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Abstract 
CASP, Concurrent Autonomous chip self-test using Stored test 
Patterns, is a special kind of self-test where a system tests 
itself concurrently during normal operation without any 
downtime visible to the end-user. CASP consists of two ideas: 
1. Storage of very thorough test patterns in non-volatile 
memory; and, 2. Architectural and system-level support for 
autonomous testing of one or more cores in a multi-core 
system using stored patterns, concurrently with normal system 
operation, without bringing down the entire system. CASP 
enables design of robust systems with built-in features for 
circuit failure prediction, error detection, self-diagnosis and 
self-repair. Such systems are necessary to overcome major 
reliability challenges in scaled-CMOS technologies. 
Implementation of CASP in the OpenSPARC T1 multi-core 
processor demonstrates its effectiveness and practicality. 
 

1. Introduction 
CASP is an acronym for Concurrent Autonomous chip 

self-test using Stored test Patterns. It is a special kind of self-
test where a system tests itself concurrently during normal 
operation without any downtime visible to the end-user. The 
basic idea is to store very thorough test patterns in non-volatile 
storage, such as hard disks or FLASH memory, and provide 
architectural and system-level support for testing one or more 
cores in a multi-core system, while the rest of the system 
continues to operate normally. CASP enables application of 
very thorough tests with quantified test coverage, including 
high-quality scan and functional tests, during normal operation 
in the field. Extremely thorough tests, some of which may not 
be applied during production for test cost reasons, may also be 
applied during system operation using CASP. The main 
motivation for CASP is to enable robust system design with 
self-healing capabilities required to overcome major scaled-
CMOS reliability challenges such as aging and infant 
mortality. Major CASP features are: 

1. CASP is useful for circuit failure prediction [Agarwal 07], 
error detection based on periodic, time-triggered or event-
triggered self-test [Al-Asaad 98], and self-repair [Bardell 91]. 

2. CASP applies high-quality test patterns with quantified 
test coverage (including production test patterns). 

3. CASP utilizes already existing on-chip Design-for-
Testability (DFT) and test compression features (that are used 
for production testing purposes).  

4. Test patterns can be changed (e.g., through patches) 
according to application requirements and failure 
characteristics even after a system is deployed in the field. 

5. CASP utilizes major technology trends such as the 
availability of high-density and low-cost non-volatile storage 
(mainly off-chip) in future systems, proliferation of multi-core 
architectures [AMD 07, Azul 07, Cisco 07, IBM 07, Intel 07, 
nVidia 07, SUN 07], and wide adoption of test compression. 

6. CASP is applicable to both datapath and control logic. 
7. CASP imposes significantly lower overhead compared to 

traditional redundancy techniques. 

CASP is complementary to and overcomes limitations of 
many existing on-line testing techniques (details in Sec. 4). 
Major contributions of this paper are: 

1. Introduction of the idea of CASP and demonstration of its 
practicality and effectiveness; 

2. Detailed implementation of special architectural and 
system features to enable CASP in the open source 
OpenSPARC T1 chip multi-processor [Sun 06] with eight 
cores and thirty-two threads; 

3. Analysis of trade-offs associated with the design and 
application of CASP in future systems. 

CASP is applicable to a wide range of multi-core systems 
such as microprocessors (e.g., Intel Core2 Duo, AMD Opteron, 
and Sun Niagara), networking chips (e.g., 192-core Cisco 
Metro chip including 4 spares), and GPUs (e.g., the nVidia 
GeForce 8800 Ultra GPUs with 128 Shader processing units). 
Such systems with lots of cores are expected to dominate 
future designs. It is speculated that multi-core systems with 
thousands of cores may be available in the future [Borkar 07]. 
We utilize the presence of multiple cores to our advantage for 
CASP. This paper focuses on the logic part of the processor 
cores because Built-In-Self-Test (BIST) and self-repair 
techniques already exist for on-chip memories, e.g., [McNairy 
04, Molyneaux 07]. 

This paper demonstrates CASP using scan test patterns 
for the following reasons: 1. Scan tests are de facto tests with 
high test coverage; 2. It is possible to automatically generate 
scan test patterns for a wide variety of test metrics including 
stuck-at, transition, N-detect, bridging, path delay, and 
Cadence Encounter Test True-Time delay [Cadence 04]. 
However, CASP is applicable for functional tests as well. 

Section 2 discusses the motivation for CASP. In Sec. 3, 
we present detailed implementation of CASP in OpenSPARC 
T1 together with synthesis and test coverage results, and trade-
off analysis. Section 4 presents related work, followed by 
conclusions and future work in Sec. 5.  
 

2. Motivation for CASP 
Aging (also called wearout) and infant mortality (also 

called early-life failures) pose major reliability challenges in 
scaled-CMOS technologies [Borkar 05, 07]. Conservative 
design techniques that incorporate speed guardbands are 
becoming expensive due to aging mechanisms that were 
benign in the past, but are becoming important in future 
technologies. Burn-in, which is used to screen infant mortality 
suspects, is becoming difficult and expensive. 

Robust systems with built-in resilience to aging and infant 
mortality must be designed to overcome these major reliability 
challenges at very low cost. One way of designing such 
systems is to employ on-line circuit failure prediction. Circuit 
failure prediction predicts the occurrence of a circuit failure 
before errors actually appear [Agarwal 07]. This is in contrast 
to traditional error detection where a failure is detected after 
errors appear in system data and states. Circuit failure 
prediction is effective for aging and early-life failures because 
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of their gradual nature of degradation. It uses a wide variety of 
special circuits, unlike traditional process monitors, called 
sensors, at various locations inside a chip to collect 
information about various system parameters over time, 
concurrently during normal system operation and periodic on-
line self-test. The collected information is analyzed to predict 
failures. Effective circuit failure prediction requires: 

1. A circuit must be thoroughly exercised. 
2. Sensors must be turned on infrequently (e.g., 1-5% of the 

time) to minimize aging of the sensors themselves, and also to 
minimize chip-level power penalties. 

Hence, on-line testing techniques must satisfy: 
1. High test coverage for high-quality on-line tests.  
2. Minimal system-level performance impact. 
3. No system level downtime visible to the end-user. 
4. Minimal hardware cost. 
5. No major changes in design and validation flows. 

As described in Sec. 3, CASP meets these objectives. It is 
ideal for circuit failure prediction, but is also useful for self-
test-based error detection and diagnosis. 

 

3. CASP for an Open-Source Multi-Core Processor 
In this section, we describe architectural implementation 

and system-level support for CASP in the OpenSPARC T1 
processor (Fig. 3.1).  

 
Figure 3.1. OpenSPARC T1 with CASP Support 

(modified from http://opensparc-t1.sunsource.net) 
 

OpenSPARC T1 is a multi-threaded chip multi-processor 
with eight SPARC processor cores, each with hardware 
support for four threads. Each core contains its own 
instruction and data caches and TLBs, and a single-issue, six-

stage pipeline. The eight processor cores communicate with 
the on-chip unified L2 cache, the floating-point unit (FPU), 
and the I/O subsystem through a crossbar. The on-chip J-Bus 
controller provides interconnection between the crossbar and 
the I/O subsystem. To support CASP in OpenSPARC T1, we 
implemented a CASP test controller, an on-chip buffer to store 
a scan test pattern and its corresponding expected response 
and mask, and necessary architectural features for supporting 
testing of processor cores during system operation (Fig. 3.1). 
All test data is stored off-chip in non-volatile storage (hard 
disks or FLASH memory). 

Figure 3.2 presents a high-level overview of CASP for 
OpenSPARC T1. There are four phases: 

1. Test scheduling: While the system operates in its normal 
operating mode, one or more cores may be selected for on-line 
self-test by the CASP test controller (Sec. 3.1). 

2. Pre-processing: Execution on the selected core is stalled 
and the core is temporarily isolated from the rest of the system 
by stalling the pipeline, disabling communication, saving 
critical states, and invalidating the L1 data cache (Sec. 3.2). 

3. Perform CASP test: CASP test controller sets proper 
signals for applying test patterns and analyzing test responses. 
Tests are loaded from non-volatile memory, applied to the 
core under test, and analyzed for failures.  

4. Resume Normal System Operation: Critical states of 
the core-under-test are restored, communication is enabled, 
and the pipeline is restarted (Sec. 3.2). 

 

 
Figure 3.2. CASP implementation in OpenSPARC T1 
 

The following subsections present implementation details. 
We focus on processor cores of OpenSPARC T1 for the 
following reasons: 1. They are complex; 2.The FPU can also 
be tested using CASP; 3. Self-test of on-chip interconnects 
have been discussed in several recent publications; 4. Memory 
BIST can be used for on-chip memories including the caches. 
 

3.1. CASP Test Controller and Test Clock Support 
CASP requires an on-chip test controller (Fig. 3.3). The 

test controller is responsible for scheduling self-test in one or 
more processor cores. Our current test scheduling mechanism 
simply selects a single processor core at a time in a round-
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robin fashion. Optimized test scheduling techniques for 
minimizing system-level power / performance impact are also 
possible using higher-level system support, e.g., the operating 
system or a virtual machine monitor. 

In addition to test scheduling, the CASP test controller 
produces signals to control various CASP operations: 1. Fetch 
test patterns from the off-chip non-volatile storage to the on-
chip buffer; 2. Initiate proper pre-processing of a core before it 
enters test mode; 3. Perform scan test of the selected processor 
core with test mode and test clock control signals; and, 4. 
Compare test responses with expected test responses and bring 
the core-under-test out of test mode to resume normal 
operation if the test passes. If the test fails, the test controller 
can invoke self-correction mechanisms for circuit failure 
prediction [Agarwal 07], or adopt self-recovery mechanisms 
available in the system (e.g., rollback in a checkpointed 
processor). The CASP test controller area is less than 0.01% 
of the total area of the synthesized design. 

System and test clocks are multiplexed by the scan enable 
signal. To generate a test clock that is sufficiently slow for 
scan shifting, we use the 150 MHz JBus clock which is in a 
separate clock domain from the system clock. Control signals 
from the CASP test controller are synchronized between the 
system clock and the test clock. Advanced timing tests, e.g., 
True-Time [Cadence 04], require multiple-speed structural test 
support, e.g., [Iyengar 06].  

 

 
Figure 3.3 CASP Test Controller 

 

3.2 Architectural Support for CASP 
As shown in Fig. 3.2, CASP architectural features 

include: 1. Support for stalling and draining the pipeline, 
disabling communication, saving critical states, and 
invalidating the L1 data cache in the pre-processing phase for 
the selected processor core; and, 2. Support for restoring 
critical states, enabling communication, and restarting the 
pipeline after the CASP test completes. For processors with 
checkpointing, CASP can be implemented with minor 
modifications. For processors without such support, such as 
OpenSPARC T1, architectural features for CASP can be 
introduced with moderate design effort, as described next. 

 

Pipeline Stalling, Resuming, and Draining 
Pipeline stalling is already implemented in OpenSPARC 

T1 to stall a thread when it experiences a long latency 
instruction such as a load miss. We use this signal to stall all 
threads of a processor core when the CASP test controller 
asserts the test mode signal corresponding to that core. The 
pipeline is resumed when the CASP test controller de-asserts 
the corresponding test mode signal. 

When the stall signal is asserted, there may be 
outstanding instructions in the pipeline. We allow these 
instructions to complete before the processor core switches 
into test mode. To drain the pipeline, states of all four threads 
are first examined by the CASP test controller to make sure 
that all instructions are fetched (in the case of instruction 
misses). When such a check passes, thread states are checked 
again until the test controller detects that all threads are in idle, 
halt, or ready state, indicating no outstanding instructions are 
currently in the pipeline. The CASP test controller ensures that 
all store instructions have updated the lower-level memory by 
checking that the store buffer is empty. 
 

L1 Data Cache Invalidation 
During CASP operation, other cores may execute store 

instructions that require invalidation of some entries in the L1 
data cache of the core-under-test, which will not respond. To 
preserve cache coherence, we invalidate all L1-data cache 
entries of the core-under-test by clearing the valid bit array. 
The invalidation guarantees correctness since the L2 cache is 
inclusive. OpenSPARC T1 uses an L2 cache directory that 
shadows L1 cache tags to manage cache coherence. We also 
clear the valid bit array for the corresponding entries in the L2 
cache directory.  
 

Communication Disable and Enable 
Communication (including interrupts) is managed by the 

cache crossbar in OpenSPARC T1 (Fig. 3.1). Both out-bound 
(from the core-under-test to other resources) and in-bound 
(from other resources to the core-under-test) communications 
are disabled during CASP operation. All packets issued from 
the core-under-test are ignored by the crossbar. Packets 
intended for delivery to the core-under-test are buffered. The 
original OpenSPARC T1 design implements queues to buffer 
2 packets per source for a core, and acknowledges the source 
once packets are dispatched from the queue. During CASP 
operation, the crossbar is modified to delay the dispatch of 
packets and the acknowledgement is sent to the source after 
the destination core resumes execution. Although queues with 
two entries are sufficient for normal operation, application 
characteristics must be considered to determine queue lengths 
for CASP (e.g. for frequent I/Os). Other ways to address this 
problem are: 1. Rely on internal buffers in most I/O device 
controllers; 2. Schedule tests in idle cores or during infrequent 
I/Os; 3. Retransmit undelivered packets or handle lost packets 
at the application-level; and, 4. Migrate tasks from core-under-
test to a spare core. 
 

Critical State Save and Restore 
Since scan test is destructive, critical states of the core-

under-test are saved before the scan test starts, and restored 
when the scan test completes. Critical states include program 
counters, thread states, processor states and control registers. 
Shadowed flip-flops (similar to data retention latches in ultra-
low-power designs [Zyuban 02]) are used to save critical 
states. Once the scan test completes, values retained in 
shadowed flip-flops are reloaded into the processor core to 
resume operation. A total of 12,526 flip-flops are shadowed 
for each processor core in OpenSPARC T1. The shadow 
portions of these flip-flops can be designed to consume low 
power and operate at a very slow speed, and can be turned off 
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during normal operation. For designs with already existing 
shadowed flip-flops for data retention or test purposes 
[Kuppuswamy 04, Zyuban 02], the incremental cost of saving 
critical states is very small. For designs without such special 
flip-flops, the incremental area impact of using such special 
flip-flops is approximately 4% at the processor core level 
(after placement and routing). The chip-level area impact is 
even lower. The CASP test controller disables writes into the 
SRAM structures such as the register file, store buffer, and the 
trap stack array. Hence, their contents do not get overwritten 
during test, and the states of these components need not be 
saved. 
 

Design and Validation Effort 
The Verilog RTL of OpenSPARC T1 was modified to 

incorporate all the features above. We added or modified 
approximately 8,000 lines of Verilog code out of hundreds of 
thousands of lines in the original design. Most of the 
modification was straightforward (e.g., involving critical state 
saving) and did not require major changes to the normal 
operation of the design, which simplified the validation task. 
We verified the functionality of CASP by arbitrarily selecting 
a core for self-test during regression verification test runs, 
applying CASP tests to the selected core while regression 
testing continues (i.e., other cores continue execution while 
the selected core is isolated and tested), resuming normal 
operation of the selected core, and matching final results after 
regression tests complete. 
 

3.3. CASP Test Data Storage 
CASP test data (test patterns, expected responses, mask 

bits and control bits) is stored in non-volatile storage such as 
hard disks or FLASH memory. This approach allows test 
patterns to be pre-generated and shipped along with the 
system. The patterns may also be updated using patches after a 
system has been shipped. For scan-based CASP, test patterns, 
expected responses, and mask bits dominate test data volume.  
The required non-volatile storage (in bits) can be estimated as 
3 × Number of test patterns × Number of flip-flops / Amount 
of test compression, where the factor of 3 accounts for test 
patterns, expected responses, and masks. 

For OpenSPARC T1, there are 20,334 flip-flops per 
processor core, excluding the SRAM components such as the 
L1 Cache and TLB, and the register files. We organized these 
flip-flops into 10 scan chains. Table 3.1 reports stuck-at, 
transition, and Cadence True-Time delay test pattern counts 
and coverage values for an OpenSPARC T1 processor core. 
The stuck-at and transition patterns are generated using 
Synopsys TetraMax [Synopsys 07]. The True-Time delay 
patterns are generated using Cadence Encounter Test 
[Cadence 04]. We pessimistically invoked both tools with 
minimum test compaction effort, and did not assume any on-
chip test compression. Since all processor cores are identical, 
separate test data storage is not required for each core. Hence, 
the required non-volatile storage is approximately 3 x 20,344 
flip-flops x 7,193 patterns ≈ 52.3MBytes with no 
compression, and 5.3MBytes with modest 10X compression. 
Depending on the design, a higher compression ratio (>100X) 
may be achieved. This required amount of non-volatile storage 
is practical, since hard disks of PCs already have capacities of 

over 300 GBytes, the cost of FLASH memory is decreasing 
rapidly, and new high-density non-volatile memory 
technologies are emerging. These trends favor CASP 
considerably. 

 

Table 3.1. Scan test patterns for an OpenSPARC T1 processor 
core (minimum test compaction effort).  
 Pattern count Test coverage 

Stuck-at 609 99.49% 
Transition 1,206 95.96% 
True-Time 5,738 93.55% 
Aggregate 7,193 N.A. 

 

3.4. CASP Test Time and Test Data Transfer 
Test time trade-offs for CASP are very different from 

production testing especially in the context of periodic testing 
for circuit failure prediction. That is why, as demonstrated in 
this section, it is practical to access test data from non-volatile 
memory such as hard disks or FLASH for CASP.  

In our implementation, we have an on-chip buffer to store 
one test pattern and the corresponding response and mask, 
resulting in a buffer size of 3 × 20,334 flip flops x 1 pattern ≈ 
7.5 KBytes (without compression). This buffer is shared 
among all processor cores. It is also practical to store 
compressed test data since most designs use on-chip test 
compression for test cost reduction. The required buffer size is 
then 768 Bytes and 154 Bytes for 10X and 50X compression, 
respectively. 

Test pattern transfer time for hard disks is approximated 
by: Average seek-time + Size of data / Disk data transfer rate. 
We consider a worst-case scenario where the seek-time is 
included for every test pattern access. For FLASH memory, 
the read access time can be directly obtained from the transfer 
rate. Table 3.2 summarizes total transfer times, including seek 
times and data transfer rate (data transfer rate accounts for all 
controller and bus transfer overhead), for a single test pattern 
(7.5KBytes) for representative hard disks and FLASH storage.  
 

Table 3.2. Access times for hard disks and FLASH memory 
and transfer times for a single test pattern (7.5KBytes 

uncompressed) [Gray 07]. 
Non-volatile 
storage type 

Average 
seek time 

Data 
transfer rate 

Total 
transfer time 

SCSI 15k rpm 3.5ms 75 MBps 3.6ms 
SATA 10k rpm 4.6ms 60 MBps 4.722ms 

FLASH - 53 MBps ~0.138 ms 
 

Test application time is dominated by scan shifts along 
the longest scan chain. The total number of scan shift cycles is 
approximately (Number of consecutive test patterns applied + 
1) × Length of longest scan chain. In the worst-case scenario, 
a single test pattern will be accessed from non-volatile 
memory and applied, and the corresponding response will be 
compared against the expected response during the shift-out 
operation. In this case, for OpenSPARC T1, since the longest 
scan chain contains 2,034 flip-flops, the total number of scan 
shift cycles is 2 x 2,034 flip-flops x 7,193 patterns. The overall 
data transfer time is the transfer time for 1 pattern x 7,193 
patterns. Table 3.3 shows the worst-case overall CASP test 
time for all test patterns, including all test time components, 
for OpenSPARC T1 with a 150 MHz test clock.  



     

Even such worst-case test times are very practical, 
especially for circuit failure prediction. As Table 3.3 indicates, 
frequent CASP tests, e.g., once every few minutes with 
FLASH, are possible. In addition, there are several ways to 
reduce CASP test time: 

1. FLASH significantly reduces transfer time. Systems with 
hard disks replaced by FLASH are shipped today [Dell 07]. 

2. Pre-fetching test patterns into on-chip buffers can hide 
test pattern read access and transfer times. 

3. Task migration from the core-under-test to a spare core 
enables continuous CASP test. Experiments on an ARM 
multi-core processor indicate a 0.5ms OS switch overhead, 
which is very short from system perspective [Inoue 07]. 

 

Table 3.3. Worst-case overall CASP test time for an 
OpenSPARC T1 processor core. 

Non-volatile 
storage type 

Total 
transfer time 

Test application 
time 

Overall 
test time 

SCSI 15k rpm ~26sec ~0.2s ~26.2sec 
SATA 10k rpm ~34sec ~0.2s ~34.2sec 

FLASH ~1sec ~0.2s ~1.2sec 
 

4. Related Work 
Previous work on on-line self-test can be classified into 

the following categories: 1. Built-In Self Test (BIST) [Bardell 
87, Chen 03, Constantinides 06, Gupta 96,  Krstic 02, Kusko 01, 
McCluskey 84, 86, Parvathala 02, Shen 98, Touba 96]; 2. 
Roving emulation [Breuer 86]; and, 3. Periodic functional 
testing [Corno 96, Karri 98, Krantis 02, 06, Paschalis 05, 
Weglarz 04]. Table 4.1 presents a comparative analysis. 
 

Table 4.1.  Comparison of on-line test techniques. 
 CASP Logic  

BIST 
Roving 

emulation 
Periodic 

functional 
test 

Coverage Very high Low Low Low 
Area cost Low High for 

high 
coverage 

Moderate Moderate 

Test data 
storage 

Large but 
low-cost 

Small Small Small 

Test time 
impact 

Short for 
system, 
very little 

with spare 
core 

Targets 
test floor 

Short with 
spare core 

Short for 
low 

coverage 

Design 
effort 

Moderate High High Moderate 

Flexibility High Low – Low 
 

A major advantage of CASP is the high test coverage for 
both datapath and control parts of a design. Special techniques 
for high test coverage with pseudo-random logic BIST can be 
expensive [Touba 96, Wunderlich 96]. While BIST can apply 
high-coverage patterns for datapath circuits, control portions 
often have coverage problems. Pseudo-exhaustive BIST 
suffering from long test lengths and logic modifications can be 
intrusive. Functional BIST and periodic functional test 
techniques, while useful, have coverage problems especially 
for the control logic of a design. Coverage of roving emulation 
depends on applications executing during the checking 
window and cannot be guaranteed a priori. CASP avoids these 
problems by storing high-quality test patterns. Proliferation of 

low-cost, high-density non-volatile storage and test 
compression favor CASP. CASP is flexible because test 
patterns can be modified after a system is deployed in the field. 

CASP test time may seem high compared to other 
techniques. However, as demonstrated in Sec. 3.4, the overall 
system-level performance impact is extremely small especially 
for circuit failure prediction. Moreover, test data read access 
and transfer time, which account for a significant part of the 
overall test time, can be hidden through pre-fetching. The test 
time impact can also be minimized through clever test 
scheduling (e.g., idle cores) or by task migration from the 
core-under-test to a spare core. 

As detailed in Sec. 3, CASP design and validation efforts 
are moderate. From a testing perspective, the amount of DFT 
effort is the same as that for test compression in a processor 
core. Design efforts for CASP architectural features and the 
CASP test controller are moderate. The effort can be even 
lower for checkpointed processors. In comparison, Logic 
BIST design efforts can be very high especially for X-
bounding and delay testing. The design effort associated with 
roving emulation can be very high because duplication-based 
checking of processor cores can be complex (as explained in 
[Bernick 05]). 

 

5. Conclusions and Future Work 
CASP is a concurrent and autonomous chip self-test 

technique which enables design of robust systems to overcome 
major reliability challenges in scaled CMOS technologies. 
CASP avoids major limitations of existing on-line testing 
techniques while enabling highly thorough testing at very low 
cost. This is because CASP utilizes major technology trends, 
such as proliferation of multi-core architectures, availability of 
high density and low-cost non-volatile memory, and use of 
test compression, to its benefit. CASP is effective for circuit 
failure prediction, self-test-based error detection and self-
diagnosis. The CASP implementation in the OpenSPARC T1 
multi-core processor demonstrates its practicality. 

Future CASP research directions include: 1. Efficient 
CASP test scheduling to minimize system-level performance 
and power impact; 2. Integration of low-power testing 
techniques [Bonhomme 01, Chandra 02, Saxena 01, Whetsel 
00] into CASP; 3. Task migration from core-under-test to a 
spare core to minimize performance impact; 4. Operating 
system and virtualization support for core isolation; 5. CASP 
for on-line functional testing and on-line Schmoos (the latter 
may require separate power supplies for processor cores); and, 
6. CASP for production test and post-Silicon debug. It is 
important to analyze the vulnerability of CASP to side channel 
attacks [Yang 04]. We expect that decompressors and 
compactors for test compression, e.g., [Mitra 04, Touba 06], 
will help avoid such vulnerabilities. 
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