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Abstract
Themining of time series data has applications in several domains, and inmany cases the data
are generated by networks, with time series representing paths on such networks. In this work,
we consider the scenario in which the dataset, i.e., a collection of time series, is generated by
an unknown underlying network, and we study the problem ofmining statistically significant
paths, which are paths whose number of observed occurrences in the dataset is unexpected
given the distribution defined by some features of the underlying network. Amajor challenge
in such a problem is that the underlying network is unknown, and, thus, one cannot directly
identify such paths. We then propose caSPiTa, an algorithm to mine statistically significant
paths in time series data generated by an unknown and underlying network that considers
a generative null model based on meaningful characteristics of the observed dataset, while
providing guarantees in terms of false discoveries. Our extensive evaluation on pseudo-
artificial and real data shows that caSPiTa is able to efficiently mine large sets of significant
paths, while providing guarantees on the false positives.

Keywords Pattern mining · Statistically sound pattern mining · Time series · Graph mining

1 Introduction

Time series data mining [2–4] is a fundamental data mining task that covers a wide range of
real-life problems in various fields of research such as economic forecasting, telecommuni-
cations, intrusion detection, and gene expression analysis. Even if the common purpose is to
extract meaningful knowledge from the data, many different problems and approaches have

A preliminary version of this work appeared in the proceedings of IEEE ICDM’21 [1].
Caspita: Italian exclamation indicating surprise,
e.g., “Caspita! Such significant paths are really surprising.”.
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been proposed over the years, ranging from anomaly detection [5, 6] to motif discovery [7],
from clustering [8] to classification [9]. However, in many real-life scenarios, time series
data are generated by networks, and thus represent paths constrained by the structures and
the distributions that define such networks. Very often, one has access to a collection of time
series but does not know the distribution on the network that generated them, or the structure
of such network. As an example, consider a survey on the paths traveled by people with the
underground service of a given city. In such a scenario, one has a dataset that represents a
limited number of paths from a network, defined by the underground structure, but does not
know the distribution defined by the entire population that uses such service.

In this work, we study the problem of mining statistically significant paths from an
unknown network. We assume to have a time series dataset, defined as a collection of time
series, and that such time series are paths generated from an unknown network. In such a
scenario, we are interested inmining unexpected paths from the dataset, i.e., paths that appear
in the dataset more or less than expected given the distribution of the underlying network.
To find interesting paths, standard techniques usually directly use the frequency or the num-
ber of occurrences as extraction criteria but, in many real applications, such metrics are not
enough to find paths that provide useful knowledge. For example, paths that appear only few
times in a dataset may be over-represented if we consider the distribution of the network
underlying the data, or vice versa, paths that appear a lot of times may be under-represented.
Thus, techniques based on such metrics may led to several spurious discoveries. In addition,
since we do not know the network underlying the data, we cannot directly find over- or
under-represented paths.

We then introduce caSPiTa, an algorithm to find statistically significant paths over- (or
under-)represented from time series data considering a generative null model based onmean-
ingful characteristics of the observed dataset, while providing guarantees in terms of the false
positives employing the Westfall–Young (WY) method. Our generative null model is based
on the observed number of occurrences of paths of a given length, with the idea that such
paths represent well-known substructures of the underlying network. In the simplest case,
they are paths of length one, that are edges of the underlying network, and thus the generative
null model is exactly the underlying network that we are able to reconstruct from the dataset
(i.e., containing only the edges appearing in the dataset). Then, such null model is used to
test the significance of paths of a given, higher, length, which are the paths of interest mined
from the observed dataset. The intuition is to create a generative null model that is able to
explain the number of occurrences of shorter paths, and to check whether such generative
null model is able to also explain the observed number of occurrences of the paths of interest.
Otherwise, such paths can be considered significant, in the sense that they appear more (or
less) times than expected under such generative null model.

Let us consider, as an example, a network composed by the web pages of a website, and
let us suppose that the dataset D shown in Fig. 1 (left) contains paths that are sequences of
web pages visited by some users in such a website. From D, we may be interested in finding
sequences of web pages of a given length visited more (or less) than expected with respect to
the distribution of the underlying network, defined by the navigation of the whole population
of userswhich visit thewebsite. For example, wemay be interested inmining significant over-
or under-represented paths of length 3. Let us assume that the only paths of length 3 inD are
CBAD and CBAC , which occur, respectively, 10 and 90 times in D. Since we do not know
the underlying network, we cannot directly assess their significance and thus we first need to
reconstruct the underlying network fromD. The 1-st order generative null model constructed
fromD is shown in Fig. 1 (right). Let us note that such generative null model is based on the
number of occurrences of the paths of length 1 observed in D, i.e., CB, BA, AD, and AC .
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Fig. 1 Example of application of caSPiTa. It shows a dataset D containing the following transactions: 10
CBAD, 90 CBAC , and 200 AC ( |D| = 300) (left) and the 1-st order generative null model constructed from
D (right)

Since afterC wealways observed B, after B wealways observed A, while after Aweobserved
10 times D and 290 times C , then the corresponding edges have weight, respectively, 1, 1,
10/300 ≈ 0.03, and 290/300 ≈ 0.97. As explained in Sect. 3, the generative null model
is then used to check whether the observed number of occurrences of the paths of interest,
i.e., 10 for CBAD and 90 for CBAC , can be explained by the distribution described by the
null model or if they are, instead, significant since they appear inD more (or less) times than
expected. In particular, in this example, the path CBAD results over-represented while the
path CBAC results under-represented. (Let us note that generating 100 paths of length 3 in
accordance with the distribution described by the generative null model and starting from
vertex C , the expected number of occurrences of CBAD is 3 while the one of CBAC is
97.) Let us notice that the path that appears more times is under-represented, while the path
that appears only few times is over-represented, highlighting that the number of occurrences
alone is not a useful extraction criterion in this scenario. Finally, while in this example we
consider the 1-st order generative null model (and thus based on the number of occurrences
of paths of length 1), given the application or the structure of the network, there may be some
well-known substructures, defined as short sequences of web pages, that are traversed by
the users that visit such website with a particular distribution. Thus, in such a scenario, one
may be interested in finding whether such substructures also explain the number of observed
occurrences of longer paths, by constructing from D a more general h-th order generative
null model, with h > 1, or if such longer paths are significant due to some external factors
causing their number of occurrences.

1.1 Our contributions

In this work, we introduce the problem of mining statistically significant paths in time series
data from an unknown network. In this regard, our contributions are:

– We introduce the problem ofmining statistically significant paths in time series data from
an unknown network, defining a generative null model based on meaningful character-
istics of the observed dataset.

– We introduce caSPiTa, an algorithm to mine statistically significant paths (over- or
under-represented) from a time series dataset, while providing guarantees on the proba-
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bility of reporting at least one false positive, i.e., the FWER.We also discuss an extension
of caSPiTa to mine both types of paths at the same time.

– We introduce g-caSPiTa, a variant of caSPiTa to mine statistically significant paths
(over- or under-represented)while providingguarantees on thegeneralized FWER,which
allows to increase the statistical power of the algorithm, by tolerating the presence of a
few false positives.

– We introduce an alternative interesting scenario in which caSPiTa can be applied, which
consists in mining paths that are significant with respect to a null model based on data
from a different dataset.

– We perform an extensive suite of experiments that demonstrates that caSPiTa is able to
efficiently mine statistically significant paths in real datasets while providing guarantees
on the false positives.

Let us note that throughout the paper, unless otherwise noted,we only describe the scenario
in which one is interested in mining statistically significant paths that occur more times
than expected under the null hypothesis (over-represented paths), for clarity of presentation.
However, all the reasoning are still valid to mine paths that occur less times than expected
(under-represented paths). In particular, we discuss the mining of under-represented paths in
Sect. 3.5 and our open-source implementation of caSPiTamines over- and under-represented
paths. In addition, results for both scenarios are shown in the experimental evaluation.

1.2 Related works

We now discuss the relation of our work to prior art on significant pattern mining, anomaly
detection in sequential data, and temporal anomaly detection in graphs, which are the areas
most related to our work. Since the nature of our work, we only consider unsupervised
approaches.

In significant patternmining, the dataset is seen as a collection of samples fromanunknown
distribution, and one is interested in finding patterns significantly deviating from an assumed
null hypothesis, i.e., distribution. Many variants and algorithms have been proposed for
the problem. We point interested reader to the survey [10], and recent works that employ
permutation testing [11–13]. Even if ourwork fallswithin the framework of significant pattern
mining, such approaches are orthogonal to our work, which focuses on finding significant
paths, i.e., patterns, from time series that are constrained by a network structure.

Many works have been proposed to detect anomalies in sequential data [5, 14], employing
several definition of anomalies, and considering different types of patterns. For example, [6]
defines a pattern as surprising if its frequency differs substantially from that expected by
chance, given some previously seen data. Lemmerich et al. [15], instead, consider the mining
of subgroups, defined by subsets of attributes, that exhibit exceptional transition behavior,
i.e., induce different transition models compared to the ones of the attributes that describe
the entire dataset. Although our approach adopts a definition of significant pattern based on
how the number of its occurrences differs from the one expected under an appropriate model,
similarly to other works, we consider the setting in which the data represent paths from a
weighted and directed graph, which results in a different problem. In fact, this aspect makes
our work closer to the task of detecting anomalies in temporal graph [16, 17], i.e., graphs
that evolve over time. However, even if our work considers data generated by a network and
aims to find paths whose number of occurrences is significant with respect to the network’s
distribution, we consider the scenario in which we do not know the network, and we have
only access to a sample.
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caSPiTa: mining statistically significant paths from an unknown network 2351

The only work that considers the problem of finding anomalous paths in time series data
from an unknown network is [18]. In this work, the authors propose an algorithm, HYPA, to
find anomalous length k paths using a null model based on length k − 1 paths. In particular,
they aim to find length k paths whose number of occurrences in a dataset is anomalous with
respect to a null model based on the number of occurrences of length k − 1 paths in the
same dataset. Reducing the difficult problem of detecting anomalous length k paths to the
easier problem of detecting anomalous edges in a k-th order De Bruijn graph, they describe a
strategy based on the hypergeometric distribution to compute a score for each length k path,
where the score describes the level of anomaly of such a path. Even if our approach is inspired
by [18], our work differs from it in many key aspects. First of all, we aim to find length k
paths whose number of occurrences in a dataset is significant with respect to a null model
based on the number of occurrences of length h paths, with h ∈ {1, . . . , k − 1} provided in
input by the user, and not only with h = k − 1 as in [18]. In such a direction, it is not clear if
HYPA can be modified to consider a more general length h ∈ {1, . . . , k − 1}. Finally, while
our approach employs the WY method to correct for multiple hypothesis testing providing
guarantees in terms of false positives, [18] uses fixed thresholds to define interesting patterns,
which does not provide any guarantee.

To the best of our knowledge, our work is the first approach that employs the statistical
hypothesis testing framework to mine paths, i.e., patterns, from time series constrained by the
structure and the distribution of an unknown network, while providing rigorous guarantees
on the probability of reporting at least one false positive, i.e., the FWER.

This version of our work differs in many ways from the preliminary one that appeared in
the proceedings of IEEE ICDM’21 [1]. The major changes are the following:

– We provide a detailed explanation on how to mine under-represented paths. We also
present a strategy to mine over- and under-represented paths at the same time, including
also an approach to obtain false positives guarantees for both types of paths simultane-
ously (Sect. 3.5).

– We introduce g-caSPiTa, a variant of caSPiTa to mine statistically significant paths
(over- or under-represented)while providingguarantees on thegeneralized FWER,which
allows to increase the statistical power of the algorithm by tolerating the presence of a
few false positives (Sect. 3.6).

– We extend our experimental evaluation, executing g-caSPiTa on real and pseudo-
artificial datasets, proving that it is able to increase the statistical power of caSPiTa
while controlling the generalized FWER (Sect. 5).

– We include additional explanations and experimental results for the extraction of over-
and under-represented paths.

1.3 Organization of the paper

The rest of the paper is structured as follows. Section 2 contains the definitions and concepts
used throughout this work. Section 3 describes our algorithm caSPiTa, beside all related
concepts, and the discussion of possible extensions of our approach. Section 4 describes
an alternative scenario in which caSPiTa can be applied, which considers two datasets.
Section 5 reports the results of an extensive suite of experiments performed to evaluate the
effectiveness of caSPiTa on real and pseudo-artificial datasets. Section 6 concludes the paper
with some final remarks.
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2 Preliminaries

We now provide the definitions and concepts used in the paper. First, in Sect. 2.1, we describe
the task of mining paths in time series data from a network. Then, in Sect. 2.2, we define,
similarly to [19], the concept of k-th order De Bruijn graph used in the paper to define our
generative null model. Finally, in Sect. 2.3, we describe concepts of hypothesis and multiple
hypothesis testing for significant path mining.

2.1 Mining paths in time series data from a network

Let us define a network N = (G, ω) as a directed graph G = (V , E) and a weight function
ω : E → [0, 1]. V = {v1, v2, . . . , v|V |} is the vertices set, where each v ∈ V is called vertex,
and E = {(u, v) : u, v ∈ V } is the edges set, where each (u, v) is an ordered pair of vertices,
called edge. An edge (u, v) is an incoming edge of the vertex v and an outgoing edge of the
vertex u. Denoting with (u, :) an outgoing edge of u, for each vertex u ∈ V , we have

∑

(u,:)∈E
ω((u, :)) = 1,

that is, the weights of the edges from u represent a probability distribution. Figure 2 (left)
shows an example of network.

A path w = {vi0 , vi1 , . . . , vi|w| } of length |w| on the network N is an ordered sequence of
|w| + 1 vertices such that (vi j , vi j+1) ∈ E ∀ j ∈ {0, . . . , |w| − 1}. Let us note that a vertex
v ∈ V is a path w = {v} of length |w| = 0. A path w = {w0, w1, . . . , w|w|} occurs in a path
q = {q0, q1, . . . , q|q|} starting from position s ∈ {0, . . . , |q| − |w|}, denoted by w ⊂ q(s), if
and only if w0 = qs, w1 = qs+1, . . . , w|w| = qs+|w|. We say that the path w is a sub-path
of the path q . The number of occurrences Occq(w) of w in q is the number of times that w
occurs in q , that is,

Occq(w) = |{s ∈ {0, . . . , |q| − |w|} : w ⊂ q(s)}|.
A time series datasetD = {τ1, τ2, . . . , τ|D|} from a network N is a bag of |D| transactions,

which are paths on N . Given a path w on N , the number of occurrences OccD(w) of w in
D is the sum of the number of occurrences Occτ (w) of w in τ , ∀ τ ∈ D, that is,

OccD(w) =
∑

τ∈D
Occτ (w).

Given a positive integer �, the task of mining paths of length � from a time series dataset
D from a network N is the task of mining the set WD(�) of all paths of length � that occur
at least once in D and the number of their occurrences, that is,

WD(�) = {(w, OccD(w)) : |w| = � ∧ OccD(w) > 0}.
With an abuse of notation, in the following we use w ∈ WD(�) to indicate that
∃(w, OccD(w)) ∈ WD(�).

2.2 k-th order De Bruijn graph

Given a directed graph G = (V , E) and an integer k > 0, the k-th order De Bruijn graph
Gk = (V k, Ek) ofG is a directed graphwhere each vertex vk ∈ V k is a path of length k−1 on
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Fig. 2 Example of network and of De Bruijn graph. It shows the network N = (G, ω) (left) and the 2-nd
order De Bruijn graph G2 = (V 2, E2) of G (right)

G, i.e.,vk = {vi0 , vi1 , . . . , vik−1}, and anorderedpair (vk, uk),withvk = {vi0 , vi1 , . . . , vik−1},
uk = {u j0 , u j1 , . . . , u jk−1} ∈ V k , it is an edge of Gk if and only if vit = u jt−1 ∀t ∈
{1, . . . , k − 1}. Thus, each edge (vk, uk) ∈ Ek is a path of length k on G, since (vk, uk) =
{vi0 , vi1 = u j0 , vi2 = u j1 , . . . , vik−1 = u jk−2 , u jk−1}. Let us note that G itself is a 1-st order
De Bruijn graph of G. Figure 2 (right) shows an example of k-th order De Bruijn graph.

Example 1 Let us consider as an example the network N = (G, ω) (left) and the 2-nd
order De Bruijn graph G2 = (V 2, E2) of G (right), both shown in Fig. 2. The network
N = (G, ω) is composed by the directed graph G = (V , E), with V = {A, B,C, D}
and E = {(A,C), (A, D), (B, A), (B, D), (C, B)}, and by the weight function ω, such that
ω ((A,C)) = 0.3,ω ((A, D)) = 0.7,ω ((B, A)) = 0.8,ω ((B, D)) = 0.2, andω ((C, B)) =
1.0. The paths w = CBAC and q = BAD are examples of paths on N , respectively, of
length |w| = 3 and |q| = 2. The 2-nd order De Bruijn graph G2 = (V 2, E2) of G is
composed by V 2 = {AC, AD, BA, BD,CB}, where each vertex v2 ∈ V 2 represents a path
of length 1 on G, and by E2 = {(AC,CB), (BA, AC), (BA, AD), (CB, BA), (CB, BD)},
where each edge (v2, u2) ∈ E2 represents a path of length 2 on G, i.e., ACB, BAC , BAD,
CBA, and CBD.

2.3 Multiple hypothesis testing for paths

The task of mining statistically significant paths requires to identify paths whose number of
occurrences in a dataset D is significant, or unexpected, with respect to the distribution of
the weight function of the network that generated such data. To assess the significance of
a path, a common solution is to employ the framework of statistical hypothesis testing. For
each path w, let Hw be the null hypothesis that the number of occurrences OccD(w) of w

on D well conforms to the number of its occurrences in random time series data generated
from the network N = (G, ω). In particular, we define a random dataset D̃ as a collection
of random transactions which contains the same number of paths of interest of the original
dataset D and that is generated from the graph G in accordance with the weight function ω.
That is, a path from a vertex u ∈ V continues with a vertex v ∈ V with probabilityω(u, v). In
addition, the starting vertices (of full transactions or of single paths) observed in the original
dataset D are preserved in the random dataset D̃.

Under the null hypothesis, the number of occurrences of w is described by a random
variable Xw , and in order to assess the significance ofw, a p-value pw is commonly computed.
The p-value pw of w is the probability of observing a number of occurrences, under the null

123



2354 A. Tonon, F. Vandin

hypothesis, at least as large as the number of occurrences OccD(w) of w in D, that is,

pw = Pr [Xw ≥ OccD(w)|Hw] .

For complex null hypotheses, the p-values cannot be computed analytically, since there is
not a closed form for Xw . However, when one can generate random data from the distribution
described by the null hypothesis, the p-values can be estimated by a simpleMonteCarlo (MC)
procedure as follows: to generate M random time series datasets D̃i , with i ∈ {1, . . . , M},
from the distribution described by the null hypothesis. Then, the p-value pw is estimated as

pw = 1

M + 1

(
1 +

M∑

i=1

1
[
OccD̃i

(w) ≥ OccD(w)
])

, (1)

where 1 [·] is the indicator function of value 1 if the argument is true, and 0 otherwise.
The statistical hypothesis testing framework is commonly used to provide guarantees on

the false discoveries, i.e., paths flagged as significant while they are not. When a single path
w is tested for significance, flaggingw as significant, i.e., rejecting the null hypothesis, when
pw ≤ α, where α ∈ (0, 1) is the significance threshold fixed by the user, guarantees that the
probability that w corresponds to a false discovery ≤ α.

The situation is completely different when several paths are tested simultaneously, as in
the case of path mining. If d paths are tested with the approach used for a single path, i.e.,
each path is flagged as significant if its p-value is ≤ α, then the expected number of false
discoveries can be as large as αd . To solve this issue, one identifies a corrected significance
threshold δ ∈ (0, 1) such that all paths with p-value ≤ δ can be reported as significant
while providing some guarantees on the number of false discoveries. A common approach is
to identify δ that provides guarantees on the family-wise error rate (FWER), defined as the
probability of reporting at least one false positive, that is, if FP is the number of false positives,
then FWER = Pr[FP > 0]. For a given value δ, let FWER(δ) be the FWER obtained when δ

is used as corrected significance threshold, that is, by reporting as significant all paths with
p-value≤ δ. Often FWER(δ) cannot be evaluated in closed form, and thus approaches, as the
Bonferroni correction or based on permutation testing, described below, must be employed.

A simple approach to correct for multiple hypothesis testing is to use the Bonferroni
correction [20], setting δ = α/d . Using the union bound, it is easy to show that the resulting
FWER satisfies FWER(δ) ≤ dδ = α. However, to properly correct for multiple hypothesis
testing, one must consider the number of all paths that can be generated from the distribution
described by the null hypothesis, and when such number d is very large, as in the case of
path mining, δ is very close to 0, resulting in low statistical power and many false negatives,
i.e., significant paths that are not correctly reported in output.

The Westfall–Young (WY) method [21] is a multiple hypothesis testing procedure based
on permutation testing that results in high statistical power and that has been successfully
applied in other pattern mining scenarios [11–13]. The WY method directly estimates the
joint distribution of null hypotheses using permuted datasets, i.e., datasets obtained from
the distribution described by the null hypothesis. In detail, the WY method considers P
random datasets D̃i , with i ∈ {1, . . . , P}, generated from the distribution described by the
null hypothesis. Then, for every dataset D̃i , with i ∈ {1, . . . , P}, it computes the minimum
p-value p(i)

min over all paths of interest in D̃i . The FWER FWER(δ) obtained using δ as
corrected significance threshold can then be estimated as

FWER(δ) = 1

P

P∑

i=1

1
[
p(i)
min ≤ δ

]
. (2)
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Thus, given a FWER threshold α ∈ (0, 1), the corrected significance threshold δ∗ is obtained
as

δ∗ = max{δ : FWER(δ) ≤ α}. (3)

3 CASPITA: mining statistically significant paths

In this section, we describe our method caSPiTa, mining statistiCAlly Significant Paths In
Time series dAta, to mine statistically significant paths in time series data generated by a net-
work, while controlling the probability of having at least one false discovery, i.e., the FWER.
Given a time series dataset D from an unknown network N , we aim to mine statistically
significant paths, which are paths that have a number of occurrences on D that is surpris-
ing, i.e., higher than the expected number of their occurrences under the null hypothesis. In
particular, given two natural values k, h ∈ N

+, with k > h, we aim to mine length k paths
from D whose number of occurrences are not due to the number of occurrences of length h
paths observed in D, with the idea that such paths of length h represent some well-known
substructures in the underlying and unknown network.

The idea behind caSPiTa is the following. First, we mine all the paths WD(k) of length
k from the time series dataset D. Since we do not know the network N from which D has
been generated, we cannot directly infer the statistical significance of such paths with respect
to N , and thus we need to construct a new network, i.e., a generative null model, from the
datasetD. Such generative null model is then used to generate random time series datasets in
order to estimate the p-values and to compute the corrected significance threshold δ∗ using
the WY method. We now describe the generative null model employed by caSPiTa.

3.1 Generative null model

In this work, we aim to find length k paths whose number of occurrences in D are not due
to the number of occurrences of shorter length h paths in D. Thus, we construct a generative
null model in accordance with the number of occurrences of the paths of length h in D, and
then we test the significance of the paths of length k using such model. Given a time series
dataset D, generated by an unknown network N = (G, ω), and h ∈ N

+, we define the h-th
order generative model Nh(D) of the time series datasetD as a network Nh(D) = (Gh, ωh),
where Gh is the h-th order De Bruijn graph of G (based onD, since the entire structure of G
is unknown), and ωh is a weight function. The h-th order De Bruijn graph Gh = (V h, Eh)

is composed as follows: V h = {w ∈ WD(h − 1)}, while Eh is constructed as defined in
Definition 2.2. Thus, each vertex vh ∈ V h is a path of length h − 1 in D (and thus on
G), while each edge (uh, vh) ∈ Eh represents a path of length h in D (and thus on G).
With an abuse of notation, in the following we use (uh, vh) to indicate both the edge in
Gh and the corresponding path on G. Finally, the weight function ωh is defined as follows:
∀(uh, vh) ∈ Eh ,

ωh
(
(uh, vh)

)
= OccD

(
(uh, vh)

)
∑

(uh ,:)∈Eh OccD
(
(uh, :)) .

Let us note that the weight function ωh of the h-th order generative null model Nh(D) is
defined using the observed number of occurrences of length h paths, and that each edge of
Nh(D) represents a path of length h. Thus, Nh(D) correctly represents the distribution of the
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Fig. 3 Example of generative null models. It shows N1(D) (left) and N2(D) (right), respectively, the 1-st and
the 2-nd order generative null model of D = {τ1 = BAD, τ2 = CBAC, τ3 = CBAD, τ4 = AD}

number of occurrences of the paths of length h in the dataset D. An example of generative
null models is shown in Fig. 3.

Example 2 Let us consider the following dataset D = {τ1, τ2, τ3, τ4}, which is a possible
time series dataset from the network N shown in Fig. 2 (left), as an example:

τ1 = BAD

τ2 = CBAC

τ3 = CBAD

τ4 = AD.

Fig. 4 shows N 1(D) (left) and N 2(D) (right), respectively, the 1-st and the 2-nd order genera-
tive null model ofD. Let us note that the two generativemodels represent different probability
distributions for the paths of length > h, e.g., the path w = BAD has a probability of 0.75
of being generated in N 1(D) while it has a probability of 0.67 in N 2(D). In addition, let us
note that they are based on the datasetD and not on the network N that generatedD. Indeed,
they have some missing edges with respect to the network N (that is a 1-st order De Bruijn
graph of itself) and its 2-nd order De Bruijn graph G2, respectively, both shown in Fig. 2.

As explained in Sect. 2.3, to compute the p-values pw of the paths w ∈ WD(k) and to
estimate the corrected significance threshold δ∗, we require random data generated from the
generative null model. In the following two sections, we introduce two different strategies to
generate random datasets D̃ that contain the same total number T of paths of length k of the
original dataset D, that is,

T =
∑

w∈WD(k)

OccD(w) =
∑

w∈WD̃(k)

OccD̃(w). (4)

First, we describe the transactions oriented generation (TOG) strategy, a natural way to gen-
erate random datasets performing a series of randomwalks that generate random transactions
with characteristics similar to the ones of the transactions in D. To overcome some issues of
this strategy when it is applied to large generative null model, we then introduce the paths
oriented generation (POG) strategy, an alternative approach that directly generates random
length k paths. For this second strategy, we also introduce an approximation based on the
binomial distribution that allows to estimate the p-values avoiding expensiveMCprocedures.
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3.2 Transactions oriented generation (TOG) strategy

In this section, we explain how to generate random datasets D̃ from the generative null model
Nh(D) defined above using the TOG strategy. The idea is to perform a series of randomwalks
that generate random transactions τ̃ with characteristics similar to the ones of the transactions
τ ∈ D. Characteristics that are natural to consider and that we want to preserve are:

– the dataset D̃ has the same number of transactions of D;
– each transaction τ̃ ∈ D̃ has the same length of the corresponding transaction τ ∈ D;
– each transaction τ̃ ∈ D̃ starts from the same vertex (of the generative null model) of the

corresponding transaction τ ∈ D.

Let us note that to preserve such characteristics guarantees to preserve also the total number
T of length k paths in the dataset. As a motivation to consider such characteristics, let us
consider the case in which the dataset D contains transactions that represent visits of some
users in a website. In such a scenario, we are interested in preserving the web pages from
which the visits start, since they probably are homepages (or web pages fromwhich the users
typically start their navigation). In addition, by preserving the length of the transactions, we
preserve the number of web pages that the users visit in a single navigation on the website.

Let sτ be a path of length |sτ | = h−1 such that sτ ⊂ τ (0), that is, sτ is the vertex of Nh(D)

from which the transaction τ starts. The TOG strategy is the following. For each τi ∈ D, we
perform a randomwalk on Nh(D) of |τi |− (h−1) steps, starting from the vertex sτi . At each
step, the random walk moves from a vertex vh to a vertex uh with probability ωh

(
(vh, uh)

)
.

The path generated from such random walk is then the transaction τ̃i ∈ D̃ that corresponds
to the transaction τi ∈ D, with |τi | = |τ̃i |. Performing all the |D| random walks, we generate
the random dataset D̃. Let us note that a random walk may reach a vertex without outgoing
edges before performing the desired number of steps, generating a shorter transaction, and
thus not preserving the second characteristic (and neither T ). In such a case, we discard the
transaction and repeat the random walk until we generate a transaction τ̃i with |τ̃i | = |τi |.

The TOG strategy is the most natural way to generate random data from the generative
null model. However, when the generative null model is large, as happens in many real
applications, the number of paths contained in a dataset is only a small fraction of the
gargantuannumber of paths that can be generated as sub-paths of such long transactions. Thus,
the corrected significance threshold δ∗ obtained with the WY method could be very small,
resulting in few or even zero reported significant paths. In addition, depending on the structure
of the generative null model, to generate such long transactions may be computationally
expensive for the high number of transactions that we need to generate and discard before
reaching the desired lengths.

3.3 Paths oriented generation (POG) strategy

To overcome the issue of the TOG strategy, we now describe an alternative approach to gen-
erate random data. In the POG strategy, instead of generating long transactions, we generate
single randompathsw of length |w| = k. In particular, from the generative null model Nh(D)

defined above, we generate random datasets D̃, which are bags of paths of length k, where the
number of paths w of length |w| = k that start in each vertex (of the generative null model)
is the same in the two datasets D and D̃. Let us note that to preserve such characteristic
guarantees to also preserve the total number T of length k paths in the dataset.

Let us remember that sw is a path of length |sw| = h−1 such that sw ⊂ w(0), that is, sw is
the vertex of Nh(D) from which the path w starts, and let S = {sw : w ∈ WD(k)} be the set
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of vertices of Nh(D) from which starts at least one path w ∈ WD(k). To generate random
paths, for each vertex s ∈ S, we perform a series of random walks of k − (h − 1) steps on
Nh(D), until we generate

ns =
∑

w∈WD(k):sw=s

OccD(w) (5)

random paths w of length |w| = k that start from such vertex s. Then, the bag of all the paths
of length k generated from all the vertices s ∈ S is the random dataset D̃. Let us note that
|D̃| = ∑

s∈S ns = T . As explained above, let us remember that at each step the randomwalk
moves from a vertex vh to a vertex uh with probabilityωh((vh, uh)). Thus, each randomwalk
generates a path of length k or a path of length < k that ends in a vertex without outgoing
edges. Since we are interested in paths of length k, we discard all generated paths of length
shorter than k.

While the POG strategy overcomes the issue of the TOG strategy explained above reduc-
ing the space of paths that can be generated from the generative null model, it still requires
expensive MC procedures to estimate the p-values, and such procedures could be compu-
tationally prohibitive for large datasets. In the following section, we introduce a method to
approximate the p-values for the POG strategy avoiding the MC procedure.

3.3.1 Binomial approximation for the p values

In this section, we illustrate an approach to approximate the p-values pw of paths w of
length |w| = k when the POG strategy is used to generate random data. First, we compute
with which probabilities such paths are generated under the POG strategy. Let us consider a
random walk that starts from a vertex s ∈ S and that performs k − (h − 1) steps on Nh(D),
and let Ws be the set of all paths that can be generated by such random walk. As explained
above, the set Ws contains paths of length |w| = k and, eventually, paths of length |w| < k
that end in a vertex without outgoing edges. Let RW (w) be the set of edges of Nh(D) that
the randomwalk traverses to generate the pathw ∈ Ws . From the definition of random walk,
the probability Pr(w) that the random walk generates w ∈ Ws starting from s is

Pr(w) =
∏

(uh ,vh)∈RW (w)

ωh
(
(uh, vh)

)
.

Let us note that
∑

w∈Ws
Pr(w) = 1. Let Ek be the event that the random walk starting from

s generates a path of length exactly k and let Wk
s ⊆ Ws be the set of paths w ∈ Ws with

|w| = k. Since in the POG strategy we discard paths shorter than k which could be generated
by the series of random walks, then the probability of generating the path w ∈ Wk

s is

Pr(w | Ek) = Pr(w ∩ Ek)

Pr(Ek)
, (6)

where Pr(w ∩ Ek) = Pr(w) for all w ∈ Wk
s and 0 otherwise, and Pr(Ek) = ∑

w∈Wk
s
Pr(w).

Again, let us note that
∑

w∈Wk
s
Pr(w | Ek) = 1, and that ifWs\Wk

s = ∅, then Pr(w | Ek) =
Pr(w).

Example 3 Let us consider the 2-nd order generative null model N 2(D) shown in Fig. 4 (left),
as an example. For k = 3, starting from the vertex BA and performing k − (h − 1) = 2
steps, a random walk can generate the paths of length 3 BAAE , BAAB, and BACE , or can

123



caSPiTa: mining statistically significant paths from an unknown network 2359

Fig. 4 Example of paths oriented generation. It shows the 2-nd order generative null model N2(D) and the
starting vertex BA (left), and the probabilities of all paths of length 3 under the POG strategy (right)

reach the vertex AD just after one step, generating the path of length 2 BAD. The probabil-
ities of all these paths are: Pr(BAAE) = 0.15, Pr(BAAB) = 0.35, Pr(BACE) = 0.3, and
Pr(BAD) = 0.2, and then theprobability of generating apath of length 3 starting from thever-
tex BA is Pr(E3) = 0.8. Thus, the probabilities of the length 3 paths under the POG strategy
are: Pr(BAAE | E3) = 0.1875, Pr(BAAB | E3) = 0.4375, and Pr(BACE | E3) = 0.375,
shown in Fig. 4 (right).

Since from a given vertex s ∈ S, we generate exactly ns (see Eq.5) length k paths, then
the number of occurrences OccD̃(w) of a path w ∈ Wk

s in the random dataset D̃ follows
a binomial distribution, that is, OccD̃(w) ∼ Bin(ns,Pr(w | Ek)). For a fixed vertex s ∈ S,
this is true for all the paths w ∈ Wk

s , but the binomial distributions corresponding to these
paths are not independent, and thus, the computation of the p-values pw as

pw = Pr [Bin(ns,Pr(w | Ek)) ≥ OccD(w)] (7)

considers a number of paths that is in expectation ns , and not exactly ns as for the original
POG strategy. (Let us note that, as a consequence, the total number of considered paths of
length k is T in expectation.) However, in our experimental evaluation, we empirically show
that the p-values for the binomial approximation are within one order of magnitude of the
corresponding MC p-values, and, thus, that the binomial approximation is a valid approach
to approximate the p-values for the POG strategy, avoiding expensive MC procedures.

Let us note that while this approximation does not require the generation of M random
datasets D̃ to estimate the p-values, caSPiTa still requires the generation of P random
datasets D̃ for the WY method. However, the binomial approximation can also be used to
approximate theminimum p-value in the P randomdatasets. Thus, given the observed dataset
D, we compute the p-values for all pathsw ∈ WD(k) using Eq.7. Then, we generate a series
of P random datasets D̃ required by the WY method using the POG strategy. For all the P
random datasets D̃, we compute the minimum p-value over all the paths w ∈ WD̃(k), where
the p-value pw of w is computed with Eq.7 replacing OccD(w) with OccD̃(w).
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3.4 Analysis

In this section, we describe in detail our algorithm caSPiTa and formally prove its false
positives guarantees. Algorithm 1 shows the pseudo-code of caSPiTa. Its inputs are the time
series dataset D, the FWER threshold α ∈ (0, 1), the order h > 0 of the generative null
model, and the paths length k > h. For a given generation strategy, (i.e., TOG or POG),
caSPiTa first mines the setWD(k), of all paths w of length |w| = k that occur at least once
in D (line 1). Then, it constructs the generative null model Nh(D) (line 2) as explained in
Sect. 3.1, and it uses Nh(D) to compute the p-values of the pathsw ∈ WD(k) (lines 3-4). The
p-values can be computed with a MC procedure using Eq.1 (for both generation strategies),
and thus generating M random datasets, where M is a parameter set by the user, or with
the binomial approximation using Eq.7 (for the POG strategy). To compute the corrected
significance threshold δ∗, it then employs the WY method, which requires the generation
of P random datasets (lines 5-6), where P is a parameter set by the user. For each random
dataset D̃i , with i ∈ {1, . . . , P}, it mines the set WD̃i

(k) (line 7) and then it computes the

minimum p-value p(i)
min over all paths w̃ ∈ WD̃i

(k) (lines 8-10). For the computation of such
p-values, the considerations made above are still valid. The corrected significance threshold
δ∗ is then computed using Eq.3 (line 11). If δ∗ > α, then we set δ∗ = α, corresponding to an
uncorrected threshold. Finally, the output is the set of paths w ∈ WD(k) such that pw < δ∗
(line 12). Theorem 1 proves that the output of caSPiTa has FWER ≤ α.

Algorithm 1: caSPiTa
Data: Time Series DatasetD, FWER Threshold α ∈ (0, 1), Order h > 0 of the Generative Null Model,

Paths Length k > h.
Result: Set SW with FWER ≤ α.

1 W ← MinePaths(D, k);

2 Nh ← GenerativeNullModel(D, h);
3 foreach w ∈ W do

4 pw ← PValue
(
Nh , w, OccD(w)

)
;

5 for i ← 1 to P do
6 D̃i ← RandomDataset(Nh , k, h);

7 Wi ← MinePaths(D̃i , k);
8 foreach w̃ ∈ Wi do

9 pw̃ ← PValue
(
Nh , w̃, OccD̃i

(w̃)
)
;

10 p(i)
min ← min{pw̃ : w̃ ∈ Wi };

11 δ∗ ← max
{
δ : ∑P

i=1

(
1[p(i)

min ≤ δ]
)

≤ αP
}
;

12 SW ← {(w, OccD(w), pw

) : w ∈ W ∧ pw < δ∗};
13 return SW;

Theorem 1 The output of caSPiTa has FWER ≤ α.

Proof Let us consider the P random datasets D̃i , with i ∈ {1, . . . , P}, generated by caSPiTa
for the WY method. Let us note that they do not contain any significant paths of length k,
since they are generated from the generative null model Nh , and thus from the distribution
described by the null hypothesis. Given δ ∈ (0, 1), the FWER FWER(δ) obtained using δ as
significance threshold can be estimated using Eq.2. That is, estimated as the fraction, over P ,
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of the number of datasets D̃i that contain at least one path with p-value ≤ δ, and thus a path
that would be reported as significant while it is not when δ is used as significance threshold.
Since caSPiTa uses the corrected significance threshold δ∗ = max{δ : FWER(δ) ≤ α}, then
its output has FWER ≤ α, which concludes our proof. ��

We now provide a brief analysis of the time complexity of caSPiTa. The time com-
plexity tW to mine WD(k) and tN to construct Nh(D) are tW = tN = O(D), with
D = ∑

τ∈D |τ |, since they can be done with a single scan of the entire dataset. The time
complexity t MC

P to estimate the p-values of all paths w ∈ WD(k) using MC procedures is
t MC
P = O(M · tD̃ + |WD(k)|), where tD̃ is the time complexity to generate a random dataset
D̃ and M is the number of random datasets to create. Let us note that tD̃ depends on the
generation strategy, and that it is not trivial to bound it since we do not know in advance the
number of random walks that we need to generate D̃. However, our experimental evaluation
empirically proves that such random datasets can be generated with feasible computational
time. In addition, the MC procedure is well-suited to parallelization: when C cores are used
to compute the p-values considering M random datasets, each core computes the p-values
on M/C random datasets, and the results are then aggregated at the end. The time complexity
t BP to compute the p-values of all paths w ∈ WD(k) using the binomial approximation is
instead t BP = O(|WD(k)|), but it first requires the computation of the probabilities of Eq.6.
Such computation has time complexity O(|S| · RMAX ), where |S| is the number of starting
nodes and RMAX is the maximum, over all s ∈ S, number of vertices that can be reached in
k − h steps on Nh(D), starting from each vertex s. Finally, the time complexity of the WY
method is tWY = O(P · (tD̃ + tP )), with P the number of random datasets to generate and
tP one of the two time complexity described above to compute the p-values.

As previously stated, while here we consider the mining of over-represented paths, all
our reasoning can be easily adapted to the mining of under-represented paths: the details are
provided in the next section.

3.5 Mining under-represented paths

In this section, we describe how caSPiTa can be modified to mine under-represented statis-
tically significant paths. Let us remember that in order to assess the significance of a path w,
we require to compute a p-value pw . To mine under-represented paths, the p-value pw of w

is the probability of observing a number of occurrences, under the null hypothesis, at least
as small as the number of occurrences OccD(w) of w in D, that is,

pw = Pr [Xw ≤ OccD(w)|Hw] ,

where Xw is the random variable which describes the the number of occurrences of w under
the null hypothesis. As already said for the over-represented paths, since there is not a closed
formula for Xw under our null hypotheses, the p-value pw must be estimated with a MC
procedure (for both generation strategies) or with the binomial approximation (for the POG
strategy). Using a MC procedure, pw can be estimated as

pw = 1

M + 1

(
1 +

M∑

i=1

1
[
OccD̃i

(w) ≤ OccD(w)
])

, (8)

where D̃i , with i ∈ {1, . . . , M}, are M random time series datasets generated from the
distribution described by the null hypothesis. Instead, using the binomial approximation, pw
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can be estimated as

pw = Pr [Bin(ns,Pr(w | Ek)) ≤ OccD(w)] , (9)

where Pr(w | Ek) is the probability of generating w under the POG strategy and ns is the
number of paths to generate from the same starting vertex of w. Thus, Algorithm 1 can be
simply modified to mine under-represented paths computing the p-values pw of the paths
w ∈ W (line 4) with a MC procedure using Eq.8 (for both generation strategies) or with
the binomial approximation using Eq.9 (for the POG strategy). The same approach must be
employed to compute the p values pw̃ of the paths w̃ ∈ Wi (line 9) in the P random datasets
for the WY method. Let us note that the complexity analysis above is valid for the mining of
under-represented paths as well.

In the case one is interested in mining both types of paths, over- and under-represented,
it is possible to speed up the execution of caSPiTa mining both types of paths at the same
time, avoiding the execution of caSPiTa twice. Indeed, since the only difference in the two
versions of caSPiTa is the computation of the p-values, it is possible to perform all the other
operations only once and to compute both types of p-values (both for the paths of the original
and of the P random datasets). Thus, we obtain two different significance thresholds, one
for the over- and one for the under-represented paths, to test the respective p-values. Let us
note that this approach is a valid strategy to speed up the execution avoiding unnecessary
re-computations but the false positives guarantees are still valid for the two types of paths
separately, i.e., the set of returned over-represented paths has FWER ≤ α and the set of
returned under-represented paths has FWER ≤ α, separately. Instead, if one is interested in
mining over- and under-represented paths obtaining false positives guarantees for both types
of paths simultaneously, i.e., the set of returned over- and under-represented paths has FWER
≤ α, the following strategy is a possible solution. Given the FWER threshold α ∈ (0, 1), to
compute the two corrected significance thresholds considering α/2, i.e.,

δ∗ ← max
{
δ :

P∑

i=1

(
1[p(i)

min ≤ δ]
)

≤ αP

2

}
,

each with the respective p-values. Using the union bound, it is easy to prove that the resulting
output, consisting of both over- and under-represented paths, has FWER ≤ α. Let us note
that, for both scenarios, the computational complexity is asymptotically the same of the one
of the original caSPiTa that mines over-represented paths. Indeed, once that the p-values
for the over-represented paths are computed (and, thus, the quantities required for such a
computation have been obtained), the computation of the p-values for the under-represented
paths has constant complexity.

3.6 Controlling the generalized FWER

In this section, we illustrate how caSPiTa can be modified to mine statistically significant
paths while controlling the generalized FWER [22]. In several real applications, one may
be interested in tolerating a small amount of false discoveries in order to increase the power
of detecting significant paths, still obtaining guarantees on the false positives. In such cases,
methods to discover significant pathswhile controlling the generalized FWERare preferred to
methods controlling the FWER. Given a positive integer g, the generalized FWER g-FWER
is defined as the probability of reporting at least g false positives, that is, if FP is the number
of false positives, then g-FWER = Pr[FP ≥ g]. For a given value δ, let g-FWER(δ) be the
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g-FWER obtained when δ is used as corrected significance threshold, that is, by reporting as
significant all paths with p-value ≤ δ. The WY method can be used to estimate the FWER
FWER(δ) obtained using δ as corrected significance threshold as

g-FWER(δ) = 1

P

P∑

i=1

1
[
p(i)
g ≤ δ

]
,

where p(i)
g is the g-th smallest p-values over all paths of interest in the random dataset

D̃i . Thus, given a g-FWER threshold α ∈ (0, 1), the corrected significance threshold δ∗ is
obtained as

δ∗ = max{δ : g-FWER(δ) ≤ α}.
Algorithm 1 can be simply modified to mine statistically significant paths with g-FWER

≤ α. To obtain such guarantees, it is sufficient to substitute lines 10 and 11, respectively,
with

p(i)
g ← g-th min{pw̃ : w̃ ∈ Wi }

and

δ∗ ← max
{
δ :

P∑

i=1

(
1[p(i)

g ≤ δ]
)

≤ αP
}
.

Let g-caSPiTa be such modified version of our algorithm. (Let us note that 1-caSPiTa
corresponds to the original caSPiTa.) Theorem 2 proves that the output of g-caSPiTa has
g-FWER ≤ α.

Theorem 2 The output of g-caSPiTa has g-FWER ≤ α.

The proof is analogous to the proof of Theorem 1.
Let us note that the computational complexity of g-caSPiTa is the same of caSPiTa,

since the computation of the P g-th smallest p-values still requires the computation of the
p-values of all the paths of interest in each of the P random dataset D̃i .

4 Mining statistically significant paths from different datasets

In this section, we illustrate another interesting scenario in which our algorithm caSPiTa
can be applied. Let us suppose to have two datasets, D1 and D2, and that such two datasets
are taken from the same network N , but in different circumstances, e.g., in different temporal
points, or maybe that they represent data generated from two different populations, e.g., men
and women. In such a scenario, one may be interested in finding paths from one of the two
datasets that are statistically significant considering the distribution represented by the other
dataset. Thus, it is possible to use a slightly modified version of caSPiTa, considering the
dataset D1 to generate the h-th order generative null model Nh(D1) and then, to consider
the paths mined from the other dataset WD2(k), and to compute their significance using
Nh(D1). Differently from the scenario described above, in this setting it is also possible
to mine statistically significant paths of length k considering the h-th order generative null
model with k = h. Let us note that, even in this alternative scenario, the complexity analysis
provided above is still valid for this modified version of caSPiTa. The only differences
are in the time complexity tN required to construct the generative null model Nh(D1) that
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now depends on the dataset D1, i.e., tN = O(D1), with D1 = ∑
τ∈D1

|τ |, and in the time
complexity tW to mineWD2(k) that now depends on the dataset D2, i.e., tW = O(D2), with
D2 = ∑

τ∈D2
|τ |.

5 Experimental evaluation

In this section, we report the results of our experimental evaluation on multiple pseudo-
artificial and real datasets to assess the performance of caSPiTa for mining statistically
significant paths from an unknown network.

The goals of the evaluation are the following:

– To prove that for small datasets, caSPiTa is able to find statistically significant paths
with both generation strategies, i.e., TOG and POG, using the MC procedure, while for
larger datasets the binomial approximation is necessary to provide useful results.

– To prove that the binomial approximation is a valid approach to approximate the p-values
for the POG strategy.

– Focusing on the POG strategy with the binomial approximation, to prove that caSPiTa
and its modified version g-caSPiTa are able to find large sets of statistically significant
paths in pseudo-artificial and real large datasets, while avoiding false positives, and
compare caSPiTa with HYPA [18].

– To prove that caSPiTa is able to find statistically significant paths in the scenario in
which the generative null model is constructed considering data from another dataset
(see Sect. 4).

5.1 Environment and datasets

We implemented caSPiTa in Java. We performed all the experiments on the same machine
with 512 GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz, using Java
1.8.0_201. To parallelize the MC procedures, we used Apache Spark Java API version 3.1.1.
Our open-source implementation of caSPiTa and the code developed for the tests and to
generate the datasets are available at https://github.com/VandinLab/CASPITA. In all the
experiments, we fixed the FWER threshold to the commonly used value α = 0.05, and we
mined over- and under-represented paths at the same time, considering the FWER guar-
antees separately for the two types of paths. To compare with HYPA [18], we used their
implementation available online,1 considering the “rpy2” version.

In the following, we describe the datasets used in the evaluation, and how we generated
them. Their characteristics are shown in Table 1:

– BIKE: data on the bike sharing service of Los Angeles. Each vertex is a bike station,
while each transaction represents the sequence of bike stations that a given bike visits.We
considered the 2019 data of the “Los Angeles Metro Bike Share trip data,”2 containing
single trips in the format of starting station, ending station, and an unique numerical iden-
tifier of the bike, among other information. We collected the temporal ordered sequence
of bike stations that each bike visited. Such sequence is a transaction in our dataset. In the
case of data anomalies, i.e., an ending station of a trip does not correspond to the starting

1 https://github.com/tlarock/hypa.
2 https://bikeshare.metro.net/about/data/.
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Table 1 Datasets characteristics.
|D|: number of transactions; Avg
|τ |: average transaction length;
Max |τ |: maximum transaction
length; for the 1-st generative null
model N1(D), |V 1|: number of
vertices; |E1|: number of edges

Dataset D |D| Avg |τ | Max |τ | N1(D)

|V 1| |E1|
BIKE10 3025 1.54 11 10 76

BIKE20 5080 1.90 21 20 279

BIKE 38,651 7.51 232 237 10,269

FLIGHT 17,447,803 1.63 15 455 69,234

WIKI 51,307 5.76 434 4169 59,530

station of the following trip, we split the sequence where the gap happens, creating two
transactions.

– BIKE10 and BIKE20: smaller versions of the BIKE dataset. From BIKE, we only con-
sidered the 10 or 20 vertices, respectively, that occur most frequently times, and collect
all the transactions that only contain such vertices.

– FLIGHT: data of the commercial flights in the USA. Each vertex is an airport, while each
transaction represents the sequence of airports visited in a single itinerary by a passenger.
We considered the 2019 data of the “Origin and Destination Survey: DB1BCoupon".3

Such data contains single flights in the format of origin and destination airports, an unique
numerical identifier of the itinerary that contains the flight, and the sequence number of
the flight inside the itinerary. We collected the temporal ordered sequence of airports
that each passenger visited in a single itinerary, sorting the airports using the sequence
numbers. Such sequence is a transaction in our dataset.

– WIKI: it contains human navigation paths on Wikipedia, collected through the human-
computation game Wikispeedia [23]. Each vertex is a Wikipedia web page, while each
transaction is a sequence of web pages visited by an user during a game. We considered
the data “paths finished,”4 that represent finished games.

5.2 Generation strategies comparison

In this section, we compare the results obtained by caSPiTawith the TOG or POG strategies
that employ MC procedures, and the POG strategy that uses the binomial approximation, on
BIKE10 and BIKE20.

The experiments have been performed with P = 1000, M = 105, k ∈ {2, . . . , 5}, and
h ∈ {1, . . . , k−1}. The results are reported in Table 2. For BIKE10, the smallest dataset, the
number of significant paths obtained with the TOG and POG strategies with MC procedures
differs from at most 1, for all combinations of parameters. The same is true when the POG
strategy with the binomial approximation is used. In all the cases, caSPiTa reported at most
3 statistically significant paths, which is not surprising since BIKE10 only contains few
distinct paths. For BIKE20, the situation is different. For some combinations of parameters
(shown in bold in Table 2), caSPiTa with the MC procedures did not report any significant
(over-represented) paths, while it reported some paths (from 1 to 8) when the binomial
approximation is used. In all such cases, the MC estimates resulted in a corrected threshold
δ∗ = 1/(M + 1), corresponding to the minimum achievable p-value considering M random
datasets. Thus, to be able to mine paths, one has to consider a larger value of M , which is

3 https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FLM.
4 https://snap.stanford.edu/data/wikispeedia.html.
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Table 2 caSPiTa results with BIKE10 and BIKE20. k: paths length; h: order of the null model; for each
dataset, BIKE10 and BIKE20, |W|: number of distinct paths of length k; T : number of total paths of length k;
for each generation strategy, TOG (T), POG (P), and POG with binomial approximation (B), |SW|: number
of significant paths reported, over- (+) and under- (−) represented

k h BIKE10 BIKE20

|W| T |SWT | |SW P | |SWB | |W| T |SWT | |SW P | |SWB |
+ − + − + − + − + − + −

2 1 164 1630 3 3 3 3 3 3 978 4553 11 12 9 8 11 8

3 1 163 575 1 2 2 2 2 2 997 2320 0 9 0 7 8 7

2 1 2 1 2 1 2 2 8 1 6 1 5

4 1 104 21 0 2 0 2 1 2 713 1220 0 4 0 5 4 5

2 0 1 1 1 1 1 0 7 0 4 0 4

3 0 1 0 0 0 0 0 4 0 2 0 2

5 1 57 83 0 2 0 2 0 2 450 661 0 2 0 2 2 2

2 0 1 1 0 1 0 0 3 0 2 1 2

3 0 0 0 0 0 0 0 1 0 1 0 1

4 0 0 0 0 0 0 0 0 0 1 0 1

In bold the values for which caSPiTa did not report any significant path with the MC procedures, while it
reported some paths with the binomial approximation

infeasible with larger datasets, or to resort to the binomial approximation. This phenomenon
appeared with k > h − 1, that is, when a large number of distinct paths can be generated,
even for a small dataset such as BIKE20. This emphasizes the issue of the TOG strategy
described above, that is, the gargantuan number of paths that must be considered with the
generation of long transactions.

We then compared the p-values from the POG strategy obtained with the MC procedure
and the binomial approximation. Let us note that while in theMC procedure the total number
of length k paths starting from a vertex is fixed to the value observed in the data, using the
binomial approximation such property holds only in expectation. Thus, the p-values from the
two approaches will be different. However, by comparing the p-values5 for all paths (over-
and under-represented) of BIKE10 and BIKE20 with k ∈ {2, . . . , 5} and h ∈ {1, . . . , k − 1},
and considering M ∈ {104, 105, 106} random datasets for the MC estimates, we observed
that the p-values for the binomial approximation are within one order of magnitude of the
corresponding MC p-values, and that the difference between binomial p-values and MC p-
values is lower than the standard deviation of theMC estimates (obtained from 5 estimates of
the MC p-values). Furthermore, the binomial approximation is several orders of magnitude
faster than the MC procedure (few milliseconds against over 40 s, considering the maximum
execution time for both strategies and using 8 cores to parallelize the MC estimates).

5.3 Results for POG strategy with binomial approximation

Since the results of the previous section demonstrated that the POG strategywith the binomial
approximation is necessary to mine statistically significant paths from large datasets, and
that the p-values for the binomial approximation are within one order of magnitude of the
corresponding MC p-values, in this section we focus on such version of caSPiTa. First,

5 We only considered p-values ≥ 1/(M +1), since lower p-values require larger M to be correctly estimated
with the MC procedure.
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Table 3 g-FWER estimates for
g-caSPiTa with pseudo-artificial
datasets obtained from BIKE10
and BIKE20. P: number of
random datasets for the WY
method; g: number of false
positives considered in the
g-FWER; for each real dataset,
BIKE10 and BIKE20, g-FWER
(%): estimate of the g-FWER in
percentage

P\g BIKE10 BIKE20

g-FWER (%) g-FWER (%)

1 2 5 10 1 2 5 10

100 0.75 0.50 0.75 0.25 2.25 1.25 0.25 0.50

1000 1.25 0.50 0.75 0.25 1.75 0.25 1.25 0.75

10,000 0.50 1.25 0.10 0.10 3.25 1.25 0.25 0.50

we investigated the false positives guarantees of caSPiTa on pseudo-artificial datasets, also
performing a comparison with HYPA, and then we executed it on real datasets.

5.3.1 False positives guarantees

In this section, we report the results of our experimental evaluation to assess the false pos-
itives guarantees of caSPiTa using pseudo-artificial datasets. Starting from a real dataset,
we created its h-th order generative null model, which we used to generate random datasets
using the POG strategy. Each random dataset is then a bag of paths of a given length k > h
that does not contain any significant path of length k (since they have been generated in accor-
dance with the generative null model). We then executed caSPiTa on each random dataset,
with parameters h and k corresponding to the ones used to generate the random dataset,
and we checked whether caSPiTa reported some paths, which would be false positives by
construction. We considered BIKE10 and BIKE20 as starting real datasets, k ∈ {2, . . . , 5},
and h ∈ {1, . . . , k − 1}, mining over- and under-represented paths. Given a real dataset, we
generated 20 random datasets for each combinations of h and k, obtaining a total number of
400 runs for each real dataset. We then estimated the FWER as the fraction of runs with at
least one false positive. Table 3 (g = 1) shows the obtained results. For BIKE10, caSPiTa
obtained an estimated FWER of 0.75%with P = 100, 1.25%with P = 1000, and 0.5%with
P = 10,000. Instead, for BIKE20, it obtained an estimated FWER of 2.25% with P = 100,
1.75% with P = 1000, and 3.25% with P = 10,000. These results show that the false
positives guarantees of caSPiTa are even better than the theoretical ones, which are ≤ 5%
using α = 0.05, and that P = 100 is enough to obtain such guarantees. Using these random
datasets, we also made a comparison with HYPA. Let us remember that HYPA employs a
fixed threshold β to flag as anomalous a path, without any theoretical guarantees. We used
β ∈ {0.00001, 0.001, 0.05}, which are, respectively, theminimum, themost commonly used,
and the maximum value used in [18], and k ∈ {2, . . . , 5}. (For h, HYPA always considers
h = k − 1, thus we only used this value.) For BIKE10, it obtained an estimated FWER of
40.63% with β = 0.05, 15.63% with β = 0.001, and 0.0% with β = 0.00001. Instead, for
BIKE20, it obtained an estimated FWER of 60.63%with β = 0.05, 32.50%with β = 0.001,
and 1.25% with β = 0.00001. These results show that HYPA is able to return anomalous
paths achieving low FWER with the correct threshold, but also emphasize the importance
of having a strategy, as the one that we employ, to compute such threshold in an automatic
way, since the usage of fixed thresholds may lead to many spurious discoveries, or to a low
statistical power.

Finally, considering the same pseudo-artificial datasets, we assessed the false positives
guarantees of g-caSPiTa with g ∈ {2, 5, 10}. We executed g-caSPiTa in each random
dataset and then we estimated the g-FWER as the fraction of runs with at least g false
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Table 4 g-caSPiTa results with BIKE. k: paths length; h: order of the null model; |W|: number of distinct
paths of length k; T : number of total paths of length k; for each g, number of reported significant paths: over-
(+) and under- (−) represented; Time (s): execution time in seconds with g = 1

k h |W| T g = 1 g = 2 g = 5 g = 10 Time (s)

+ − + − + − + −
2 1 90.5K 252K 197 28 256 47 374 84 453 98 140

3 1 172K 221K 118 40 159 60 226 85 311 117 279

2 1 8 4 17 7 29 10 38 262

4 1 179K 195K 80 15 127 22 153 40 184 65 315

2 10 7 14 15 19 25 21 33 333

3 0 3 0 4 0 12 0 15 246

5 1 166K 174K 71 6 98 6 115 9 130 19 437

2 17 3 19 5 31 10 39 16 360

3 0 1 1 3 1 3 2 9 270

4 0 1 0 2 0 4 1 7 246

Table 5 g-caSPiTa results with WIKI. k: paths length; h: order of the null model; |W|: number of distinct
paths of length k; T : number of total paths of length k; for each g, number of reported significant paths: over-
(+) and under- (−) represented; Time (s): execution time in seconds with g = 1

k h |W| T g = 1 g = 2 g = 5 g = 10 Time (s)

+ − + − + − + −
2 1 155K 244K 160 53 222 82 346 134 424 175 254

3 1 169K 194K 219 6 334 16 443 27 549 34 303

2 8 12 11 13 22 25 27 34 250

4 1 139K 147K 193 1 319 2 425 3 535 3 294

2 16 6 20 8 39 10 51 16 247

3 2 2 4 6 6 12 7 12 196

5 1 106K 108K 113 0 154 0 243 0 327 0 646

2 7 0 9 0 18 1 39 1 190

3 0 1 0 2 0 5 4 8 160

4 0 0 0 0 1 1 1 1 150

positives. Table 3 shows all the obtained results. Similarly to what has been observed with
1-caSPiTa, i.e., the original version of caSPiTa, the results show that the false positives
guarantees of g-caSPiTa are even better than the theoretical ones since all the g-FWER
estimates are (far) below 5%, and P = 100 is enough to obtain them.

5.3.2 Results with real datasets

We then executed (g-)caSPiTa on the real datasets BIKE,WIKI, and FLIGHT. Tables 4, 5,
and 6 report the results obtained with P = 100, k ∈ {2, . . . , 5}, h ∈ {1, . . . , k − 1}, and
g ∈ {1, 2, 5, 10}. For the computational time, we only reported the values for g = 1,
since the others are analogous. Considering g = 1, for all the datasets, and for almost
all combinations of parameters, caSPiTa reported some significant paths. It is interesting to
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notice that the number of over-represented paths is almost always (some orders ofmagnitude)
greater than the number of under-represented paths. In addition, for a fixed value of k, the
number of over-represented paths always decreases considering higher values of h. The
number of under-represented paths, instead, always decreases for BIKE, while increases
and then decreases for FLIGHT and WIKI, highlighting different substructures in the three
underlying networks. The computational time ranges from under 3 minutes (BIKE with
k = 2, h = 1) to over 8 hours (FLIGHT with k = 5, h = 1). Let us note that FLIGHT has
over 17M transactions, but we are still able to analyze it with a reasonable running time. The
combination k = 5 and h = 1 is always the most expensive from a computational point of
view, since it requires to generate longer paths and also to analyze a large number of vertices
to compute the probabilities of Eq.7. For the same reasons, for a fixed path length k, the
computational time decreases as h increases. Overall, these results show that caSPiTa is
able to efficiently mine significant paths from real datasets, with feasible computational time
even in huge datasets. Considering g > 1, for all the datasets, and for almost all combinations
of parameters, g-caSPiTa reported more significant paths, both over- and under-represented,
with respect to the paths reported by the original version of caSPiTa. In particular, for BIKE,
g-caSPiTa with g = 2 reported on average 77% more paths than caSPiTa,6 188% more
with g = 5, and 330% more with g = 10. For WIKI, instead, g-caSPiTa with g = 2
reported on average 70%more paths than caSPiTa, 194%more with g = 5, and 286%more
with g = 10. Finally, for FLIGHT, g-caSPiTa with g = 2 reported on average 22% more
paths than caSPiTa, 61% more with g = 5, and 86% more with g = 10. Let us note that
even if we were allowing very few false positives, the number of reported paths increased
considerably. Overall, these results show that to control the g-FWER is a valid strategy to
increase the statistical power for those applications which can tolerate a small number of
false positives.

Finally, we provide a brief analysis of some paths returned by caSPiTa from FLIGHT.
The over-represented path of length 2 with the lowest p-value and the highest number of
occurrences (4813) is an itinerary which starts from the “Philadelphia International” airport,
goes to the “Charlotte Douglas International” airport, and then comes back to the “Philadel-
phia International.” Instead, among the over-represented paths of length 2 with the lowest
p-value, the one with the lowest number of occurrences (5) is an itinerary which starts from
the “Trenton Mercer” airport, goes to the “Hartsfield-Jackson Atlanta International” airport,
and then comes back to the “TrentonMercer.” Since both these over-represented paths repre-
sent returning itineraries, i.e., they start and end in the same airports, we investigated which is
the percentage of returning over-represented paths, that resulted almost 5%. Thus, even if it
is not very surprising that returning paths are over-represented, 95% of the over-represented
paths of length 2 are not returning itineraries. The under-represented path of length 2 with the
lowest p-value and the highest number of occurrences (137) is instead an itinerary that starts
from the “Daniel K Inouye International” airport (located in the Hawaii), goes to the “Hilo
International” airport (again located in the Hawaii), and then finishes in the “Los Angeles
International” airport, while the percentage of returning under-represented paths of length 2
is 0.18%, significantly lower than that of the over-represented paths. Considering paths of
length 3 and the 1-st order generative null model, the over-represented path with the lowest
p-value and the highest number of occurrences (1398) is an itinerary which starts from the
“Ted Stevens Anchorage International” airport, goes first to the “McCarran International”
airport (located in Las Vegas), then goes to the “Seattle/Tacoma International” airport, and
finally comes back to the “Ted Stevens Anchorage International.” Let us note that this path

6 We only considered combinations of parameters for which caSPiTa reported at least one significant path.
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results the one with the lowest p-value and the highest number of occurrences also consid-
ering the 2-nd order null model. Again, this path represents a returning itinerary and the
percentages of returning over-represented paths of length 3, considering, respectively, the
1-st and the 2-nd order generative null model, are 94% and 98%. Finally, we observed that
for the over-represented paths of length 4, considering the 1-st order generative null model,
the percentage of returning itineraries is 64%, but only 3% of these paths are symmetrical,
i.e., the outward and return flights are the same, while the others consider different airports
even if they start and end in the same one. Instead caSPiTa did not report any significant
under-represented paths of length 4 considering the 1-st order generative null model.

5.4 Analysis of BIKE

In this section, we provide a brief analysis of some paths returned by caSPiTa from BIKE.
The over-represented path of length 2 with the lowest p-value and the highest number of
occurrences is a path which starts and ends in “Ocean Front Walk & Navy” located in Venice
Beach. The fact that this path is over-represented indicates that people tend to leave and then
come back to this place, instead of moving to other parts of the city. For example, such pattern
may capture the fact that people leave the beach to buy some food and then immediately come
back. Instead, the under-represented path of length 2 with the lowest p-value is a path which
starts from “Union Station West Portal,” goes to “Main & 1st,” and then comes back. “Main
& 1st” is located near the Los Angeles City Hall, the center of the government of the city,
while “Union Station West Portal” is near the Union Station, the main railway station of the
city. The fact that this path is under-represented is probably due to the fact that a lot of people
move from the station to the city hall, and vice versa, but in particular moments of the day,
i.e., in the morning and in the evening. Thus, even if the two direct links are very popular, it is
uncommon to see this entire path. These are only two examples of paths mined by caSPiTa,
but they highlight its capability in detecting real-life trends.

Finally, we investigated the capability of caSPiTa in mining significant paths in the
scenario in which the generative null model is created considering a different dataset (see
Sect. 4). Using the procedure to generate BIKE described above, we generated a new dataset,
NEWBIKE, considering the 2020 data from the samewebsite.We then used the originalBIKE
dataset to create the h-th order generative null model and we tested on it the significance of
length k paths mined fromNEWBIKE. Given the pandemic situation that involved the world,
onemay be interested in finding changes in the habits of the people defining amodel based on
paths traveled in 2019 to test paths traveled in 2020. Table 7 reports the results obtained with
k = h ∈ {1, . . . , 5} and P = 100. (For NEWBIKE, we only considered full transactions that
can be generated by the generative null model obtained from BIKE.) Again, it is possible
to notice that caSPiTa returned paths for almost all combinations of parameters, and that
the number of over-represented paths is always higher than the number of under-represented
paths. Overall, these results demonstrate that caSPiTa is able to mine paths also in such a
scenario.

6 Conclusions

In this work, we introduced the problem of mining statistically significant paths in time
series data from an unknown network, which naturally arises in several applications. We
described caSPiTa, an algorithm to mine statistically significant paths (over- and under-
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Table 7 caSPiTa results on
BIKE considering different
datasets. k: paths length; h: order
of the null model; |W|: number
of distinct paths of length k; T :
number of total paths of length k;
(+): reported over-represented
paths; (−): reported
under-represented paths

k = h |W| T + −
1 5.79K 68.0K 256 120

2 5.51K 12.2K 30 9

3 1.19K 2.45K 14 1

4 436 786 4 0

5 124 203 0 0

represented) while controlling the probability of reporting at least one false positive, i.e.,
the FWER, employing the Westfall–Young method. We also described some extensions
of caSPiTa, one of which, g-caSPiTa, aims to mine statistically significant paths while
controlling the generalized FWER, which allows to increase the statistical power of our
strategy by tolerating a few false positives. We then introduced an alternative scenario which
considers a different dataset, with respect to the one used to mine the paths of interest, to
construct the generative null model. Our extensive experimental evaluation shows that (g-
)caSPiTa is able to efficiently mine large sets of significant paths from real datasets, while
correctly controlling the (generalized) FWER. Interesting future directions are the extension
of caSPiTa to mine statistically significant paths while controlling the false discovery rate
(FDR) and to identify the k most significant paths.
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