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CASSANN-v2: A high-performance CNN accelerator architecture with
on-chip memory self-adaptive tuning
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Abstract This work proposes a high-performance reconfigurable CNN
accelerator architecture, called CASSANN-v2, which can achieve 1TOPS
peak performance at 1GHz. CASSANN-v2 provides the function of on-
chip SRAM memory real-time adaptive tuning by parameter configura-
tion to reduce the intermediate output data transmission to further exploit
the acceleration performance. The system simulation results show that
CASSANN-v2 exhibits excellent performance on VGG-16 and ResNet-
18 inference, with a throughput of 1009.54GOPS and 923.24GOPS at
1GHz, which achieved 98.59% and 90.20% average processing element
utilization, respectively. Compared with state-of-the-art accelerator works,
CASSANN-v2 improves the resource utilization by 2.02× in VGG-16 and
2.35× in ResNet-18.
Keywords: SoC design, convolutional neural network (CNN) accelerator,
high-performance accelerator, architecture optimization
Classification: Integrated circuits

1. Introduction

In the past decade, the extraordinary performance of Deep
convolutional neural networks (DCNN) in machine vision,
language processing has attracted much attention in various
fields [1, 2, 3]. Nevertheless, DCNNs have high-throughput
and high-energy consumption defects due to the computa-
tional density and the large storage requirements. It brings
enormous restrictions to the further application of DCNN
to practical tasks on power-constrained devices such as res-
cue robots [4], mobile medical auxiliary equipment [5], and
automatic driving [6]. As a result, these difficulties at-
tracted great interest in DCNN hardware accelerators design
to quickly and efficiently complete CNN inference compu-
tations.
Many energy-efficient hardware accelerators have been

proposed to reduce power consumption and improve the
speed of DCNN computing in recent years. These accelera-
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tors based on application-specific integrated circuits (ASIC)
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and field-
programmable gate array (FPGA) [20, 21, 22, 23, 24, 25, 26]
have achieved low latency and high efficiency on CNN com-
puting. Two classic CNN of AlexNet and VGG have been
demonstrated the excellent performance earlier, including
UNPU [7], DSIP [12], Eyeriss [13], and DNPU [18]. More-
over, some works exploited the accelerators performance by
reducing off-chip memory access [8, 27, 28].
However, most of the ASIC-based accelerators can only

support one or several networks with similar structures.
Some flexible CNN accelerators [9, 14, 20, 23, 24, 29]
have been proposed to deal with it, which adapt to more
advanced popular CNN models, such as ResNet and Mo-
bileNet. In general, the FPGA-based designs are more flex-
ible than ASIC-based designs, mainly due to the natural
advantages of FPGA flexibility. Nevertheless, these FPGA
designs make an insufficient balance between hardware re-
sources and performance because they only need to consider
the upper limit of FPGA board resources. They used enor-
mous data bus resources, the bus width up to 1024-bit, to
achieve the fast data transfer between the off-chip and ac-
celerator [23, 24]. However, such a wide bus is always
unacceptable in expensive ASIC implementations.
From the existing successful accelerator studies, three

instructive conclusions can be summarized. First, the power
of off-chip data access such as DRAM is much higher than
SRAM. But the speed is slower than SRAM, so reducing
the external memory access is effective in saving energy and
accelerating CNN’s inference [8, 28]. Secondly, flexibility
should be one of the essential features for expensive tailored
design, which can expand the application scenarios of the
accelerator [19, 23]. Finally, the bandwidth is the bottleneck
of the CNN accelerator. Maximizing the bus bandwidth
utilization can improve the performance of the accelerator
[7, 9].
In this paper, we combine some existing valuable con-

clusions with our previous successes [27] to propose a high-
performance and high-flexible CNN accelerator architecture
based on ASIC, called CASSANN-v2. CASSANN-v2 uses
a flexible memory structure and ingenious memory manage-
ment method while optimizing the computing strategy on-
chip for high resource utilization. Furthermore, we design an
SoC architecture according to the CASSANN-V2; it is syn-
thesized and simulated at 1GHz. The experimental results
indicate that the architecture has achieved a 1TOPS peak per-
formance and up to average resource utilization of 98.59%
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in VGG-16 inference. More specifying, CASSANN-v2 has
the following features.
(1) Flexible storage structure: The on-chip SRAM blocks of
the globalmemory have no fixed function. They are assigned
the designated function by instruction configuration, which
can make real-time adjustments for different cases.
(2) High bandwidth utilization: By co-scheduling the on-
chip global memory and the computing units, CASSANN-
V2 can reduce the intermediate data transmission between
DRAM and the accelerator to exploit the performance.
(3) High flexibility and high efficiency: We optimize the
computation of the residual block by an independent short-
cut module. And combined with the memory scheduling
method, it can provide high efficient computation for differ-
ent CNNs.

2. Accelerator microarchitecture

The main challenge of CNN accelerator design is how to
support the acceleration of different CNNs in high resource
utilization by one microarchitecture. The proposed accel-
erator explores the parallel acceleration in different situa-
tions, especially in computing resource reorganization that
can adapt with most of the current popular CNNs. We
design all the configurations into parameterization, which
allows the accelerator to switch flexibly according to in-
struction parameters during runtime. CASSANN-v2 needs
to be reconfigured for each layer because of the layer-by-layer
calculation strategy.
The proposed SoC architecture consists of a general pro-

cessor, a DMA controller, an on-chip DRAM controller, a
CNN accelerator, a video input and some necessary I/O.
They are interconnected by AXI4 data bus and APB control
bus, as shown in Fig. 1. Different from the traditional SoC
design, the general processor is an auxiliary device in the
CNN accelerator design. Which is specially used for regis-
ters configurations, an open-source RSIC-V processor [30]
is sufficient to deal with control tasks.

2.1 Architecture overview
It is deserved to be mentioned that DMA is important in
this SoC design. CNN accelerator has intensive data inter-
action with the memory. All the memory data access of
off-chip DRAM is completed by DMA, which can improve
bus utilization. The proposed architecture supports external
DRAM storage up to 4GB. Moreover, we placed a video
input interface to support up to 1920 × 1080 image data

Fig. 1 Overview of microarchitecture.

transfer at 60 frames per second.
CASSANN v2 consists of the global control unit, global

memory, data router, shortcut module, and computing block.
The global control unit can be further divided into an instruc-
tion memory, a global controller, an interrupt generator. All
the scheduling of CASSANN v2 is completed by the control
instruction and the configuration instruction. Before the ac-
celerator starts, the global controller will configure the local
controller of the accelerator according to the configuration
instructions, which will be specific to each sub-unit. Con-
trol instructions drive the active operation updates during
the CNN calculation. When the next operation is required,
the accelerator sends an interrupt request and updates the
corresponding status register. Then the processor will send
the new control instructions to the accelerator.

2.2 The configurable global buffer
Designers always hope to place as sizeable on-chip memory
as possible for CNN accelerator designs to improve perfor-
mance. However, SRAM is an expensive hardware resource,
and its usage is invariably limited by area. We take a recon-
figurable design for the global memory to minimize off-chip
data access while maximizing the efficient utilization of this
valuable storage. Different from the works that explicitly
demarcate the data input buffer and data storage bank of
feature map and weight in physical circuit level [8, 9]. The
global memory of CASSANN v2 provides the function of
data storage and data transfer through instruction configura-
tion, which is realized at the logic level. It enables adaptive
adjustment of the functional storage areas to different CNN
layers. Moreover, CASSANNv2 can avoid part of the output
data transfer by switching the memory address of the input
and output functional area during calculation.
Another essential function of global memory is to medi-

ate input and output data. We reorganized the m blocks of
SRAM to form a cache similar to a ping-pong buffer struc-
ture. However, in fact, these N blocks of SRAM form an
N/m levels cache structure. As shown in the red and orange
dashed boxes in Fig. 2. While one buffer’s data is being
read, one of the idle buffers will be written and updated
in time, which maximizes the utilization of SoC bus band-
width. For example, the input buffer area of global memory
is divided into four parts A, B, C, D, respectively. Buffer
A and B are functionally equivalent to a traditional ping-
pong buffer, and they will provide the input data caching
for weight, bias, and configuration instructions. During the
accelerator work, one of the idle buffer blocks will become

Fig. 2 The structure of the global memory.
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the weight/bias/parameter input buffers, which is chosen by
the on-chip state machine.
In addition, the feature map data will be stored in other

buffers such as C and D. When the input buffer is switched
to the output buffer, C and D will preferentially save part
of the output feature map. If the output size is larger than
the capacity of the output buffer, A and B will provide the
off-chip DRAM data caching for the remaining output fea-
ture map data. Conversely, buffer A and B will be used as
ordinary storage blocks to save the output data.
The bandwidth is one of the bottlenecks in the perfor-

mance of CNN accelerators. Many conditions limit the data
bus width of SoC. In this study, to avoid the input/output
buffer dragging down the performance of the CASSANN
v2, the number of the buffers m is required, as shown in
Eq. (1).

m =
W IDTHbus

W IDTHSRAM
(1)

Furthermore, the storage capacity of the buffer block needs
to be at least larger than 4KB to exploit the potential of the
AXI bus. It is preferably a multiple of 4KB. So the depth
constraint of SRAM is shown in Eq. (2). i is the multiple
factors of 4KB.

DEPTHSRAM = i ×
4KB

m ×W IDTHSRAM
(2)

The purpose of Eq. (1) is to align the ping-pong buffer with
the SoC data bus, and Eq. (2) is to ensure bandwidth utiliza-
tion by making the bulk data transmission and maintaining
the AXI bus work in burst transmission mode. The capacity
of the global memory is constrained by the number of blocks
in the buffer, as shown in Eq. (3).

Cglb = 2k+1 × m ×W IDTHSRAM × DEPTHSRAM (3)

In general, the capacity of the global memory is deter-
mined according to practical requirements because it is a
flexible design. Larger global memory can obviously re-
duce the intermediate data transmission, thereby reducing
the power consumption and time of the data access between
the accelerator and off-chip memory. However, even if the
capacity of global memory is very limited, the performance
will not drop down significantly when the minimum storage
requirement is met.

2.3 Computing block and calculation mode
Fig. 3 shows the computing block structure of CASSANN-
v2. The proposed accelerator uses a united processing ele-
ment (UPE) to compute the CNN efficiently. It is composed
of 16 multipliers and an adder tree, as shown in Fig. 3 purple
area. Each UPE is equipped with a feature map local buffer
and a weight local buffer; it takes 16-group 8-bit weight and
feature map as the input. The adder tree of UPE can summa-
rize the output of multipliers and finish self-accumulation.
Then the outputs of UPEs are connected to finish the ac-
cumulation and bias addition. The final sums precision is
32-bit.
The sums can be further processed by activation, pooling,

and quantizationmodule under the logic control. Finally, the
results are sent to output FIFO. The computing unit (CU)
is shown in the dotted box of Fig. 3, and it is composed of

Fig. 3 The structure of computing block.

Fig. 4 The data flow of UPE.

4-UPE and a set of bias, quantization, activation, pooling
modules. The additional functional modules are arranged in
a pipeline structure. They are built into the CU to maximize
computational efficiency and reduce bus workload. The
computing block consists of N-group CU, which will send
the results of the output FIFO to the designated address of
the output buffer.
The input data of CASSANN v2 is the channel saved first,

then the column, and finally the row direction. The data
format is [row, column, channel], a prevailing data format
in the CNN accelerator. CASSANN v2 utilizes two main
inference modes: channel-oriented and channel-row mixed
modes. We apply these two modes by reorganizing UPE to
accommodate different computing requirements. It is why
UPE is designed with 16-pair inputs. Because the channels
number in CNN is usually amultiple of 16, such a setting can
maintain 100% PE utilization when the CNN is computing
in channel-oriented mode.
While the input channel chi < 16, CASSANN v2 works

at row and channel mixed mode. For example, when chi =
4 and the kernel size is 3 × 3, the data order of UPE is
the channel first and the column next, as shown in Fig. 4
blue sequence. UPE is independent working at the 1-group
mode, the PE13 − PE16 disabled. The data is output every
three clock cycles. In addition, UPE can make adaptive
adjustments according to the kernel size. If the kernel size
is 5×5, UPE will work in the 2-group combined mode. The
PE1 − PE20 are in normal computing, and the PE21 − PE32
disabled. It is the same logic for other kernel sizes. The
CU supports 4-group UPE working together at most, so the
maximum kernel size must meet the following requirement:
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Min(kx, ky) <
64
chi

(4)

Moreover, the work mode of how many UPE can work to-
gether is as follows:

n = Round(
chi × k

16
) (5)

The chi is the number of input channels, kx and ky are
the kernel sizes, k is the column number of kernel sizes.
The most common case of the channel-row mixed mode is
computing the first layer input. What needs to be explained
is that we will fill zero to align the input channel to 4 when
the chi < 4. Because the data needs to be aligned with
the SoC bus, it can simplify the accelerator’s state machine
circuit logic.
When the input channel chi ≥ 16, CASSANN v2 will use

the channel-oriented calculation mode, as shown in Fig. 4.
For instance, the chi = 16 and the kernel size is kx× ky . The
16-channel data is sent to the UPE in parallel, and each UPE
needs kx × ky cycles to obtain a final result. A CU works
out the data of 4 output channels in parallel, and the UPE
works independently in this case. When the chi = 64, each
UPE undertakes 16-channel input data computing, and the
4-UPE in the CUwork together to obtain a result after kx×ky
clock cycles. UPE can work at 1-group, 2-group, 4-group
synergistic modes. In other words, a CU can process 16, 32,
64 input channels data in parallel and output 4, 2, 1 channel
results, respectively. It depends on the configuration of the
accelerator.
The channel-oriented mode is the most frequent mode

used for CNN inference of CASSANN v2. Another strategy
to reduce the data transfer between the accelerator and off-
chip memory is data reuse. The input buffer stores the
feature map for global reuse, and the data is sent to each CU
by broadcast. The data reuse strategy of the weight is local
reuse, whichmakes the local buffer of weight need to store at
least 16-channel convolutional kernel data. The minimum
ping-pong buffer capacity of the local weight buffer is as
follows:

Cwlocal = 16 × kx × ky (6)

Considering the actual situation, the kernel size of popular
CNN is usually less than 7 × 7 when the input channels
are larger than 64. Moreover, the larger the local buffer
for weights, the larger the data block that the SoC bus can
send. It means the data transfer time can be shorter, which
is beneficial to boost the accelerator’s performance.

3. Experimental analysis and discussion

3.1 Experimental setup
We implement the SoC architecture of Fig. 1 in Verilog.
The details of SoC are as follows. A 256-bit AXI4 bus is
adapted to provide data interaction for the proposed SoC,
and the bus work frequency is set as 800MHz to match the
operating frequency of the off-chip DRAM. In addition, we
place 512KB SRAM for global memory. There are four
computing blocks in CASSANN-v2, and each computing
block has 2-CUs that include 512-PEs in total. The local
weight buffer of UPE is set to 2×2.4KB, and the featuremap

local buffer is set to 2×1.2KB. The size of these local ping-
pong buffers is enough to support the accelerator to parallel
complete 1024-channel data input and 8-channel data output
where the convolution kernel size is 3 × 3. Furthermore, it
should be noted that CUworks in the state of self-circulation
of the input channel, the time interval of data output are as
follows:

∆t =
chi × kx × ky × clk

64
(7)

where the chi is input channels number, kx and ky is the
convolution kernel size, the clk is clock period. CASSANN-
v2 accelerator is work at 1GHz. The proposed SoC has been
synthesized in TSMC 28nm technology and simulated with
GalaxSim of X-EPIC.

3.2 Experimental results analysis
Two classical CNNs, VGG-16 and ResNet-18, are used as
benchmark networks to measure our proposed accelerator
architecture. Fig. 5 shows the comparison between the inter-
mediate feature map data generated by calculating and the
temporary data that needs to be transmitted to the off-chip
DRAM. It can be seen that the adaptive global memory of
CASSANN-v2 has significantly reduced the feature maps
off-chip data transfer of VGG-16 and Resnet-18. Especially
in the ResNet-18, benefiting the output buffer is large enough
to store the intermediate data, it reduced by 76.92%.
Table I provides a detailed comparison with state-of-the-

art accelerators on running the VGG-16 convolutional layers
at the COCO dataset. It can be seen that our work achieved a

Fig. 5 (a) Output data amount of VGG-16. (b) Output data amount of
ResNet-18. The red line is the amount of the actual feature map output data
which needs to transfer to off-chip DRAM. The black line is the amount of
generated output data in computing.

Table I Comparison of performance on VGG-16.

ELEX’21
[25]

Tanji
[26]

JSSC’21
[8]

CASSANN-
X [27]

This
Work

Platform FPGA FPGA ASIC ASIC ASIC
Clock
(MHz)

140 165 400 1000 1000

Precision
(bit)

16 16 12 16 / 8 8

SRAM(KB) NA 313 339.5 2100 742.4
MACs 576 256 324 512 512
Peak
(GOPS)

161.28 84.48 259.2 1024 1024

Throughput
(GOPS)

129.7 66.93 253.7 498.6 1009.54

Normalized
Efficiency

80.42% 79.52% 97.88% 48.69% 98.59%
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Table II Comparision of performance on ResNet.

ELEX’21
[25]

APCCAS
[29]

ISSCC’21
[19]

This
Work

Platform FPGA FPGA ASIC ASIC
Clock
(MHz)

140 199 470 1000

MACs 576 1518 864 512
Peak
(GOPS)

161.28 604.16 812.16 1024

Throughput
(GOPS)

92.16 318.4 331.28 923.24

Normalized
Efficiency

57.14%
ResNet-
18

52.7%
ResNet-
18

38.34%
ResNet-
50

90.20%
ResNet-
18

throughput of 1009.54GOPS, which is far higher than other
work. Part of that is because of the peak performance we
can provide. The calculation method of peak performance
is as follows:

Peak = M ACnum ∗ 2 ∗ Clock (8)

Therefore, we normalized the results for a fair comparison
of the performance between architectures. The normalized
efficiency is calculated as:

Norm. =
Actualthroughput
peakper f ormance

× 100% (9)

As we can see from the normalization result, CASSANN-
v2 has a noticeable improvement in normalized efficiency
compared with other accelerators. In particular, compared
to CASSANN-X [27], we have improved performance by
2.02X and reduced SRAM consumption by 64.65%. Al-
thoughwe used 2.18×SRAM than the JSSC’21 [8]with only
a slight improvement in normalized efficiency, CASSANN-
v2 aremore flexible than JSSC’21 [8], such aswe can support
the residual blocks computing directly.
Table II shows the ResNet-18 inference performance of

CASSANN-v2. Our accelerator can still maintain a high
normalized efficiency when CASSANN-v2 processes the
residual blocks, which is a significant improvement com-
pared to previous works, at least 33.06%. It benefits from
the on-chip globalmemory, avoiding redundant off-chip data
transfer. Moreover, we designed a shortcut module for the
residual block to perform the computing with a data stream
method. The time of residual block computing is hidden in
the convolutional inference. The experiment results on dif-
ferent CNNs proveCASSANN-v2 is a high-performance and
high-flexible architecture. It is achieved 98.59% efficiency
of VGG-16 and 90.20% of ResNet-18, which is better than
state-of-the-art works.

3.3 More discussion
There is no further analysis of power consumption in this
paper. On the one hand, high-performance and low-power
consumption are the two directions of architecture design.
As a high-performance architecture, we have not completed
the optimization for power consumption. On the other hand,
the SoC architecture in this paper is designed at the whole
system level, such as reducing the power consumption bu
cutting down the off-chip memory data access. In the future,

we will turn this SoC into an actual chip and apply it to a
complete computing system to further analyze the power
consumption droop by this architecture.

4. Conclusion

This paper proposes a high-performance CNN accelerator,
CASSANN-v2, which uses a novel global memory struc-
ture and management method. CASSANN-v2 achieves the
adaptive memory adjustment by the parameter configuration
to reduce the intermediate output data transmission. In ad-
dition, the cooperation between the global memory and the
local buffer can maximize the bus utilization rate to improve
performance. The SoC system simulation results of VGG-
16 and ResNet-18 show that CASSANN-v2 can significantly
reduce the temporary feature map data transmission. When
the accelerator worked at 1 GHz, it achieved 1009.54 GOPS
and 923.24 GOPS throughput in VGG-16 and ResNet-18.
Compared with other works, CASSANN-v2 has the high-
est normalized efficiency, which improved by 63.34% on
ResNet at least. It is a remarkable improvement, proving
that CASSANN-v2 is an excellent architecture for CNN ac-
celeration.
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