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ABSTRACT

Cancer is known to have abundant copy number

alterations (CNAs) that greatly contribute to its

pathogenesis and progression. Investigation of

CNA regions could potentially help identify onco-

genes and tumor suppressor genes and infer

cancer mechanisms. Although single-nucleotide

polymorphism (SNP) arrays have strengthened

our ability to identify CNAs with unprecedented

resolution, a comprehensive collection of CNA infor-

mation from SNP array data is still lacking. We

developed a web-based CaSNP (http://cistrome

.dfci.harvard.edu/CaSNP/) database for storing and

interrogating quantitative CNA data, which curated

�11500 SNP arrays on 34 different cancer types in

104 studies. With a user input of region or gene of

interest, CaSNP will return the CNA information

summarizing the frequencies of gain/loss and

averaged copy number for each study, and provide

links to download the data or visualize it in UCSC

Genome Browser. CaSNP also displays the

heatmap showing copy numbers estimated at

each SNP marker around the query region across

all studies for a more comprehensive visualization.

Finally, we used CaSNP to study the CNA of

protein-coding genes as well as LincRNA genes

across all cancer SNP arrays, and found putative

regions harboring novel oncogenes and tumor

suppressors. In summary, CaSNP is a useful tool

for cancer CNA association studies, with the poten-

tial to facilitate both basic science and translational

research on cancer.

INTRODUCTION

Cancer is a complex genetic disease, whose initiation and
progression are often accompanied by genome alterations.
A great amount of copy number alterations (CNAs) is
known to occur in the malignant neoplasm at full scale
of human genome. Of the different types of genome vari-
ations, CNA has been the most implicated in oncogenesis
and cancer progression, and many CNAs are known to be
characteristic of specific types of cancers (1–3). There is a
growing demand to understand the nature of CNA in
cancer, as CNAs not only serve as biomarkers to predict
cancer malignancy and prognosis, but also often harbor
tumor suppressors and oncogenes (4,5), the studies of
which could shed light on the sequence and mechanism
of oncogenesis. In addition, there is increasing evidence
that some CNAs could target noncoding RNA (ncRNA)
genes such as miRNAs (6), suggesting ncRNAs might be
extensively involved in oncogenesis.

Array comparative genomic hybridization (aCGH) has
long been the standard platform to investigate the relative
gains and losses of genomic DNA by measuring the
relative signal ratios of the differentially labeled array hy-
bridization between tumor and normal samples. Several
repositories focusing on CNAs detected from aCGH are
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already publicly available (7–9). However, most of these
aCGH studies use BAC or cDNA probes, which have a
coarse resolution for CNA detection.

In the last few years, single nucleotide polymorphism
(SNP) arrays have gradually become the major platform
for SNP genotyping and CNA detection (10,11). SNP
array has probes on known SNPs that are densely
distributed in the human genome, and allows accurate
SNP genotyping at these loci for individual biological
samples. In addition, by comparing the signal intensities
at the SNP loci between cancer and normal reference
samples, one can also gain high-resolution CNA know-
ledge about the cancer of interest. It has been reported
that SNP arrays outperform traditional aCGH in CNA
detection resolution (12), enabling high-resolution SNP
and CNA detection at individual gene level (13–15).
Currently, some studies use websites to display the
results of their own (e.g. http://www.broadinstitute.org/
tumorscape). However, a comprehensive resource of
CNA data from all cancer SNP array experiments is still
unavailable.

We present CaSNP as a comprehensive collection
of CNA information inferred from cancer SNP array
data. We analyzed �11 500 Affymetrix SNP arrays on

34 different cancer types in 104 studies to profile the
genome-wide CNAs. This includes all the publicly avail-
able cancer SNP profiles using Affymetrix SNP arrays,
mostly from Gene Expression Omnibus (GEO) (16). We
also developed a data extraction and annotation schema
to interrogate copy number on user-specified genomic
region by cancer type and across different array platforms
(from SNP 10K to 6.0) and studies. CaSNP is available at
http://cistrome.dfci.harvard.edu/CaSNP/.

DESIGN AND IMPLEMENTATION

Data analysis and curation

Among the 104 studies collected, 100 are from GEO, one
is from GlaxoSmithKline (https://cabig.nci.nih.gov/tools/
caArray_GSKdata) and three are from individual publi-
cation’s supplementary websites (17,18). The raw data
(.cel file) of array experiments and accompanying
genotype files (if available) for samples were collected.
dCHIP-SNP (19), a widely used and referenced SNP
array analysis algorithm (cited by 238 accordingly to
Google Scholar), was applied to each data set. Array
raw data within each study were normalized in

Figure 1. Overview of internal structure of CaSNP. The input for genome regions, whatever of its kind, will be uniformly translated into genomic
coordinates, by querying coordinate tables of miRNA or refSeq gene, and then sent to the query engine. The input for cancer type will be checked against
sample information table, to extract the names of samples qualifying this cancer type, which will further be used by the query engine to search the CNA
data tables. The CNA data are stored in tables of each series and grouped by platform type. After having been extracted from data tables, relevant copy
number data are combined and grouped by the output engine to calculate average copy numbers and the percentage of threshold-passing samples, which
will be further displayed on the result page. Besides, a graphic display is available within which the signals of each series on the region of query will be
represented as heatmaps. In addition, the returned CNAdata are coordinated andwritten to .bed files for users to download. Detailed information for each
study could be viewed on the ‘Browse Data’ page by linking to their corresponding annotations on GEO.
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dCHIP-SNP with invariant set normalization, and signal
values for individual SNP loci were further computed with
the model-based expression index method (20). Relative
copy number value for each SNP was calculated as the
signal ratio of tumor samples versus the average of
normal reference samples within the same data set, and
was exported and stored in CaSNP. For data sets with no
normal reference samples, the average ‘normal reference’
was calculated for each SNP from the tumor samples
bearing the middle 50% of signals (i.e. 25% outlier
signals from both sides were excluded). We did not
choose normal samples from other experiments of the
same array type as reference to avoid potential microarray
batch effect.
To treat and query copy number data from different

array platforms in a unified manner, we updated the
genome coordinate system to the latest human genome
assembly (UCSC hg19). In addition, all SNP IDs were
converted to dbSNP129. We also manually extracted
and curated information on sample clinical background
and organized them at two levels: the top level on the

tissue origin (e.g. lung cancer), while the second on
cancer subtypes (e.g. small cell lung carcinoma).

Query parameters

The only required field in a user query is the genome
region where a user inputs a genomic coordinate range
(limited to 2-MB size), a gene name, a RefSeq ID or an
miRNA name—all of which will be internally converted to
a genomic coordinate range. The user could optionally
specify the cancer type and subtype to limit the query.
Alternatively, one could also go to the ‘Browse Data’
page to select a subset of the data sets/series for
analysis. The ‘Browse Data’ option allows the user to
focus on specific studies or conduct joint analysis in two
or more studies and/or across multiple cancer types. When
the user specifies a cancer type or subtype or data sets/
series, CaSNP will consult the sample information table to
extract the matching samples for analysis. In addition, the
user can specify the upper and lower CNA thresholds
(default 2.2 and 1.8, respectively) for CaSNP to calculate
the percentage of samples beyond the thresholds within

Figure 2. A screenshot of CaSNP’s query result page.

D970 Nucleic Acids Research, 2011, Vol. 39, Database issue

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
9
/s

u
p
p
l_

1
/D

9
6
8
/2

5
0
9
1
9
8
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



each study. A flowchart depicting the internal table
schema of CaSNP is shown in Figure 1.

Data output and visualization

A screenshot of CaSNP’s result output page is shown in
Figure 2. The most important results from a CaSNP query
is the average copy number of the queried region for each
of the series involved, and the percentage of samples ex-
ceeding the copy number thresholds. This value is
calculated as the mean of all biological samples in each
series. If there are multiple array platforms for a sample,
all data for the sample will be combined before the calcu-
lation. If user specifies the upper or lower CNA threshold
at input, the frequency of threshold-passing samples will
also be displayed for each series. This could help the user
to determine whether an observed CNA is prevalent in
many samples or only caused by outlier ones. The percent-
age values of threshold-passing samples at the SNP loci in
the region are also coded in the bedGraph file format,
which is the standard for displaying continuous-valued
data as a track in the UCSC genome browser. The bed
files generated could be directly viewed in UCSC genome
browser (21) via a link or downloaded. Also displayed on
the result page are statistics of sample and SNP number
for each series, links to their corresponding GEO entries at
NCBI and other relevant information.

A graphic display of the results is also provided through
the ‘HeatMap’ query page (Figure 3). The series returned
are grouped by array platforms, with CNAs (loss to gain)
expressed in color gradient (blue to red), and white for
normal diploid (copy number 2) which gives users a com-
prehensive view of the copy number data in the queried
region and cancer types. The heatmaps are dynamically
generated from the data in the database.

Database implementation

CaSNP is running on an Apache web server and the data
resides in a MySQL server. The scripts for query process-
ing and data analysis are written in Python and the user
interface is based on a django frame.

A CASE STUDY USING CaSNP

As an example of how CaSNP can be used for cancer
biomarker or oncogene/tumor suppressor detection, we
systematically exctracted the copy number of all 20 221
RefSeq genes from CaSNP. We then calculated a
G-score, which is a component of the GISTIC method-
ology (22) for each gene to summarize both the frequency
and amplitude of its copy number alteration in all 11 500
cancer samples. When comparing with known annotated
database of oncogenes (http://www.sanger.ac.uk/genetics/
CGP/Census/) and tumor suppressor genes (http://cbio
.mskcc.org/CancerGenes/), we found that regions of
highest or lowest G-scores often harbor known oncogenes
and tumor suppressor genes, respectively (Figure 4). This
partially validated the quality of the data and the accuracy
of our copy number estimation. Interestingly, we observed
that many chromosome ends show strong deletions in

cancer, and harbor some of the well-known tumor sup-
pressors such as STK11, TSPAN32, MAPK9 and PTGES.
A very striking exception is a strong amplified region on

the left tip of chromosome 5, with no previously
annotated tumor suppressors and oncogenes. The region
was implicated in breast cancer risk (23), and a recent
cancer CNA study (24) identified the putative target amp-
lification gene as TERT, but did not experimentally
validate its function in breast caner. Checking Oncomine
(25), we found that TERT is not highly expressed in breast
cancers. Instead, a nearby gene IRX2 not only shows gene
amplification and enhanced expression in breast cancers,
but also has some literature support for playing a role in
mammary gland neoplasia (26). Alternatively, the
oncogene in the Chr5 left tip might be an ncRNA, so we
investigated the CNAs of all 4013 newly identified
LincRNAs (27) in mammalian genomes (Supplementary
Figure S1). Although gene expression of LincRNA in
breast cancers is still lacking, our analysis did generate

Figure 3. A screenshot of CaSNP’ s heatmap query result page. Red
represents higher copy number and blue represents lower copy number,
and white for normal. Rows are samples involved, and columns
are individual SNP markers detected by their corresponding array
platforms along the queried region.
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interesting leads for potential follow up validations of
LincRNAs as tumor suppressors and oncogenes and
demonstrate the value of CaSNP.

DISCUSSION

Here, we have presented the CaSNP database for identify-
ing and visualizing CNAs in cancers at any specific region
within the human genome. CaSNP stores pre-computed

raw copy numbers, and dynamically generates viewable
and downloadable summaries of CNA status in response
to user queries. A schema for uniformly processing,
storing, annotating and presenting data sets across differ-
ent data sets or platforms was successfully implemented,
making CaSNP a useful tool for cancer genomic
meta-study. The query results contain numerical values
of cancer copy numbers and the frequencies of CNA
events, which are well suited for more detailed analysis

Figure 4. The distribution of amplified/deleted genes over the whole genome. The height of the bar represents the relative value of G-score. Top 50
oncogenes/tumor suppressors in G-score ranking were denoted.
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by other software or methods. Besides the tabular display,
the heatmap view displays SNP copy numbers in colors,
enabling users to intuitively and comprehensively visualize
the results and facilitating finding novel CNA regions in
subset of samples. Besides, we provided a scenario of using
CaSNP to explore cancer biomarkers or genes through a
meta-analysis, and proved CaSNP’s ability in suggesting
novel oncogenes/tumor suppressors, whether a protein
coding gene or a ncRNA.

Benefited from the abundance of SNP array data sets in
recent years, CaSNP is the largest repository of SNP
array-oriented CNA data among all the databases of the
similar type. The amount of public-accessible SNP array
data on cancer is still expanding, so will be the data
collection in CaSNP. Such a large-scale analysis will be
extremely valuable when correlating CNA data with a
genomic location with specific diagnostic, prognostic or
therapeutic value found in other studies, or to reduce
noise from individual studies via meta-analysis.
Nowadays, when high-throughput methods as ChIP–
chip or ChIP-seq could generate hundreds of thousands
of regions of interest in a single run, CaSNP will be
powerful for independent validation purpose, such as
screening the regions which might be related to oncogen-
esis and might go unnoticed in ChIP experiments alone.
Besides collecting more data, we will commit our work to
make better use of them. The loss-of-heterozygosity
(LOH) information deduced from genotype data will be
added, and the CNA status will be compared across
different cancer types for specified regions and across
the genome.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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