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Abstract Knowledge and technology transfer to African

institutes is an important objective to help achieve the

United Nations Millennium Development Goals. Plant

biotechnology in particular enables innovative advances in

agriculture and industry, offering new prospects to promote

the integration and dissemination of improved crops and

their derivatives from developing countries into local

markets and the global economy. There is also the need to

broaden our knowledge and understanding of cassava as a

staple food crop. Cassava (Manihot esculenta Crantz) is a

vital source of calories for approximately 500 million

people living in developing countries. Unfortunately, it is

subject to numerous biotic and abiotic stresses that impact

on production, consumption, marketability and also local

and country economics. To date, improvements to cassava

have been led via conventional plant breeding programmes,

but with advances in molecular-assisted breeding and plant

biotechnology new tools are being developed to hasten the

generation of improved farmer-preferred cultivars. In this

review, we report on the current constraints to cassava

production and knowledge acquisition in Africa, including

a case study discussing the opportunities and challenges of

a technology transfer programme established between the

Mikocheni Agricultural Research Institute in Tanzania and

Europe-based researchers. The establishment of cassava

biotechnology platform(s) should promote research capa-

bilities in African institutions and allow scientists auton-

omy to adapt cassava to suit local agro-ecosystems,

ultimately serving to develop a sustainable biotechnology

infrastructure in African countries.

Keywords Cassava � Transformation � Africa �
Technology transfer � Biotechnology

Cassava: a world crop

Cassava originated in South America where it was

domesticated about 8,000 years ago and transported by

Portuguese sailors to west Africa during the sixteenth

century (Léotard et al. 2009; Olsen and Schaal 2007). Since

then cassava production has spread across sub-Sahara

Africa and to Asia and South East Asia. It is a staple food

for approximately 500 million people in about 105 coun-

tries providing as much as a third of daily calorie intake

(FAO 2008a, b). Thus, in the developing world cassava is

amongst the top four most important crops (with rice,

sugarcane and maize) with global production in 2009

estimated at 241 million tonnes. Africa, where cassava is

grown primarily for food, is the largest producer with

yields estimated to exceed 160 million tonnes per year

(FAO 2008b). In Asia and South East Asia the crop is

grown mainly for animal feed and industrial purposes (e.g.

sweeteners, acids and alcohols), with increasing interest in
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developing cassava for biofuel (Balat and Balat 2009;

Schmitz and Kavallari 2009).

Cassava belongs to the genus Manihot, which comprises

about 98 species ranging from small shrubs to tree-like rela-

tives, including M. glaziovii that is used in some countries (e.g.

Nigeria) for rubber production (Nassar 2008). However, it is

the species M. esculenta Crantz (Fig. 1a), also known as

manioc (French), muhogo (Swahili) and pondu (Lingala),

which is grown predominantly in Africa by small-scale

farmers for its starch-rich storage roots (Fig. 1b). Cassava is

drought tolerant and can grow in a range of agro-ecologies

including marginally fertile soils, ensuring that when other

crops fail cassava roots can still be harvested. Furthermore,

cassava is vegetatively propagated via stem cuttings that are

used to multiply stocks and for planting; typically five to ten

cuttings can be obtained from a single plant. This propagation

technique means that in times of famine the farmer does not

consume the ‘‘seed’’ of cassava, unlike other staple crops (e.g.

maize). Despite these advantageous traits cassava production

is generally mediocre with current yields barely averaging

20% of those obtained under optimal conditions, particularly

in Africa (El-Sharkawy 2004, 2006; Fermont et al. 2009). The

importance of cassava and the enormous potential for

improvement therefore makes it a target crop for famine

research to achieve the United Nations Millennium Devel-

opment Goals (UN 2010).

Problems associated with the production

and consumption of cassava in Africa

Cassava production in Africa is greatly constrained by a

number of biotic factors, including cassava green mite

(Skovgård et al. 1993), cassava mealy bug, cassava bac-

terial blight (Boher and Verdier 1994), cassava brown

streak disease (CBSD; Hillocks and Jennings 2003; Hill-

ocks et al. 2001) and cassava mosaic disease (CMD; Patil

and Fauquet 2009). CMD is caused by whitefly transmitted

begomoviruses (family Geminiviridae) for which several

species have been identified throughout cassava growing

regions of Africa (Berrie et al. 2001; Bull et al. 2003, 2006;

Hong et al. 1993; Stanley and Gay 1983). The disease—

characterised by a yellow-green mosaic of the leaves, leaf

distortion, stunted growth and decrease in the size of root—

is probably the most significant biotic constraint to cassava

production in Africa. Although the true incidence and

severity of CMD is difficult to quantify (Sseruwagi et al.

2004), African cassava mosaic virus alone is estimated to

cause 28–40% crop losses totalling 28–49 million tonnes

per year (Thresh et al. 1994, 1997). CBSD is also the result

of a viral infection caused by cassava brown streak viruses.

CBSD is characterised by brown symptoms in the storage

root and brown streaks on the stem. There is only scant

information about CBSD compared to CMD, especially

concerning virus transmission, but recent publications offer

new insights into the molecular characteristics of the virus

and disease etiology (Mbanzibwa et al. 2010; Winter et al.

2010), proffering the opportunity to evolve disease resis-

tance programmes for cassava.

Cassava production is also hindered by numerous abi-

otic factors that include infertile soils, post-harvest root

deterioration, planting of unimproved traditional varieties

and inadequate farming practices. The planting of sub-

optimal material, for example unimproved varieties or

diseased cuttings, is exacerbated by the virtue that cassava

is vegetatively propagated; without an organised and

Fig. 1 Cassava (Manihot
esculenta Crantz) (a) and

storage roots harvested in

Kenya (b), photograph courtesy

of Charles Orek
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systematic dissemination of disease-free and improved

cultivars, inferior material may be grown and distributed

between farmers. This problem is often compounded by

inefficient planting densities, as well as poor weed, pest

and disease management. Unfortunately, even effective

farming practices and good yields can be significantly

impeded by post-harvest physiological deterioration (PPD).

This is an endogenous process that results in the appear-

ance of blue/black streaks in the roots, colloquially known

as ‘vascular streaking’ (Averre 1967), and is due to the

oxidation of phenolic compounds, in particular scopoletin

(a hydroxycoumarin involved in plant defense; Buschmann

et al. 2000), by reactive oxygen species (Huang et al. 2001;

Reilly et al. 2004, 2007). PPD can occur within 48 h after

harvest depending on the cultivar and climate, and renders the

root unpalatable and unmarketable (Drummond 1953). Ergo,

various approaches are being implemented to tackle PPD and

improve the shelf-life of cassava roots, including breeding

(Morante et al. 2010) and biotechnology (Blagbrough et al.

2010; S. E. Bull et al., unpublished data; E. Nyaboga et al.,

unpublished data). Additional complications associated with

cassava consumption also include the poor nutritional content

of storage roots (Montagnac et al. 2009a) and the potentially

toxic quantities of cyanogen compounds (Barceloux 2009;

Kamalu 1995; Montagnac et al. 2009b; Sundaresan et al.

1987). The aforementioned biotic and abiotic factors alto-

gether significantly impact upon crop yields, root quality,

economic costs, marketability, consumer availability and

commercial processes. These obstacles are fundamental to

cassava research projects and breeding programmes today.

Cassava breeding and transformation

Cassava research relies upon continuous advances in both

knowledge and technology for researchers to effectively

undertake and implement projects aimed at improving the

crop. Conventional breeding programmes have long been

key in encouraging these advances and with the estab-

lishment of the International Institute of Tropical Agri-

culture (IITA) in Nigeria and the International Centre of

Tropical Agriculture (CIAT) in Colombia, in addition to

other international research centres and national agricul-

tural research systems (NARS), the last 30–40 years have

seen improved knowledge of the crop, enhanced produc-

tivity and modernisation of cultural practises (Ceballos

et al. 2004; Kawano 2003; Nassar and Ortiz 2010). Tra-

ditional breeding has resulted in the introgression of

important traits into the cassava germplasm with major

improvements recorded for bacterial blight resistance, virus

resistance (Hahn et al. 1980; Okogbenin et al. 2007),

protein content (Chávez et al. 2005) and starch quality

(Ceballos et al. 2007). However, traditional breeding

techniques face several limitations, notably the heterozy-

gous nature of the crop renders it difficult to identify the

true breeding value of parental lines, also there is only

limited knowledge of inheritance traits that have agro-

nomic importance (Ceballos et al. 2004; Nassar and Ortiz

2010). Thus, production of improved plant lines by con-

ventional breeding can take approximately 10 years from

the first parental crossing to distribution of the improved

plants (Rudi et al. 2010). Moreover, introgression of the

selected trait(s) into locally adapted and farmer-preferred

cultivars without affecting their favoured characteristics

remains difficult. Notwithstanding these complications,

advances in molecular mapping (Akano et al. 2002;

Okogbenin et al. 2007), sequencing of cDNA clones and

expressed sequence tags (Anderson et al. 2004; Lokko

et al. 2007; Sakurai et al. 2007), marker-assisted breeding

(Rudi et al. 2010) and in particular the recent elucidation of

the cassava genome sequence (Cassava Genome Project

2009) offer exciting new tools for both conventional

breeding and biotechnology research.

The ability to use biotechnology to enhance cassava was

proved possible in the mid 1990s with the production of

transgenic material by two separate research groups.

Researchers at ETH Zürich (Li et al. 1996) used Agro-

bacterium-mediated transformation of somatic cotyledons

that were regenerated via organogenesis. At the same time

researchers at the International Laboratory for Tropical

Agricultural Biotechnology (ILTAB) and the University of

Bath (United Kingdom) regenerated transgenic plantlets

from totipotent tissue known as friable embryogenic callus

(FEC) that was transformed by microparticle bombardment

(Schöpke et al. 1996; Taylor et al. 1996). Subsequently a

combination of the two techniques (Agrobacterium-medi-

ated transformation of FEC; González et al. 1998; Zhang

et al. 2000) became more widely adopted. However,

despite the original techniques being published approxi-

mately 15 years ago, the uptake and success rate by

laboratories has been particularly poor. In Africa, the

production of transgenic material has been communicated

(Hankoua et al. 2006) but maintaining the technique

appears to be problematic, while publications from several

western laboratories report generating only a few inde-

pendent transgenic lines (e.g. Chellappan et al. 2004;

Ihemere et al. 2006; Vanderschuren et al. 2007). The

lack of uptake has been largely attributed to the tech-

nique(s) being complicated and labor-intensive, but also

affected by low regeneration efficiency of plantlets from

somatic embryos (Baba et al. 2008), intrinsic variation

(including tissue quality) between transformation experi-

ments (Schreuder et al. 2001), difficulty in using the pro-

tocol with farmer-preferred cultivars and the potential for

chimeras and somaclonal variation (Raemakers et al. 1997;

Raemakers et al. 2001; Zhang and Gruissem 2004).
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Despite the potential complications associated with

transformation, recent publications highlight the capacity

of the crop to be improved. Welsch et al. (2010) increased

vitamin A content in the roots using over-expression con-

structs containing a phytoene synthase gene. Zhang et al.

(2003a) improved protein content via the expression of

asp1 (an artificial storage protein) and more recently

developed plants with enhanced drought resistance (Zhang

et al. 2010). Gene silencing techniques have brought about

a reduction in cyanogen content (Jørgensen et al. 2005),

improved starch for industrial applications (Raemakers

et al. 2005), as well as developing resistance to cassava

mosaic virus in transgenic cassava (Vanderschuren et al.

2007, 2009; Zhang et al. 2005). Of course, developing

transgenic cassava is not always undertaken with the

exclusive aim to improve the crop, but as with other spe-

cies it provides a useful tool to improve our understanding

of the plant. For example, Beltrán et al. (2010) and Zhang

et al. (2003b) published research addressing promoter

specificity in cassava. These various publications highlight

the capacity for cassava to be improved to tackle a number

of the constraints noted above, as well as reinforce the need

to develop cassava transformation techniques to accelerate

research.

Scientists from the University of Bath (UK) and ETH

Zürich (Switzerland) experienced many of the compli-

cations with transformation systems first hand while

developing transgenic cassava to study post-harvest root

deterioration and virus resistance (Vanderschuren et al.

2007, 2009), as part of the BioCassava Plus initiative

funded by the Bill & Melinda Gates Foundation. Despite

good resources the consistent difficulty to reliably gen-

erate transgenic cassava stimulated a comprehensive

review of the protocol(s), resulting in the recent publi-

cation by Bull et al. (2009). Numerous improvements

simplified the procedure ensuring it is more robust, reli-

able and requires minimal expertise in tissue culture

techniques. As such it has received interest from several

groups internationally and appeared to be suitable for

implementation in other laboratories, including those in

developing countries.

Plant biotechnology to help meet the millennium

development goals in Africa

Emerging technologies offer new prospects to promote the

integration of crops and their derivatives from developing

countries into the global economy (Brink et al. 1998). Plant

biotechnology is one such technique that enables innova-

tive advances in agriculture and industry and has the

potential to broaden knowledge and provide solutions to

some of the most intractable challenges faced in African

countries (Delmer 2005; Thomson 2007), in particular

eradicating extreme poverty and hunger—goal 1 of the

Millennium Development Goals (UN 2010).

The implementation of plant biotechnology in Africa

requires an infrastructure of various disciplines, incor-

porating scientific expertise, policy, regulatory and

institutional frameworks (Gopo and Kimeri-Mbote 2005).

In Africa, only a few countries produce transgenic

material and it remains problematic to ‘‘commercialise’’

the products for dispatch to farmers and growers. The

lack of uptake of biotechnology is in part due to many

African institutes simply not having the capacity or

necessary expertise to undertake basic tissue culture

techniques and to develop transgenic material (Wekundah

2003). As such, most transgenic crops grown in Africa are

imported. In 2009, transgenic maize was grown in Egypt

and South Africa, transgenic cotton in Burkina Faso and

South Africa and transgenic soybean also in South Africa

(James 2009). In addition, there are insufficient policies

and regulatory frameworks, such as biosafety, education

and long-term environmental assessments to govern the

use of plant biotechnology downstream of the laboratory

for agricultural improvement and industrial applications.

These considerations are not exclusive to Africa but apply

to many other countries where transgenic crops are

developed and grown (Rommens 2010). Thus, despite the

potential for plant science to contribute significantly to

achieve the Millennium Development Goals, there is a

pressing need to strengthen the biotechnology infra-

structure in Africa.

Programmes to tackle the issues discussed above are

being established in Africa with support from interna-

tional research institutes and organisations. For example,

the ten eastern and central African countries have

received support from the Association for Strengthening

Agricultural Research in Eastern and Central Africa

(ASARECA) to build capacity in plant biotechnology.

Additionally, the Biosciences for Eastern and Central

Africa (BecA) in Kenya—a New Partnership for Africa’s

Development (NEPAD) initiative—have enabled the

building of state-of-the-art facilities to support African

countries in plant biotechnology research. Other labora-

tories in Tanzania, Rwanda, Uganda, Kenya, Malawi,

Mozambique and Zambia have been incorporated in

NARS programmes to strengthen their capacity in CMD

diagnostics with support from the Bill & Melinda Gates

Foundation and led by scientists at MARI, Tanzania. To

be successful, these capacity building strategies must be

integrated into international research to ensure a favour-

able and competitive environment for sustainable devel-

opment in Africa.
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Plant biotechnology transfer to Tanzania: a case study

As part of a supplementary grant received from the Bill &

Melinda Gates Foundation BioCassava Plus programme, a

knowledge and technology transfer partnership (KTTP)

between ETH Zürich, the University of Bath and MARI in

Dar es Salaam, Tanzania, was established. New facilities

were built at MARI with funds from the Rockefeller

Foundation but unfortunately local scientists lacked the

expertise to successfully undertake transformation experi-

ments. Therefore, following official approval for contained

research and an initial training phase for staff at MARI, the

KTTP commenced. MARI scientists working with the

Europe-based researchers have since produced in vitro

embryos of elite and farmer-preferred cultivars grown in

Tanzania (i.e. Kibandameno, TME7, Mahando, Katakya,

Sagalatu, Mzungu and Milundikachini). The early stages in

the transformation procedure have been successfully

implemented as attested by the production of transgenic

FEC from cultivar TMS60444 and the regeneration of

embryos on antibiotic selection media (Fig. 2a, b). The use

of a pCAMBIA binary vector containing the GUS reporter

gene (accession number AF234297.1) allows an easy

evaluation of progress since transformed material (FEC,

cotyledons, plantlets, etc.) develop a blue precipitate

following a GUS assay (see Bull et al. 2009 for details;

Fig. 2c, d). From this on-going initiative to establish a

sustainable cassava transformation platform, we draw on

our experiences and highlight below some criteria that we

consider important for a successful KTTP in Africa.

Reliable and efficient procedure

The optimized cassava transformation protocol (Bull et al.

2009) is the culmination of nearly 2 years research to

troubleshoot each step of the procedure. A key improve-

ment was the introduction of fine plastic mesh on which

transformed tissue cultured material is spread for incuba-

tion on media. This approach (also used in transformation

of Brachypodium distachyon; Alves et al. 2009) allows

easy transfer of material to freshly prepared media, which

not only potentially reduces fluctuations in nutrient

Fig. 2 Agrobacterium
inoculation of FEC from

cultivar TMS60444 (a),

regenerating embryos (indicated

by arrows) on hygromycin

selection media (b), GUS assay

using TMS60444 FEC (c) and

regenerating embryo

(d) transformed with pCAMBIA

plasmid containing GUS

reporter gene at MARI,

Tanzania. Transformed material

produces a blue precipitate
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concentrations but also lessens the time required for han-

dling tissue. This is especially important to prevent

microbial contamination—a consideration for all research

groups, but particularly relevant for laboratories in tropical

climates where airborne pathogens/spores may be more

prevalent. The concentration of antibiotic (hygromycin)

for selection of transformed FEC was also optimised to

improve regeneration capacity and efficiency. Collectively,

the introduced modifications mean it is no longer necessary

to perform time consuming high-throughput or repetitive

screening of hundreds/thousands of plantlets to identify key

lines with single T-DNA insertions. A reliable and robust

system is vital for successful uptake by research groups

that will invariably have different equipment, facilities,

financial status and expertise.

Collaboration and communication between partners

All collaborative projects are based on effective commu-

nication and each partner having clearly defined goals.

Since the generation of transgenic cassava is a lengthy

process (approximately 6 months) it prevents continuous

day-to-day guidance in MARI by the advisors, but short

visits (several days) every few months coupled with email

communication (weekly) proved sufficient to minimise the

risk of any problems or issues arising. In addition, there is a

broad level of management at MARI that requires several

people to consent to approving project ideas and day-to-

day decisions. As such it is important to maintain effective

coordination and consultation between advisors and host

institute staff to avoid delays in the research and without

creating other complications.

Capacity building and appreciation for differences

between Western and African laboratories

‘‘The differing cultural, economic and environmental

conditions between countries mean that there can be no

one size fits all solution’’ (Beddington 2009). Facilities,

expertise and laboratory management, for example, vary

between all research groups and a fortiori between Euro-

pean and African laboratories. Therefore, for a KTTP to be

genuinely successful it requires trained scientists to base

the project at the host institute. As the initiative progresses

then a visit to the supervising laboratories can help the

African researchers hone their skills and knowledge. This

approach maximises the input of the advisors, is directly

beneficial to the host institute, optimises the financial

support and learning process; a KTTP must encompass two

or more dedicated scientists in the host institute for a

programme of successive education to occur, thus avoiding

the risk of an institute being left without expertise if people

move elsewhere.

Foreseeing potential high risk problems

and restrictions/limitations

As noted in the sections above, there may be fundamental

differences between laboratories that need to be considered

when planning a KTTP. For example, power failures,

which are unprecedented in Western institutes, can be

common place in laboratories in developing countries. In

addition, the maintenance of equipment is potentially a

high risk problem since the host institute may not readily

have access to supply services and, in our experience, it

may take several weeks or months for basic and essential

equipment to be repaired or replaced. This is primarily due

to companies not having adequate local stocks in Africa,

usually requiring items to be ordered from abroad. A

similar scenario occurs when obtaining chemical and

general consumables, which can be exacerbated by serious

delays at country border customs. Restrictions such as

these are manageable but require foresight to predict and

resolve in order to prevent significant losses to time, tissue

culture stocks, materials and indubitably, motivation.

Sustained investment by funding organisations

The establishment of a new platform for technology

requires a sustained investment for it to be successful in the

long term. This is especially so with cassava transformation

that requires nearly 6 months to undertake and relies on

daily maintenance of stocks and propagation of in vitro

material. Without continued funding there is the potential

risk that transformation facilities, like those at MARI, will

be abandoned and as a result remain located in just a few

laboratories worldwide, most likely in developed countries.

This will lead to groups outsourcing their research despite

potentially being able to perform the work themselves.

Whilst there are clear benefits to outsourcing some tasks,

there is evidence to suggest that the production of trans-

genic crops in developing countries should be undertaken

locally. It certainly ensures local intellectual and physical

ownership of the products, thereby enhancing the proba-

bility of uptake by end users (Cohen 2005; Pray et al. 2002;

Raney 2006).

Engaging government and local officials, scientists,

farmers and the general public

Establishment of a transformation platform in Africa

should allow the local scientists and officials to build

confidence in the process and eventual products to coor-

dinate more effectively the dissemination of information

regarding transgenic cassava. Without this process, the

undertaking of projects involving transgenic material is

unlikely to progress beyond the laboratory phase. A recent
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case study addressing farmers’ knowledge of transgenic

crops in Tanzania confirms the importance of improving

awareness and education, highlighting that an infrastruc-

ture to link science, agriculture, health, development and

communities is required (Lewis et al. 2010). The applica-

tion to Tanzanian authorities for the approval of contained

research activities at MARI was managed locally. The

Tanzanian authorities were professional and cautious with

the implementation of new research activities, but com-

munication between local scientists and officials allowed

steady progress and the opportunity to implement the

KTTP. Clearly, the experience and advice that can be

provided by some Western research groups, institutions,

agencies and so forth is necessary to aid African

researchers and government officials as the subject of

transgenic crops is increasingly discussed. Ultimately,

however, this is to provide Africans the autonomy to

undertake their research and utilise new technologies as

appropriate.

Outlook for cassava transformation in Africa

The case study above briefly outlines important consider-

ations that we experienced while undertaking the KTTP in

Tanzania. This venture will not produce a plethora of

transgenic material with various desirable traits suitable for

field tests in the coming months. Instead, however, we seek

to begin the gradual expansion of a sustainable infra-

structure to enable independence and allow African sci-

entists to have greater ownership of their research

activities. The programme in Tanzania is not unique,

similar KTTP are underway in South Africa and also in

Kenya with the support of researchers from ETH Zürich.

Notwithstanding, establishing transgenic cassava is not the

panacea to solving food shortages in Africa (Fermont et al.

2010) but it is an additional tool that along with traditional

plant breeding and improvements in farming practises

should better equip developing countries to tackle the many

problems associated with cassava production and con-

sumption. It is a necessary undertaking if the Millennium

Development Goals are to be achieved. Complete success

with the delivery of integrated and stable cassava trans-

formation platforms in Africa is an important and realistic

target that draws closer and with it we can ensure that the

necessary knowledge, skills and responsibilities are trans-

ferred directly to the hands of those whose futures may rely

upon it.
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