012). Knockdown of CASK in these CaMKII neurons was suf-

ficient to completely remove MTM (Figure 3E). We believe it is

the α′/β′ neurons of the CaMKII-Gal4 expression pattern that are

most critical for mediating CASK and CaMKII effects on mem-

ory, as CASK and CaMKII memory phenotypes map to α′/β′

(c305a-Gal4) neurons with α/β (MB247-Gal4) neurons having

little effect and the DAL neurons thought to only affect certain

aspects of LTM (Chen et al., 2012). The data suggests that CASK

is needed in a subset of neurons that express CaMKII in order

to get memory formation. In order to determine if increased

levels of CASK also disrupted MTM we expressed uas-CASK,

the cDNA corresponding to the long isoform called CASK-β

(Figure 1C; Lu et al., 2003; Hodge et al., 2006; Slawson et al.,

2011) throughout the mushroom body. This resulted in a dra-

matic reduction in MTM (Figure 3I), which again could be local-

ized to the α′/β′ neurons (Figure 3J) as opposed to the α/β and γ

neurons where CASK overexpression had no effect (Figure 3K).

Since the effects of CASK knockdown were also localized to the

mushroom body α′/β′ neurons, we tested whether expressing the

Drosophila CASK transgene in these neurons in a CASK-β null

fly, would return their memory to normal (Figure 3L). Compared

to CASK-β null mutant flies with c305a-Gal4 alone or uas-CASK

alone, mushroom body α′/β′ expression of CASK in the CASK-β

null background fully rescued the MTM defect to a level indis-

tinguishable from wildtype, confirming that CASK signaling in

mushroom body α′/β′ is necessary and sufficient for Drosophila

MTM formation.

HUMAN CASK OVEREXPRESSION IN MUSHROOM BODIES α′/β′

NEURONS IS SUFFICIENT TO RESTORE THE MEMORY OF CASK NULL

FLIES TO WILDTYPE

As human CASK and CaMKII display a high degree amino acid

residue identity to Drosophila CASK (74% identical) and CaMKII

(79% identical), it is likely that they might function in a similar

way in both organisms (Cho et al., 1991; Hsueh, 2006). In order to Q4

test this hypothesis we overexpressed human CASK in mushroom

body α′/β′ neurons of flies that otherwise express no CASK-β.

Whereas CASK-β null flies almost completely lack MTM, overex-

pression of human CASK just in mushroom body α′/β′ neurons

was sufficient to return memory to levels indistinguishable to

wildtype (Figure 3M). This indicates that Drosophila and human

CASK show conserved neuronal function in memory formation.

LEVELS OF CaMKII AUTOPHOSPHORYLATION REGULATE

MIDDLE-TERM MEMORY FORMATION

In order to see if the CaMKII levels and autophosphoryla-

tion are important for aversive olfactory learning and memory

we expressed a range of CaMKII transgenes in the mushroom

body. These included a transgene that overexpresses CaMKII

(Koh et al., 1999), a CaMKII-hairpin that allows targeted reduc-

tion of CaMKII (Ashraf et al., 2006; Akalal et al., 2010; Chen

et al., 2012), a Ca2+-independent constitutively active CaMKII-

T287D, a Ca2+ dependent CaMKII-T287A (Park et al., 2002),

and CaMKII-TT306/7AA containing phospho-blocking muta-

tions of its inhibitory phosphorylation sites (Lu et al., 2003). We

found that mushroom body expression of these transgenes did

not affect learning with the avoidance of the shock-paired odor

being similar between mutant and wildtype flies (Figures 4A–D)

similar to what we found for all CASK genotypes. In order to
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FIGURE 4 | Continued

FIGURE 4 | CaMKII autophosphorylation in the mushroom body is not

required for initial memory formation. Initial memory or learning was

measured immediately (2 min) after one cycle training. Flies expressing

CaMKII transgenes either throughout the mushroom body (A), in the α′/β′

neurons (B), the α/β, and γ neurons (C) or CaMKII neurons (D) all learned

similar to heterozygous wildtype negative control. Data were analyzed

using One-Way ANOVA followed by a Tukey’s post-hoc test.

see if the level of CaMKII in the mushroom body is important

for MTM, we expressed CaMKII-hairpin in different parts of

the mushroom body, however, none had a significant reduction

in MTM compared to the heterozygote wildtype negative con-

trol (Figures 5A–C). However, when CaMKII is overexpressed

throughout the mushroom body, there was a significant reduction

in MTM compared to heterozygote wildtype negative control,

an effect that localized to the mushroom body α′/β′ neurons

(Figure 6A).

In order to determine the contribution of the “molecu-

lar memory switch” (Figure 1A) to aversive olfactory mem-

ory we expressed either the Ca2+-independent constitutively

active form of CaMKII-T287D or Ca2+ dependent CaMKII-

T287A (Park et al., 2002) in the mushroom body. Expression

of CaMKII-T287D or -T287A either throughout the mushroom

body (Figure 6B) or just in α′/β′ neurons caused a dramatic

reduction in MTM (Figure 6C), with expression in the remain-

ing α/β and γ neurons having no effect (Figure 6D), suggesting

that the state of T287 autophosphorylation in α′/β′ is partic-

ularly important for memory formation. Restricted expression

of CaMKII-T287D and -T287A transgenes to the adult mush-

room body (Figure 6E) or just the adult α′/β′ (Figure 6F) but not

the adult α/β and γ neurons (Figure 6G) was sufficient to cause

the reduction in MTM. Negative control flies reared and tested

at 18◦C, displayed wildtype MTM (Figures 6H–J). In order to

see if CaMKII inhibitory autophosphorylation is also important

for memory formation (Figure 1B), we overexpressed a trans-

gene with these phosphorylation sites (T306A T307A) blocked

(Lu et al., 2003). CaMKII-T306A T307A overexpression through-

out the mushroom body (Figure 6K) or just the α′/β′ neurons

(Figure 6L) dramatically reduced MTM, while α/β and γ neuron

expression had little effect (Figure 6M).

CASK AND CaMKII FUNCTIONALLY INTERACT TO REGULATE

MIDDLE-TERM MEMORY FORMATION

The main effect of CASK is to increase inhibitory phospho-

rylation of T306 T307 on endogenous CaMKII resulting in a

decrease in endogenous kinase activity (Figure 1A; Lu et al., 2003;

Hodge et al., 2006) and we show that mushroom body overex-

pression of CASK removes MTM. Conversely flies overexpressing

the uas-CaMKII-T306A T307A transgene would have an oppos-

ing effect with inhibitory phosphorylation being blocked result-

ing in increased transgenic kinase activity (Figure 1B), again

with mushroom body overexpression of CaMKII-T306A T307A

removing MTM. As expression of the two transgenes are pre-

dicted to have opposite effects on CaMKII activity we decided to

co-express CASK and CaMKII-T306A T307A to see if they coun-

teract each other’s effect and return memory to normal. Indeed

flies expressing both transgenes in their mushroom body showed
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FIGURE 5 | Continued

FIGURE 5 | Levels of CaMKII in the mushroom body are not important

for middle-term memory formation. MTM was equal in flies with

reduced CaMKII either, throughout the mushroom body (A) the α′/β′

neurons (B) or the α/β and γ neurons (C) compared to heterozygous

wildtype negative controls. Data were analyzed using One-Way ANOVA

followed by a Tukey’s post-hoc test.

complete rescue of their memory deficit, confirming that CASK

regulates CaMKII autophosphorylation during memory forma-

tion (Figure 6K). Expression of CaMKII-T306A T307A in just the

α′/β′ neurons was not sufficient to rescue the CASK overexpres-

sion memory defect (Figure 6L). Expression of any combination

of the transgenes in the α/β and γ neurons had no effect on MTM

(Figure 6M). This data suggests that as for CASK, changes in

CaMKII autophosphorylation are required throughout the adult

mushroom body during memory formation and that the effect

of CASK on MTM formation is through CASK’s regulation of

CaMKII autophosphorylation.

CASK AND CaMKII ARE REQUIRED FOR LONG-TERM MEMORY

FORMATION

In order to determine the role of CASK and CaMKII autophos-

phorylation in LTM, flies were subjected to five cycles of spaced

training which is known to produce a form of consolidated mem-

ory that is protein synthesis and cyclic-AMP response element

binding protein (CREB) dependent (Tully et al., 1994). CASK-β

null flies were not able to form LTM (Figure 7A). Similarly mush-

room body CASK knockdown or overexpression of CaMKII-

T287D, T287A, or TT306/7AA throughout the mushroom body

(Figure 7A), just the α′/β′ (Figure 7B), but not the α/β and γ

(Figure 7C) neurons reduced LTM compared to control. Previous

studies have reported that CaMKII knockdown in α/β and γ

mushroom body neurons or DAL neurons reduced LTM (Ashraf

et al., 2006; Akalal et al., 2010; Chen et al., 2012). We therefore

performed experiments using this CaMKII-hairpin-RNAi trans-

gene but for the first time with a full complement of mushroom

body neuron specific drivers (Figure 7D). Flies with a reduc-

tion of CaMKII in any of these sets of mushroom body neurons

showed deficits in LTM indicating mushroom body CaMKII lev-

els are crucial for normal LTM formation. This also demonstrates

that the effect of changing the level of CaMKII as opposed to

changing levels of autophosphorylated CaMKII can be qualita-

tively different in the α/β and γ neurons. Consistent with our

MTM data we observed a similar reduction in LTM in flies over-

expressing CASK or CaMKII throughout the mushroom body

(Figure 7E), just in the α′/β′ neurons (Figure 7F), but not in the

α/β and γ neurons (Figure 7G). Again this data is consistent with

CASK function and CaMKII autophosphorylation in the α′/β′

neurons being critical for LTM memory formation.

CASK AND CaMKII LEVELS AND REDUCTION OF CaMKII

AUTOPHOSPHORYLATION ARE REQUIRED FOR ANAESTHESIA

RESISTANT MEMORY FORMATION

A second form of memory is generated by five cycles of training

without rest intervals (massed training). This form of memory

consists of anesthesia resistant memory (ARM) and is indepen-

dent of CREB transcription (Tully et al., 1994). CASK-β nulls
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FIGURE 6 |Q3 Continued
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FIGURE 6 | CaMKII autophosphorylation in the mushroom body α′/β′

neurons are critical for middle-term memory. (A) Overexpression of

CaMKII throughout the mushroom body or just in the α′/β′ neurons

significantly decreased MTM, while expression in the α/β and γ neurons

had little effect. (B) Overexpression of constitutively active CaMKII-T287D

or Ca2+ dependent CaMKII-T287A throughout the mushroom body

significantly decreased MTM. (C) Overexpression of CaMKII-T287D or

CaMKII-T287A just in the α′/β′ neurons significantly decreased MTM,

(D) while expression in the α/β and γ neurons had little effect. (E) Adult

specific mushroom body expression of CaMKII-T287D or -T287A with

OK107-Gal4; Gal80ts lead to a reduction in MTM compared to heterozygous

wildtype negative controls. (F) Adult specific α′ /β′ neuron expression of

CaMKII-T287D or -T287A with c305a-Gal4; Gal80ts was sufficient to cause

the reduction in MTM. (G) Expression of CaMKII-T287D or -T287A in the

remaining adult α/β and γ neurons with MB247-Gal4; Gal80ts did not affect

MTM. Performance of flies that contained Gal80ts in combination with

OK107-Gal4 (H) c305a-Gal4 (I) and MB247-Gal4 (J) and that were reared

and tested at 18◦C; a temperature that prevented the expression of the

CaMKII transgenes and hence is a negative controls had normal MTM.

(K) Expression of uas-CaMKII-T306A T307A or CASK alone throughout the

mushroom body reduced MTM (e.g., the positive controls) compared to

heterozygous wildtype negative controls. Expression of CaMKII-TT306/7AA

and CASK throughout the mushroom body (OK107-Gal4) rescued the MTM

deficit seen with expression of either transgene alone to wildtype.

(L) Expression of uas-CaMKII-T306A T307A in the α′ /β′ neurons was

sufficient to reduce MTM compared to controls. However, simultaneous

expression of CASK and CaMKII-TT306/7AA using c305a-Gal4 was not

sufficient to rescue this defect. (M) Expression of uas-CaMKII-T306A T307A

in the α/β and γ neurons did not affect MTM. Data were analyzed using

One-Way ANOVA followed by a Tukey’s post-hoc test.

were not able to form ARM (Figure 8A), while mushroom body

CASK knockdown or overexpression of CaMKII-T287D, T287A,

or TT306/7AA throughout the mushroom body (Figure 8A), just

the α′/β′ neurons (Figure 8B) but not the α/β and γ neurons

(Figure 8C) neurons removed ARM. Our results are consistent

with CASK function and CaMKII autophosphorylation in the

α′/β′ neurons being critical for ARM formation.

CASK AND CaMKII REGULATE MUSHROOM BODY NEURAL ACTIVITY

Dynamic changes in neural activity and Ca2+ signaling in

memory centers such as the mushroom body and hippocam-

pus underlie memory formation (Lisman et al., 2002; Davis,

2011). Since CASK regulates MTM formation in adult mush-

room body α′/β′ neurons (as labeled by c305a-Gal4), we set

out to determine the physiological basis of this defect by

measuring dynamic changes in Ca2+ signaling as reported by

changes in fluorescence of the genetically encoded Ca2+ reporter,

GCaMP3.1 in the relevant memory circuit (Tian et al., 2009).

We imaged mushroom body Ca2+ induced fluorescence in

response to acute application of high [K+] depolarizing solu-

tion that resulted in a robust increase in mushroom body

intracellular Ca2+ levels (Figures 9A,B) and might reflect a

proxy (although somewhat artificial) of the increase in synap-

tic activity occurring in α′/β′ neurons during memory formation

in the behavioral experiments. CASK-β null or CASK knock-

down in the α′/β′ neurons decreased maximum fluorescence

(Figures 9B,C) indicating a disruption of neuronal signaling in

the specific mushroom body neurons that cause the memory

defect, consistent with this physiological change mediating the

fly’s inability to remember shown in Figures 3, 7, 8. CaMKII

and CaMKII-TT306/7AA overexpression caused an increase in

peak neural activity while reduced CaMKII caused a reduction

in neural activity (Figures 9B,C), these bi-directional changes

in neural activity provide an explanation for the disruption

of memory seen with CaMKII misexpression in α′/β′ neurons

(Figures 6–8). In addition overexpression of CaMKII-T287D

also reduced the peak Ca2+ response in a similar manner to

reduced CASK, consistent with reductions in CASK increasing

levels of CaMKII autophosphorylated at T287 (Figure 1B; Hodge

et al., 2006) and suggesting a physiological mechanism for mem-

ory deficit resulting from α′/β′ expression of CaMKII-T287D

(Figures 6–8).

In order for relative changes in Ca2+ levels to encode infor-

mation it would be expected that the baseline levels of Ca2+

would also be tightly regulated. Therefore, to see if plasticity

molecules such as CaMKII and CASK are involved in setting basal

Ca2+, GCaMP3 signals in α′/β′ neurons were measured under

baseline conditions. Compared to wildtype (Figure 9D) over-

expression of CaMKII, CaMKII-T287D, or CaMKII-TT306/7AA

increased basal Ca2+ levels. Reduced CaMKII or CASK caused a

decrease in basal Ca2+ levels α′/β′ neuron, while CASK overex-

pression also lowered baseline Ca2+ levels (Figure 9D), the later

explaining the effect of α′/β′ overexpression on CASK on memory

(Figures 3, 6, 7). Since overexpression of CaMKII-T287D already

drives neurons into a very high Ca2+ state under basal condi-

tions (Figure 9D), stimulation of the neurons may not be able

to increase Ca2+ concentrations any further, reducing the change

in Ca2+ concentration measured for peak response (Figure 9C).

These results suggest CASK, CaMKII levels and autophospho-

rylation regulate basal and activity-dependent changes in Ca2+

signaling in the mushroom body α′/β′ neurons, revealing the

likely neurophysiological basis for the disruption in memory

found in these animals.

DISCUSSION

CASK REGULATES CaMKII AUTOPHOSPHORYLATION IN MUSHROOM

BODY α′/β′ NEURONS DURING MIDDLE-TERM MEMORY FORMATION

We found that CASK-β mutant flies that lack just the long iso-

form of CASK have reduced MTM, showing that the CaMK-like

and L27 domains only present in this form of CASK (Figure 1C)

are the key signaling domains required for regulating mem-

ory. Previous work has shown that CASK-β regulates CaMKII

autophosphorylation by its CaMK-like domain (Figure 1A; Lu

et al., 2003; Hodge et al., 2006), therefore based on this and the

data presented here, it is likely that the way CASK functions in

memory formation is via its control of CaMKII autophospho-

rylation mediated by its N-terminal CaMK-like domain. MTM

formation was highly sensitive to the level and specific distribu-

tion of CASK in the mushroom body, with targeted reduction of

CASK in the mushroom body α′/β′ neurons impairing memory,

but with no apparent contribution from the α/β and γ neurons.

Decreased levels of CASK are known to increase CaMKII-T287

autophosphorylation (Figure 1A; Lu et al., 2003; Hodge et al.,

2006). Consistent with this, we found that direct overexpression
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FIGURE 7 |Q3 CASK and CaMKII are required for long-term memory.

(A) Flies null forQ9 CASK-β or overexpressing CASK-RNAi, CaMKII-T287D,

CaMKII-T287A, or CaMKII-T306A T307A throughout their mushroom body

completely lacked LTM induced by five cycles of spaced training compared to

heterozygous wildtype negative controls. (B) α′/β′ neuron CASK knockdown

or overexpression of CaMKII-T287D, CaMKII-T287A, and CaMKII-T306A

T307A was sufficient to cause this reduction in LTM. (C) Mushroom body α/β

and γ neuron CASK knockdown or overexpression of CaMKII-T287D,

CaMKII-T287A, and CaMKII-T306A T307A did not affect LTM. (D) Reduction

of CaMKII throughout the mushroom body, in the α′/β′ or α/β and γ neurons

decreased LTM. (E) Overexpression of CaMKII or CASK throughout the

mushroom body decreased LTM. (F) Mushroom body α′/β′ overexpression of

CaMKII or CASK decreased spaced LTM. (G) Overexpression of CaMKII or

CASK in the mushroom body α/β and γ neurons (MB247-Gal4) did not affect

LTM. Data were analyzed using One-Way ANOVA followed by a Tukey’s

post-hoc test.

of the CaMKII-T287D transgene in the α′/β′ neurons caused a

similar reduction in MTM as knocking-down CASK in the same

neurons. While expression of CaMKII-T287D in the α/β and γ

neurons have no effect on MTM. Expression of CASK just in

the α′/β′ neurons fully rescued the complete lack of memory in

CASK-β null mutants to wildtype levels, showing CASK signal-

ing in only the mushroom body α′/β′ neurons is necessary and

sufficient for MTM formation.
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We have also determined for the first time the effect of CaMKII

overexpression on memory, showing α′/β′ neuron expression

completely removed MTM. In addition reduction of CASK just

in neurons that express CaMKII was sufficient to remove MTM.

FIGURE 8 |Q3 CASK and CaMKII are required for anesthesia resistant

memory. (A) Flies null for CASK-β or expressing CASK-RNAi,

CaMKII-T287D, or CaMKII-T287A throughout the mushroom body

completely removed anesthesia resistant memory (ARM) tested 24 h after

five cycles of massed training. (B) α′/β′ CASK knockdown or

overexpression of CaMKII-T287D, CaMKII-T287A, or CaMKII-T306A T307A

reduced ARM. (C) Mushroom body α/β and γ neuron CASK knockdown or

overexpression of CaMKII-T287D, CaMKII-T287A, or CaMKII-T306A T307A

did not affect ARM. Data were analyzed using One-Way ANOVA followed

by a Tukey’s post-hoc test.

FIGURE 9 | Q3CASK and CaMKII regulates dynamic changes in neural

activity in mushroom body α′/β′ neurons. (A) Color coded images of a

fly brain showing GCaMP3.1 fluorescence in the mushroom body α′ /β′

lobes using c305a-Gal4 before and after application of depolarizing high

[KCl]. (B) Traces showing averaged (n > 6) GCaMP3.1 fluorescence

(Continued)
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FIGURE 9 | Continued

overtime in the α′/β′ mushroom body lobes (c305a-Gal4) co-expressing

the different CASK and CaMKII transgenes or CASK-β null indicated

compared to the negative control c305a/+ expressing GCaMP3 (solid

black line). (C) Histogram showing that the % change in peak

GCaMP3.1 fluorescence is reduced in CASK-β null and when

CASK-RNAi, CaMKII-RNAi, or CaMKII-T287D were expressed in the

α′/β′ neurons, while CaMKII overexpression increased the maximum

response compared to negative control (c305a-Gal4, uas-GCaMP3)

level (denoted by dotted line for comparison). (D) Histogram showing

baseline Ca2+ levels were increased when CaMKII, CaMKII-T287D, or

CaMKII-T306A T307A were overexpressed in α′/β′ neurons compared

to negative control. CASK-β null or α′/β′ neuron overexpression of

CASK-RNAi, CASK, or CaMKII-RNAi led to a reduction in baseline

Ca2+ signaling. Data were analyzed using One-Way ANOVA followed

by a Tukey’s post-hoc test.

Furthermore, increasing CASK in α′/β′ neurons also greatly

reduced MTM and decreased basal Ca2+ signaling. Such increases

in CASK would be expected to block T287 autophosphorylation

(Hodge et al., 2006), and indeed we found α′/β′ neuron T287A

overexpression gave a similar MTM phenotype. The role of CASK

and CaMKII-T287 autophosphorylation in the memory neurons

is an acute physiological one as opposed to a developmental one,

as reducing CASK or changing CaMKII-T287 autophosphoryla-

tion just in the adult mushroom body α′/β′ neurons was sufficient

to remove memory. Recently a second pair of CaMKII autophos-

phorylation sites (TT306/7) has been shown to be important for

the control of plasticity and memory in mammals (Figures 1A,B;

Elgersma et al., 2002; Zhang et al., 2005). We found α′/β′ neu-

ron CaMKII-TT306/7AA overexpression removed MTM. Lastly

we demonstrated that overexpression of CASK completely res-

cued the memory deficit due to mushroom body overexpression

of CaMKII-T306/7AA (Figure 6K). However, CaMKII T306A

T307A expression in α′/β′ neurons was insufficient to rescue

CASK overexpression (Figure 6L). The last result may suggest

CASK does not regulate CaMKII T306 T307 in α′/β′ neurons, or

perhaps the c305a-Gal4 promoter may not have adequate strength

or the exact spatiotemporal pattern required for both CASK and

CaMKII-T306A T307A expression to make the fly remember as

wildtype. Overall our data suggests that CASK regulates CaMKII

autophosphorylation in a common pathway required for memory

formation in the mushroom body.

CASK REGULATES CaMKII AUTOPHOSPHORYLATION IN THE

MUSHROOM BODY α′/β′ NEURONS DURING LONG-TERM MEMORY

FORMATION

Previous work has shown mushroom body expression of

CaMKII-T287D enhanced training but did not affect memory in

the courtship conditioning assay, while CaMKII-T287A expres-

sion changed habituation and neuronal excitability, but resulted

in no change in courtship conditioning memory (Mehren and

Griffith, 2004). However, mushroom body expression of the

CaMKII-hairpin transgene has been shown to decrease LTM using

the olfactory aversive conditioning assay (Ashraf et al., 2006)

and was associated with decreased mushroom body Ca2+ sig-

naling (Akalal et al., 2010). The differences in effects of CaMKII

on courtship and olfactory learning phenotypes maybe due to

differences in the circuitry employed in the two memory tasks and

also the timing of memory measured in the two assays. Recently

CaMKII has been shown to undergo CREB-dependent gene tran-

scription and translation in mushroom body and DAL neurons

during LTM (Chen et al., 2012). Consistent with these studies

we showed mushroom body expression of CaMKII-hairpin only

affects LTM. In addition this is the only CASK or CaMKII trans-

gene that gave a memory phenotype when expressed in the α/β

or γ neuron, this suggests that LTM is particularly sensitive and

requires a certain baseline level of CaMKII activity in every type

of mushroom body neuron in order to form LTM. This is in

contrast to transgenic manipulation of CaMKII autophospho-

rylation levels in the α/β or γ neuron that have no effect on

LTM, possibly because the endogenous CaMKII in these neurons

maybe adequate to support enough of the appropriate autophos-

phorylation activity to generate LTM. This is in contrast to

the critical role of α′/β′ neurons that require the correct level

of CASK, CaMKII, and CaMKII autophosphorylation in order

to form LTM. Therefore, our data is consistent with the other

studies showing α/β or γ (they did not test α′/β′) neuron expres-

sion of CaMKII-RNAi disrupts LTM, furthermore these studies

showed that α/β or γ neuron CaMKII-RNAi expression decreased

peak GCaMP3 Ca2+ response (Ashraf et al., 2006; Akalal et al.,

2010).

We also measured a similar reduction in peak Ca2+ response

in the in the α′/β′ neurons with CaMKII-hairpin; however, this

was never tested for in the previous studies. We also found that

the reciprocal CaMKII overexpression caused a large increase in

peak Ca2+ response. Previous electrophysiological studies have

shown neuronal expression of CASK-RNAi or CaMKII-T287D

both decreased neural excitability in response to stimulation

(Chen and Featherstone, 2011). Likewise we find expression of

these transgenes caused a reduction in α′/β′ neuron peak Ca2+

signaling. Therefore, the GCaMP3 data is consistent with the cur-

rent model of CASK regulation of CaMKII autophosphorylation

(Figure 1A; Lu et al., 2003; Hodge et al., 2006).

Flies with the CASK-β null mutation or reduced CASK in the

α′/β′ neurons reduced LTM. The LTM effects of CASK could be

explained by its role in transcriptional activation of various plas-

ticity molecules including NMDA receptors (Wang et al., 2002; Q5

Huang and Hsueh, 2009). NMDA receptors have recently been

shown to be required for LTM in Drosophila (Wu et al., 2007).

Furthermore, CaMKII itself is known to be a direct target of

NMDA receptor activation (Thalhammer et al., 2006) leading

to increased CaMKII-T286 autophosphorylation and subsequent

phosphorylation and activation of molecules required for synap-

tic plasticity and LTM (Trinidad et al., 2006). At present there is

no evidence that Drosophila CASK translocates to the nucleus;

however, the effects of CASK on LTM maybe through changes in

CaMKII expression that is known to occur during LTM (Ashraf

et al., 2006; Akalal et al., 2010). We show that the CaMKII molec-

ular memory switch (pT287) is required for mushroom body

LTM formation with phospho-mimic or block removing both

ARM and LTM. Again this seems to be an evolutionarily con-

served memory mechanism with T286 mutant mice also not

being able to form LTM after massed training (Irvine et al.,

2011).
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HUMAN CASK FUNCTION IN MUSHROOM BODY α′/β′ NEURONS

RESTORES MEMORY PERFORMANCE OF CASK NULL FLIES

Point mutations in human CASK have been associated with

neurological and cognitive defects, including severe learning dif-

ficulties resulting from mutations in the CaMK-like and SH3

domains (Najm et al., 2008; Piluso et al., 2009; Tarpey et al.,

2009). Recently CASK mutation has been shown to cause a num-

ber of cognitive defects in flies including disrupted sleep and place

preference (Slawson et al., 2011; Donelson et al., 2012). In addi-

tion to these defects we show that CASK mutants with deletion

of the CaMK-like and L27 domains have extreme impairment of

MTM and LTM formation. Furthermore, we show that α′/β′ neu-

ron overexpression of human CASK can fully substitute for the

lack of Drosophila CASK-β and rescue the CASK-β mutant mem-

ory defect to wildtype. This demonstrates that neuronal function

of CASK is conserved between Drosophila to human, validating

the use of this model to understand CASK function in both the

healthy and diseased brain.

In conclusion we have demonstrated that CASK func-

tions in the α′/β′ neurons required for memory forma-

tion and levels of CaMKII autophosphorylation are critical

for MTM and LTM. We show bi-directional changes in

CaMKII and CASK levels in α′/β′ neurons result in dis-

rupted Ca2+ signaling dynamics. Our results show that

CASK regulates CaMKII autophosphorylation in memory

formation.
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