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Caspase-11 promotes high-fat
diet-induced NAFLD by increasing
glycolysis, OXPHOS, and
pyroptosis in macrophages
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Introduction: Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of

25% of the population and is a leading cause of cirrhosis and hepatocellular

carcinoma. NAFLD ranges from simple steatosis (non-alcoholic fatty liver) to

non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer

cells (KCs) and monocyte-derived macrophages, act as key players in the

progression of NAFLD. Caspases are a family of endoproteases that provide

critical connections to cell regulatory networks that sense disease risk factors,

control inflammation, and mediate inflammatory cell death (pyroptosis). Caspase-

11 can cleave gasdermin D (GSDMD) to induce pyroptosis and specifically defends

against bacterial pathogens that invade the cytosol. However, it’s still unknown

whether high fat diet (HFD)-facilitated gut microbiota-generated cytoplasmic

lipopolysaccharides (LPS) activate caspase-11 and promote NAFLD.

Methods: To examine this hypothesis, we performed liver pathological analysis,

RNA-seq, FACS, Western blots, Seahorse mitochondrial stress analyses of

macrophages and bone marrow transplantation on HFD-induced NAFLD in WT

and Casp11–/– mice.

Results and Discussion:Our results showed that 1) HFD increases body wight, liver

wight, plasma cholesterol levels, liver fat deposition, and NAFLD activity score (NAS

score) in wild-type (WT) mice; 2) HFD increases the expression of caspase-11,

GSDMD, interleukin-1b, and guanylate-binding proteins in WTmice; 3) Caspase-11

deficiency decreases fat liver deposition and NAS score; 4) Caspase-11 deficiency

decreases bone marrow monocyte-derived macrophage (MDM) pyroptosis
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(inflammatory cell death) and inflammatory monocyte (IM) surface GSDMD

expression; 5) Caspase-11 deficiency re-programs liver transcriptomes and

reduces HFD-induced NAFLD; 6) Caspase-11 deficiency decreases extracellular

acidification rates (glycolysis) and oxidative phosphorylation (OXPHOS) in

inflammatory fatty acid palmitic acid-stimulated macrophages, indicating that

caspase-11 significantly contributes to maintain dual fuel bioenergetics—

glycolysis and OXPHOS for promoting pyroptosis in macrophages. These results

provide novel insights on the roles of the caspase-11-GSDMD pathway in

promoting hepatic macrophage inflammation and pyroptosis and novel targets

for future therapeutic interventions involving the transition of NAFLD to NASH,

hyperlipidemia, type II diabetes, metabolic syndrome, metabolically healthy

obesity, atherosclerotic cardiovascular diseases, autoimmune diseases, liver

transplantation, and hepatic cancers.
KEYWORDS

non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), caspase-
11, inflammation, pyroptosis
1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common

form of chronic liver disease in the Western world. 10% to 40% of

adults in the United States are estimated to have some form of

NAFLD (1–3). NAFLD is an umbrella term referring to two

underlying conditions: nonalcoholic fatty liver (NAFL; also known

as hepatic steatosis) and nonalcoholic steatohepatitis (NASH) (4), the

inflammatory phase of the disease. Inflammatory liver damage

associated with NASH can lead to liver cirrhosis, liver failure, and

hepatocellular carcinoma (1, 5–8). NAFLD is considered the hepatic

manifestation of metabolic syndrome and metabolically healthy

obesity (9–12). In addition, NAFLD is associated with adverse

cardiovascular events and contributes to subclinical atherosclerosis

(13, 14). Histologically, NAFLD is different from the alcoholic liver

disease in at least 11 histologic features results from lipid metabolism

imbalance leading to the accumulation of fatty acids in hepatocytes

(15, 16). Changes in fatty acid uptake, fatty acid synthesis, lipolysis, b-
oxidation and circulating lipoprotein result in hepatocytes exceeding

their capacity to safely store lipids (16). These changes lead to the

accumulation of toxic lipid species (ceramides, diacylglycerol, lipid

peroxides, and oxidized phospholipids) and the subsequent

proinflammatory, lipotoxicity-induced hepatocyte cell death (17).

The liver has the highest number of macrophages of any solid

organ, which are classified as Kupffer cells (KCs) and monocyte derived

macrophages (MDMs) (18–20). Macrophages play a critical role in the

initiation and propagation of inflammation in both patients and animal

models of NAFLD/NASH (21–25). This is illustrated by the fact that

the depletion of KCs is sufficient in halting the NAFL to NASH

transitions and preventing the recruitment of bone marrow generated

MDMs significantly decreases inflammation associated with NASH

(21, 26). Microenvironmental stimuli ultimately determine the function

and phenotypic characteristics of the two macrophage subsets and both

populations are involved in the development of NAFLD (27–30). Both
02
KCs and MDMs can further differentiate into proinflammatory type 1

(M1) macrophages, which are the primary sources of proinflammatory

cytokine secretion and generators of reactive oxygen species (ROS) (31–

36) or anti-inflammatory and inflammation resolution type 2 (M2)

macrophages (26). True differentiation/polarization of these

populations requires single cell transcriptomic analysis of key

mediators (22, 23). Therefore, this study will focus on both

populations and referred to them collectively as “hepatic

macrophages (HMFs)”. KCs are liver tissue-resident macrophages

and reside within liver acinus zone 1 (22, 23). Activated KCs in

NAFLD/NASH patients are F4/80+, CD14+, CD16+ and CD68+ (21,

27, 37–40) and in NAFLDmouse models are F4/80+, CD11blow, CD68+

and Clec4f+ (21, 27, 38). KCs have several homeostatic functions

including clearance of damaged red blood cells, iron metabolism,

bilirubin metabolism, and cholesterol metabolism (18, 19, 31, 41–43).

MDMs arise from Ly6C+/high bone marrow (BM)-derived

monocytes recruited to the liver in response to liver inflammation

(21–23). Upon maturation, MDMs transition to a Ly6C-/low status

and reside in hepatic acinus zones 2 and zone 3 (22, 23, 44, 45). These

MDMs repopulate the liver macrophage niche in hepatic acinus zone

1, with the microenvironment and secretomes from liver sinusoidal

endothelial cells (LSECs) allowing for the development of a “KC-like”

phenotype and functionality (27, 29, 30, 38). Recent studies have

added more context to this binary system (46). Hepatic macrophages

play a significant role in NAFLD (21, 47–50). MDMs are a population

of HMFs capable of repopulating the liver when KCs are depleted in

chronic liver diseases. Furthermore, clinical trials have demonstrated

that preventing MDM infiltration decreases inflammatory liver

damages (21, 23, 27, 29, 30, 38, 50–54).

Inflammasomes and inflammatory caspases, such as caspase-1

and caspase-4 (humans)/caspase-11 (mice), have two coupled

functions: 1) serve as sensors for danger associated molecular

patterns (DAMPs) and viral and bacterial infections-related

pathogen associated molecular patterns (PAMPs) and 2) initiate
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inflammation signaling and promote inflammatory cell death

(pyroptosis) (55–70), which specifically antagonize infection but

can cause detrimental inflammation as well (71). Recent studies

have shown promise in treating NAFLD with therapeutics targeting

the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)-

and pyrin domain-containing protein 3 (NLRP3) inflammasome,

suggesting that targeting pyroptosis is a viable option for treating

the disease (72, 73). While current pyroptosis targeting therapeutics

focus on the inflammasomes that activate caspase-1, the caspase-11-

dependent pathway presents a novel therapeutic target. Our group

and others have demonstrated that caspase-1 deficiency is protective

against HFD-induced NAFLD to NASH progression (57, 74).

However, the roles of caspase-11-dependent pathway have not been

defined in HFD-induced NAFLD (75, 76).

As we recently published in our novel data mining analysis of

4249 genes in 27 mouse models of NAFLD, caspase-11 mediates liver

pyroptosis in both patients and mouse models of NASH via lipid

peroxidation and trained immunity (innate immune memory)

pathways (77). Other studies have demonstrated that lipid

peroxidation can generate endogenous ligand for caspase-11, which

impacts animal models of sepsis (78–80).

Endotoxin levels and gut-derived Gram-negative bacteria are

elevated in patients with NAFLD (81). A previous study involving

two obese individuals showed that the nonvirulent endotoxin-

producing strains of pathogenic species that were overgrowing in

obese people’s guts can cause NAFLD and related metabolic

problems. The most upstream and crucial biological process that

causes all phenotypes in NAFLD and other related metabolic

disorders is the host’s TLR4 receptor (82). Another study involved

Nine hundred and twenty adults randomly selected from the

government’s census database and underwent proton-magnetic

resonance spectroscopy to assess hepatic steatosis showed that

NAFLD patients had slightly higher lipopolysaccharide-binding

protein (LBP) endotoxin markers associated with insulin resistance

and dyslipidemia and that people with modest alcohol consumption

have lower serum endotoxin (83). Similarly, another study involving

one hundred and fifty-five patients with NAFLD and twenty-three

control individuals showed that endotoxin levels were significantly

higher in NAFLD patients than in controls, with particularly

noticeable increases in early-stage fibrosis (84). However, several

important questions remain to be addressed: 1) Why NAFLD

cannot be developed in germ-free mice; and why LPS-containing

Gram-negative bacteria overgrowing in human gut microbiota are

linked to NAFLD (82). 2) Why NAFLD can be a significant

proinflammatory driver for second wave of atherosclerosis (11, 12).

We previously reported a novel metabolically healthy obesity mouse

model, in which atherosclerosis is decreased due to proinflammatory

microRNA-155 (miR155) deficiency in apolipoprotein E deficient

(ApoE–/–) mice but NAFLD development is sustained (10). 3) Why

HFD model becomes an essential component for all 27 models of

NAFLD. Here we sought to determine whether caspase-11 plays a role

in promoting HFD-induced NAFLD. We found that HFD feeding for

12 weeks drives NAFLD in WT mice, which are transcriptionally

distinct from WT liver fed with normal chow diet (NCD). HFD

increased gene expressions of caspase-11, gasdermin D (GSDMD),

interleukin-1b (IL-1b), and guanylate-binding proteins (GBPs) in

liver. However, caspase-11 deficiency significantly decreased liver IL-
Frontiers in Immunology 03
1b concentrations, reduced N-terminal GSDMD expression on

plasma membrane, significantly re-programed liver transcriptomes,

and attenuated hepatic monocyte/macrophage pyroptosis in HFD-

induced NAFLD. BM-derived monocytes/macrophages play more

significant roles than liver resident monocytes/macrophages in

developing pyroptosis. To determine the underlying mechanisms,

we performed a set of experiments and found that caspase-11

deficiency significantly decreased extracellular acidification rate

(ECAR) from glycolysis and oxidative phosphorylation (OXPHOS),

indicating that caspase-11 significantly contributes to maintain dual

fuel bioenergetics — glycolysis and OXPHOS in proinflammatory

fatty acid palmitic acid-stimulated macrophages, and potentially

promotes transition of M2 macrophages into M1 macrophages.

These results provide novel insights on the roles of caspase-11-

GSDMD pathway in promoting hepatic macrophage inflammation

and novel targets for future therapeutic interventions involving

transition of NAFLD to NASH, hyperlipidemia, type-II diabetes,

metabolic syndrome, atherosclerotic cardiovascular diseases,

autoimmune diseases, liver transplantation, and hepatic cancers.
2 Materials and methods

2.1 Animal care

All animal experiments were performed in accordance with the

Institutional Animal Care and Use Committee (IACUC) guidelines

and were approved by the IACUC of Lewis Katz School of Medicine

(LKSOM) at Temple University. Wild-type (WT) mice were of a

C57BL/6J background, and caspase-11 knockout (Casp11–/–) mice

were purchased from Jackson Laboratories (Bar Harbor, ME). Mice

were housed under controlled conditions in the LKSOM Animal

Facility, where they had ad libitum access to standard chow diet

control/HFD, water, and were subject to a 12-hour light-dark cycle.

Mice were age-matched and gender-specific in all experiment groups.

At eight to ten weeks old, male mice either remained on normal chow

diet (10.7% fat, 23.9% protein, 5.1% fiber, 58.7% carbohydrate/other,

200ppm cholesterol; Labdiet 5001) or switched to HFD [20% (w/w)

fat, 17.4% protein, 5% fiber, 49.9% carbohydrate/other, 2027 ppm

cholesterol (0.15% (w/w) cholesterol); AIN-76A] (Research

Diets, NJ).
2.2 Histological NAFLD activity
score analysis

There are different parameters used to histologically grade

NAFLD/NASH progression including: macrovesicular steatosis,

microvesicular steatosis, lobular inflammation, Mallory Body

occurrence, hepatocellular iron, KC activation, and hepatocyte

ballooning (1, 85, 86). The most common NAFLD/NASH grading

rubric is the “NAFLD Activity (NAS) Score” which combines

(macrovesicular) steatosis, lobular inflammation, and hepatocyte

ballooning on a scale from 0 (no NAFLD) to 8 (severe disease) (1,

85, 86). Mice were sacrificed via ketamine overdose and cervical

dislocation. Body weight was measured then mice were affixed to a

Styrofoam surface. Blood was collected via cardiac puncture and the
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liver was perfused via the portal vein with 10 ml of phosphate buffered

saline (PBS). Isolated liver was weight, washed with PBS. A liver

sample was collected and preserved in 10% formalin for 8 – 10 hours

at room temperature (RT), washed with PBS then stored in 75%

ethanol. Hematoxylin and eosin staining was carried out by AML

Laboratories (St. Augustine, FL). NAFLD Activity Score (NAS) was

determined by Dr. Nirag Jhala, MD (Professor, Pathology and

Laboratory Medicine) from Temple University Hospital

(Philadelphia, PA).
2.3 Plasma cholesterol measurement

Blood was collected in 5% coated tubes via from the cardiac

puncture of anesthetized animals. Plasma was collected by low-speed

centrifugation for 20 minutes at 4°C. Plasma cholesterol levels in each

sample were analyzed at the Mouse Metabolic Phenotyping Center at

the University of Cincinnati (C1052-lipid Profiles) by colorimetric

assays using Cholesterol Reagent Set. Reactions were run in microtiter

plates and analyzed on a plate reader (https://med.uc.edu/institutes/

mmpc/select-a-test/lipid-metabolism).
2.4 Bone marrow transplantation

Six to eight weeks old recipient (male, CD45.2+) mice were

irradiated with 750 to 950 cGy (RS-2000 Biological Irradiator,

Buford, GA). Eight to ten weeks old donor (male, CD45.1+) mice

were sacrificed as described above. After euthanasia, femur and tibia

were amputated and stored in PBS on ice. Marrow was flushed from

the bone, passed through a 70-um filter. Red blood cells were

eliminated using erythrocyte lysis buffer (8.29 g/L NH4Cl, 1 g/L

KHCO3, 37.2 mg/L EDTA, double-distilled H2O, pHed to pH 7.2).

1x106 cells from donor mice were transplanted by retro-orbital

injection into recipient mice.
2.5 Liver single cell suspension and immune
cell fractionation

Mice were sacrificed, and liver was perfused via the portal vein

with 10 ml of PBS. Isolated liver was weight, cut into 1-1.5 mm pieces

and stored in 5 ml Liver Digestion Medium (ThermoFisher,

17703034) on ice until ready for digestion. Liver suspensions were

incubated in a 37 °C water bath for 20-30 minutes on an orbital

shaker. Digestion medium was collected in 5.0 ml Eppendorf tubes for

cytokine analysis. Liver suspensions were filtered through a 70-um

filter. Red blood cells were eliminated using erythrocyte lysis buffer.

HMFs were separated from hepatocytes using 33% Percoll solution

(Sigma-Aldrich, P1644).
2.6 Western blot and ELISA analysis

Immune cell fraction was prepared from mouse liver as described

above. Fractionated immune cells were lysed and protein isolated

using an acid-guanidinium-phenol based reagent TRIzol
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(ThermoFisher, GE17-0891-01) according to manufacturer’s

instructions. Protein was concentrated using Protein Concentrator

polyethersulfone (PES), 10K molecular weight cutoff (MWCO)

(ThermoFisher, 88503). Protein was quantified using colorimetric

Pierce BCA Protein Assay Kit (ThermoFisher 23225). Protein was run

on 12.5% gel and transferred to polyvinylidene difluoride (PVDF)

membrane. Membranes were blocked using 5% bovine serum

albumin (BSA) for 1 hour. Primary antibodies were diluted in Tris-

buffered saline (TBS) (0.2% Tween-20) buffer and incubated at 4°C

overnight. Primary antibodies used: caspase-11 (ThermoFisher, 14-

9935-82), GSDMD (Abcam, ab209845), and b-Actin (Sigma-Aldrich,

ab6276). Secondary antibodies were diluted in TBS (0.2% Tween-20,

0.01% SDS) and incubated for 30 minutes to 1 hour at RT. Secondary

antibody used: IRDye 680RD (LI-COR), IRDye 800CW (LI-COR).

Membranes were scanned using LI-COR Odyssey Crx (Li-Cor

Biosciences, Lincoln, NE). Image processing was performed using

Image Studio Analysis (LI-COR). Liver IL-1b levels were assessed

using the Mouse IL-1 beta/IL-1F2 Quantikine ELISA Kit (R&D

Systems, MLB003) following the manufacturer’s instruction.
2.7 Flow cytometric quantification
of hepatic macrophages and
noncanonical pyroptosis

Animals were sacrificed and livers were collected as described

above. Fractionated immune cells were collected. Cells were incubated

with CD16/CD32 FcR-blocking antibody (BD Bioscience, 553142) on

ice for 20 minutes. Live/Dead staining was performed using Zombie

Aqua (Biolegend, 423101) with a 30-minute incubation on ice. HMF
surface staining was performed using the following panel: APC-

Cy7_CD45 (BioLegend, 103116), FITC_I-A/I-E (MHCII)

(BioLegend, 107605), PerCP-Cy5.5_CD11b (BioLegend, 101228),

BV510_Ly6G (BioLegend, 127633), BUV395_F4/80 (BD

Biosciences, 565614), BV421_CCR2 (BioLegend, 150605),

APC_Ly6C (BioLegend, 128016), PE-Cy7_CD206 (ThermoFisher,

25-2061-82), BV785_CD86 (BioLegend, 105043). HMF pyroptosis

was performed using the following panel: FAM-LEHD-FMK

(caspase-11 activity assay), APC-Cy7_CD45 (BioLegend, 103116),

BV510_Ly6G (BioLegend, 127633), PerCP-Cy5.5_CD11b

(BioLegend, 101228), Ly-6C_AF700 (BioLegend, 128024),

BUV395_F4/80 (BD Biosciences, 565614), GSDMDC1_AF674

(Santa Cruz Biotechnology, sc-393581 AF647). Flow cytometric

data was acquired using LSR-II Flow Cytometer (BD Bioscience).

Mean fluorescent intensity (MFI) and population percentages were

analyzed using FlowJo (Ashland, OR).
2.8 RNA-sequencing

RNA-seq was performed using the immune cell fraction from

male WT and Casp11–/– mice fed 12-week HFD. Animals were

sacrificed and livers were collected. Fractionated immune cells were

lysed and RNA isolated using TRIzol (ThermoFisher, GE17-0891-01)

according to manufacturer’s instructions. RNA was quantified using

Nanodrop (ThermoFisher). Frozen RNA samples were sent to

Genewiz (South Plainfield, NJ) for RNA-seq analysis. Total RNA
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libraries were prepared by using Pico Input SMARTer Stranded Total

RNA-seq Kit (Takara). In short, 10 ng total RNA from each sample

was reverse transcribed via random priming and reverse

transcriptase. Full-length cDNA was obtained with SMART

(Switching Mechanism At 5′ end of RNA Template) technology.

The template-switching reaction was used to keep the strand

orientation of the RNA. The ribosomal cDNA was hybridized to

mammalian-specific R-Probes and then cleaved by ZapR. Libraries

containing Illumina adapter with TruSeq HT indexes were

subsequently pooled and loaded to the Hiseq 2500. Single end reads

at 75 bp with 30 million reads per sample were generated for

bioinformatic analysis FASTQ files were mapped to the mouse

mm10 genome using STAR Aligner and BAM alignment files were

imported into Qlucore Omics Explorer and used to generate

expression data (transcripts per million, TPM). All original RNA-

seq data were deposited in the NCBI’s Gene Expression Omnibus

database (GSE221005).
2.9 Measurement of extracellular
acidification rate and mitochondrial
parameters in palmitic acid stimulated bone
marrow-derived macrophages

Bone marrow-derived macrophages were isolated from tibias and

femurs of WT and Casp11–/– as we previously reported (12). Briefly,

femurs and tibias were sprayed with 75% alcohol in Petri dish containing

Roswell Park Memorial Institute medium (RPMI) 1640 (Gibco, Grand

Island, NY) with 2% FBS. The bones were cut off at both ends and elute

morrow into 50-mL conical tubes with RPMI-1640 with 2% FBS and

penicillin/streptomycin (p/s) (Gibco, Grand Island, NY) using 10-mL

syringes and 25-G needles. The cell suspension was filtered through a 70-

mm cell strainer (BD Biosciences, San Jose, CA) into a sterile conical tube

and centrifuged (500 g for 5minutes). The pellet was resuspended well in

5 to 10mL ACK red blood cell lysis buffer (Sigma-Aldrich, St Louis, MO)

for 1minute followed by the addition of RPMI-1640 and centrifugation

(600 g for 7minutes) to terminate the lysis. The pellet was washed using

RPMI-1640 with 10% FBS once more, resuspended in differentiation

medium (RPMI-1640, 10% FBS, 20% L929 conditional medium, p/s),

and cultured at 37℃ in a 5% CO2 incubator. At day 3, the supernatant

was carefully removed, and themediumwas replaced. At day 7, cells were

harvested and transferred to 96-well plate for seahorse assay. Seahorse

XF96 analyzer (Seahorse Bioscience, Agilent, Santa Clara, CA) was used

to measure the extracellular acidification rate (glycolysis) and six

mitochondrial parameters (Mito Stress Test) in bone marrow-derived

macrophages, including basal respiration, maximal respiration, proton

leak, ATP production, spare respiratory capacity, and non-mitochondrial

respiration as we previously reported (87, 88). Briefly, 100,000 cell/well

were seeded in a 96-well plate and cultured overnight in XF assay

medium supplemented with 10 mM glucose, 1 mM pyruvate and 2 mM

L-glutamine. Cells were stimulated with palmitic acid 500 µM for 8 hours

(89). Culturing media was changed to modified DMEM media and

placed into a 37°C non-CO2 incubator for 1 hour. After preparation of

drugs and XF Cell Mito Stress Test Kit and glycolytic rate kit (Seahorse

Bioscience) into cartridge ports, the cartridge and cell culture plates were

loaded into XF96 analyzer (Seahorse Bioscience). Experiments were

performed in triplicates.
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2.10 Statistical analysis

All data was reported as mean ± standard deviation (SD).

Statistical analysis comparing genotype-diet groups (WT-HFD

versus (vs) WT-NCD, Casp11–/–HFD vs Casp11–/–NCD, Casp11–/–

NCD vsWT-NCD) were calculated by 1-way or 2-way ANOVA using

Prism (GraphPad) or Qlucore Omics Explorer (Qlucore). Statistical

significance was set at p ≤ 0.05.
3 Results

3.1 High-fat diet promotes
nonalcoholic fatty liver disease,
and lipid accumulation are temporally
earlier than liver inflammation

HFD feeding is a commonly used rodent model of Western diet-

induced obesity and NAFLD (90–92). The HFD not only increases

intake of saturated fatty acid (SFA) but also induces metabolic

endotoxemia, defined as an HFD-associated increase in circulating

LPS (93). The 12- and 16-week HFD-feeding schemes have been shown

to induce obesity and NAFLD in male C57BL/6 mice (94). Therefore,

we comparedWTmice fed either HFD or normal chow diet (NCD) (as

controls) for 12 weeks (Figure 1A). We found that HFD significantly

increased mouse body weight (Figure 1B), liver weigh (Figure 1C), and

plasma cholesterol levels (Figure 1D). HFD for 12 weeks has been

shown to discolor the liver and increase macrovesicular steatosis (1, 85,

86). Our results also showed that the liver color of the HFD group

appeared light yellow compared to dark red in the NCD group

(Figure 1E), consistent with the HFD promoted hepatic steatosis.

After 12 weeks of HFD, there was a NAFLD/NASH histological

phenotype with deposits of fat determined by pathohistological

staining (Figure 1F). The NAFLD activity score (NAS) is a

pathological measure of grade and represent the sum of scores for

steatosis (0-3), hepatocyte ballooning (0-3), and lobular inflammation

(0-3). In grade 0, steatosis less than 5%, no hepatocyte ballooning, and

no inflammation. Grade 1 showed mild steatosis (5-33%), mild

hepatocyte ballooning, and minimal inflammation. Grade 2 has

moderate steatosis (33-66%), moderate hepatocyte ballooning, and

mild inflammation. Grade 3 has severe steatosis (> 66%), severe

hepatocyte ballooning, and moderate inflammation. However, grade

4 has severe inflammation (4) (Figure 1G). In addition, HFD

significantly increased NAS score (Figure 1H), steatosis score

(Figure 1I), and slightly but not statistically significant increase in

lobular inflammation (Figure 1K), and no change in hepatocyte

ballooning (Figure 1J) compared to NCD controls.

Additionally, our new RNA-seq data indicated that the livers of

HFD mice were transcriptionally distinct from that of NCD-fed

mouse liver controls (Figure 1L). As shown in the Volcano plot

analysis (Figure 1M), HFD modulated the expressions of 3895 genes,

among them 2918 genes were significantly upregulated, and 977 gene

downregulated (FC ≥ 1.5 and p value ≤ 0.01). Taken together, these

results have demonstrated that HFD promotes NAFLD phenotypes,

and induce gross pathological and transcriptomic changes in the liver

characterized by deposits of fat that appear temporally earlier than

liver inflammation.
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3.2 HFD upregulates the expressions of
proinflammatory, NASH-related hepatic
macrophage markers, guanylate binding
proteins, caspase-11, and increases N-
terminal gasdermin D (GSDMD) cleavage

Hepatic acini form hexagonal structures with a central vein and

portal triads at every other vertices. The hepatic acinus can be

histologically divided into three zones (Figures 2A, B). Zone 1

represents the portal triad, which includes hepatic artery, portal

vein, and bile duct. Zone 2 represents the parenchymal area,
Frontiers in Immunology 06
structurally consisting primarily of hepatocytes with a central

vasculature composed of LSECs. Mature immune cells including B

cells, T cells, innate-like lymphoid cells (ILCs), natural killer cells (NK

cells), and KCs reside in hepatic acinus zone 1 and 2. Zone 3

represents the central vein, the innermost hepatocytes, and

infiltrating immune cells. The portal vein contains nutrient-rich

blood that is contaminated by microbial pathogen associated

molecular patterns (PAMPs) such as LPS and bacteria, both arising

from the intestines (95).

In the noncanonical pyroptosis pathway (Figure 2C), the

guanylate binding proteins (GBPs) promote exposure of LPS from
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FIGURE 1

High-fat diet (HFD) promotes non-alcoholic fatty liver disease (NAFLD) and Caspase-11 deficiency decreases lipid droplet, steatosis score, and NAS score in
HFD-induced NAFLD but does not change liver weight or gross anatomic fatty liver pathology. (A) Experimental diet timeline. 8-10 weeks old Wild-type (WT)
male mice and Caspase-11 deficient (Casp11–/–) mice were fed HFD or normal chow diet (NCD) for 12 weeks. (B) Body weight (n = 15). (C) Liver weight (n =
15). (D) Plasma cholesterol levels (n = 3). (E) Representative images showed that HFD feeding changed liver color to light yellow color. (F) Representative 20X
images of hematoxylin and eosin (H&E) staining showing hepatic steatosis in 12-week HFD-fed WT and Casp11–/– male mice compared to 12-week NCD.
Scale bar 100 µm. (G). Description and grades of NAS scare. NAFLD activity score analysis indicated that lipids accumulation as judged by liver steatosis and
ballooning is precedent to liver inflammation. In grade 1, when steatosis reaches 5-33%, and ballooning reaches mild, inflammation is minimal. Steatosis was
in the graded section as: are 0, steatotic; 0% to 1, 5% greater than 5% to 33% of hepatocytes are steatotic; 2, greater than 33% to as: 66%; 0, absent; and 3, 1,
greater mild (focal; than 66%. involving Ballooning fewer than 3 hepatocytes); 2, moderate (focal and involving 3 or more hepatocytes or multifocal); and 3,
severe (multifocal, with more than 2 foci of 3 or more hepatocytes). (0 or 1 Inflammation focus per 20× was field); graded 2, as: mild 0, (2 absent; foci); 3,
moderate (3 foci); and 4, severe (4 or more foci per 20× field). (H) Total NAS score for WT-NCD (n = 5), WT-HFD (n = 8), Casp11–/–NCD (n = 5) and
Casp11–/–HFD (n = 8). (I) Hepatic steatosis score. (J) Hepatocyte ballooning. (K) Lobular inflammation. (L) Principal component analysis (PCA) demonstrating
that WT-NCD, WT-HFD, Casp11–/–NCD, and Casp11–/–HFD mice are transcriptionally distinct (n = 3). (M) Volcano plot analysis showed the 3895
differentially expressed genes (DEGs) in the WT liver of 12-week HFD compared to12-week NCD control. Among 3895 DEGs, 2918 genes were significantly
upregulated (red), and 977 genes downregulated (blue). (FC) > 1.5 and p < 0.05. Statistical Analysis: Bulk RNA-Seq analysis was performed using Qlucore
Omics Explorer. PCA plot generated using significantly differentially regulated genes). Volcano plot generated using GraphPad Prism with significantly
differentially regulated genes. Statistical Analysis: One-Way ANOVA. *p < 0.05, **p < 0.001, ***p < 0.0001 ****p < 0.0001. ns, Non-significant.
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FIGURE 2

HFD upregulates the expressions of proinflammatory, NASH-related hepatic macrophage markers, GBPs, caspase-11, and increases N-terminal GSDMD
cleavage. (A, B) The structure of hepatic acinus suggests that the liver is the first organ exposed to endotoxins-rich and Gram bacteria-rich blood in the
body. Liver parenchymal and nonparenchymal cells are organized into structures called “acinus”. Hepatic acini form hexagonal structures with a central
vein and portal triad at the vertices. The hepatic acinus can be histologically divided into three zones. Zone 1 represents the portal triad which includes a
hepatic artery, a portal vein, and a bile duct. Zone 2 represents the parenchymal area, structurally consisting primarily of hepatocytes with a central
vasculature composed of liver sinusoidal endothelial cells (LSECs). Mature immune cells including B cells, T cells, innate-like lymphoid cells (ILCs), natural
killer cells (NK cells), and tissue-resident macrophages (Kupffer cells) reside in hepatic acinus zone 1 and 2. Zone 3 represents the central vein, the
innermost hepatocytes, and infiltrating immune cells. The portal vein contains nutrient-rich, endotoxins-rich, and gram bacteria-rich blood. (C)
Noncanonical pyroptosis is caspase-4 (human), caspase-11 (mouse) dependent. Guanylate binding proteins (GBPs) promote the outer membrane
vesicles from gram-bacteria to activate caspase-11. Intracellular sources of inflammation (including LPS and oxidized phospholipids) directly bind to
caspase-4/-11. Caspase-4/-11 cleaves gasdermin-D to initiate noncanonical pyroptosis. (D) The expressions of caspase-11 in the liver were in an
upregulation trend in high-fat diet-fed wild-type mice. The microarray data were achieved from the NIH-NCBI-Geo-Profiles database (GDS4811). (E)
Caspase-4 expression in 27 human tissues. The expression of caspase-4 in the liver is at a medium level among all 27 human tissues. Caspase-4 RNA-
Seq data were analyzed from the NIH-NCBI-Gene database (https://www.ncbi.nlm.nih.gov/gene/837). (F) Caspase-4 expression in 45 hepatic cell types.
Caspase-4 is expressed in all 40 immune cell types, the single-cell RNA-Seq data were analyzed from the MIT Broad Institute Single Cell RNA-Seq
(scRNA-Seq) Porter database (https://singlecell.broadinstitute.org/single_cell/study/SCP1845/cross-tissue-immune-cell-analysis-reveals-tissue-specific-
features-in-humans?genes=casp4&tab=distribution#study-visualize). Among 45 immune cell types identified in scRNA-Seq, 19 immune cell types are
significantly enriched in the human liver including dendritic cell 1 (DC1), DC2, classical monocytes, non-classical monocytes, erythrophagocytic
macrophages, mononuclear phagocytes (MNP)/B doublets, age-associated B cells (ABCs), plasma cells, Plasmablasts, MNP/B doublets, T/B doublets,
mucosal-associated invariant T (MAIT), T_CD4/CD8, T effector memory (Tem)/effector memory re-expressing CD45RA (emra)_CD8, T resident memory
cell/effector memory cell (Trm/em)_CD8, gamma-delta T cell (Tgd)_CRTAM+, Cycling T cell & natural killer cell (NK), NK_CD16+, and NK-
CD56bright_CD16-. (G) 12-week HFD promotes expression of HMF activation mediators in the WT liver. 8-10 weeks old male WT mice were fed with
HFD for 12 weeks. Heatmap of significant, differentially regulated macrophage (HMF) genes. (H) Bulk RNA-seq expression (mean transcripts per kilobase
million, TPM) of macrophage mediators. (I) Schematic representing caspase-4/11 pathway genes. (J) Bulk RNA-seq expression (mean TPM) of
noncanonical pyroptosis-associated mediators. (K) Western blot analysis showed that HFD feeding increased caspase-11 and N-terminal GSDMD
cleavage. Statistical Analysis: Bulk RNAseq analysis was performed using Qlucore Omics Explorer. Heatmap was generated using significantly differentially
regulated genes (p.adj < 0.01). Differential gene expression presented as Z-score calculated from log2 transformed TPM. *P < 0.05, **p < 0.01.
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Gram-negative bacteria to activate caspase-11 (96, 97). Cytosolic LPS

then directly binds to and activates caspase-4/11, leading to GSDMD

cleavage to generate the N-terminal active fragment (GSDMD-NT).

GSDMD-NT-mediated plasma membrane perforation triggers

membrane rupture associated with release of proinflammatory

cytokines such as IL-1b (type-I pyroptosis or secretome-dominant)

and cell death (type-II pyroptosis or inflammatory cell death-

dominant) (97–100). Previous studies have shown the role of

inflammasomes and caspase-1 in NAFLD (101, 102), and the role

of caspase-11 in methionine-, choline-deficient diet (MCD)-induced

NASH was reported (76). However, the roles of caspase-11 in HFD-

induced NAFLD have not been extensively studied. Therefore, we

examined the expression levels of caspase-11 in the liver of HFD-fed

WT mice from microarray data from the NIH-NCBI-Geo-Profiles

database (GDS4811). The results showed that caspase-11 expression

was increased in the liver of HFD fed mice (Figure 2D). We further

checked the expression of caspase-4 in the normal human tissues

from RNA-seq data performed on tissue samples from 95 human

individuals representing 27 different tissues, data were analyzed from

the NIH-NCBI-Gene database (https://www.ncbi.nlm.nih.gov/gene/

837) (103). Our data analysis showed that caspase-4 expression in the

liver is at a medium level among all 27 human tissues (Figure 2E).

Furthermore, we analyzed the expression of caspase-4 in 45 immune

cell types from single-cell RNA-seq data collected from the MIT

Broad Institute Single Cell RNA-seq (scRNA-seq) Porter database

(https://singlecell.broadinstitute.org/single_cell/study/SCP1845/

cross-tissue-immune-cell-analysis-reveals-tissue-specific-features-in-

humans?genes=casp4&tab=distribution#study-visualize) (104). Our

data analysis showed that caspase-4 was expressed in all 45

immune cell types (Figure 2F). Among 45 immune cell types

identified in scRNA-seq, 19 immune cell types are significantly

enriched in the human liver including dendritic cell 1 (DC1), DC2,

classical monocytes, non-classical monocytes, erythrophagocytic

macrophages, mononuclear phagocytes (MNP)/B doublets, age-

associated B cells (ABCs), plasma cells, plasmablasts, MNP/B

doublets, T/B doublets, mucosal-associated invariant T (MAIT),

T_CD4/CD8, T effector memory (Tem)/effector memory re-

expressing CD45RA (emra)_CD8, T resident memory cell/effector

memory cell (Trm/em)_CD8, gamma-delta T cell (Tgd)_CRTAM+,

Cycling T cell & natural killer cell (NK), NK_CD16+, and

NK-CD56bright_CD16.

Liver has the highest number of macrophages of any solid organ

(18–20), therefore, we focused on inflammatory features of liver

macrophages to determine the inflammatory pathways underlying

HFD-driven NAFLD transition to NASH. Our RNA-seq data analysis

of liver immune cells showed that HFD increased the expression of

fifteen NASH-associated inflammatory macrophage markers

including fatty acid binding protein 7 (Fabp7), C-C motif

chemokine ligand 24 (Ccl24), lipoprotein lipase (Lpl), matrix

metallopeptidase 12 (Mmp12), complement C1q B chain (C1qb),

interleukin 18 binding protein (Il18bp), C-type lectin domain family 4

member F (Clec4f), CD5 molecule like (Cd5l), phospholipid transfer

protein (Pltp), nuclear receptor subfamily 2 group F member 6

(NR2F6, Ear2), insulin like growth factor 1 (Igf1), apolipoprotein

C1 (Apoc1), WAP four-disulfide core domain 17 (Wfdc17),

membrane spanning 4-domains A7 (Ms4a7), and matrix

metallopeptidase 12 (Mmp12) (Figures 2G, H). Ten healthy,
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inactivate HMF markers were also increased in HFD including

macrophage receptor with collagenous structure (Marco), C-X-C

motif chemokine ligand 13 (Cxcl13), CD163 molecule (Cd163),

adhesion G protein-coupled receptor E4, pseudogene (Adgre4),

progestin and adipoQ receptor family member 9 (Paqr9), solute

carrier family 40 member 1 (Slc40a1), ficolin 3 (Fcna), mannose

receptor C-type 1 (Mrc1), syndecan 3 (Sdc3), and heme oxygenase 1

(Hmox1), likely signifying an expansion of KCs in preparation for

HFD-induced activation (Figures 2G, H). In addition, the expressions

of other genes in the caspase-11 pathway, shown in schematic

Figure 2I including signal transducer and activator of transcription

1 (Stat1), guanylate binding protein 2 (Gbp2), Gbp4, Gbp5, Gbp7,

and interleukin-18 (IL-18) were significantly increased in the livers of

HFD fed mice (Figure 2J). Western blot analysis also showed that

caspase-11 and GSDMD-NT protein expressions were increased by

HFD (Figure 2K). Tyrosine kinase 2 (Tyk2) as a part of Janus kinase

(JAK)-signal transducer and activator of transcription (STAT) (JAK/

STAT) signaling downstream of interferon-a/b receptor (IFNAR) has

been shown to increase caspase-11 expression in splenic myeloid cells

in response to LPS stimulations (105). IL-18 is the other IL-1 family

cytokine cleaved by proinflammatory caspases in pyroptosis (102).

The N-terminal of cleaved GSDMD is required for GSDMD-pore

formation on plasma membrane and demonstrates caspase-11

activity. Guanylate-binding protein (GBP) expression have been

shown to bind to cytosolic Gram-negative bacteria and expose LPS

for sensing by caspase-11 (106). Taken together, these results have

demonstrated that HFD upregulates the expressions of

proinflammatory, NASH-related hepatic macrophage markers,

GBPs, caspase-11, GSDMD, and increases GSDMD-NT cleavage

and membrane expression.
3.3 Caspase-11 deficiency decreases lipid
droplet, steatosis score, and non-alcoholic
steatosis score in HFD-induced NAFLD but
does not change liver weight or gross
anatomic fatty liver pathology

To determine the roles of caspase-11 in NAFLD, we compared

pathological progression of NAFLD in Casp11–/–mice with that of

WT control mice (Figure 1A). We found that HFD significantly

increased body weight for both Casp11–/– and WT mice (Figure 1B).

While liver weight significantly increased in HFD fed WT mice, the

liver weight of Casp11–/– mice did not increase significantly

(Figure 1C). However, HFD promoted steatosis and significantly

increased circulating cholesterol levels in both Casp11–/– and WT

mice (Figures 1D). Along these lines, HFD increased lipid droplet

formation (macrovesicular steatosis), NAS score and steatosis score

(107) in WT mice. However, HFD in Casp11–/– mice dramatically

reduced lipid droplet, NAS score, and steatosis score compared toWT

mice on HFD (Figures 1E, I) and slightly but statistically non-

significant decreased lobular inflammation (Figure 1K).

Interestingly, caspase-11 deficiency led to slightly but statistically

non-significant increases in hepatocyte ballooning (swollen

hepatocytes with rarefied cytoplasm) (108), which was not seen in

any of the other groups (Figure 1J). Decreased steatosis and increased

hepatocyte ballooning suggest differential roles for caspase-11 in both
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hepatocytes and HMFs, respectively. Our principal component

analysis (PCA) of liver RNA-seq data showed that liver

transcriptomes of WT and Casp11–/– mice on HFD were

transcriptionally distinct from the respective NCD controls

(Figure 1L). In summary, our results have demonstrated that

although slightly increasing hepatocyte ballooning, caspase-11

deficiency decreases NAFLD progression and lobular inflammation

in HFD-induced NAFLD.
3.4 Caspase-11 deficiency reprograms liver
transcriptomes and attenuates hepatic
macrophage pyroptosis in HFD-induced
NAFLD; caspase-11 cleaves N-terminal
GSDMD in normal chow diet livers more
than that in HFD-induced NAFLD; and bone
marrow-derived macrophages play more
significant roles than liver resident
macrophages in facilitating pyroptosis

The results so far demonstrated that HFD promotes fatty liver in

WT mice, however, caspase-11 deficiency decreases macrovesicular

steatosis and lobular inflammation, which were well correlated with a

report showing decreased macrophage recruitment into atherosclerotic

lesion in Casp11–/–/ApoE–/– atherogenic mice (109). Studies have

shown that HMFs drive inflammation and canonical pyroptosis in

NAFLD, however, the role of noncanonical pyroptosis has not been

well studied. Therefore, we next sought out to evaluate HMF
pyroptosis. The transcripts of six NASH-associated activated

macrophage markers including Cd5l, Clec4f, C1qb, Lpl, Folr2, and
Frontiers in Immunology 09
Il18bp were upregulated in both WT and Casp11–/– mice (Figure 3A).

Furthermore, we used flow cytometry analysis to examine liver

macrophages (Figure 3B) and found that HFD promoted F4/80+

expression in HMFs in both Casp11–/– and WT mice (Figures 3C),

indicating that HFD-induced NAFLD drives the increase of NASH-

related F4/80+ HMFs in WT mice, which are caspase-11 independent.

We examined caspase-11 and GSDMD expression in WT and

Casp11–/– HMFs. We found that HFD increased caspase-11 and

GSDMD expression in the inflammatory monocyte (IM) of WT mice

while there were no significant changes in Casp11–/– mice

(Figure 4A). Liver expressions of IL-1b were significantly increased

in WT mice upon HFD-feeding but the trending increase in IL-1b
concentrations did not reach statistical significance in Casp11–/– mice

fed with HFD compared to Casp11–/–mice fed with NCD (Figure 4B),

suggesting that although caspase-1, other caspases (110), and

neutrophil elastase (111) that are also capable of cleaving pro-IL1b
are not deficient, HFD feeding induced IL-1b generation is mostly

attributed by caspase-11 function. These results have demonstrated

that HFD induced cytokine responses requires caspase-11.

Since 60% of mouse liver macrophages in disease conditions are

derived from the bone marrow (25), to determine whether these

changes were due to caspase-11 activity in bone marrow-derived

macrophages, we performed bone marrow transplantation (BMT)

(36). Bone marrow cells from WT donor mice (CD45.1) were

transplanted into either WT recipient mice (CD45.2+) or Casp11–/–

mice after irradiation (Figure 4C). WT recipient mice (CD45.2+) that

received BM from WT mice (CD45.1+) maintained significantly

elevated GSDMD+ inflammatory monocytes (IMs) and

noncanonical pyroptosis mature HMFs (Figures 4D, E).

Conversely, Casp11–/– recipient mice (CD45.2+) that received bone
B
C

A

FIGURE 3

High-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) drives the increase of NASH-related F4/80+ hepatic macrophages (HMFs) in WT
mice, which are caspase-11 activation-independent. 8-10 weeks old male WT and Casp11–/– mice were fed HFD for 12 weeks. (A) Bulk RNA-seq
expression (TPM) of NASH-associated activated HMF genes. (B) Representative flow cytometry gating of HMF. Gated on CD45+ > CD11b+ Ly6G- >
Ly6Clow MHCIIhigh. (C) F4/80+ mean fluorescence intensity (MFI) for HMF populations. Statistical Analysis: Bulk RNAseq analysis was performed using
Qlucore Omics Explorer. PCA generated using significantly differentially regulated genes (p.adj < 0.01). Included genes were significant (p < 0.05) in
multi-variant analysis (Two-Way ANOVA). Marked significance (*) determined by One-Way ANOVA. *p < 0.05, **p < 0.001, ***p < 0.0001 ****p < 0.0001.
Flow cytometry data was analyzed with FlowJo, and statistical analysis was performed using Prism. One-Way ANOVA.
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marrow from WT mice (CD45.1+) had significantly regained

GSDMD+ IM’s and noncanonical pyroptosis mature HMFs

(Figures 4D, E). These data indicate that WT mice had more

monocyte migration and more hepatic pyroptosis, however,

Casp11–/– mice had less monocyte migration and hepatic

pyroptosis presumably resulting in an unchanged total number of

hepatic macrophages (Figure 4F). Taken together, our results have

demonstrated that 1) caspase-11 deficiency significantly reprograms

liver transcriptomes in NCD and HFD livers; 2) caspase-11 deficiency

attenuates hepatic macrophage pyroptosis in HFD-induced NAFLD;

3) caspase-11 cleaves GSDMD-NT in NCD livers more than that in

HFD-induced NAFLD; and 4) BM-derived macrophages play more

significant roles than liver resident macrophages in developing and

facilitating pyroptosis.
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3.5 Caspase-11 deficiency significantly
reduced extracellular acidification rates
from glycolysis and mitochondrial electron
transport chain functions suggesting that
caspase-11 contributes to maintain dual fuel
bioenergetics — glycolysis and oxidative
phosphorylation in macrophages potentially
for cholesterol biosynthesis

Our recent paper reported that two pathways such as fatty acid b-
oxidation (112) and stearate biosynthesis are upregulated and shared

by human NASH, NAFLD mouse models with glycine N-

methyltransferase deficiency (GNMT-KO), and high-fat-cholesterol

diet (HFCD) models (77). Our Casp11–/– mice showed significant
B
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FIGURE 4

Hepatic inflammatory monocyte (IM) and monocyte-derived macrophage (MDM) caspase-11 deficiency protective against pyroptosis, WT bone marrow
transplantation to Casp11–/– mice restored IM and MDM pyroptosis. 8-10 weeks old male WT and Casp11–/– mice were fed HFD for 12 weeks. (A)
Western blot for noncanonical pyroptosis mediators. (B) Liver IL-1b concentrations. (C) Experimental design for bone marrow transplantation (BMT). (D)
Representative flow cytometry gating of hepatic macrophages (HMF, Green, CD45+ > CD11b+ Ly6G- > Ly6Clow MHCIIhigh) inflammatory monocytes
(IM, Red, CD45+ > CD11b+ Ly6G- > Ly6Chigh MHCIIlow). (E) Gating strategy for designing pyroptosis populations. HMFs and IMs gated on GSDMD MFI
vs. Casp11-Inhibitor MFI. RED: GSDMD MFI for IM (CD45+ > CD11b+ Ly6G- > Ly6Chigh MHCIIlow). GREEN: Percentage of the parent for HMF
pyroptosis gating CD45+ > CD11b+ Ly6G- > Ly6Chigh MHCIIlow > Casp11 Activity vs GSDMD). (F) Schematic diagram showed that WT mice had more
monocyte migration and more hepatic pyroptosis, however, Casp11–/– had less monocyte migration and hepatic pyroptosis resulting in an unchanged
total number of hepatic macrophages. Statistical Analysis: Flow cytometry data was analyzed with FlowJo, and statistical analysis was performed using
Prism. One-Way ANOVA. One-Way ANOVA. *p < 0.05, **p < 0.001, ***p < 0.0001 ****p < 0.0001. ns, Non-significant.
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inhibition of NAFLD (Figure 1), implying that caspase-11 promotes

cholesterol biosynthesis and fatty acid b-oxidation. We and others

reported that increased acetyl-CoA promotes innate immune

memory (trained immunity) (65, 88, 113–116); and fatty acid b-
oxidation provides acetyl-CoA to fuel mitochondrial tricarboxylic

acid (TCA) cycle and ATP production, which thus may not be limited

to M2 macrophages (117). Previous reports showed that

proinflammatory fatty acid palmitic acid induces hepatocellular

lipotoxicity, endoplasmic reticulum (ER) stress, pyroptosis, and

upregulate NLRP3 inflammasome, caspase-1 and IL-1b (118); and

that caspase-11 deficiency leads to reduced activations of procaspase-

1, IL-1b and caspase-7 and reduced production of glycolysis-

promoted CXCL1 (119). In addition, caspase-11 may promote

metabolic reprogramming and trained immunity (persistent

hyperactivation of inflammation) (65, 113, 114, 120) as our

transcriptomic data mining report suggested (77). One report

supported this argument and showed that caspase-11 deficiency

increases antimycin A-induced mitochondrial reactive oxygen

species (mitoROS) (121–126) generation in macrophages (127),

implying that caspase-11 inhibits mitochondrial electron transport

chain (ETC) dysfunction and contributes the maintenance of

mitochondrial ETC functions. We hypothesized that caspase-11

promote mitochondrial ETC functions in macrophages stimulated

by palmitic acid. To examine the differences in the operation of

mitochondrial energy pathways between WT and Casp11–/–

macrophages stimulated by NAFLD, gut derived endotoxins LPS,

related (93, 128) proinflammatory saturated fatty acid palmitic acid

using the method reported (93), we performed extracellular metabolic

flux analysis. The extracellular acidification rates (ECAR) or proton

efflux rate (PER), considered a proxy for glycolysis (129), were

decreased in Casp11–/– macrophages (Figure 5A). In addition, using

the method we reported (87, 124–126), mitochondrial stress test

results showed that six mitochondrial electron transport chain (ETC)

functions including ATP production, maximal respiration, spare

respiratory capacity (uncoupling of OXPHOS induced by carbonyl

cyanide-p-trifluoromethoxyphenylhydrazone, FCCP), basal, proton

leak and non-mitochondrial oxygen consumption were decreased in

Casp11–/– macrophages in comparison to that of WT macrophages in

response to palmitic acid stimulation, especially ATP production,

basal respiration, maximal respiration, and spare respiratory capacity

(Figure 5B). Caspase-11 functions in maintaining both glycolysis and

OXPHOS in macrophages stimulated by proinflammatory fatty acid

palmitic acid are the same as that unique metabolic activation

identified in adipose tissue macrophages (ATM) (130). The

significance of the dual fuel bioenergetics in macrophages

stimulated by hyperlipidemia and in adipose tissues may be related

to an intermediate polarization status, their buffering capacity, or the

result of a mixed population of distinctly polarized ATMs (131) and

unique functions of caspase-11 in promoting HFD-induced NAFLD

potentially by switching/transdifferentiating fatty acid b-oxidation
-fueled OXPHOS in M2 macrophages into proinflammatory

glycolysis-dominance in M1 macrophages (46). Taken together,

these results have demonstrated that caspase-11 contributes

significantly to the maintenance of glycolysis and mitochondrial

electron transport chain functions in macrophages, in which acetyl-

coenzyme A (acetyl-CoA) production is shared between glycolysis

(acetyl-CoA transport into mitochondria) and TCA cycle (transport
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from mitochondria into cytosol for cholesterol synthesis); and both

acetyl-CoA generation and cholesterol biosynthesis (132) are the key

metabolic pathways for establishing trained immunity (69, 77, 114,

120), which are well correlated with our report on downregulation of

45.6% of 101 trained immunity pathway enzymes (71 glycolysis

enzymes, 23 acetyl-CoA generation enzymes and 7 mevalonate

synthesis enzymes) in Casp11–/– transcriptome (GSE115094) (133)

(77, 114).
4 Discussion

Nonalcoholic fatty liver disease (NAFLD) is the second leading

cause of liver transplantation in the United States, and with obesity

driven NAFLD on the rise worldwide, there is a great need for

NAFLD research and therapeutic development (134, 135). Hepatic

macrophage (HMF) activation and recruitment are important factors

in driving the inflammatory phase of NAFLD and NASH (21, 47–50).

While inhibition of macrophage activation and recruitment

significantly decreases liver inflammation in NAFLD animal

models, this may have unintended side effects due to the prevention

of the physiological roles of HMFs (18, 19, 31, 41–43). Therefore, a

more targeted approach is required. Anti-inflammasome therapeutics

have been shown to be a viable treatment option for inflammatory

metabolic disease (72). While these therapies focus on the canonical

pyroptotic pathway, the caspase11-dependent pyroptosis pathway

provides a novel target and pathway for the treatment of NAFLD.

Based on our and other’s previous publications (77, 114, 136),

HFD is one of the major drivers of innate immune memory (trained

immunity). Glycolysis, Acetyl CoA generation (cytosolic and

OXPHOS generated), increased mevalonate pathway, increased

glutaminolysis, TCA cycle metabolite accumulation such as

fumarate, and the epigenetic modification have all been identified

as critical pathways for establishing trained immunity in trained

immune cells. Furthermore, the proinflammatory cytokines

including tumor necrosis factor-a (TNF- a), IL-1b, and IL-16 are

the major read outs for trained immunity. In addition,

inflammasomes control the maturation and secretion of

proinflammatory IL-1b and IL-18 through GSDMD pores on the

cell membrane and induce an inflammatory cell death (pyroptosis)

(137). Therefore, the metabolic reprograming such as glycolysis in

trained immune cells enhanced the release of IL1b through N-

terminal GSDMD pores and promotes pyroptosis”.

The role of caspase-11 in driving pyroptosis in the pathogenesis of

NAFLD in methionine- and choline-deficient diet (MCD)-induced

NAFLD mouse model has been demonstrated (76). However, the role

of caspase-11 in driving pyroptosis in HFD-induced NAFLD mice

model have not been studied which we reported in this manuscript.

Our team previously examined the expression changes of macrophage

markers, macrophage proinflammatory cytokines, and macrophage

metabolism genes in 10 macrophage subsets in liver inflammatory

diseases, digestive inflammatory diseases, type-1 and type-2 diabetes,

metabolic syndrome, and familial hypercholesterolemia and

demonstrated that liver inflammatory diseases have predominant

M1 macrophage status. In addition, M1 macrophage status have a

significant upregulation of proinflammatory cytokine IL-1b, which
secreted during pyroptosis mechanisms (138) and also reported in
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our recent papers (77, 139). We also found that M1 macrophages

related to metabolic diseases have a significant increase in glycolysis

while M2 macrophages related to TCA cycle metabolites (46).

Therefore, ECAR and OXPHOS are related to cholesterol

biosynthesis via increasing M1 macrophage glycolysis and increased

generation of acetyl CoA which is the initial and key molecule for

cholesterol biosynthesis as well as M2 macrophages which increases

TCA cycle metabolites. IL-1 b is a major driver and regulator for

innate immune memory (trained immunity) which characterized by

increased glycolysis, increased acetyl CoA generation, and increased

cholesterol biosynthesis (88, 140, 141).

Given the central role of HMFs in the progression of NAFLD (21,

47, 49, 50) and the significance of pyroptosis in both patients and

animal models of NAFLD outlined in our recent publication (77), we

hypothesize that caspase-11-dependent pyroptosis promotes NAFLD

via glycolysis and OXPHOS dual fuel bioenergetics and bone

marrow-derived macrophage pyroptosis . We performed

histopathological analysis, RNA-seq and scRNA-seq data analysis,

FACS, Western blots, Seahorse mitochondrial stress analyses of

macrophages and bone marrow transplantation on HFD-induced

NAFLD in WT and Casp11–/– mice, we made the following findings:

1) HFD feeding for 12 weeks drives increases NAFLD in WT mice,

which are transcriptionally distinct from NCD control mouse livers;

2) Noncanonical pyroptosis mediators including caspase-11,

GSDMD, IL-1b, and GBPs are increased in response to HFD; 3)
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HFD promotes type-I, secretome dominant, caspase-11-GSDMD

pyroptosis other than type-II, inflammatory cell death-dominant,

caspase-11-GSDMD pyroptosis; 4) Casp11–/– mice have decreased

NAFLD (reduced NAS score, steatosis score and lobular

inflammation) with no significant liver weight changes; 5) Caspase-

11 deficiency significantly decreases liver IL-1b concentrations and

GSDMD expression; 6) Caspase-11 deficiency significantly reprogram

liver transcriptomes in NCD and HFD livers, attenuates hepatic

macrophage pyroptosis in HFD-induced NAFLD; 7) caspase-11

cleaves GSDMD-NT in NCD livers more than that in HFD-

induced NAFLD; 8) bone marrow-derived macrophages play more

significant roles than liver resident monocytes/macrophages in

facilitating pyroptosis; and 9) Caspase-11 significantly contributes

to maintain dual fuel bioenergetics — glycolysis and OXPHOS in

palmitic acid-stimulated macrophages potentially via promoting

transition of M2 macrophages into M1 macrophages.

Based on our results, we propose a new workingmodel; as shown in

Figure 6, HFD increased hepatic lipid accumulation (steatosis). In

addition, HFD promotes increase of gut microbiota Gram-negative

bacteria-generated endotoxin LPS, leading to elevations in circulating

LPS and metabolic endotoxemia (142), and increased LPS endocytosis

(143) and cytosolic LPS. Furthermore, Gram-negative bacteria

promoted by HFD enter the blood stream and enter cells, which are

mediated by GBPs (144, 145) to increase intracellular bacteria and LPS

to activate caspase-11. Caspase-11 activation is triggered by its
B

A

FIGURE 5

Caspase-11 significantly contributes to maintaining dual fuel bioenergetics- glycolysis and OXPHOS in macrophages potentially for cholesterol synthesis
and trained immunity. Bone marrow macrophages were isolated from 3 WT and 3 Casp11–/– mice and treated with palmitic acid (500 µM) for 8 hours
then pulled for seahorse analysis. (A) Seahorse XF96 Extracellular Flux Analyzer to measure extracellular acidification rate (glycolysis) of Casp11–/– vs WT
BMDMs in palmitic acid supplemented medium. (B) Seahorse mitochondrial function assay of Casp11–/– vs WT BMDMs in palmitic acid supplemented
medium.*P < 0.0, ****p < 0.0001.
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interaction with LPS from Gram-negative bacteria. Being an initiator

caspase, activated caspase-11 functions primarily through its cleavage

of key substrates. GSDMD is the primary substrate of caspase-11, and

the N-terminal GSDMD cleavage fragment generated (GSDMD-NT)

leads to the formation of pores (protein channels) in the plasma

membrane and secretion of caspase-1 produced IL-1b and other

caspase-1 dependent secretomes and caspase-11-dependent

secretomes (139, 146) into the extracellular space to promote liver

inflammation (NASH), and subsequently increased hepatic pyroptosis

and promotes NAFLD. Thus, caspase-11 functions as an intracellular
Frontiers in Immunology 13
sensor for LPS and an innate immune effector. Palmitic acid produced

by lipolysis in HFD-fed mice activates caspase-11 and GSDMD

cleavage. Furthermore, LPS-induced caspase-11 activation and

GSDMD cleavage also maintain dual fuel bioenergetics — glycolysis

and OXPHOS. Casp11–/– decreases GSMDM cleavage and IL-1b
secretion, reduces liver inflammation, and hepatic pyroptosis. These

results provide novel insights on the roles of caspase-11-GSDMD

pathway in promoting hepatic macrophage inflammation and

pyroptosis and novel targets for future therapeutic interventions

involving transition of NAFLD to NASH, hyperlipidemia, type-II
FIGURE 6

The working model showed that HFD increased hepatic lipid accumulation (steatosis). HFD promotes increased gut microbiota Gram-negative bacteria-
generated endotoxin LPS leading to elevations in circulating LPS and metabolic endotoxemia and increased LPS endocytosis and intracellular LPS. Gram-
negative bacteria promoted by HFD enter the bloodstream and enter cells which are mediated by GBPs to increase intracellular bacteria and LPS to
activate caspase-11. Caspase-11 activation is triggered by its interaction with LPS from Gram-negative bacteria. Being an initiator caspase, activated
caspase-11 functions primarily through its cleavage of key substrates. GSDMD is the primary substrate of caspase-11, and the GSDMD cleavage fragment
generated (GSDMD-NT) leads to the formation of pores in the plasma membrane and secretion of caspase-1 produced IL-1B into the extracellular space
to promote liver inflammation (NASH) and subsequently increased hepatic pyroptosis and promotes NAFLD. Thus, caspase-11 functions as an
intracellular sensor for LPS and an immune effector. Palmitic acid produced by lipolysis in HFD-fed mice caspase-11 activation and GSDMD cleavage.
Furthermore, LPS-induced caspase-11 activation and GSDMD cleavage also maintain dual fuel bioenergetics-glycolysis and OXPHOS and. Casp11–/–

decreased GSMDM cleavage and IL-1b secretion, reduced liver inflammation, and hepatic pyroptosis.
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diabetes, metabolic syndrome, atherosclerotic cardiovascular diseases,

autoimmune diseases, liver transplantation, and hepatic cancers.
Data availability statement

Our RNA sequencing data presented in the study are deposited in

the NCBI’s Gene Expression Omnibus database repository, accession

number GSE221005. Other RNA seq and single cell RNA seq data

were obtained the NIH-NCBI-Gene database (https://www.ncbi.nlm.

nih.gov/gene/837. Single Cell RNA-seq (scRNA-seq) Porter database

from the MIT Broad Institute (https://singlecell.broadinstitute.org/

single_cell/study/SCP1845/cross-tissue-immune-cell-analysis-

reveals-tissue-specific-features-in-humans?genes=casp4&tab=

distribution study-visualize were deposited in the ArrayExpress

database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under

accession number E-MTAB-11536).
Ethics statement

The animal study was reviewed and approved by Institutional

Animal Care and Use Committee (IACUC) and approved by the

IACUC of Lewis Katz School of Medicine (LKSOM) at

Temple University.
Author contributions

CD and FS carried out the data gathering, data analysis and

prepared the tables and figures. NJ, RC, YSu, KX, YSh, YL, HS, YZ,

LY, JY, SW, NS, WH, JZ, YHZ, XJ, HW, aided with analysis of the data.

XY supervised the experimental design, data analysis, and manuscript

writing. All authors read and approved the final manuscript.
Frontiers in Immunology 14
Funding

Our research activities are supported by grants from the National

Institutes of Health (NIH)/National Heart, Lung, and Blood Institute

(HL131460, HL132399, HL138749, HL147565, DK104116, and

DK113775). The content in this article is solely the responsibility of

the authors and does not necessarily represent the official views of the

NIH. We are very grateful to Dr. Edward A. Miao in the Department

of Immunology at Duke University School of Medicine for his most

insightful advices and corrections.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1113883/

full#supplementary-material
References
1. Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic
fatty liver disease. Nat Rev Dis Primers (2015) 1:15080. doi: 10.1038/nrdp.2015.80

2. Ryu JE, Jo W, Choi HJ, Jang S, Lee HJ, Woo DC, et al. Evaluation of nonalcoholic
fatty liver disease in C57BL/6J mice by using MRI and histopathologic analyses. Comp
Med (2015) 65(5):409–15.

3. Van Herck MA, Vonghia L, Francque SM. Animal models of nonalcoholic fatty liver
disease-a starter's guide. Nutrients (2017) 9(10):1072. doi: 10.3390/nu9101072

4. Sheka AC, Adeyi O, Thompson J, Hameed B, Crawford PA, Ikramuddin S.
Nonalcoholic steatohepatitis: A review. Jama (2020) 323(12):1175–83. doi: 10.1001/
jama.2020.2298

5. Pais R, Barritt AS 4th, Calmus Y, Scatton O, Runge T, Lebray P, et al. NAFLD and
liver transplantation: Current burden and expected challenges. J Hepatol (2016) 65
(6):1245–57. doi: 10.1016/j.jhep.2016.07.033

6. Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty
liver disease and nonalcoholic steatohepatitis in the united states and the rest of the world.
Clin Liver Dis (2016) 20(2):205–14. doi: 10.1016/j.cld.2015.10.001

7. Younossi Z, Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease
to the burden of liver-related morbidity and mortality. Gastroenterology (2016) 150
(8):1778–85. doi: 10.1053/j.gastro.2016.03.005

8. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global
epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence,
incidence, and outcomes. Hepatology (2016) 64(1):73–84. doi: 10.1002/hep.28431

9. Kim CH, Younossi ZM. Nonalcoholic fatty liver disease: a manifestation of the
metabolic syndrome. Cleve Clin J Med (2008) 75(10):721–8. doi: 10.3949/ccjm.75.10.721
10. Virtue A, Johnson C, Lopez-Pastraña J, Shao Y, Fu H, Li X, et al. MicroRNA-155
deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity,
and non-alcoholic fatty liver disease: A NOVEL MOUSE MODEL OF OBESITY
PARADOX. J Biol Chem (2017) 292(4):1267–87. doi: 10.1074/jbc.M116.739839

11. Johnson C, Drummer C 4th, Virtue A, Gao T, Wu S, Hernandez M, et al. Increased
expression of resistin in MicroRNA-155-Deficient white adipose tissues may be a possible
driver of metabolically healthy obesity transition to classical obesity. Front Physiol (2018)
9:1297. doi: 10.3389/fphys.2018.01297

12. Johnson C, Drummer C Iv, Shan H, Shao Y, Sun Y, Lu Y, et al. A novel subset of
CD95(+) pro-inflammatory macrophages overcome miR155 deficiency and may serve as
a switch from metabolically healthy obesity to metabolically unhealthy obesity. Front
Immunol (2020) 11:619951. doi: 10.3389/fimmu.2020.619951

13. Valencia-Rodriguez A, Vera-Barajas A, Barranco-Fragoso B, Kúsulas-Delint D,
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