

CASP: Concurrent Autonomous Chip Self-Test Using Stored Test Patterns

Yanjing Li
Stanford University

Samy Makar
CSwitch Corporation

Subhasish Mitra
Stanford University

Abstract
CASP, Concurrent Autonomous chip self-test using Stored test
Patterns, is a special kind of self-test where a system tests
itself concurrently during normal operation without any
downtime visible to the end-user. CASP consists of two ideas:
1. Storage of very thorough test patterns in non-volatile
memory; and, 2. Architectural and system-level support for
autonomous testing of one or more cores in a multi-core
system using stored patterns, concurrently with normal system
operation, without bringing down the entire system. CASP
enables design of robust systems with built-in features for
circuit failure prediction, error detection, self-diagnosis and
self-repair. Such systems are necessary to overcome major
reliability challenges in scaled-CMOS technologies.
Implementation of CASP in the OpenSPARC T1 multi-core
processor demonstrates its effectiveness and practicality.

1. Introduction
CASP is an acronym for Concurrent Autonomous chip

self-test using Stored test Patterns. It is a special kind of self-
test where a system tests itself concurrently during normal
operation without any downtime visible to the end-user. The
basic idea is to store very thorough test patterns in non-volatile
storage, such as hard disks or FLASH memory, and provide
architectural and system-level support for testing one or more
cores in a multi-core system, while the rest of the system
continues to operate normally. CASP enables application of
very thorough tests with quantified test coverage, including
high-quality scan and functional tests, during normal operation
in the field. Extremely thorough tests, some of which may not
be applied during production for test cost reasons, may also be
applied during system operation using CASP. The main
motivation for CASP is to enable robust system design with
self-healing capabilities required to overcome major scaled-
CMOS reliability challenges such as aging and infant
mortality. Major CASP features are:

1. CASP is useful for circuit failure prediction [Agarwal 07],
error detection based on periodic, time-triggered or event-
triggered self-test [Al-Asaad 98], and self-repair [Bardell 91].

2. CASP applies high-quality test patterns with quantified
test coverage (including production test patterns).

3. CASP utilizes already existing on-chip Design-for-
Testability (DFT) and test compression features (that are used
for production testing purposes).

4. Test patterns can be changed (e.g., through patches)
according to application requirements and failure
characteristics even after a system is deployed in the field.

5. CASP utilizes major technology trends such as the
availability of high-density and low-cost non-volatile storage
(mainly off-chip) in future systems, proliferation of multi-core
architectures [AMD 07, Azul 07, Cisco 07, IBM 07, Intel 07,
nVidia 07, SUN 07], and wide adoption of test compression.

6. CASP is applicable to both datapath and control logic.
7. CASP imposes significantly lower overhead compared to

traditional redundancy techniques.

CASP is complementary to and overcomes limitations of
many existing on-line testing techniques (details in Sec. 4).
Major contributions of this paper are:

1. Introduction of the idea of CASP and demonstration of its
practicality and effectiveness;

2. Detailed implementation of special architectural and
system features to enable CASP in the open source
OpenSPARC T1 chip multi-processor [Sun 06] with eight
cores and thirty-two threads;

3. Analysis of trade-offs associated with the design and
application of CASP in future systems.

CASP is applicable to a wide range of multi-core systems
such as microprocessors (e.g., Intel Core2 Duo, AMD Opteron,
and Sun Niagara), networking chips (e.g., 192-core Cisco
Metro chip including 4 spares), and GPUs (e.g., the nVidia
GeForce 8800 Ultra GPUs with 128 Shader processing units).
Such systems with lots of cores are expected to dominate
future designs. It is speculated that multi-core systems with
thousands of cores may be available in the future [Borkar 07].
We utilize the presence of multiple cores to our advantage for
CASP. This paper focuses on the logic part of the processor
cores because Built-In-Self-Test (BIST) and self-repair
techniques already exist for on-chip memories, e.g., [McNairy
04, Molyneaux 07].

This paper demonstrates CASP using scan test patterns
for the following reasons: 1. Scan tests are de facto tests with
high test coverage; 2. It is possible to automatically generate
scan test patterns for a wide variety of test metrics including
stuck-at, transition, N-detect, bridging, path delay, and
Cadence Encounter Test True-Time delay [Cadence 04].
However, CASP is applicable for functional tests as well.

Section 2 discusses the motivation for CASP. In Sec. 3,
we present detailed implementation of CASP in OpenSPARC
T1 together with synthesis and test coverage results, and trade-
off analysis. Section 4 presents related work, followed by
conclusions and future work in Sec. 5.

2. Motivation for CASP
Aging (also called wearout) and infant mortality (also

called early-life failures) pose major reliability challenges in
scaled-CMOS technologies [Borkar 05, 07]. Conservative
design techniques that incorporate speed guardbands are
becoming expensive due to aging mechanisms that were
benign in the past, but are becoming important in future
technologies. Burn-in, which is used to screen infant mortality
suspects, is becoming difficult and expensive.

Robust systems with built-in resilience to aging and infant
mortality must be designed to overcome these major reliability
challenges at very low cost. One way of designing such
systems is to employ on-line circuit failure prediction. Circuit
failure prediction predicts the occurrence of a circuit failure
before errors actually appear [Agarwal 07]. This is in contrast
to traditional error detection where a failure is detected after
errors appear in system data and states. Circuit failure
prediction is effective for aging and early-life failures because

978-3-9810801-3-1/DATE08 © 2008 EDAA

of their gradual nature of degradation. It uses a wide variety of
special circuits, unlike traditional process monitors, called
sensors, at various locations inside a chip to collect
information about various system parameters over time,
concurrently during normal system operation and periodic on-
line self-test. The collected information is analyzed to predict
failures. Effective circuit failure prediction requires:

1. A circuit must be thoroughly exercised.
2. Sensors must be turned on infrequently (e.g., 1-5% of the

time) to minimize aging of the sensors themselves, and also to
minimize chip-level power penalties.

Hence, on-line testing techniques must satisfy:
1. High test coverage for high-quality on-line tests.
2. Minimal system-level performance impact.
3. No system level downtime visible to the end-user.
4. Minimal hardware cost.
5. No major changes in design and validation flows.

As described in Sec. 3, CASP meets these objectives. It is
ideal for circuit failure prediction, but is also useful for self-
test-based error detection and diagnosis.

3. CASP for an Open-Source Multi-Core Processor
In this section, we describe architectural implementation

and system-level support for CASP in the OpenSPARC T1
processor (Fig. 3.1).

Figure 3.1. OpenSPARC T1 with CASP Support

(modified from http://opensparc-t1.sunsource.net)

OpenSPARC T1 is a multi-threaded chip multi-processor
with eight SPARC processor cores, each with hardware
support for four threads. Each core contains its own
instruction and data caches and TLBs, and a single-issue, six-

stage pipeline. The eight processor cores communicate with
the on-chip unified L2 cache, the floating-point unit (FPU),
and the I/O subsystem through a crossbar. The on-chip J-Bus
controller provides interconnection between the crossbar and
the I/O subsystem. To support CASP in OpenSPARC T1, we
implemented a CASP test controller, an on-chip buffer to store
a scan test pattern and its corresponding expected response
and mask, and necessary architectural features for supporting
testing of processor cores during system operation (Fig. 3.1).
All test data is stored off-chip in non-volatile storage (hard
disks or FLASH memory).

Figure 3.2 presents a high-level overview of CASP for
OpenSPARC T1. There are four phases:

1. Test scheduling: While the system operates in its normal
operating mode, one or more cores may be selected for on-line
self-test by the CASP test controller (Sec. 3.1).

2. Pre-processing: Execution on the selected core is stalled
and the core is temporarily isolated from the rest of the system
by stalling the pipeline, disabling communication, saving
critical states, and invalidating the L1 data cache (Sec. 3.2).

3. Perform CASP test: CASP test controller sets proper
signals for applying test patterns and analyzing test responses.
Tests are loaded from non-volatile memory, applied to the
core under test, and analyzed for failures.

4. Resume Normal System Operation: Critical states of
the core-under-test are restored, communication is enabled,
and the pipeline is restarted (Sec. 3.2).

Figure 3.2. CASP implementation in OpenSPARC T1

The following subsections present implementation details.
We focus on processor cores of OpenSPARC T1 for the
following reasons: 1. They are complex; 2.The FPU can also
be tested using CASP; 3. Self-test of on-chip interconnects
have been discussed in several recent publications; 4. Memory
BIST can be used for on-chip memories including the caches.

3.1. CASP Test Controller and Test Clock Support
CASP requires an on-chip test controller (Fig. 3.3). The

test controller is responsible for scheduling self-test in one or
more processor cores. Our current test scheduling mechanism
simply selects a single processor core at a time in a round-

CORE 0
Selected
for CASP

Test Scheduling

…
Schedule
test on
next core CORE 7

Normal
operation

CORE 0
Temporarily

isolated

Pre-Processing

…

Stall / drain
pipeline;
Disable
comm.;
Save critical
states;
Invalidate
D-Cache

Perform CASP test

Scan
Shift-In;
Capture;
Scan
Shift-Out

Restore
critical
states;
Enable
comm.;
Restart
pipeline

Resume Normal Operation

CORE 7
Normal

operation

CORE 0
In test

…

CORE 7
Normal

operation

CORE 0
Resume

operation
…

CORE 7
Normal

operation

robin fashion. Optimized test scheduling techniques for
minimizing system-level power / performance impact are also
possible using higher-level system support, e.g., the operating
system or a virtual machine monitor.

In addition to test scheduling, the CASP test controller
produces signals to control various CASP operations: 1. Fetch
test patterns from the off-chip non-volatile storage to the on-
chip buffer; 2. Initiate proper pre-processing of a core before it
enters test mode; 3. Perform scan test of the selected processor
core with test mode and test clock control signals; and, 4.
Compare test responses with expected test responses and bring
the core-under-test out of test mode to resume normal
operation if the test passes. If the test fails, the test controller
can invoke self-correction mechanisms for circuit failure
prediction [Agarwal 07], or adopt self-recovery mechanisms
available in the system (e.g., rollback in a checkpointed
processor). The CASP test controller area is less than 0.01%
of the total area of the synthesized design.

System and test clocks are multiplexed by the scan enable
signal. To generate a test clock that is sufficiently slow for
scan shifting, we use the 150 MHz JBus clock which is in a
separate clock domain from the system clock. Control signals
from the CASP test controller are synchronized between the
system clock and the test clock. Advanced timing tests, e.g.,
True-Time [Cadence 04], require multiple-speed structural test
support, e.g., [Iyengar 06].

Figure 3.3 CASP Test Controller

3.2 Architectural Support for CASP
As shown in Fig. 3.2, CASP architectural features

include: 1. Support for stalling and draining the pipeline,
disabling communication, saving critical states, and
invalidating the L1 data cache in the pre-processing phase for
the selected processor core; and, 2. Support for restoring
critical states, enabling communication, and restarting the
pipeline after the CASP test completes. For processors with
checkpointing, CASP can be implemented with minor
modifications. For processors without such support, such as
OpenSPARC T1, architectural features for CASP can be
introduced with moderate design effort, as described next.

Pipeline Stalling, Resuming, and Draining
Pipeline stalling is already implemented in OpenSPARC

T1 to stall a thread when it experiences a long latency
instruction such as a load miss. We use this signal to stall all
threads of a processor core when the CASP test controller
asserts the test mode signal corresponding to that core. The
pipeline is resumed when the CASP test controller de-asserts
the corresponding test mode signal.

When the stall signal is asserted, there may be
outstanding instructions in the pipeline. We allow these
instructions to complete before the processor core switches
into test mode. To drain the pipeline, states of all four threads
are first examined by the CASP test controller to make sure
that all instructions are fetched (in the case of instruction
misses). When such a check passes, thread states are checked
again until the test controller detects that all threads are in idle,
halt, or ready state, indicating no outstanding instructions are
currently in the pipeline. The CASP test controller ensures that
all store instructions have updated the lower-level memory by
checking that the store buffer is empty.

L1 Data Cache Invalidation
During CASP operation, other cores may execute store

instructions that require invalidation of some entries in the L1
data cache of the core-under-test, which will not respond. To
preserve cache coherence, we invalidate all L1-data cache
entries of the core-under-test by clearing the valid bit array.
The invalidation guarantees correctness since the L2 cache is
inclusive. OpenSPARC T1 uses an L2 cache directory that
shadows L1 cache tags to manage cache coherence. We also
clear the valid bit array for the corresponding entries in the L2
cache directory.

Communication Disable and Enable
Communication (including interrupts) is managed by the

cache crossbar in OpenSPARC T1 (Fig. 3.1). Both out-bound
(from the core-under-test to other resources) and in-bound
(from other resources to the core-under-test) communications
are disabled during CASP operation. All packets issued from
the core-under-test are ignored by the crossbar. Packets
intended for delivery to the core-under-test are buffered. The
original OpenSPARC T1 design implements queues to buffer
2 packets per source for a core, and acknowledges the source
once packets are dispatched from the queue. During CASP
operation, the crossbar is modified to delay the dispatch of
packets and the acknowledgement is sent to the source after
the destination core resumes execution. Although queues with
two entries are sufficient for normal operation, application
characteristics must be considered to determine queue lengths
for CASP (e.g. for frequent I/Os). Other ways to address this
problem are: 1. Rely on internal buffers in most I/O device
controllers; 2. Schedule tests in idle cores or during infrequent
I/Os; 3. Retransmit undelivered packets or handle lost packets
at the application-level; and, 4. Migrate tasks from core-under-
test to a spare core.

Critical State Save and Restore
Since scan test is destructive, critical states of the core-

under-test are saved before the scan test starts, and restored
when the scan test completes. Critical states include program
counters, thread states, processor states and control registers.
Shadowed flip-flops (similar to data retention latches in ultra-
low-power designs [Zyuban 02]) are used to save critical
states. Once the scan test completes, values retained in
shadowed flip-flops are reloaded into the processor core to
resume operation. A total of 12,526 flip-flops are shadowed
for each processor core in OpenSPARC T1. The shadow
portions of these flip-flops can be designed to consume low
power and operate at a very slow speed, and can be turned off

CASP Test Controller

OpenSPARC T1
processor cores (8)

Test
data

On-chip
Buffer

Invalidate

Disable /
enable
comm.

Thread /
processor

states

Crossbar
Interface

Stall /
drain /
restart

pipeline

Save /
restore
critical
states

Test
enable &
test mode

control

during normal operation. For designs with already existing
shadowed flip-flops for data retention or test purposes
[Kuppuswamy 04, Zyuban 02], the incremental cost of saving
critical states is very small. For designs without such special
flip-flops, the incremental area impact of using such special
flip-flops is approximately 4% at the processor core level
(after placement and routing). The chip-level area impact is
even lower. The CASP test controller disables writes into the
SRAM structures such as the register file, store buffer, and the
trap stack array. Hence, their contents do not get overwritten
during test, and the states of these components need not be
saved.

Design and Validation Effort
The Verilog RTL of OpenSPARC T1 was modified to

incorporate all the features above. We added or modified
approximately 8,000 lines of Verilog code out of hundreds of
thousands of lines in the original design. Most of the
modification was straightforward (e.g., involving critical state
saving) and did not require major changes to the normal
operation of the design, which simplified the validation task.
We verified the functionality of CASP by arbitrarily selecting
a core for self-test during regression verification test runs,
applying CASP tests to the selected core while regression
testing continues (i.e., other cores continue execution while
the selected core is isolated and tested), resuming normal
operation of the selected core, and matching final results after
regression tests complete.

3.3. CASP Test Data Storage
CASP test data (test patterns, expected responses, mask

bits and control bits) is stored in non-volatile storage such as
hard disks or FLASH memory. This approach allows test
patterns to be pre-generated and shipped along with the
system. The patterns may also be updated using patches after a
system has been shipped. For scan-based CASP, test patterns,
expected responses, and mask bits dominate test data volume.
The required non-volatile storage (in bits) can be estimated as
3 × Number of test patterns × Number of flip-flops / Amount
of test compression, where the factor of 3 accounts for test
patterns, expected responses, and masks.

For OpenSPARC T1, there are 20,334 flip-flops per
processor core, excluding the SRAM components such as the
L1 Cache and TLB, and the register files. We organized these
flip-flops into 10 scan chains. Table 3.1 reports stuck-at,
transition, and Cadence True-Time delay test pattern counts
and coverage values for an OpenSPARC T1 processor core.
The stuck-at and transition patterns are generated using
Synopsys TetraMax [Synopsys 07]. The True-Time delay
patterns are generated using Cadence Encounter Test
[Cadence 04]. We pessimistically invoked both tools with
minimum test compaction effort, and did not assume any on-
chip test compression. Since all processor cores are identical,
separate test data storage is not required for each core. Hence,
the required non-volatile storage is approximately 3 x 20,344
flip-flops x 7,193 patterns ≈ 52.3MBytes with no
compression, and 5.3MBytes with modest 10X compression.
Depending on the design, a higher compression ratio (>100X)
may be achieved. This required amount of non-volatile storage
is practical, since hard disks of PCs already have capacities of

over 300 GBytes, the cost of FLASH memory is decreasing
rapidly, and new high-density non-volatile memory
technologies are emerging. These trends favor CASP
considerably.

Table 3.1. Scan test patterns for an OpenSPARC T1 processor
core (minimum test compaction effort).
 Pattern count Test coverage

Stuck-at 609 99.49%
Transition 1,206 95.96%
True-Time 5,738 93.55%
Aggregate 7,193 N.A.

3.4. CASP Test Time and Test Data Transfer
Test time trade-offs for CASP are very different from

production testing especially in the context of periodic testing
for circuit failure prediction. That is why, as demonstrated in
this section, it is practical to access test data from non-volatile
memory such as hard disks or FLASH for CASP.

In our implementation, we have an on-chip buffer to store
one test pattern and the corresponding response and mask,
resulting in a buffer size of 3 × 20,334 flip flops x 1 pattern ≈
7.5 KBytes (without compression). This buffer is shared
among all processor cores. It is also practical to store
compressed test data since most designs use on-chip test
compression for test cost reduction. The required buffer size is
then 768 Bytes and 154 Bytes for 10X and 50X compression,
respectively.

Test pattern transfer time for hard disks is approximated
by: Average seek-time + Size of data / Disk data transfer rate.
We consider a worst-case scenario where the seek-time is
included for every test pattern access. For FLASH memory,
the read access time can be directly obtained from the transfer
rate. Table 3.2 summarizes total transfer times, including seek
times and data transfer rate (data transfer rate accounts for all
controller and bus transfer overhead), for a single test pattern
(7.5KBytes) for representative hard disks and FLASH storage.

Table 3.2. Access times for hard disks and FLASH memory
and transfer times for a single test pattern (7.5KBytes

uncompressed) [Gray 07].
Non-volatile
storage type

Average
seek time

Data
transfer rate

Total
transfer time

SCSI 15k rpm 3.5ms 75 MBps 3.6ms
SATA 10k rpm 4.6ms 60 MBps 4.722ms

FLASH - 53 MBps ~0.138 ms

Test application time is dominated by scan shifts along
the longest scan chain. The total number of scan shift cycles is
approximately (Number of consecutive test patterns applied +
1) × Length of longest scan chain. In the worst-case scenario,
a single test pattern will be accessed from non-volatile
memory and applied, and the corresponding response will be
compared against the expected response during the shift-out
operation. In this case, for OpenSPARC T1, since the longest
scan chain contains 2,034 flip-flops, the total number of scan
shift cycles is 2 x 2,034 flip-flops x 7,193 patterns. The overall
data transfer time is the transfer time for 1 pattern x 7,193
patterns. Table 3.3 shows the worst-case overall CASP test
time for all test patterns, including all test time components,
for OpenSPARC T1 with a 150 MHz test clock.

Even such worst-case test times are very practical,
especially for circuit failure prediction. As Table 3.3 indicates,
frequent CASP tests, e.g., once every few minutes with
FLASH, are possible. In addition, there are several ways to
reduce CASP test time:

1. FLASH significantly reduces transfer time. Systems with
hard disks replaced by FLASH are shipped today [Dell 07].

2. Pre-fetching test patterns into on-chip buffers can hide
test pattern read access and transfer times.

3. Task migration from the core-under-test to a spare core
enables continuous CASP test. Experiments on an ARM
multi-core processor indicate a 0.5ms OS switch overhead,
which is very short from system perspective [Inoue 07].

Table 3.3. Worst-case overall CASP test time for an
OpenSPARC T1 processor core.

Non-volatile
storage type

Total
transfer time

Test application
time

Overall
test time

SCSI 15k rpm ~26sec ~0.2s ~26.2sec
SATA 10k rpm ~34sec ~0.2s ~34.2sec

FLASH ~1sec ~0.2s ~1.2sec

4. Related Work
Previous work on on-line self-test can be classified into

the following categories: 1. Built-In Self Test (BIST) [Bardell
87, Chen 03, Constantinides 06, Gupta 96, Krstic 02, Kusko 01,
McCluskey 84, 86, Parvathala 02, Shen 98, Touba 96]; 2.
Roving emulation [Breuer 86]; and, 3. Periodic functional
testing [Corno 96, Karri 98, Krantis 02, 06, Paschalis 05,
Weglarz 04]. Table 4.1 presents a comparative analysis.

Table 4.1. Comparison of on-line test techniques.
 CASP Logic

BIST
Roving

emulation
Periodic

functional
test

Coverage Very high Low Low Low
Area cost Low High for

high
coverage

Moderate Moderate

Test data
storage

Large but
low-cost

Small Small Small

Test time
impact

Short for
system,
very little

with spare
core

Targets
test floor

Short with
spare core

Short for
low

coverage

Design
effort

Moderate High High Moderate

Flexibility High Low – Low

A major advantage of CASP is the high test coverage for
both datapath and control parts of a design. Special techniques
for high test coverage with pseudo-random logic BIST can be
expensive [Touba 96, Wunderlich 96]. While BIST can apply
high-coverage patterns for datapath circuits, control portions
often have coverage problems. Pseudo-exhaustive BIST
suffering from long test lengths and logic modifications can be
intrusive. Functional BIST and periodic functional test
techniques, while useful, have coverage problems especially
for the control logic of a design. Coverage of roving emulation
depends on applications executing during the checking
window and cannot be guaranteed a priori. CASP avoids these
problems by storing high-quality test patterns. Proliferation of

low-cost, high-density non-volatile storage and test
compression favor CASP. CASP is flexible because test
patterns can be modified after a system is deployed in the field.

CASP test time may seem high compared to other
techniques. However, as demonstrated in Sec. 3.4, the overall
system-level performance impact is extremely small especially
for circuit failure prediction. Moreover, test data read access
and transfer time, which account for a significant part of the
overall test time, can be hidden through pre-fetching. The test
time impact can also be minimized through clever test
scheduling (e.g., idle cores) or by task migration from the
core-under-test to a spare core.

As detailed in Sec. 3, CASP design and validation efforts
are moderate. From a testing perspective, the amount of DFT
effort is the same as that for test compression in a processor
core. Design efforts for CASP architectural features and the
CASP test controller are moderate. The effort can be even
lower for checkpointed processors. In comparison, Logic
BIST design efforts can be very high especially for X-
bounding and delay testing. The design effort associated with
roving emulation can be very high because duplication-based
checking of processor cores can be complex (as explained in
[Bernick 05]).

5. Conclusions and Future Work
CASP is a concurrent and autonomous chip self-test

technique which enables design of robust systems to overcome
major reliability challenges in scaled CMOS technologies.
CASP avoids major limitations of existing on-line testing
techniques while enabling highly thorough testing at very low
cost. This is because CASP utilizes major technology trends,
such as proliferation of multi-core architectures, availability of
high density and low-cost non-volatile memory, and use of
test compression, to its benefit. CASP is effective for circuit
failure prediction, self-test-based error detection and self-
diagnosis. The CASP implementation in the OpenSPARC T1
multi-core processor demonstrates its practicality.

Future CASP research directions include: 1. Efficient
CASP test scheduling to minimize system-level performance
and power impact; 2. Integration of low-power testing
techniques [Bonhomme 01, Chandra 02, Saxena 01, Whetsel
00] into CASP; 3. Task migration from core-under-test to a
spare core to minimize performance impact; 4. Operating
system and virtualization support for core isolation; 5. CASP
for on-line functional testing and on-line Schmoos (the latter
may require separate power supplies for processor cores); and,
6. CASP for production test and post-Silicon debug. It is
important to analyze the vulnerability of CASP to side channel
attacks [Yang 04]. We expect that decompressors and
compactors for test compression, e.g., [Mitra 04, Touba 06],
will help avoid such vulnerabilities.

Acknowledgment
This research was supported in part by the FCRP

Gigascale Systems Research Center (GSRC) and the National
Science Foundation CAREER Award.

References
[Agarwal 07] Agarwal M., B. Paul, M. Zhang, and S. Mitra, “Circuit

Failure Prediction and Its Application to Transistor Aging,” IEEE
VLSI Test Symp., pp. 277-286, 2007.

[Al-Asaad 98] Al-Asaad, H., B.T. Murray, and J.P. Hayes, “Online
BIST for Embedded Systems,” IEEE Design & Test of Computers,
pp.17-24, 1998.

[AMD 07] “AMD Multicore Technology Evolution,”
http://multicore.amd.com/us-en/AMD-Multi-Core/Technology-
Evolution.aspx.

[Azul 07] “Azul Systems First to Deliver 48-Way Multicore Chip,
Redefining Standard in Enterprise Computing,”
http://www.azulsystems.com/press/032706_vega2.htm

[Bardell 87] Bardell, P.H., W.H. McAnney, and J. Savir, Buit-In Test
for VLSI: Pseudorandom Techniques, Wiley, 1987.

[Bardell 91] Bardell P.H., and M.J. Papointe, “Production Experience
with Built-In Self-Test,” Proc. Intl. Test Conf., pp. 28-36, 1991.

[Bernick 05] Bernick, D., et al., “Non-Stop Advanced Architecture,”
Intl. Conf. Dependable Systems and Networks, pp. 12-21, 2005.

[Bonhomme 01] Bonhomme, Y., et al., “A Gated Clock Scheme for
Low Power Scan Testing of Logic ICs or Embedded Cores,” Proc.
Asian Test Symp., pp. 253-258, 2001.

[Borkar 05] Borkar, S., “Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation,” IEEE Micro, Vol. 25, Issue 6, pp. 10-16, 2005.

[Borkar 07] Borkar, S., “Thousand Core Chips – A Technology
Perspective,” Proc. Design Automation Conf., pp. 746-749, 2007.

[Breuer 86] Breuer, M., and A. Ismaeel, “Roving Emulation as a
Fault Detection Mechanism,” IEEE Trans. Comput., pp. 933-939,
1986.

[Cadence 04] “Delay Test Methods in Encounter Test,”
http://sourcelink.cadence.com/docs/files/Application_Notes/2004/
EncounterTest_delay_test.pdf.

[Chandra 02] Chandra, A., and K., Chakrabarty, “Low-Power Scan
Testing and Test Data Compresiion for System-on-a-Chip,” IEEE
Trans. CAD, pp. 597-604, 2002.

[Chen 03] Chen, L., et al., “A Scalable Software-based Self-test
Methodology for Programmable Processors,” Proc. Design
Automation Conf., pp. 548-553, 2003.

[Cisco 07] http://newsroom.cisco.com/dlls/partners/news/2004/
pr_prod_06-09.html

[Constantinides 06] Constantinides, K., et al., “BulletProof: A
Defect-Tolerant CMP Switch Architecture,” Proc. Intl. Symp.
High-Performance Computer Architecture, 2006.

[Corno 96] Corno, M., et al., “On-line Testing of an Off-the-shelf
Microprocessor Board for Safety-critical Applications,” European
Dependable Computing Conf., pp. 190-202, 1996.

[Dell 07] http://www.dell.com/content/topics/global.aspx/corp/
pressoffice/en/2007/2007_04_24_rr_000?c=us&l=en&s=corp.

[Gray 07] Gray, J., and B. Fitzgerald, “FLASH Disk Opportunity for
Sever Applications,” http://research.microsoft.com/~Gray/papers/
FlashDiskPublic.doc.

[Gupta 96] Gupta, S.K., and D. Pradhan, “Utilization of On-Line
(Concurrent) Checkers during Built-In Self-Test and Vice Versa,”
IEEE Trans. Computers, pp. 63-73, 1996.

[IBM 07] “POWER processor-based blade servers,” http://www-
03.ibm.com/systems/bladecenter/power-based.html

[Inoue 07] Inoue, H., et al., “Dynamic Security Domain Scaling on
Symmetric Multiprocessors for Future High-End Embedded
Systems,” Proceedings of Intl. Conf. on CODES & ISSS, pp. 39-
44, 2007.

[Intel 07] “Intel Multicore,” http://www.intel.com/multi-core.
[Iyengar 06] Iyengar, V., et al., “At-Speed Structural Test for High-
Performance ASICs,” Proc. Intl. Test Conf., pp. 1-10, 2006.
[Karri 98] Karri, R., and N. Mukherjee, “VBIST: An Integrated

approach to On-Line/Off-Line BIST,” Proc. Intl. Test Conf., pp.
910-917, 1998.

[Kuppuswamy 04] Kuppuswamy, R., et al., “Full Hold-Scan Systems
in Microprocessors: Cost/Benefit. Analysis,” Intel Technology
Journal, Vol. 18, No. 1, Feb. 2004.

[Kusko 01] Kusko, M., et al., “99% AC Test Coverage Using Only
LBIST on the 1-GHz IBM S/390 Z-series 900 Microprocessor,”
Proc. Intl. Test Conf., pp. 586-592, 2001.

[Krantis 02] Krantis, N., et al., “Effective Software Self-Test
Methodology for Processor Cores,” Proc. DATE, 2002.

[Krantis 06] Krantis, N., et al., “Optimal Periodic Testing of
Intermittent Faults in Embedded Pipelined Processor
Applications,” Proc. DATE, pp. 65-70, 2006.

[Krstic 02] Krstic, A., et al., “Embedded Software-Based Self-Test
for Programmable Core-Based Designs,” IEEE Design & Test of
Computers, pp. 18-27, 2002.

[McCluskey 84] McCluskey, E.J., “Verification Testing – A
Pseudoexhaustive Test Technique,” IEEE Trans. Computers, pp.
541-546, June 1984.

[McCluskey 86] McCluskey, E.J., Logic Design Principles, Prentice
Hall, 1986.

[McNairy 04] McNairy, C., and R. Bhatia, “Montecito: The Next
Product in the Itanium Processor Family”, Hot Chips 16, 2004.

[Mitra 04] Mitra, S., and K.S. Kim, “X-Compact: an efficient
response compaction technique,” IEEE Trans. CAD, pp. 421-432,
2004.

[Molyneaux 07] Molyneaux, R., et al., “Design-for-Testability
Features of the Sun Microsystems Niagara2 CMP/CMT SPARC
Chip”, Intl. Test Conf, 2007.

[nVidia 07] “GeForce 7950 GPUs,” http://www.nvidia.com/page/
geforce_7950.html.

[Parvathala 02] Parvathala, P., K. Maneparambil, and W. Lindsay,
“FRITS: A Microprocessor Functional BIST Method,” Proc. Intl.
Test Conf., pp. 590-598, 2002.

[Paschalis 05] Paschalis, A., and D. Gizopoulos, “Effective Software-
Based Self-Test Strategies for On-Line Periodic Testing of
Embedded Processors,” IEEE Trans. CAD, pp. 88-99, Jan. 2005.

[Saxena 01] Saxena, J., et al., “An Analysis of Power Reduction
Techniques in Scan Testing,” Intl. Test Conf., p. 670-677, 2001.

[Shen 98] Shen, J., and J.A. Abraham, “Native mode functional test
generation for processors with applications to self test and design
validation,” Proc. Intl. Test Conf., pp. 18-23, 1998.

[Sun 06] “OpenSPARC T1 Microarchitecture Specification,”
http://opensparc-t1.sunsource.net/specs/
OpenSPARCT1_Micro_Arch. pdf.

[SUN 07] “UltraSPARC T2 Processor,” www.sun.com/processors/
UltraSPARC-T2/datasheet.pdf.

[Synopsys 07] TetraMAX ATPG User Guide, version Z-2007.03.
[Touba 06] Touba, N. A., “Survey of Test Vector Compression

Techniques,” IEEE Design & Test of Computers, pp. 294-303,
2006.

[Touba 96] Touba, N. A., and E. J. McCluskey, “Altering a Pseudo-
Random Bit Sequence for Scan-Based BIST,” Proc. Intl. Test
Conf., pp. 167-175, 1996.

[Weglarz 04] Weglarz, E., K. Saluja, and T.M. Mak, “Testing of
Hard Faults in Simultaneous Multithreaded Processors,” Proc. Intl.
Symp. On-line Testing, pp. 95-100, 2004.

[Wunderlich 96] Wunderlich, H.J., and G. Kiefer, “Bit-Flipping
BIST,” Proc. ICCAD, pp. 337-343, 1996.

[Whetsel 00] Whetsel, L., “Adapting Scan Architectures for Low
Power Operation,” Proc. Intl. Test Conf., pp. 863-872, 2000.

[Yang 04] Yang, B., K. Wu, and R. Karri, “Scan Based Side Channel
Attack on Dedicated Hardware Implementations of Data
Encryption Standard,” Proc. Intl. Test Conf., pp. 339-344, 2004.

[Zyuban 02] Zyuban, V., and S. Kosonocky, “Low Power Integrated
Scan Retention Mechanism,” Intl. Symp. Low Power Design, pp.
98-102, 2002.

