CASS - Middleware for Mobile Context-Aware Applications

Patrick Fahy

Siobhan Clarke

Distributed Systems Group,
Computer Science Department,
Trinity College Dublin,
Ireland

{Patrick.Fahy,

Abstract

Among the difficulties faced by designers of
mobile context-aware applications is the increased
burden of having to deal with context and also the
processing and memory constraints of small mobile
computers. Although progress has been made in the
area of frameworks and toolkits for context-
awareness, there is still a need for middleware that
supports higher-level context abstractions and is
both flexible and extensible in its treatment of
context.

CASS (Context-awareness sub-structure) is server-
based middleware intended to support context-
aware applications on hand-held and other small
mobile computers. CASS enables developers to
overcome the memory and processor constraints of
small mobile computer platforms while supporting
a large number of low-level sensor and other
context inputs. A key feature of CASS is its support
for high-level context data abstraction and the
separation of context based inferences and
behaviours from application code. This separation
opens the way to making context-aware
applications configurable by users.

1 Introduction

One difficulty for context-aware application
designers has been the lack of generic infrastructure
for developing context-aware applications (Salber
& Abowd, 1998). In addition, existing applications
have used a limited range of context types. They
have also been limited in context-aware features.
Dey & Abowd found that the most often used
context parameter was location while the most
common application feature was the presentation of
context-aware information to users (Dey & Abowd
2000).

Schmidt et al. also find that location is the most
often used context parameter and assert that mobile
applications could benefit from a broader notion of
context. This work investigates the use of multiple
sensors to gather a wider range of context
information (Schmidt et al. 1999).

It is likely that future context-aware applications
will capture a richer variety of context information
as well as exhibiting a richer variety of context-

Siobhan.Clarke}@cs.tcd.ie

aware features than is currently the case. Providing
support for application designers in the integration
of a wider range of context into their applications
will encourage the development of useful and
compelling applications for hand-held computers.
However, Chen & Kotz assert that the collection
and management of context information from large
numbers of diverse sensors is a fundamental
challenge in ubiquitous computing (Chen & Kotz
2002).

In this paper we describe how mobile applications
can benefit from the ability to use high-level
context data. We examine some of the difficulties
in deriving high-level context data and how
application designers might be supported in this
task. We then describe CASS, an extensible
middleware for context-aware mobile applications.
CASS enables developers to overcome the memory
and processor constraints of small mobile computer
platforms while supporting a large number of low-
level sensor and other context inputs. A key feature
of CASS is its support for high-level context data
abstraction and the separation of context based
inferences and behaviours from application code.

2 High-level Context Information

Using a wide range of context inputs from sensors
or other sources increases complexity for
application designers. However, it is the higher-
level context abstractions that can be derived from
these inputs that is of most interest. Dey et al.
assert that using higher-level context abstractions
that sit on top of individual component abstractions
should make it easier for application designers to
use context, they reason that the higher the level of
the context, the easier it should be to use, at the
expense of hiding some information (Dey et al.
2001).

Gellersen et al. describe the use of multiple,
comparatively simple, diverse sensors to collect
context information from which higher-level
inferences can be made (Gellersen et al. 2002).
However, some types of context information are
difficult for application designers to deal with. As
many as five or six low-level sensors, each of
which output a wide range of values, may be
required to take account of a single higher-level

parameter. Consider for example, the weather.
Humans perceive the weather as a whole and are
able to make a useful estimate of current conditions
quickly. Weather has though many parameters,
including temperature, light-level, rain, wind,
humidity and barometric pressure.

Here, difficulties arise not only in acquiring context
but also in representing contextual information,
deriving higher level contextual information and
determining a response appropriate to the
combination of parameters that represent the
weather to a computer. A designer of a tour guide
application for example, may simply want to
display hyperlinks to beaches or indoor activities
depending on the state of the weather, time and
season. At present, there is very little support for a
designer who wishes to incorporate such a
behaviour into an application, other than to write
the code for the relevant contexts and
corresponding behaviours and compile this as a
component of the application.

Handling context within application code increases
the complexity of that code, making it more
difficult to work with. To compound this problem,
changes in context reasoning and context
behaviours can only be achieved by re-writing and
re-compiling, with changes necessarily made by
programmers rather than by domain experts or
indeed users.

A further difficulty facing context-aware
application designers is the constrained nature of
small mobile computers in terms of processing
power, memory and persistent storage.
Satyanarayanan asserts that for a given cost and
level of technology, considerations of weight,
power, size and ergonomics exact a penalty in
terms of computational resources, so that while
mobile elements may improve in absolute terms,
they will always be resource-poor relative to static
elements (Satyanaryanan 1996). However, the
burden of deriving high level context abstractions
can be expected to lead to increased processing,
memory and persistent storage requirements.

3 CASS Overview

In this section we describe how CASS provides
mobile context-aware application designers with
support for high-level context derivation. CASS
addresses the issue of separation of context-aware
application code from high-level context reasoning
and behaviours. More precisely, this would allow
an application's context reasoning and resulting
behaviours to be changed without re-compilation.
This opens the way to changes and indeed
extensions being undertaken by the owners of an
application rather than programmers.

3.1 Requirements

(Dey et al. 2001) as well as (Schmidt & Gellersen
2001) emphasise the importance of the separation
of concerns between sources and users of context.
A middleware must also be flexible enough to
provide for the presentation of information and
services, automatic execution and the attaching of
context to information. These categories of context-
aware application features were identified in (Dey
& Abowd 2000). In addition to these, we have
gathered the following set of requirements for
CASS. The sources range from work presented in
(Dey et al. 2001), (Schmidt & Gellersen 2001) and
our own perspective on the contribution CASS can
make:

U Support a large number of context sources,
including multiple sources of the same context.

O Provision for context history.

O Support for context interpretation. For example
raw temperature reading to reading in degrees
Celsius.

U Support higher-level abstraction of contexts
while taking into account the processing and
storage constraints on small mobile devices.

U The middleware must be event-based, so that
there is no requirement on applications to poll
for changes in context.

O The middleware must be extensible -For
example to accommodate further contexts and
sensors but also to accommodate tools that
would allow easier configuration of context
rules and behaviours.

U Support transparent use of distributed sources
of context.

U Support the separation of application procedure
from context-awareness rules and behaviours.

3.2 Architecture

The CASS middleware (Fig. 1) is server-based with
context-aware applications on mobile computers
connecting over wireless networks. Sensor nodes
are computers with sensors attached and may be
mobile or static. One or more sensors may be
attached locally at a sensor node. Because the
middleware is server-based, it does not suffer from
the processor and memory constraints that would
apply on a mobile computer. This allows use of a
database and artificial intelligence components as
required, as well as the facility to store large
amounts of data. However there is a reliance on
communications between the mobile platform and
the server hosting the middleware. Because of this
reliance, CASS supports applications in the use of
local caching of information to reduce the effect of
intermittent connections.

CASS applications need not communicate with
each individual source of context directly but only
with the middleware and therefore do not need to
store low-level details of context sources.

GASS Middleware

Sensor node

Hand-held computer

Interprater

hnhilecnnlextchanne*

LocationFinde —
SensorListener
ChangeListener

ContextRetriever

Database

Fig. 1. CASS architecture

3.3 Design

The classes that belong to the CASS middleware
are shown in Fig. 2. Central to the design is the
RuleEngine class. Three subclasses of RuleEngine
correspond to the categories of context-awareness
application features identified in (Dey & Abowd
2000).

ContextRetriever

ChangeListener

BFinder fer |
—
! Entity]F!—|

[

MobileContexiChannel

|| [ActionEngine |
11 []

Sensor
i
=

TightSensor TaggingEngine
 ——
i
TempSensor SoundSensor

Fig. 2. CASS design

The SensorListener class listens for updates from
Sensors and stores context information while the
ContextRetriever class retrieves stored context.
Both of these classes may use the services of an
interpreter. The ChangeListener is a component
with communications capabilities, that allows a
mobile computer to listen for notification of context
change events. Sensor and LocationFinder classes
also have built-in communications capabilities.

3.4 Data Management

Given the requirement to support context history, as
outlined in Section 3.1, as well as the need to
manage data relating to multiple sensors,
applications and users, the CASS middleware uses
a database for persistent data storage. The database,
is server-based and therefore does not suffer from
the storage space and performance constraints that
apply on small mobile platforms.

Although databases make it easier to handle large
volumes of data and contribute to the enforcement
of standards (McFadden & Hoffer 1994), they also
have other advantages to offer as a means of
persistent storage for context-awareness:

U Data can be read and manipulated at a high
level of abstraction using Structured Query
Language (SQL).

U The database can be used to store, not only
context, application and user data but also
domain knowledge in the form of context-
awareness rules and behaviours relevant to
specific applications.

With respect to this last point, the storage of
domain knowledge, independent of context-aware
applications supports the context reasoning and
behaviours of specific applications to be changed in
a dynamic way. Further, by providing a suitable
interface to the database containing the context
inference rules, these rules could then be updated
and changed by users rather than programmers.

CASS applications use database tables to store
rules about high-level context together with related
information to be displayed to users, actions to be
executed or attached information tags. The database
also stores data on entities, applications and their
context interests, context values, context sources,
groups and profiles.

4 Context Inference Mechanism

In this section we describe how high-level context
is inferred wusing an inference engine and
knowledge base. We also explain the technique of
abstraction and search used by CASS to infer high-
level context information.

4.1 Inference Engine

An inference engine works in conjunction with a
knowledge base and uses the rules contained in the
knowledge base to solve problems. It is essentially
an interpreter for the knowledge base (Luger &
Stubblefield, 1998a). For example, given a certain
set of conditions or parameters, the inference
engine consults its knowledge base to find a
matching set or parameters and a corresponding
goal or solution to the problem.

The separation of the knowledge base from the
inference engine is desirable from at least two
standpoints (Luger & Stubblefield, 1998a):

U Separation makes it possible to represent
knowledge in a more natural fashion,
particularly for domain experts without any
knowledge of software.

U The knowledge base can be updated and
changed without changing the inference engine
implementation.

The CASS inference engine is used to find a
matching goal or goals when a change in context is
detected. Having a separate knowledge base means
that changes can be made to context inferences and
goals relevant to an application without
necessitating changes in application code.

The CASS inference engine uses a technique called
forward chaining, where known facts are used to
infer other facts and these facts can be used in turn
to infer further facts. Forward chaining is a search
technique useful for situations where the search
space is wide with many potential goals (Luger &
Stubblefield, 1994a), which is the case with
context-aware systems. For example, many context
inputs lead to fewer higher-level contexts and
eventually to a goal represented by some
application behaviour. This behaviour might be to
display some information, execute some service or
attach context to information.

4.2 Knowledge Base

The knowledge base contains the rules used by the
inference engine described above. CASS stores
application knowledge bases as database tables
where the records contain high-level context states
and a corresponding context behaviour, the goal.
The usefulness of CASS knowledge base tables is
partly due to the close alignment with high-level
context abstractions like, for example, the weather.
An example of a rule from a table containing
weather states is shown in Fig. 3. A tour-guide
application might use such a rule to allow it to
display hyperlinks to indoor activities. In this case
the goal 'indoor’, could be used as a key into a table
containing the hyperlinks. Alternatively, the goal
could be used in a further rule that also takes
account of a 'location and time' goal obtained from
another CASS table. This could then be used to
show only nearby activities that were currently
open to visitors.

Goal
indoor

Rain Brightness | Temp

wet dull cold
Fig 3. An example of a weather context rule

4.3 Abstraction and Search

Abstraction allows the expression of only the
information needed for a given purpose (Luger &
Stubblefield, 1998b). Higher levels of abstraction
lose some information but make a problem
manageable. Abstraction is used by the CASS
inference engine to reduce the state-space of
individual context components. For example, an
ambient temperature range of 30 degrees Celsius

could be abstracted to as few as three states and
these represented in corresponding semantic
variables of Cold, Normal and Hot as suggested in
the context ontology vocabulary described in
(Korpipéa et al 2003). Such abstractions can be
based on crisp limits or Fuzzy sets. Our current
implementation uses context abstractions with crisp
limits. Context abstractions together with their
limits are stored in a database table and are
adjustable without re-compiling or even re-starting
an application.

Having abstracted each context component to give
a manageable state space that is appropriate to the
needs of the context aware-application, the
knowledge base for that application can then be
searched for a goal or application behaviour
corresponding to the state of these context
components. This context-aware behaviour is then
activated. Since the knowledge base is contained in
a database table, SQL provides a convenient means
of searching.

5 Evaluation

Mark Weiser describes the construction of working
prototypes, as an important part of the research
effort at Xerox PARC. Indeed a key part of the
design philosophy was to put devices into everyday
use (Weiser, 1993). The emphasis in the CASS
project too, is on gaining real experience with
context-awareness.

5.1 Applications

As part of our evaluation of the CASS framework,
we are currently developing two applications.
MALLET (Maintenance Assignment Listing
Lightweight Electronic Tool) is an application that
allows domestic and building maintenance tasks to
be organised in a context-aware way. Tasks can be
associated with context and displayed when the
context conditions are satisfied. For example, a
pending maintenance task like exterior painting
would be displayed by the application in dry,
bright, warm conditions. Tasks can also be attached
to location and time so that a quick tour of a
building for example, will show what tasks need to
be carried out at different locations. Override
functions are provided for user convenience. For
example, a user can easily force the display of all
tasks regardless of context.

A second application called STONE (STart ON
Entrance) is designed to avoid the awkward start to
presentations and lectures involving slideshows.
Typically, the presenter must switch on the beam
projector, start the presentation application and find
the correct presentation file as the audience waits.
With STONE, a presenter can enable these
preparations to happen automatically as soon as the
presenter enters the presentation area and if

required, present an introductory slide. We are also
investigating ways of automating the advancement
of slides based on context information such as
pauses in speech, elapsed display time and
presenter orientation.

5.2 Sensors

We are currently investigating aspects of sensor-
derived context including sensor failure, sensor
fusion and error handling and have built several
sensor prototypes to assist in this work. The two
prototypes shown in Fig.4 are designed to connect
to a static sensor node which sends readings over a
network to the CASS middleware. The sensor
hardware is based on inexpensive and widely
available analogue to digital converter chips.
Software abstracts the low-level details of the
hardware, such as how readings are taken, for
example, and provides communications support.
The sensor software is extensible to allow new
types of sensor to be added.

—

Fié 4. Temperature and light sensors.

To support indoor location awareness, we have
built a system based on infrared beacons (Fig. 5). A
key feature of the system is that the receiver (Fig.
7) uses the infrared port on the PDA and so leaves
other ports free for use with a wireless
communications device and a GPS receiver for
example. Hardware support can thus be provided
for both indoor and outdoor location awareness as
well as communications with the CASS
middleware. The indoor location system has a
range of 5m and is not highly directional in
confined spaces, as in a small office for example
due to reflection from walls and other surfaces.

Fig. 5. Infrared location beacons.

Fig. 6. PDA with wireless card and
location receiver.

Fig. 7. PDA view from back showing
location receiver hardware.

6 Related Work

The concepts of context and context-awareness
have been analysed in (Dey and Abowd 2000). This
work improves on previous definitions of context
and context-awareness and also identifies
categories of context and categories of features for
context-aware applications.

The Context Toolkit (Dey et al. 2001) supports the
separation of concerns between the acquisition of
context data from sensors and its use in
applications. It also provides developers with re-
usable components and an accompanying
conceptual framework. The Context Toolkit differs
from our middleware approach, in that our work
also supports the separation of context-awareness
rules from application code.

Situated Computing (Hull et al. 1997) is concerned
with the detection, interpretation and response to
aspects of the user’s local environment. It is
essentially a layer of middleware that relieves the
applications of the task of collecting and dealing
with raw sensor data. A prototype SitComp service
was built using one type of sensor, namely active
tag detectors. Situated Computing confined context
sensing to the immediate environment of the user.

The Owl Context Service (Ebling et al. 2001) is
based on an architecture that provides context
services as part of the infrastructure. Design
considerations for the Owl architecture include
scalability, extensibility and privacy. Owl
accommodates heterogeneous context sources. Owl
differs from our work in that our work concentrates
on providing context information at a higher level
of abstraction and emphasises the separation of
context abstractions from application code.

7 Conclusion

We have presented a server-based middleware that
supports context-aware applications on hand-held
and other small computers. The middleware
supports the use of large numbers of context inputs
and provides for high-level context abstractions
while placing no additional processing or memory
load on constrained mobile platforms. The
middleware allows context inferences to be
separated from application code in a manner that
opens the way to configuration by users rather than
necessitating re-programming. Our immediate goal
is to develop context-awareness configuration tools
for use with CASS and applications that take
advantage of CASS features.

8 References

(Chen & Kotz 2002) Chen G. & Kotz D. Context
Aggregation and Dissemination in Ubiquitous
Computing Systems. In Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems
and Applications, 2002 pp 105 -114

(Dey and Abowd 2000) Dey, A.K., Abowd, G.D.
Towards a Better Understanding of Context and
Context-Awareness, presented at the CHI 2000
Workshop on The What, Who, Where, When, Why
and How of Context-Awareness, April 1-6.

(Dey et al 2001) Dey A K., Abowd G.D. & Salber
D. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-
Aware Applications, Human Computer Interaction,
2001, Volume 16, pp 97-166

(Ebling et al. 2001) Ebling Maria R., Hunt
Guerney D. H. and Lei, Hui. Issues for Context
Services for Pervasive Computing. Workshop on
Middleware for Mobile Computing, November
2001

(Gellersen et al. 2002) Gellersen H.-W., Schmidt
A., Beigl M. Multi-Sensor Context-Awareness in
Mobile Devices and Smart Artifacts, Mobile
Networks and Applications (MONET), Kluwer, Oct
2002.

(Hull et al. 1997) Hull R., Neaves P. and Bedford-
Roberts J. Towards Situated Computing, in
Proceedings of IEEE ISWC’97 First International
Symposium on Wearable Computers, Cambridge,
MA, USA 1997.

(Korpipéa et al. 2003) Korpipda P., Mantyjarvi J.,
Kela J.,, Kerdnen H. & Malm E.J. (2003).
Managing Context Information in Mobile Devices,
IEEE Pervasive Computing 1536-1268-03.

(Luger & Stubblefield 1998a) Luger G.F. &
Stubblefield W.A. Artificial Intelligence,
Structures and Strategies for Complex Problem
Solving. Third Edition, Addison Wesley Longman,
MA. U.S.A., 1998 pp210.

(Luger & Stubblefield 1998b) Luger G.F. &
Stubblefield W.A. Artificial Intelligence,
Structures and Strategies for Complex Problem
Solving. Third Edition, Addison Wesley Longman,
MA. U.S.A., 1998 pp34.

(McFadden & Hoffer 1994) McFadden F.R. &
Hoffer J.A. Modern Database Management, Fourth
Edition, Benjamin = Cummings Publishing
Company, CA. 1994 pp 18-20

(Salber & Abowd 1998) Salber D. & Abowd G.
The Design and Use of a Generic Context Server,
Georgia Tech GVU Technical Report GIT-GVU-
98-32

(Satyanarayanan 1996) Satyanarayanan M.
Fundamental Challenges in Mobile Computing. In
Proceedings of the ACM Symposium on Principles
of Distributed Computing.

(Schmidt et al. 1999) Schmidt A., Beigl M. &
Gellersen H.-W. There is More to Context than
Location, Computer & Graphics 23(6) December
1999 pp. 893-901

(Schmidt et al 2001) Schmidt A. & Gellersen H.-
W. Modell, Architektur und Plattform fuer
Informationssysteme mit Kontextbezug,.
Informatik Forschung und Entwicklung 2001
16:213-214.

(Weiser 1993) Weiser M. Some Computer Science
Issues in Ubiquitous Computing , CACM July
1993.

