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Abstract

Caspases play an essential role during apoptotic cell death.

These enzymes define a new class of cysteine proteases and

comprise a multi-gene family with more than a dozen distinct

mammalian family members. The discrete and highly limited

subset of cellular polypeptides that are cleaved by these

proteases is sufficient to account for the majority of cellular

and morphological events that occur during cell death. In

some cases, caspases also play a contributory role in

escalating the propensity for apoptosis, and in doing so may

exacerbate disease pathogenesis.
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Proteases in apoptosis (the ICE age)

ICE (interleukin-1b converting enzyme; caspase-1) is the

prototypical caspase and was initially identified as the

protease responsible for the proteolytic maturation of proIL-

1b to its pro-inflammatory, biologically active form.1,2 When

originally discovered, ICE defined a new class of cysteinyl

proteases that was distinguishable from other cysteine

protease families based on general structural organization

and the absolute requirement for aspartic acid in the P1

position of the scissile bond. A key role for ICE in inflammation

had been largely established, which was quickly secured by

inhibitor studies and by the phenotype of ICE-deficient mice,

but other potential biological functions were not evident. At

approximately the same time, a genetic pathway for cell death

was being defined in the nematode C. elegans.3 One of the

genes in this genetic pathway, ced-3, encoded a protein that

was essential for all 131 programmed cell deaths that

occurred during hermaphrodite development. When ced-3

was cloned and sequenced, it was found to be a C. elegans

homologue of mammalian ICE.4,5 This and other evidence

strongly implicated ICE (or related family members, as it

turned out) in a similar mammalian cell death pathway.

Importantly, this collective information also demonstrated an

essential role for specific proteolysis in apoptotic cell death,

which led to the identification of proteolytic `victims' of the

caspases and shed light on the biochemical events that

occurred as a consequence of their cleavage. The importance

of C. elegans genetics in defining the mammalian cell death

pathway is underscored by the fact that the individual cell

death components, their molecular ordering and cellular

functions have been largely conserved throughout evolu-

tion6 (Figure 1). In addition to caspases, other proteases also

contribute to the apoptotic cell death pathway. The serine

protease granzyme B, for example, has been well established

as a caspase activator during CTL-mediated killing, and

owing to its P1 Asp bias can function as a caspase surrogate

when caspases themselves are inoperative.7 ±9 The calpains

have also been implicated in apoptosis,10 although their

precise role remains to be determined.

The mammalian caspase gene family and
functional sub-families

The caspase gene family11 thus far contains at least 14

mammalian members, of which 11 human enzymes are

known (Figure 2). A phylogenetic analysis indicates that the

gene family is composed of two major sub-families which are

related to either ICE (caspase-1) or to the mammalian

counterparts of CED-3. Further subdivisions can be made

depending on whether the proenzymes harbour short

prodomains (caspases-3, -6, -7) or long prodomains (the

remainder). Alternatively, these proteases can be subdivided

on the basis of their substrate specificities which has been

defined using a positional scanning combinatorial substrate

library.12,13 Using the latter technique, the proteases fall into

only three specificity subgroups (Figure 3). As expected from

earlier studies, the major specificity determinant is the S4

subsite (most of the enzymes are promiscuous at P2 and P3,

although they prefer His or Ile in P2 and prefer Glu in P3).

Group I caspases (1, 4, 5, 13) are tolerant of liberal

substitutions in P4 but prefer bulky hydrophobic amino acids

such as Tyr or Trp. This preference is consistent with their role

in cytokine processing but does not support a substantial role

in apoptosis since none of the polypeptides that are cleaved

during apoptosis contain hydrophobic residues in P4. The

group II caspases (2, 3, 7) are substantially more stringent in

S4, requiring a P4 Asp. This specificity and stringency is nearly

indistinguishable from that of C. elegans CED-3. The

preferred cleavage motif (DExD) for group II caspases

appears in many proteins that are cleaved during cell death,

consistent with group II caspases being the major effectors of

cell death. Group III caspases (6, 8, 9, 10), on the other hand,

prefer branched chain aliphatic amino acids in P4; residues
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that are found at the maturation site of most group II and group

III caspases. This specificity is consistent with the group III

enzymes being upstream activators of the group II effector

caspases (Figure 4). This molecular ordering of group III and

group II caspases has been upheld in several cases and is

best exemplified by caspase-8-mediated activation of

caspase-3 and -7 in the CD95 (Fas, APO-1) system,14,15

and caspase-9-mediated activation of caspase-3 in the

APAF-1/cytochrome c pathway16 (both of these examples

have been substantiated in caspase-8 or -9 knock-out mice as

well).17 ±20 One possible exception to this general ordering

based on substrate specificity, which remains unresolved, is

whether caspase-6 (a group III caspase) plays an effector role

(e.g. lamin proteolysis)21 instead of or in addition to a putative

activation role. Another exception may be caspase-2 which

appears to be a self-activating effector caspase.12,22,23

Figure 1 C. elegans cell death genetic pathway and mammalian counterparts

Figure 2 The human caspase gene family. Caspases segregate into two major phylogenic sub-families (ICE, CED-3). Based on their proteolytic specificities (see
Figure 3), caspases further divide into three groups: group I enzymes (blue) mediate cytokine maturation whereas the apoptotic caspases are either group II (red)
effectors of cell death or group III (green) upstream activators. Most caspases have long prodomains (410 kDa) except for caspases-3, -6 and -7 (box) which have
short peptidic prodomains (530 aa). With the exception of caspase-13, the human chromosomal location for all of the caspases has been determined. At least two
gene clusters have been identified, consistent with some caspases arising from tandem gene duplication. These include the caspases-1, -4, -5 gene cluster on
11q22.2-q22.3 and the caspases-8, -10, cFLIP/Usurpin gene cluster on 2q33-q34.71,72 (cFLIP/Usurpin (aka CASH, Casper, CLARP, FLAME-1, I-FLICE, MRIT) is
homologous to caspases -5, -8 and -10, except that substrate binding and catalytic determinants are absent, making it a dominant-negative death repressor.) The
human counterparts of murine caspases-11, -12 and -14 have not yet been identified (although murine caspase-12 may be equivalent to human caspase-5)

Caspase structure and role during apoptotic cell death

DW Nicholson

1029



General caspase structural features

Caspases are synthesized as catalytically-dormant tripartite

proenzymes (Figure 5). Both the large and the small subunits,

which together make up the active form of the enzyme, are

liberated from the proenzyme by cleavage at Asp(P1)-X(P1')

bonds. The presence of Asp at the maturation cleavage sites

is consistent with the ability of caspases to auto-activate or to

Figure 3 Caspase proteolytic specificity. The caspases recognize a core tetrapeptide motif corresponding to the four residues N-terminal to the scissile bond (P4-
P3-P2-P1). A positional-scanning combinatorial substrate library, comprised of all 8000 possible P1 Asp tetrapeptides, segregates the caspases into three
specificity groups with the indicated sub-site preferences.12,13 Caspase-2 also appears to have a P5 requirement.73

Figure 4 Molecular ordering of caspases. Exceptions to this general ordering may also exist. Caspase-2, for example, may be self activating. Caspase-6 may
function as an effector protease. Amplification circuits also exist. The caspase complement varies considerably between different cell types, directly bearing on the
pathways available and how they function within different cellular environments
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be activated by other caspases as part of an amplification

cascade. Components of the proteolytic device, including the

active site Cys and His residues, are harboured within the

large subunit whereas residues which form the S1 subsite that

tethers the carboxylate side chain of the essential P1 Asp are

derived from both the large and small subunits (Figure 6).

Similarly, both the large and the small subunit contribute

residues to form the substrate binding cleft (S4-S1), although

the major determinants for substrate specificity (e.g. S4) are

contained within the small subunit. Prodomain structures vary

considerably between different caspase family members

ranging from small peptides with unknown (if any) function

(e.g. caspases-3, -6, -7) to large domains that are involved in

recruitment-activation (e.g. caspases-2, -8, -9, -10). Two

caspase X-ray crystal structures have been published

(caspases-1 and -3)13,24 ± 27 and in both cases, the enzyme

was found to be a tetramer containing two large and two small

subunits (a [p20:p10]2 (caspase-1) or [p17:p12]2 (caspase-3)

homodimer of the large subunit: small subunit heterodimer).

The subunits of each heterodimer are folded into a compact

cylinder that is dominated by a central six-stranded b-sheet

and five helices which are distributed on opposing sides of the

plane that is formed by the b-sheets (Figure 7). In the caspase

tetramer, two of these cylinders align in a head-to-tail

configuration, thereby positioning the two active sites at

opposite ends of the molecule. Despite the presence of dual

active sites, however, there is no evidence for cooperativity or

allosteric modulation between these sites. The overall

configuration of the tetramer and the orientation of the

individual subunits within it suggests an attractive mechan-

ism for protease activation. In this model, two proenzymes

associate, for example by prodomain-facilitated dimerization,

interdigitate and process to form a tetramer in which each of

the two heterodimeric catalytic domains is composed of a

subunit derived from each proenzyme. This model is

supported by the proximity of the C-terminus of the large

subunit from one heterodimer with the N-terminus of the small

subunit in the opposing heterodimer, but it does not exclude

other possibilities that will likely require a proenzyme X-ray

structure to resolve.

The caspase active site (a fatal embrace)

Caspases recognize a very short tetrapeptide sequence

within targeted substrate polypeptides and these motifs have

Figure 5 Caspase proenzyme organization

Figure 6 Major polar interactions within the caspase active site. The three-
dimensional structure of two caspase : inhibitor complexes has been
determined (caspase-1:Ac-YVAD-CHO, caspase-3:Ac-DEVD-CHO). Com-
mon polar interactions are shown. The inhibitor (shown in black) is tethered
by a network of hydrogen bonds, including those which stabilize the
carboxylate side chain of the P1 Asp (red), the catalytic dyad (blue), and
mainchain interactions (green). The P4 network of interactions vary
substantially between these two enzymes (not shown), accounting in part
for the major differences in their respective substrate specificities. Numbering
is based on caspase-1 residue positions. Also see Figure 9 for the
conservation of these residues throughout the caspase gene family

Figure 7 Caspase X-ray crystal structure. The caspase tetramer is
comprised of two large subunits (outermost left (blue) and right (bronze)
subunits) and two small subunits (inner left (bronze) and right (blue)). The
caspase-3 structure is shown with its inhibitor, Ac-DEVD-CHO (yellow), in
each of the two resulting active sites.26
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formed the basis for inhibitor and synthetic substrate design.

As described above, these proteases have an absolute

requirement for Asp in P1, are promiscuous in P2, prefer Glu in

P3, but have varying preferences in P4 that enable their

assignment to one of three generic subgroups (I, II, III).

Despite these apparently simple requirements, however,

caspases are extremely stringent, indicating that three-

dimensional context and the appropriate surface presenta-

tion are key factors in determining whether the presence of an

appropriate motif also makes it eligible for caspase proteolysis

within a polypeptide. The molecular basis of high affinity

substrate binding and the specificity determinants at S4 have

been demonstrated for caspases-1 and -3 and can be

inferred, as a consequence, for the other caspases. The

active site groove is well defined and is extended along the

surface of the enzyme (Figure 8). The carboxylate side chain

of the P1 Asp fits into a highly restrictive `socket' and is

tethered by hydrogen bond interactions with three residues

that are conserved in all caspases (Arg179, Gln283, Arg341)

(Figure 9). The tight physical dimensions of S1 accounts for

the lack of tolerance for anything other than Asp in this

position. The P2 and P3 binding sites (S2 and S3) are

reasonably distinctive, although tolerant of broad substitu-

tions. The peptide backbone of the bound substrate (or

peptidyl inhibitor) forms main-chain hydrogen bonds with

Ser339 (conserved in most caspases) and Arg341 (conserved

in all caspases) as it extends along the binding cleft through

these sites. The P4 binding site (S4), which is the key

determinant of substrate specificity, varies markedly between

the different caspase family members. This is best

exemplified in a comparison of caspase-1 versus caspase-3

where the S4 subsites vary radically in both geometry and

chemical nature (see Figure 8). In the case of caspase-1, S4 is

a large shallow depression on the protease surface that

readily accommodates bulky hydrophobic residues, such as

the preferred Tyr or Trp. This site accommodates other

residues as well; hence the relative promiscuity of this

enzyme. Caspase-3, on the other hand, has a well defined

and narrow S4 pocket that envelops the side chain of the P4

Asp. The intricate network of polar interactions and the

physical geometry of the site accounts for the strong Asp

preference and the enzymes overall specificity profile. The

physical shape of the pocket is conferred in part by Trp348

(conserved in all groups II and III but not group I caspases)

and by a small subunit-derived surface loop that makes an

irregular reverse turn over the active site and contributes to

the formation of S4. Overall, this information affords a

molecular understanding of the features which dictate the

specificity of these enzymes and their relative promiscuity or

stringency. Following substrate binding, catalysis employs a

typical cysteine protease mechanism involving a catalytic

dyad that is composed of Cys285 and His237, plus an `oxyanion

hole' involving Gly238 and Cys285 (all of which are conserved

in all caspases). Interestingly, inhibitors bind in an unexpected

non-transition state configuration with the oxyanion of the

thiohemiacetal being stabilized by the active site His237.

Caspase inhibition

The sufficiency of a P4-P1 tetrapeptide for caspase

recognition and high-affinity binding has been the platform

for most of the currently available caspase inhibitors (as well

as fluorogenic and colorimetric substrates). Suitable electro-

philes that can interact reversibly with the active site Cys285

include aldehydes, nitriles and ketones. Because of the

anticipated stability of ketones in vivo, this class of inhibitor is

well suited for further development. Irreversible caspase

inhibitors, which form covalent adducts with the active site

Cys285, are of the general structure [tetrapeptide]-CO-CH2-X,

including ketones where X is 7Cl or 7F (chloro- or

fluoromethylketones), -N2 (diazomeylketones) or 7OCOR

((acyloxy)methylketones). Inhibitors of the latter class

((acyloxy)methylketones) are the most promising of the

irreversible inhibitors owing to their very high potency against

caspase enzymes and low intrinsic reactivity with other

biological nucleophiles. The major challenge in developing

A. Caspase-1

B. Caspase-3

S4

S4

S2

S2

S3

S3

Figure 8 Topology of caspase-1 (A) and caspase-3 (B) active sites. The
solvent-accessible surface is shown in green. Bound inhibitors are shown in
yellow (nitrogens are coloured blue, oxygens are red). Caspase-1 (A) is shown
with Ac-WEHD-CHO13 whereas caspase-3 (B) is shown with Ac-DEVD-
CHO26 (aldehyde inhibitor versions of the optimal substrate for each enzyme).
The major subsites (S4, S3, S2, which bind their respective P4, P3, P2

residues) are indicated. The P1 Asp penetrates into the plane of the figure and
is not visible. Note the major difference in S4 subsite which is a large, open
depression in caspase-1 versus a smaller, tighter pocket in caspase-3
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inhibitors that are suitable for the current state of apoptosis

research or for therapeutic usage is replacement of the

tetrapeptide with non-peptide moieties. Peptide-based inhibi-

tors have severely limited utility in cell-based and in vivo

models owing to their very poor membrane permeability and

other substantial disadvantages including poor metabolic

stability. Despite these obstacles, interesting experiments

have been performed in vivo with the esterified non-selective

tripeptide-fluoromethylketone, Z-VAD(OMe)-CH2F. The non-

esterified counterpart of this inhibitor is modestly potent

against most caspases, with the exception of caspase-2,

although drawbacks of this compound include its lack of

chemical stability (t1/2 of free acid 550 min)28 and electro-

philic promiscuity which enables it to attack other biological

nucleophiles, including cathepsins.29 Several macromolecu-

lar caspase inhibitors have also been identified, including

baculovirus p3530 ± 32 (a broad-spectrum caspase inhibitor),

the cowpox serpin CrmA (selective for group I and III

caspases, but not group II enzymes),28 and members of the

IAP superfamily (which appear to be largely selective for

group II caspases).33 ±36

Caspase activation mechanisms

At least three distinct pathways for caspase activation exist in

mammalian cells; (1) recruitment-activation, (2) trans-activa-

tion, and (3) autoactivation. In the first case, two examples of

caspase activation following recruitment of multiple homo-

logous proenzymes to a common site have been demon-

strated. Ligation of the CD95 (Fas, APO-1) receptor, for

example, recruits procaspase-8 to an oligomeric activation

complex using the adapter protein FADD/MORT1.14,15 This

mechanism appears to be common to other `death domain'-

containing receptors (e.g. TNF-R1) and probably to caspase-

10 as well. Similarly, oligomerization of procaspase-9 is

mediated by APAF-1 following its release from Bcl-XL and a

cytochrome c-dependent conformational change.16 In this

case, recruitment is mediated by homophilic CARD-domain

interactions. Other recruitment-activation mechanisms ap-

pear to exist (e.g. RAIDD-mediated activation of caspase-

222,23 and CARDIAK-mediated activation of caspase-1),37 but

are less well characterized. Following recruitment of multiple

caspase proenzymes to a common oligomerization site, the

low level of endogenous catalytic activity that the proenzymes

harbour is sufficient to initiate full catalytic activation by

proteolysis of the Asp-X site at the junction between the large

and small subunits.38 ±41 Trans-activation of one caspase by

another is a second well established mechanism for caspase

proenzyme maturation and activation. In general, upstream

group III activator caspases (e.g. caspases-8 or -9 once they

have undergone recruitment-activation) cleave and activate

downstream group II effector caspases (e.g. caspases-3 or -

7) by proteolysis of the Asp-X site between the large and small

subunits. CTL-derived granzyme B can also mediate this

event and thereby `trick' the target cell into launching its

endogenous apoptotic response.7 ±9 These trans-activation

events are assisted by the activity of Hsp60, suggesting that

the vulnerability of group II effector caspases to activation by

upstream group III caspases is modulated by Hsp-driven

folding and/or unfolding of the proenzyme.42 Finally,

caspases can, in principle, undergo autocatalytic activation,

although definitive proof for a non-recruitment type of

autoactivation has not been established. One indication that

such a mechanism may exist comes from the observation that

RGD peptides can directly stimulate the autoactivation of

procaspase-3.43

Substrates for caspases during apoptosis

During apoptotic cell death, only a fraction of the cellular

proteome is cleaved by caspases. Current estimates based

on comparative 2-D gel analysis between healthy and

apoptotic cells place the number at fewer than 200

polypeptides.44 Thus far, about 70 of these caspase

Figure 9 Conservation of residues critical for substrate binding and catalysis. The area shown bridges most of the large subunit and part of the small subunit (as
indicated in upper panel by grey frame). The catalytic dyad (blue), residues which participate in stabilization of the carboxylate side chain of the P1 Asp (red) and
residues that contribute to the `oxyanion hole' (green) are indicated. Known or predicted maturation sites between the large and small subunits are highlighted in
yellow. Caspase-1, for example, undergoes two cleavage events to liberate a linker peptide that separates the large and small subunits. In caspase-3, however, the
large subunit is contiguous with the small subunit. Caspase-9 can be activated by either autolytic cleavage (left site) or by a caspase-3-mediated amplification
event (right site). Numbering is based on caspase-1 residue positions
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`victims' have been identified (Figure 10) and in most of these

cases the cellular rationale for proteolysis during cell death

can be reasonably predicted. For example, one of the

hallmark events of apoptotic cell death is genomic disas-

sembly and breakdown into oligonucleosomal fragments.

Caspases disable normal DNA repair processes, in order to

prevent counterproductive events from occurring simulta-

neously, by inactivating at least two key proteins involved in

the homeostatic maintenance of genomic integrity; PARP and

DNA-PK. At the same time, an apoptosis-dedicated

endonuclease (CAD) is activated by caspase-mediated

crippling of its cognate inhibitor (ICAD/DFF45). Together

these cleavages contribute to the changes in the genomic

DNA that accompany apoptotic cell suicide. Comparable

scenarios can be envisioned for most of the polypeptides that

are cleaved by caspases during cell death and the biological

consequences that are associated with the apoptotic

phenotype. The cumulative effects of these cleavage events

are to (a) disable homeostatic and repair processes, (b) halt

cell cycle progression, (c) inactivate inhibitors of apoptosis, (d)

mediate structural disassembly and morphological changes,

and (e) mark the dying cell for engulfment and disposal. In

order to mediate these events, caspases can modify the

function of their target polypeptides in one of four generic

ways. For example, they can either inactivate the normal

biochemical function of their substrates (e.g. ICAD, PARP,

DNA-PKcs) or activate them by removal of regulatory domains

(e.g. cPLA2, PKCs, SREBP). Alternatively, caspases can alter

or invert the function of their target proteins (e.g. BID, which

converts from mildly to strongly apoptotic following caspase

proteolysis; Bcl2 and Bcl-XL, which switch from anti- to pro-

apoptotic following cleavage). Finally, the structural compo-

nents of the cytoskeleton and nuclear scaffold require

disassembly during apoptosis and caspases play a key

proteolytic role in these steps as well (e.g. lamins, fodrin,

gelsolin). Caspase cleavage normally occurs at a single,

discrete site within the target polypeptide, although examples

of multiplicity, redundancy and nesting also exist (Figure 11).

Figure 10 Substrates cleaved by caspases during apoptosis. PARP
(poly(ADP-ribose) polymerase),74,75 DNA-PKcs (catalytic subunit of DNA-
dependent protein kinase),76 ± 82 Rad51 (mammalian RecA recombinational
repair homologue),83,84 Acinus (apoptotic chromatin condensation inducer in
the nucleus)85 DFF45/ICAD (45 kDa component of DNA fragmentation factor;
inhibitor of the caspase-activated deoxyribonuclease),86 ± 89 DNA-RFC140
(140 kDa subunit of DNA replication factor C),90 ± 92 Rb (retinoblastoma gene
product),93 ± 97 MDM2 (murine double-minute chromosome mdm2 onco-
gene),98,99 p21CIP1/WAF1 (21 kDa inhibitor of cyclin-dependent ki-
nases),100 ± 103 NuMA (nuclear-mitotic apparatus protein),104 ± 106 ATM
(ataxia telangiectasia mutated gene product),107 U1-70 kDa (70 kDa
component of U1 small nuclear ribonucleoprotein),108,109 hnRNP-C1/C2
(heteronuclear ribonucleoproteins C1 and C2),110 SREBP (sterol responsive
element binding protein),111,112 IkB-a (a isoform of Rel/NF-kB inhibitors),113

D4-GDI (Rho GDP-dissociation inhibitor, D4),114,115 cPLA2 (cytosolic
phospholipase A2),

116 ± 118 PKC (protein kinase C),119 ± 126 MEKK-1 (MEK
kinase-1),127,128 Mst1 (aka Krs2, mammalian homologue of yeast Ste20
kinase),129 ± 131 PRK2 (protein kinase C-related kinase 2),132 PP2A (protein
phosphatase 2A),133 FAK (focal adhesion kinase),134 ± 137 fodrin (aka non-
erythroid spectrin; note that a second cleavage site was also reported within aII-
fodrin),138 ± 142 gelsolin,143,144 cytokeratin-18,145 ± 148 LAP2 (lamin asso-
ciated protein 2),149 Nup153 (153 kDa nucleoporin),149 rabaptin-5 (Rab5
GTPase effector protein),150 APC (adenomatous polyposis coli oncosuppres-
sor protein),93,151 Hsp90 (90 kDa heat shock protein),148 UbqCE NEDD4
(ubiquitin conjugating enzyme, neural-expressed developmentally downregu-
lated gene 4 protein),152 Bcl-2 (B-cell lymphoma gene 2 product),153 ± 155

presenilin 2,156 ± 159 Huntingtin (Huntington's disease gene product),45,160

SBMA-AR (androgen receptor defective in spinal bulbar muscular atrophy
(Kennedy's disease)),160,161 atrophin-1 (DRPLA gene product),160 STAT1
(signal transducer and activator of transcription factor),162 Sp1 (transcription

factor Sp1),163,164 SRP p72 (72 kDa protein of signal recognition particle),165

NF-kB (nuclear factor-kB transcription factor),166,167 PITSLRE kinase
(p34CDC2-related protein kinases; note that additional cleavage sites have
been identified in addition to this major site (TEGD/Y and DDRD/S)),168 ± 170

PAK2 (aka PAK65, g-PAK, PAKI; p21-activated protein kinase),171 ± 173

p59FYN (src-like tyrosine kinase p59FYN),174 CaMK-IV (Ca/calmodulin-
dependent protein kinase IV),175 p28 Bap31 (BCR-associated protein,
28 kDa Bcl2-interacting protein),176,177 actin,178 ± 183 Gas2 (growth arrest-
specific gene product 2),184 lamins,21,185 ± 189 Bcl-XL (long version of Bcl-2-
related gene product X),190,191 BID (BH3 interacting domain death
agonist),192 ± 194 b-APP (amyloid-b precursor protein),47 ± 49,195,196 proIL-16
(pro interleukin-16),197 pro-caspases,12 MCM3 (minichromosome maintenance
protein 3, nuclear replication factor),198 p27KIP1 (27 kDa cyclin dependent
kinase inhibitor),102 Wee1 (Wee1 kinase, inhibitor of cdc2 and cdk2),199

CDC27 (CDC27 component of anaphase-promoting complex)),199 SAF-A/
hnRNP-U (scaffold attachment factor A, heteronuclear ribonucleoprotein U),200

hnRNP-A1 (heteronuclear ribonucleoprotein A1),44 RasGAP (Ras GTPase-
activating protein),201 Raf1 (Ras activated/associated factor 1),201 Akt1 (aka
protein kinase B),201 Cbl (Cbl protooncogene product, negative regulator of
receptor tyrosine kinase signaling),201 PKN (protein kinase N),202 catenin (aka
plakoglobin),203 ± 207 kinectin,208 calpastatin (calpain inhibitor),209,210 ataxin-
3 (gene product defective in spinocerebellar ataxia type 3 (SCA3)),160 AMPA
receptors211
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Pathogenic exacerbation by
caspase-mediated cleavage of
disease-associated substrates

Apoptotic cell death is dependent on caspase activity and

inappropriate apoptosis contributes to or accounts for several

disease pathogeneses. In some cases, however, caspases

also appear to play a role in aberrant processing events that

culminate in an increased propensity or vulnerability to cell

death. Recent examples include the role of caspases in

polyglutamine-repeat disorders and Alzheimer's disease

(Figure 12). Huntington's disease, for example, is a

progressive neurodegenerative disorder in which the mole-

cular defect is attributable to an expanded polyglutamine

stretch in the amino terminus of the Huntingtin protein.

Caspase-3 (a group II effector caspase) liberates the amino-

terminal fragment, containing the polyglutamine expansion,

by cleavage within a cluster of DXXD sites.45 These truncated

fragments then appear to aggregate within the cell and recruit

the proenzyme of caspase-8 (a group III activator caspase) to

the polyglutamine aggregates.46 The ensuing recruitment-

activation of caspase-8 presumably initiates an apoptotic

cascade similar to the CD95 (Fas, APO-1) pathway, including

further activation of caspase-3. This cycle may begin at a low

level that is below the threshold necessary for cell death;

however, with the cumulative cycle of polyglutamine fragment

generation and caspase activation, a point may be reached in

vulnerable neurons where this threshold is breached and the

cells die prematurely. In Alzheimer's disease, caspase-3

adulterates the normal processing of the amyloid-b precursor

protein (APP) by removal of the carboxy-terminal cytosolic

domain.47 ± 49 The resulting truncated APP, now deprived of

key re-internalization signals, appears to be shunted to a

degradative pathway that results in the generation of the

cytotoxic amyloid-b peptide (Ab) as one of the peptide

derivatives of the full length APP polypeptide. Although the

mechanism by which Ab mediates its cytotoxicity is not

understood, it leads to an increased propensity for apoptosis,

including caspase-3 activation. Increased caspase-3 activity

(again below the apoptotic threshold) may result in

accelerated formation of Ab and further neuronal stress,

eventually resulting in exacerbation of the cycle to a point

which leads to cell death and neurodegeneration. In both of

these examples, a vicious cycle appears to exist, although

how the cycle is initiated or emerges is unclear. Vulnerability

of the target polypeptides to caspases may arise as a

consequence of genetic mutations (e.g. polyglutamine

expansion in the case of Huntington's; APP or presenilin

mutations in the case of Alzheimer's). Alternatively, the seed

of caspase activity may arise as a consequence of other

trauma or from the endogenous low-level activity of the

caspase proenzymes themselves.

Prospects for caspase-directed
therapeutics

Inappropriate apoptosis clearly underlies the etiology of

several human diseases.50 ±53 The control of caspases, as

a key and central component of the biochemical pathway that

mediates apoptotic cell death, is an attractive first step in

modulating this process. Caspase activation for the treatment

of disorders where insufficient apoptosis occurs (e.g. cancer)

Figure 11 Caspase cleavage strategies. The majority of substrates that are proteolyzed by caspases during apoptosis are cleaved at a single site, although some
polypeptide substrates contain multiple sites that are either nested, redundant within a short stretch, or spread out across the molecule
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represents a substantial challenge. `Trojan horse' gene

therapy approaches may be viable, such as that described

for HIV infection in which a TAT-caspase-3 construct

containing a HIV-protease recognition motif selectively

induces apoptosis in HIV infected cells only.54 Alternatively,

the molecular constraints on caspase activation is poorly

Figure 12 Potential involvement of caspases in `vicious cycles' leading to pathogenic exacerbation in Huntington's disease (A) and Alzheimer's disease (B)
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understood and my harbour opportunities for selective

caspase activation once they are resolved. On the other

hand, caspase inhibition for the treatment of disorders where

excessive apoptosis occurs (e.g. neurodegeneration) ap-

pears to be more amenable to therapeutic intervention with

classical small-molecule inhibitors. Preliminary experiments

in animal models using non-selective caspase inhibitors such

as Z-VAD(OMe)-CH2F, for example, have shown in vivo

efficacy in ischemic and hypoxic brain injury, traumatic and

excitotoxic brain damage, neuronal transplantation, acute

bacterial meningitis as well as in cardiac and kidney ischemia/

reperfusion injury and models of acute liver failure.55 ±65 In

addition, transgenic mice expressing dominant-negative

caspase-1 show resistance to CNS injury in models of ALS,

focal ischemia, excitotoxic injury and Huntington's dis-

ease.66 ±70 (It is not yet clear whether this protection is

afforded by the attenuation of a secondary inflammatory

response, or whether the dominant-negative caspase-1

affects other caspase family members as well.) The clinical

utility of caspase inhibitors will depend on several key issues

that require further resolution. For example, will cells that are

saved from apoptotic death remain functional and survive

without perpetual caspase inhibition? Will the delayed-

administration `window of opportunity' be sufficient for

practical use in a clinical setting? Can highly selective

caspase-3 inhibitors be used for chronic administration

without unacceptable adverse events occurring? Early work

in all of these areas is highly encouraging.
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