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Abstract

Motivation: Secondary metabolites (SM) are structurally diverse natural products of high pharma-

ceutical importance. Genes involved in their biosynthesis are often organized in clusters, i.e., are

co-localized and co-expressed. In silico cluster prediction in eukaryotic genomes remains problem-

atic mainly due to the high variability of the clusters’ content and lack of other distinguishing

sequence features.

Results: We present Cluster Assignment by Islands of Sites (CASSIS), a method for SM cluster pre-

diction in eukaryotic genomes, and Secondary Metabolites by InterProScan (SMIPS), a tool for gen-

ome-wide detection of SM key enzymes (‘anchor’ genes): polyketide synthases, non-ribosomal

peptide synthetases and dimethylallyl tryptophan synthases. Unlike other tools based on protein

similarity, CASSIS exploits the idea of co-regulation of the cluster genes, which assumes the exist-

ence of common regulatory patterns in the cluster promoters. The method searches for ‘islands’ of

enriched cluster-specific motifs in the vicinity of anchor genes. It was validated in a series of cross-

validation experiments and showed high sensitivity and specificity.

Availability and implementation: CASSIS and SMIPS are freely available at https://sbi.hki-jena.de/

cassis.

Contact: thomas.wolf@leibniz-hki.de or ekaterina.shelest@leibniz-hki.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Secondary metabolites (SM), also often referred as natural prod-

ucts, are substances with outstanding diversity of biological activ-

ities, including pharmaceutically important ones, e.g. antibiotic,

toxic, immunosuppressant. They are produced primarily by micro-

organisms (fungi, bacteria, algae). Genes responsible for SM bio-

synthesis and also for modifications, transport, regulation, etc., are

often organized in clusters (Brakhage and Schroeckh, 2011). Here,

we define clusters as sets of co-localized and co-regulated genes,

the products of which are presumably functionally connected.

In fungi, SM clusters typically have modest sizes (normally up to

20 genes), are characterized by tight co-localization of successive

genes and are often regulated by a cluster-specific transcription

factor (csTF), which can be a part of the respective cluster

(Brakhage, 2013; Keller and Hohn, 1997). In many cases, also not

csTF can regulate SM clusters (Hoffmeister and Keller, 2007).

Recently, an example of cross-cluster regulation was described in

fungi: activation of the csTF of a cluster led to upregulation of an-

other cluster on a different chromosome; in addition to the own

cluster (Bergmann et al., 2010). In this example, elucidation of the

cluster specific motif helped to understand the mode of regulation

of the second cluster.
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Two SM classes of particular importance are synthesized by

multimodular megasynthases: polyketide synthases (PKS) and non-

ribosomal peptide synthetases (NRPS) or PKS–NRPS hybrids. In

eukaryotes, in particular in fungi, these enzymes are characterized

by specific multidomain structure and large size, which makes them

easy to detect in the genomes. The other cluster members, however,

are more difficult to identify since the clusters’ content varies greatly

and there are no stable cluster markers (i.e. genes that would always

accompany a megasynthase). This constitutes the first challenge for

computational prediction of clusters.

The second challenge is the scarcity of the experimental data.

The main body of experimental evidence for SMs and their biosyn-

thetic pathways comes from bacteria and is not always applicable to

eukaryotes. For instance, amino acid specificity of adenylation do-

mains is quite well predictable from NRPS structure (Eppelmann

et al., 2002; Stachelhaus et al., 1999) in bacteria but the same mod-

els do not work for fungi (Boettger et al., 2012). Fungal data are ra-

ther scanty, in total <40 clusters are fully described so far (collected

in this study, see Supplementary Table S1).

Most cluster prediction tools developed heretofore depend on

domain homology, e.g. antiSMASH (Blin et al., 2013), SMURF

(Khaldi et al., 2010), CLUSEAN (Weber et al., 2009) or ClustScan

(Starcevic et al., 2008). These tools rely on collections of protein do-

mains found in known clusters and predict new clusters by searching

for these domains. This approach works well for similar clusters but

has difficulties when encountering new cluster members (i.e. the pro-

teins with new functions, with domains unknown to the system).

Besides, it is known that not all successive genes in a cluster region

belong to the cluster, e.g. at least four genes within the aflatoxin

cluster are ‘gap’ genes that are not conserved and not assigned to the

aflatoxin or sterigmatocystin biosynthesis (Amaike and Keller,

2011). Consideration of domains of the gap genes leads to erroneous

predictions. All these problems together with the limited number of

eukaryotic ‘template’ clusters make similarity-based methods error-

prone and tending to overestimate the clusters’ lengths, when

applied to eukaryotes. Homology limitations might be bypassed by

applying other approaches, such as window-averaged DNA curva-

ture profiles (Do and Miyano, 2008) or methods relying on expres-

sion data, like microarrays, etc. (Andersen et al., 2013). But these

methods are limited in their applications. The former is restricted to

LaeA-like regulated clusters, the latter require expression data,

which can be problematic because most fungal clusters are silent

under laboratory conditions (Brakhage and Schroeckh, 2011) and

their induction is a challenging task.

Of all existing cluster predicting tools, antiSMASH is the most

prominent, reliable and very much recommendable to use.

Nonetheless, there is one type of useful information that is ignored

by the similarity approach that is utilized by antiSMASH: the infor-

mation about common TF binding sites that characterize the clus-

ters. Since the cluster genes are co-regulated, their promoters should

share the transcription factor binding sites (TFBS) for the common

regulator. Taking into account this additional layer of information

can improve the cluster prediction and supply with additional useful

characteristics, such as the shared regulatory pattern and the nature

of the regulating csTF.

Recently, we suggested an approach to detect eukaryotic gene

clusters by estimating the density of binding motifs for csTF. The

density must be higher within the clusters and lower, although not

completely abolished, in other parts of the genome. The method,

and the tool based on the method, is called Motif Density Method

(MDM, Wolf et al., 2013). MDM showed high specificity and sensi-

tivity and was able to solve difficult problems like distinguishing

closely located clusters (separated by just several genes), the task un-

solvable for similarity-based tools (Wolf et al., 2013). After having

solved the main problem—the usage of promoter information for

cluster prediction—we wanted to improve the method making the

algorithm more transparent and the tool easier to handle.

Here, we present ‘Cluster Assignment by Islands of Sites’

(CASSIS), the further development and improvement of MDM. We

made several changes, most importantly in the prediction algorithm,

which are described in detail in the ‘Methods’ section. In short, in-

stead of estimating the motifs’ density in a sliding window, we

applied a set of rules to identify the borders of the motif ‘islands’

around the anchor gene. The introduced changes improved the per-

formance and made the algorithm simpler and more straightfor-

ward. The CASSIS method is implemented in a tool with the same

name. An online version as well as downloads for Windows and

Linux is available. Besides, we added a small tool called ‘Secondary

Metabolites by InterProScan’ (SMIPS) for the fast and easy genome-

wide detection of SM anchor genes, e.g. PKS, NRPS and dimethy-

lallyl tryptophan synthases (DMATS). SMIPS results can be directly

sent to the CASSIS tool or used separately to describe the SM bio-

synthetic potential of a species.

2 Methods

The SMIPS and CASSIS tools are two discrete software tools, with

the option to run CASSIS on the output of SMIPS. In this section,

we provide a step-by-step description of the entire work-flow.

2.1 Training data

A positive training set of 38 known (experimentally proven) SM

gene clusters was used to estimate the parameters of the CASSIS

search. This collection is restricted to clusters which have been veri-

fied experimentally by gene inactivation (disruption, deletion or

knock-out), gene over-expression experiments, assigning gene func-

tions to steps in the biosynthesis, or observable co-regulation of

transcription. This set was manually collected based on literature

and can be found in Supplementary Table S1.

For comparison with SMURF and antiSMASH, the training set

for CASSIS included the 24 clusters that were published in 2010 or

earlier (and hence could have been used for training of SMURF and

antiSMASH, too). Whereas, the test set contained only the 12 clus-

ters that were ‘new’ for all three compared tools, i.e. published in

2011 or later (see Supplementary Table S1).

The genome sequences, protein sequences and corresponding gene

annotations were downloaded from the Broad Institute (http://www.

broadinstitute.org) or Aspergillus Genome Database (Cerqueira et al.,

2014).

2.2 Evaluation

To assess the accuracy, precision, etc., of CASSIS and compare these

characteristics with other tools, we ran cross-validation experiments.

In each prediction, correctly identified cluster genes were considered

as true positives (TP). The total number of TP was the sum of all

genes of the considered clusters. The cluster genes not detected as TP

by a predictive tool were counted as false negatives (FN), genes pre-

dicted outside the genuine clusters were false positives (FP). To obtain

a feasible number of true negatives (TN), which are in general all

non-cluster genes and hence make a huge number for a whole contig

or a chromosome, we restricted the considered genomic region to

630 genes around the anchor gene (because the largest so far known

cluster—aflatoxin—contains about 30 genes). Note that this

CASSIS and SMIPS 1139
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restriction was used only for counting TN. For quantitative compari-

son of the tools, we calculated sensitivity (recall), specificity, preci-

sion, false discovery rate (FDR), accuracy and F1-score according to

standard definitions as derived from confusion matrix.

2.3 SMIPS tool

SMIPS is a small tool for the genome-wide prediction of PKS, NRPS

and DMATS. SMIPS’ input can be a protein FASTA file or an

InterProScan output file. For the latter, SMIPS accepts the formats

of InterProScan or the JGI tables (for details see https://sbi.hki-jena.

de/smips/Help.php#Input).

The representative set of protein domain models for each enzyme

type was collected by scanning available known fungal PKS, NRPS

and DMATS. The collection was extended with known sets of SM

domains from bacteria and plants (e.g. Blin et al., 2013). The final

list of all considered InterPro (IPR) accession numbers is shown in

Supplementary Table S2.

SMIPS extracts all genes with at least one IPR number coinciding

with the preselected SM domain list (Supplementary Table S2). The se-

lected genes are evaluated for the occurrence of a set of domains typic-

ally sufficient for the full enzymatic activity (‘minimal set’ of domains

characteristic for each SM type): KS, AT and ACP for PKS; A, C and

T for NRPS; a single domain with prenyltransferase activity is suffi-

cient for a DMATS (see Supplementary Table S2 for abbreviations).

Incomplete NRPS and PKS forms (i.e. possessing more than one

domain but not the minimal set) are reported as ‘NRPS-like’ or ‘PKS-

like’. Single KS, C and AT domains are reported separately (e.g. ‘KS-

only’). Finally, the domain arrangement of a gene is reported in simple

text format (e.g. KS-AT-ACP). SMIPS output contains tables with all

genes with at least one typical SM domain, and with all information

for each putative SM gene: name, type, domain arrangement, etc.

SMIPS is very fast. On an Intel Core2Duo CPU, running at

3GHz, it always takes less than a second to analyze the

InterProScan files.

2.4 Choosing the promoter length

To estimate the optimal length of promoter sequences to be ex-

tracted, we performed an analysis of experimentally proven fungal

TFBS from two databases (TRANSFAC, status of 2012, and FunTF,

an in-house database for fungal TFBS). All TFBS were mapped on

the respective genomic sequences and the distance to the corres-

ponding transcription start site (TSS) was measured. The mapping

results (Fig. 1) suggest that the overwhelming majority of genuine

sites are located in the region �1000/þ50bp around the TSS. This

range is therefore the recommendable length of promoter sequences,

at least for the analysis of TFBS occurrences.

2.5 CASSIS tool for SM cluster predictions

CASSIS is the successor of MDM published in 2013 (Wolf et al.,

2013). It underwent several changes in the algorithm but the main

idea remained the same: the sites for a TF regulating co-expressed

cluster genes must be more dense (or form ‘islands’) within the clus-

ter region.

CASSIS requires two input files: (i) genome sequence (contigs,

chromosomes) in FASTA format; (ii) the corresponding annotation

with start position, stop position and strand orientation of each

gene. The user also needs a list of genes serving as ‘anchors’ for the

future clusters. The latter can be SMIPS output or any other list of

genes (e.g. manually selected). Principally, CASSIS is not restricted

to only SM cluster predictions and will work for any anchor gene.

2.5.1 Promoter sequences

Before starting any prediction, CASSIS retrieves all promoter se-

quences genome-wide (based on the annotation file). The standard

promoter range (�1000/þ50 around TSS) applies if the intergenic

region is >1kb (or 2 kb for two non-overlapping promoters). If the

promoter is bidirectional (overlapping) or the intergenic region is

<1kb, the whole intergenic region is retrieved. No promoter se-

quences are considered for genes overlapping by the 50-ends.

2.5.2 Motif search

The tools MEME and FIMO (Bailey and Elkan, 1994; Grant et al.

2011; Bailey et al. 2009 (suite); http://www.meme-suite.org),

required for the next two steps, are not incorporated into CASSIS

and should be therefore pre-installed on the system.

The first three steps of the prediction (selection of the interim

promoter sets, MEME and FIMO searches) are made as described in

the initial MDM publication (Wolf et al., 2013). In short, motifs

(putative binding sites) are searched in interim sets of promoters

around the anchor gene. Since the length of the cluster and the loca-

tion of the anchor gene within the cluster are unknown, CASSIS

automatically prepares several promoter sets around the anchor

ranging from three to 15 promoters upstream and downstream the

anchor gene, in total up to 250 different sets (Fig. 2). All sets are

sent to MEME for prediction of over-represented motifs.

MEME is run for each set with the following search parameters:

any number of repetitions (ANR); one motif to find; motif width

6–12 bp. To select the motifs for further analysis, CASSIS applies

the following restrictions: (i) the motif must be found in the pro-

moter of the anchor gene; (ii) the motif must be in more than one

promoter; and (iii) the MEME E-value must not exceed a certain

estimated cut-off (see Section 2.5.5). All MEME input and output

files are preserved.

The motifs fulfilling the requirements are automatically sent to

FIMO (Grant et al., 2011), which predicts the motifs’ occurrences in

all promoters of the considered genome. Thus, the FIMO input is

the FASTA file with genome-wide extracted promoter sequences.

The search is restricted by a p-value cut-off (see Section 2.5.5).

Based on the FIMO results, CASSIS counts the number of motifs per

promoter. At this step, the motif can be rejected if: (i) it is not found

in the promoter of the anchor gene (this can happen because of the

FIMO cut-off); (ii) it is not found in any other but the anchor pro-

moter; (iii) the motif is too frequent, i.e. is found in more than a
Fig. 1. Choosing the promoter range. The great majority of the genuine fungal

TFBS from TRANSFAC and FunTF map to the region �1000/þ50bp

1140 T.Wolf et al.
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certain percentage of all promoter sequences (see Section 2.5.5 for

parameter settings).

2.5.3 Transforming the genomic sequence into the sequence of

promoters

On this step, the genomic sequence is seen as a sequence of pro-

moters. This means that promoters are considered as units charac-

terized by the number of occurrences of the considered motif (Fig. 2,

Step D). The genomic sequence is in this way transformed into a

string of numbers, each number representing the motifs’ occurrences

in a unit (promoter). For instance, if one motif was found in the first

promoter, two motifs in the second, and 0 in the third and fourth

promoters, the string will be 1–2–0–0. SM clusters should represent

the regions with the highest density of the motifs (in other words, ‘is-

lands’ of non-zero numbers in the number string).

2.5.4 Defining the cluster borders

The anchor gene’s promoter is taken as seed for the cluster predic-

tion. CASSIS scans the number string immediately upstream and

downstream of the anchor promoter until it hits the first ‘zero’ value

(promoter without binding site). If one or two zeroes are followed

by a non-zero value, they are included in the cluster (gap rule ‘�2

zero-promoters’, see Section 2.5.5). If more than two zeroes are

found in a row, the cluster is interrupted. The last non-gap promoter

marks the border of the cluster prediction. This step is carried out

for each motif (Section 2.5.2). If this leads to multiple different clus-

ter borders, the most abundant one will be considered. The output

of CASSIS contains the locus IDs of the first and last genes corres-

ponding to the promoters flanking the predicted cluster, the motif

and promoter information, and the length of each prediction.

2.5.5 Adjustable parameters and their estimation

CASSIS can be fine tuned by adjusting four parameters, two of them

being intrinsic CASSIS features, whereas the other two are the par-

ameters of MEME and FIMO search. Since the motif prediction

plays pivotal role in the further analysis, refining the latter by adjust-

ing the E-value and p-value cut-offs for MEME and FIMO, respect-

ively, can be crucial for the whole cluster prediction. The CASSIS

default parameters for MEME and FIMO are estimated using the

training set of experimentally verified SM clusters (Section 2.1). The

option to tune these parameters is provided in CASSIS.

The two intrinsic CASSIS parameters are (i) the proportion of

promoters with the motif in the genome (reflecting the genome-wide

motif frequency); and (ii) the maximal allowed number of ‘zero’

promoters (‘gaps’) within the cluster. These parameters are esti-

mated using a training set (e.g. of experimentally verified SM clus-

ters) and can be further adjusted by the user. The gap parameter is

restricted at the upper border by five promoters. The parameters are

considered optimal if they give rise to the predictions with the small-

est deviation. For the Ascomycete training set (Section 2.1), the par-

ameter values were: frequency 14% and gap �2 zero-promoters

(based on the observation of the largest gap in real clusters).

2.5.6 Runtime analysis

We applied CASSIS to the training set of 38 known gene clusters

(Supplementary Table S1) on a machine with Intel Xeon CPUs run-

ning at 2.7GHz. Using more than one CPU automatically turns on

the parallelization of the MEME and FIMO steps. First, we allowed

CASSIS to use up to 60 CPUs. Time measurements yield that it takes

about 3min in average to predict the cluster for a given anchor gene.

Allowing only two CPUs, which should give results similar to a

usual desktop computer, the prediction takes about 40min in

average.

3 Results

3.1 New features of CASSIS and prediction of SM

enzymes by SMIPS

CASSIS is the improvement of the previously established MDM tool

(Wolf et al., 2013). CASSIS is not similarity based and exploits the

properties used for the definition of clusters, namely the co-localiza-

tion and presumable co-regulation of cluster genes. The co-regula-

tion assumes the occurrence of binding sites for the common

regulator (TF) in the promoters of cluster genes. The task of the clus-

ter prediction is thus restricted to the task of finding a region around

the anchor gene, where the promoters share a common binding site.

Importantly, the promoters sharing the site should form an ‘is-

land’—a mostly uninterrupted group separated from non-cluster re-

gions by long stretches of ‘motif-less’ promoters. This does not

mean that the same sites cannot occur outside the cluster: they can

exist but should be far enough not to interfere with the cluster

(moreover, they can be indicators of other genes regulated by the

same TF, thus the information about them can be valuable).

In the course of improvement of the MDM method and collect-

ing more observations of real clusters, we realized that the

Fig. 2. CASSIS algorithm. (A) Interim promoter sets around the anchor gene

are submitted to MEME for motif prediction. (B) All found motifs are selected.

(C) The motifs are submitted to FIMO for the genome-wide prediction in pro-

moter (Pr) sequences. (D) The sequence of promoters, each characterized by

the number of found motifs, is considered as the string of numbers. This

number string is searched for an ‘island’ of mostly non-zero values, which is

regarded as the cluster

CASSIS and SMIPS 1141
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prediction algorithm can be simplified, so that the scoring system

applied in the MDM version can be dropped. Instead of the ‘frame

scores’ used in MDM, we now applied a more straightforward ap-

proach of ‘gap rules’ as described in Section 2.5.4. This made the al-

gorithm more transparent, easier to adjust and easier to interpret.

Besides this innovation, we added and improved several features.

We drastically increased the number of promoter sets (from 7 to

250), which are submitted to MEME for motif prediction. This

makes the search for the best common motif more precise, improv-

ing the accuracy of the entire cluster prediction. We also introduced

several cut-off values to filter out unpromising or invalid intermedi-

ate results: (i) the E-value cut-off for motifs predicted by MEME,

(ii) the p-value cut-off for FIMO hits, (iii) the percentage cut-off for

the number of promoters with binding sites compared with all pro-

moters in the genome (genome-wide frequency of the motif), and

(iv) the maximal gap length within the cluster. Altogether this

helped to decrease the number of FP and to increase the specificity

and accuracy (see Section 3.2).

To make the workflow smooth and independent, we added a

small but useful tool called SMIPS for the preliminary prediction of

(all potential SM anchor genes in the given genome.)

Methodologically, SMIPS does not differ from other tools for PKS

and NRPS predictions, basing on the HMM models for typical do-

mains of SM enzymes. However, as CASSIS requires predefined an-

chor genes as input, we found it more convenient to add SMIPS to

the CASSIS workflow. In this way, we avoid preliminary runs of

other tools (such as SMURF) to obtain the anchor genes informa-

tion. In addition to sending the output of SMIPS to CASSIS, it can

be used independently for the annotation and description of SM

genes.

3.2 Assessment of the CASSIS performance, validation

and comparison with other tools

To assess the performance of our method and tool, we undertook a

series of leave-one-out (LOO) cross-validation experiments. As posi-

tive set we used the 38 experimentally proven fungal clusters

(Supplementary Table S1) and performed the LOO for each cluster.

The benchmarking shows high specificity, sensitivity, accuracy and

precision (Table 1). With this we show that over-fitting is not an

issue and our tool is able to reliably predict unknown clusters.

As the CASSIS approach is based on promoter analysis and is

thus very distant from similarity-based methods, it was interesting

to compare its performance with the most prominent similarity-

based tools antiSMASH and SMURF. We applied the tools to the re-

identification of the clusters with known borders. To make a clean

experiment and put all three tools in equal position, we included in

our training set those clusters that were characterized before the

publication of antiSMASH and SMURF and hence could be used for

their training (at least for SMURF). On the other hand, the clusters

published after 2010 were considered as ‘new’ for all three tools and

used as test set. The comparison reveals that antiSMASH has a

higher sensitivity but the number of FP predictions made by similar-

ity-based methods is also higher: compared with CASSIS,

antiSMASH suggests in average four FP more per cluster. This re-

flects the tendency of the similarity tools to overestimate the clus-

ters’ lengths, even though they pick up the right genes with high

sensitivity. As a result, CASSIS outperforms the other tools in speci-

ficity, accuracy and precision (Table 2, Supplementary Table S3 and

Supplementary Fig. S1). Moreover, in some cases the similarity-

based tools failed to recognize the anchor gene, which lead to the

loss of the whole cluster (see Supplementary Fig. S2). For instance,

in Aspergillus nidulans the ent-pimara-8(14),15-diene cluster is lost

by antiSMASH and SMURF because they do not recognize AN1594

as the anchor gene. CASSIS/SMIPS did not encounter any problems

in the detection of all anchors.

See Supplementary Table S4 for a more general comparison of

the features of all four tools.

4 Discussion

Clustering of genes implies their co-localization, co-regulation and

assignment to the same process. In the case of SM, this is a biosyn-

thetic pathway and/or further processing of the product. Most of the

approaches developed for the genome-wide cluster prediction rely

on protein domain similarity. Thus, they use the first and last prop-

erties of the clusters but ignore the co-expression (or co-regulation).

Our approach is in this sense complementary, as it ignores the func-

tional features of the proteins but considers the promoter informa-

tion. This constitutes both an advantage and a disadvantage of the

approach. The advantage is the consideration of a new, yet unused

layer of information (promoters, motifs, sites), which is, moreover,

the key feature of the cluster definition. The disadvantage is the neg-

lect of the remaining information, but this can be seen as a special-

ization. Indeed, the similarity-based tools exist and at least one of

them, antiSMASH, gives very good, although not perfect, predic-

tions. Our aim is not to compete with antiSMASH or to substitute

it. We suppose that the optimal predictions can be achieved by

application of both tools simultaneously: antiSMASH is more sensi-

tive but CASSIS is more precise, and each of them supplies with spe-

cific information about the discovered clusters (see Supplementary

Table S4).

Motifs that are shared by the cluster genes (and form in this way

the basis of the cluster prediction) have their own value as the poten-

tial TFBS of the cluster’s presumable regulator. CASSIS provides the

option to retrieve the motifs corresponding to the detected clusters.

Table 1. Benchmark results of the LOO cross-validation for CASSIS

Characteristics CASSIS performancea

Sensitivity 0.846 0.0010

Specificity 0.986 0.0002

Precision 0.716 0.0010

Accuracy 0.966 0.0002

FDR 0.296 0.0010

F1-score 0.736 0.0008

aAverage for all 38 LOO experiments. Error is the standard error of the

mean. See Supplementary Table S1 for the list of used clusters

Table 2. Comparison of CASSIS with the similarity-based

antiSMASH and SMURF tools: re-identification of the 12 test clus-

ters not used for the tools’ training

Characteristics Comparisona

CASSIS antiSMASH SMURF

Sensitivity 0.8760.04 0.946 0.04 0.786 0.10

Specificity 0.9660.01 0.876 0.02 0.846 0.02

Precision 0.8060.05 0.546 0.05 0.426 0.06

Accuracy 0.9460.01 0.886 0.01 0.826 0.02

FDR 0.2060.05 0.466 0.05 0.586 0.06

F1-score 0.8160.02 0.666 0.04 0.516 0.06

aAverage for all 12 clusters. Error is the standard error of the mean. See

Supplementary Table S1 for the list of used clusters
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Moreover, as the motifs’ occurrences are scanned genome-wide, it is

possible to find sub-clusters (also called super-clusters), which are

groups of genes regulated by the same TF, simultaneously with the

‘main’ cluster, but located in another part of the genome. If a sub-

cluster is large enough (more than three genes), it can be detected

quite easily. In the next versions of CASSIS we plan to implement

such a feature.

Like MDM, CASSIS is not restricted to the prediction of SM

clusters. Other types of gene clusters can be represented by different

anchor genes, depending on the pathway or process, for which the

genes are clustered. As CASSIS does not consider the properties of

genes, the nature of the anchor gene does not matter.

Being based on the de novo motif discovery, CASSIS is quite sen-

sitive to the quality of the genome assembly. Two features are im-

portant: the length of contigs (scaffolds) and the information quality

of the sequence. The former feature is, actually, important for any

cluster prediction tool, since clusters are lengthy stretches of gen-

omic sequence, which should be preferably uninterrupted. The in-

formation quality becomes important for genomes with low

complexity (AT-rich) regions, since it is hard to predict significant

motifs in such sequences.

5 Implementation and availability

The CASSIS method is implemented in a tool with the same name.

User-friendly online versions of both SMIPS and CASSIS (the

‘CASSIS suite’) are available at https://sbi.hki-jena.de/cassis. The

suite also provides a comfortable workflow to run CASSIS on the re-

sults of SMIPS. The source codes as well as executeable files for

Linux and Windows are freely available at https://sbi.hki-jena.de/cas

sis/Download.php. The SMIPS and CASSIS tools are implemented

in Perl 5.
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