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Abstract

In this dissertation we study the homological algebra of the monomial ideals with a

special emphasis on the topics of the Castenuovo-Mumford regularity and the powers

of edge ideals of finite simple graphs. The main problem of this dissertation is to

find optimal bounds for the regularity of powers of edge ideals. To do this, we prove

the existence of a very special order of the minimal monomial generators of powers

of the edge ideal. Using this order and some short exact sequence techniques we

prove that the regularity of a power of an edge ideal can be bounded by the maxi-

mum of the regularities of the edge ideals of some very closely related graphs, and

as corollaries we show that for various classes of graphs the higher powers of edge

ideals have linear minimal free resolutions. One of these corollaries partially answers

a case of a conjecture proposed by Eran Nevo and Irena Peeva. In the process of this

study we introduce a new notion called even connectedness in finite simple graphs

and derive various results related to it. In particular, we show that this behaves

particularly nicely in the case of bipartite graphs and prove some results related to

regularity of powers of edge ideals of bipartite graphs. We also study path ideals of
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finite simple graphs in the same spirit and show that various classes of path ideals

also have linear minimal free resolution. Using similar techniques we also study the

Cohen-Macaulayness of bipartite edge ideals and prove a new characterization for it.
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Introduction

The main themes of this thesis are the Castelnuovo-Mumford regularity and the edge

ideals of finite simple graphs. The Castelnuovo-Mumford regularity (or simply regu-

larity) of a graded module over a graded ring is a measure of complexity in the sense

that an ideal generated by higher-degree polynomials is more complex. Homogeneous

ideals in polynomial rings with low regularities are known to have “simple minimal

free resolutions”. This motivates mathematicians to find classes of homogeneous ide-

als with regularities bounded by certain values. Monomial ideals are examples of

homogeneous ideals that come with lots of combinatorial data and it becomes inter-

esting to interpret the algebraic properties in terms of the combinatorial properties.

A significant portion of this work is devoted to the study of the interplay between

them.

As a result of this study, we introduce a new technique for bounding the regularity

of the powers of edge ideals and use that technique to find various new upper bounds.

We also find some new upper bounds for the regularity of some special classes of
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path ideals using a somewhat similar method. After these we study the Cohen-

Macaulayness of the bipartite edge ideals and derive a new characterization.

Chapter 1 deals with the basic preliminaries of free resolutions of finitely generated

multigraded modules over polynomial rings, introduces some combinatorial notions

related to the monomial ideals, and states some well-known results about regularity.

Some examples are computed to illustrate these.

In Chapter 2 we study the basic properties of the Castelnuovo-Mumford regular-

ity, especially its behaviour with respect to the short exact sequences. This chapter

builds the framework for the theory developed in the next two chapters. At the end

of this chapter, we prove two new theorems about the regularity of the edge ideals.

Chapter 3 is devoted to the study of the regularity of powers of edge ideals. We

introduce a new notion called even connection in this chapter and prove various re-

sults related to that. One of these partially answers a question asked by Irena Peeva

and Eran Nevo by proving all higher powers of the edge ideals of the gap free and

cricket free graphs have linear minimal free resolutions. In another result we find an

upper bound for the regularities of the higher powers of the edge ideals of the gap

free graph with a fixed regularity r in terms of r. Our main result in this chapter is

the following result regarding minimal free resolution:
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Theorem: If G is a gap-free and cricket-free graph with edge ideal I(G), then for

every s � 2 the ideal I(G)s has a linear minimal free resolution.

In Chapter 4 we study the regularities of the path ideals in a somewhat similar

way. However, the theory seems to be much more di�cult. Here too we prove some

new results of the same flavour as in Chapter 3. In particular, we prove that the

higher path ideals of a gap-free, claw-free and whiskered K
4

-free graph have linear

minimal free resolutions. Our main result in this chapter is:

Theorem: Let G be a finite simple graph with t-path ideal I
t

for t � 3. If G is

gap free and claw free and I
t

6= 0, then I
t

has a linear minimal free resolution for

t = 3, 4, 5, 6. If G is gap free, claw free and whiskered K
4

free and I
t

6= 0 then I
t

has

linear minimal free resolution for all t � 3.

Chapter 5 is devoted to the study of the Cohen-Macaulay bipartite edge ideals.

Here we first give a new proof an existing characterization of the Cohen-Macaulay

bipartite edge ideals. The most interesting aspect of our proof is that unlike the other

proofs it never uses Hall’s Marriage theorem or any equivalent form of it. It simply

uses the fact that a Cohen-Macaulay quotient is unmixed and connected at codimen-

sion one. After this we also prove a new characterization of this class of graphs. Our

main result in this chapter is the following:



ix

Theorem: Let G be a bipartite graph with edge ideal I and size of each partition n.

Then I is Cohen-Macaulay if and only if there exists exactly n edges e
1

, ..., e
n

, such

that (I2 : e
i

) is Cohen-Macaulay, for i 6= j, e
i

and e
j

are disjoint and for any other

edge e, (I2 : e) is not Cohen-Macaulay.

Finally we conclude this thesis in Chapter 6 by mentioning some of the ongoing

works on each topic discussed earlier.
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Chapter 1

Preliminaries

In this chapter we collect some basic facts about the free resolutions of the finitely

generated multigraded modules over polynomial rings and the monomial ideals related

to finite simple graphs. These will be used in the subsequent chapters. All along we’ll

assume S = K[x
1

, . . . , x
n

], a polynomial ring in n variables over an arbitrary field K.

1.1 Free Resolutions

Let M be a multigraded module over S, that is
L

i2Zn M
i

such that for every degree

d monomial ↵ and for every s 2 M
i

, the element ↵s belongs to M
i+d

. It is known

that M can be successively approximated by free modules. Formally speaking there

exists an exact sequence of minimal possible length called a minimal free resolution

of M :

0 �! F
p

.dp�! F
p�1

· · · .d2�! F
1

.d1�! F
0

.d0�! M �! 0 (⇤)

Here F
i

=
L

S(��1)�i� , where S(��1) denotes the free S-module generated in the

degree � for some monomial �. Here �
i�

s are positive integers that are called the
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multigraded Betti numbers of M . For every j, �
ij

=
P

{�||�|=j} �i�

is called the ijth

standard graded Betti number of M . Three very important homological invariants

that are related to these numbers are the Castelnuovo-Mumford regularity, or simply

regularity, the depth and the projective dimension, denoted by reg(M), depth(M)

and pd(M) respectively:

reg(M) = max{|�|� i|�
i�

6= 0}

depth(M) = inf{i|Exti(K,M) 6= 0}

pd(M) = max{i|there is a �, �
i�

6= 0}

After introducing these we shall define three important notions.

Definition 1.1.1. If all the entries of the matrices corresponding to the d
i

s in (⇤)

are either 0 or some variable then M is said to have a linear minimal free resolution.

The linear minimal free resolution is the case of minimum possible regularity.

Definition 1.1.2. If all the entries of the matrices corresponding to the d
i

s in (⇤)

are either 0 or some variable for all i  t then M is said to have a t-linear minimal

free resolution.

Definition 1.1.3. If depth(M) is same as its Krull dimension then M is said to be

Cohen-Macaulay.

The following is a very important theorem:
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Theorem 1.1.4 (Auslander-Buchbaum). Let R be a commutative noetherian local

ring with unity. If M is a finitely generated R-module with finite projective dimension

then depth(M)+ pd(M)=depth(R)

We now illustrate these concepts with few examples.

Example 1.1.5. Let M = Q[x1,...,x5]

(x1x2,x2x3,x3x4,x4x5,x5x1)
. Then the minimal free resolution

of M is:

0 �! F
3

.d3�! F
2

.d2�! F
1

.d1�! F
0

.d0�! M �! 0

Here:

�
0�

= 1 if � = 1, and �
0�

= 0 otherwise

�
1�

= 1 if � = x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

, x
5

x
1

, and �
1�

= 0 otherwise

�
2�

= 1 if � = x
1

x
2

x
3

, x
2

x
3

x
4

, x
1

x
2

x
5

, x
1

x
4

x
5

, x
3

x
4

x
5

, and �
2�

= 0 otherwise

�
3�

= 1 if � = x
1

x
2

x
3

x
4

x
5

, and �
3�

= 0 otherwise

Consequently the regularity is 2, and projective dimension is 3. Hence by the

Auslander-Buchbaum theorem the depth of M is 2. As its Krull dimension is 2 it is

Cohen-Macaulay.

Example 1.1.6. Let M = Q[x1,...,x6]

(x1x2,x2x3,x3x4,x4x5,x5x6)
. Then the minimal free resolution

of M is:

0 �! F
4

.d4�! F
3

.d3�! F
2

.d2�! F
1

.d1�! F
0

.d0�! M �! 0

Here:

�
0�

= 1 if � = 1, and �
0�

= 0 otherwise
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�
1�

= 1 if � = x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

, x
5

x
6

, and �
1�

= 0 otherwise

�
2�

= 1 if � = x
1

x
2

x
3

, x
2

x
3

x
4

, x
3

x
4

x
5

, x
4

x
5

x
6

, x
1

x
2

x
4

x
5

, x
1

x
2

x
5

x
6

, x
2

x
3

x
5

x
6

,

and �
2�

= 0 otherwise

�
3�

= 1 if � = x
1

x
2

x
3

x
4

x
5

, x
1

x
2

x
3

x
5

x
6

, x
1

x
2

x
4

x
5

x
6

, x
2

x
3

x
4

x
5

x
6

and �
3�

= 0 otherwise

�
4�

= 1 if � = x
1

x
2

x
3

x
4

x
5

x
6

, and �
4�

= 0 otherwise

So it has regularity 2 and projective dimension 4. So by the Auslander-Buchbaum

theorem the depth is 2. As its Krull dimension is 3, M is not Cohen-Macaulay.

1.2 Edge Ideals And Path Ideals

Let G be a finite simple graph (that is G has no loops or multiple edges) on x
1

, . . . , x
n

.

We first recall some relevant definitions.

Definition 1.2.1. For x
i

, x
j

, we let d(x
i

, x
j

) denote the distance between x
i

and x
j

,

that is the fewest number of edges that must be traversed to travel from x
i

to x
j

.

Definition 1.2.2. A subgraph G0 ✓ G is called induced if uv is an edge of G0 when-

ever u and v are vertices of G0 and uv is an edge of G.

Definition 1.2.3. The complement of a graph G, for which we write Gc, is the graph

on the same vertex set in which uv is an edge of Gc if and only if it is not an edge of

G.
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Notation 1.2.4. Let C
k

denote the cycle on k vertices, and we let K
m,n

denote the

complete bipartite graph with m vertices on one side, and n on the other.

One of the most important concepts in this thesis is the next definition.

Definition 1.2.5. Let G be a graph. We say two edges uv and xy form a gap in G if

G does not have an edge with one endpoint in {u, v} and the other in {x, y}. A graph

without gaps is called gap-free. Equivalently, G is gap-free if and only if Gc contains

no induced C
4

.

Thus, G is gap-free if and only if it does not contain two vertex-disjoint edges as

an induced subgraph.

Definition 1.2.6. Any graph isomorphic to K
1,3

is called a claw. Any graph isomor-

phic to K
1,n

is called an n-claw. If n > 1, the vertex with degree n is called the root

in K
1,n

. A graph without an induced claw is called claw-free. A graph without an

induced n-claw is called n-claw-free. In both cases the vertex with degree more than

one is called the root.

The n-claw is also called a star graph in some literature.

Definition 1.2.7. Any graph isomorphic to the graph with set of vertices {w
1

, w
2

, w
3

, w
4

,

w
5

} and set of edges {w
1

w
3

, w
2

w
3

, w
3

w
4

, w
3

w
5

, w
4

w
5

} is called a cricket. A graph

without an induced cricket is called cricket-free.

The following is a cricket:
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w
2

w
3

w
1

w
4

w
5

The following is a 4-claw:
zy

x

t

s

Definition 1.2.8. An edge in a graph is called a whisker if any of its vertices has

degree one.

Definition 1.2.9. A graph with 8 vertices {x
1

, x
2

, x
3

, x
4

, y
1

, y
2

, y
3

, y
4

} and set of edges

{x
i

y
i

|for all i} [ {y
i

y
j

|for all i, j} is called a whiskered-K
4

. A graph without an in-

duced whiskered-K
4

is called whiskered-K
4

free.

Definition 1.2.10. A graph is called an anticycle if its complement is a cycle.

Observation 1.2.11. A claw-free graph is cricket-free.

There are various monomial ideals in S that are associated to G. Among these,

the edge ideals and the path ideals along with their powers and colons have been the

major focus of this thesis.
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For any graph G with set the of vertices x
1

, . . . , x
n

, let S be the polynomial ring

on x
1

, . . . , x
n

over a field. We also denote the set of edges of G by E(G).

Definition 1.2.12. For every t � 2 the t-path ideal I
t

(G) is defined as follows:

I
t

(G) = (x
i1 · · · xit | for all l, l0, l 6= l0, x

il
6= x

il0 , and for all j, x
ijxij+1 2 E(G))

Definition 1.2.13. For t = 2, I
t

(G) is called the edge ideal of G and is denoted by

I(G).

Example 1.2.14. If G is the 5-cycle on x
1

· · · x
5

then

I(G) = (x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

, x
5

x
1

),

I
3

(G) = (x
1

x
2

x
3

, x
2

x
3

x
4

, x
3

x
4

x
5

, x
4

x
5

x
1

, x
5

x
1

x
2

),

I
4

(G) = (x
1

x
2

x
3

x
4

, x
2

x
3

x
4

x
5

, x
3

x
4

x
5

x
1

, x
4

x
5

x
1

x
2

, x
5

x
1

x
2

x
3

),

I
5

(G) = (x
1

x
2

x
3

x
4

x
5

) and I
t

= (0) for all t � 6.

G is both gap free and claw free and as Gc is also a 5-cycle, G is an anticycle too.
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Chapter 2

Castelnuovo-Mumford Regularity

Castelnuovo-Mumford regularity is one of the most important homological invari-

ants. Having lower Castelnuovo-Mumford regularity is equivalent to having “simpler”

minimal free resolution in some sense. There is an ongoing stream of research to find

classes of modules with minimal regularity or low regularity. In the case of monomial

ideals related to graphs one is interested to find classes of graphs whose edge ideals

or their powers have minimal regularity.

In the first section of this chapter we recall some of the basic results and notions

related to this concept. In particular we state and prove a lemma which forms the

basic framework for many proofs of this thesis. We also state some results about

regularity of edge ideals and their powers.

In the last section we prove two new results that are generalizations of a result by

Eran Nevo (Theorem 3.1, [N]). All along we assume that S is a polynomial ring in

finitely many variables over an arbitrary field K.
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2.1 Some Known Facts

In this section we collect some known facts about Castelnuovo-Mumford regularity

that will be used subsequently. We mostly skip the proofs but we provide references

for the interested reader. We begin this section by recalling the definition of a k-step

linear resolution (already defined in the previous chapter). This is a generalization of

the notion of a linear minimal free resolution.

Definition 2.1.1. For a finitely generated S-module M , we say that M is k-steps

linear whenever the matrices of the minimal free resolution of M over the polynomial

ring consist of linear terms up to the kth step. We say that M has linear minimal

free resolution if the minimal free resolution is k-steps linear for all k � 1. We say

that M has a linear presentation if it has a 1-step linear minimal free resolution.

Example 2.1.2. As we saw in the previous chapter, if S = Q[x
1

, . . . , x
5

] and I is the

edge ideal of the 5-cycle then S

I

has a 2-linear resolution which is not 3-linear.

The following is immediate from the definition of a minimal free resolution:

Observation 2.1.3. Let I(G) be the edge ideal of a graph G. Then I(G)s has a linear

minimal free resolution if and only if reg(I(G)s) = 2s.

We first prove a well-known result about Castelnuovo-Mumford regularity, which

we shall use repeatedly throughout this thesis.
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Lemma 2.1.4. Let M 0,M , and M 00 be three multigraded modules over S such that

the following is an exact sequence of homogeneous S-modules, that is the maps are

homogeneous of degree zero:

0 �! M 0 �! M �! M 00 �! 0

Then reg(M)  max{reg(M 0), reg(M 00)}.

Proof. We consider the homogeneous long exact sequence of Tor modules correspond-

ing to the given short exact sequence:

· · · �! Tor
i

(M 0,K) �! Tor
i

(M,K) �! Tor
i

(M 00,K) �! Tor
i�1

(M 0,K) �! · · ·

As this sequence is both homogeneous and exact, for every monomial � if

Tor
i

(M,K)
�

6= 0 then either Tor
i

(M 0,K)
�

6= 0 or Tor
i

(M 00,K)
�

6= 0. We now observe

that the result follows from the definition of regularity.

We now state a few well-known results without proofs. We refer reader to [B1]

and [DHS] for reference.

Lemma 2.1.5. Let I ✓ S be a monomial ideal. Then for any variable x, reg(I, x) 

reg(I). In particular, if v is a vertex in a graph G and G � v is the graph obtained

from G by deleting v then reg(I(G� v))  reg((I(G)).

The next lemma is a straight forward consequence of Lemma 2.1.1.
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Lemma 2.1.6. Let I ✓ S be a monomial ideal, and let m be a monomial of degree

d. Then

reg(I)  max{reg(I : m) + d, reg(I,m)}.

Moreover, if m is a variable x appearing in I, then reg(I) is equal to one of these

terms.

The following lemma is by Dao, Huneke and Schweig shows that if m is a variable

then the situation gets significantly better. It is Lemma 2.10 of [DHS].

Lemma 2.1.7 (Dao, Huneke, Schweig). Let I ✓ S be a monomial ideal, and let x be

a variable appearing in I. Then

reg(I)  max{reg(I : x) + 1, reg(I, x)}.

Moreover reg(I) is equal to one of these terms.

The following lemma is a consequence of Lemma 2.1.4. This lemma provides

the framework for many proofs in this thesis. Although it is well known, due to its

relevance we prove it below.

Lemma 2.1.8. Let I and J be two homogeneous monomial ideals in S generated

in degrees n
1

and n
2

respectively. Assume J ⇢ I and n
2

is strictly greater than

n
1

. If the unique set of minimal monomial generators of I is {m
1

,m
2

, . . . ,m
k

},

A = max{reg(J : m
1

)+n
1

}, B = max{reg((J,m
1

, . . . ,m
l

) : m
l+1

)+n
1

|1  l  k � 1}

and C = reg(I), then reg J  max{A,B,C}.
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Proof. We consider the following short exact sequence:

0 �! S

(J : m
1

)
(�n

1

)
.m1�! S

J
�! S

(J,m
1

)
�! 0

This gives us reg(J)  max{A, reg(J,m
1

)}. Let J
l

:= ((J,m
1

, . . . ,m
l�1

) : m
l

) for

all l � 2. For all 1  l  k � 1 we consider the exact sequence

0 �! S

(J
l+1

)
(�n

1

)
.ml+1�! S

(J,m
1

, . . . ,m
l

)
�! S

(J,m
1

, . . . ,m
l+1

)
�! 0,

This gives us

reg(J,m
1

, . . . ,m
l

)  max{reg(J
l+1

) + n
1

, reg(J,m
1

, . . . ,m
l+1

)}

from which reg(J)  max{A,B,C} follows.

The next well-known theorem connects regularity with local cohomology, for a

proof see Chapter 4 of [E2]:

Theorem 2.1.9. If Hj

m

(M) denotes the jth local cohomology module of M with sup-

port m, where m is the homogeneous maximal ideal then the following holds:

reg(M) = max
j

{reg(Hj

m

(M) + j}.

Finally, the following theorem due to Fröberg (See Theorem 1 of [Fro] and Theorem

1.1 of [NP]) is used repeatedly throughout this thesis:

Theorem 2.1.10 (Fröberg). The minimal free resolution of I(G) is linear if and only

if the complement graph Gc is chordal, that is, every induced cycle in Gc is a triangle.
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The next few results are of a similar spirit.

Theorem 2.1.11 (Herzog, Hibi, Zheng). If I(G) has a linear minimal free resolution

then for all s � 2, I(G)s also has a linear minimal free resolution.

Theorem 2.1.12 (Francisco, Ha, Van Tuyl). If I(G)s has a linear resolution for an

s � 1, the Gc has no induced 4-cycles.

Theorem 2.1.13 (Nevo). Suppose G is both claw-free and Gc does not have any

induced 4-cycle. Then reg I(G)  3 and reg I(G)2 = 4.

Definition 2.1.14. For any graph G, we write reg(G) as a shorthand for reg(I(G)).

Recall that the star of a vertex x of G, for which we write st x, is given by

st x = {y 2 V (G) : xy is an edge of G} [ {x}.

The following lemma is Lemma 3.2 of [B1], which we shall use a lot in this work.

Lemma 2.1.15. Let x be a vertex of G with neighbors y
1

, y
2

, . . . , y
m

. Then

(I(G) : x) = (I(G� st x), y
1

, . . . , y
m

) and (I(G), x) = (I(G� x), x).

Thus, reg(G)  max{reg(G � st x) + 1, reg(G � x)}. Moreover, reg(G) is equal to

one of these terms.

The next proposition is Proposition 3.3 of [DHS] (See also [No]).

Proposition 2.1.16. Let G be gap-free, and let x be a vertex of G of highest degree.

Then d(x, y)  2 for all vertices y of G.
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The next result is a generalization of Fröber’s theorem by Eisenbud, Hulek and

Popescu. It is the Theorem 2.1 of [EHP].

Theorem 2.1.17 (Eisenbud-Hulek-Popescu). Let G be a finite simple graph with

edge ideal I(G). Then I(G) has a p-linear resolution if and only if every induced

cycle in Gc that is not a triangle has length � p+ 3

Example 2.1.18. Every induced cycle in a complement of a 5-cycle has length � 2+3.

One can check from Example 1.1.5 that a 5-cycle has a 2-linear resolution.

We finish this section with a result about Betti numbers which follows from Lemma

1.3.8 of Kummini’s thesis [K2].

Lemma 2.1.19. Let I be a squarefree monomial ideal in S and x be a variable. If

�
ij

(I, x) 6= 0 then either �
ij

(I) 6= 0 or �
i�1j�1

(I) 6= 0.

In the next section we generalize Nevo’s result in two di↵erent ways, using the

results of this section.

2.2 Two New Results

In this section we prove two generalizations of Nevo’s (Theorem 3.1, [N]) result:

Theorem 2.2.1. Suppose G is both cricket-free and gap-free. Then reg(G)  3.

Proof. Let x be a vertex of maximum degree. As G is gap free and cricket free, so is

G�x. By induction, G�x has regularity less than or equal to 3. Because of Theorem
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2.1.10 and Lemma 2.1.15, it is enough to show that (G�st x)c has no induced cycle of

length greater than or equal to 4. As G is gap free, so is (G� st x); hence, (G� st x)c

has no induced 4�cycle. So it is enough to show it does not have an induced cycle of

length greater than or equal to 5.

Let {y
1

, y
2

, y
3

, y
4

, . . . , y
n

} be an induced cycle (n � 5) in (G � st x)c; because of

Proposition 2.1.16, there is a w such that xw and wy
1

are edges in G. As y
2

y
n

is

an edge in G, and neither y
1

y
2

nor y
1

y
n

are edges in G, either wy
2

, wy
n

or both are

edges in G. If both are edges then {x, w, y
1

, y
2

, y
n

} forms an induced cricket.

Suppose only one of them is an edge. Without loss of generality, we may assume

wy
2

is an edge. As y
3

y
n

is an edge in G, and G gap free, wy
3

is an edge in G; otherwise

{x, w, y
3

, y
n

} forms a gap in G. This makes {x, w, y
1

, y
2

, y
3

} an induced cricket.

Theorem 2.2.2. The edge ideal of a graph which is gap free and n-claw free, has

regularity less than or equal to n.

Proof. For n = 3, this was proved by E. Nevo and this is Theorem 3.3 of [DHS]. So

we may assume n � 4. Let x be a vertex with maximum degree. Because of Lemma

2.1.15, it is enough to show G�st x has regularity less than or equal to n�1; as G�x

has regularity less than or equal to n by induction on number of vertices. Hence, it

is enough to show G� st x is (n� 1)-claw free.
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If a
1

, a
2

, a
3

, . . . , a
n

is a (n � 1)-claw with root a
1

in G � st x then any w in the

neighborhood of x is either connected to a
1

or all of a
2

, a
3

, . . . , a
n

; otherwise if w is

not connected to a
1

and a
i

then xw and a
1

a
i

will form a gap. If a
1

is connected to

all the neighbors of x, it has a degree strictly more than x, which is contradictory to

the assumption that x is a vertex with maximum degree. Hence, there is a neighbor

w which is not connected to a
1

but is connected to all of a
2

, a
3

, . . . , a
n

. As x is not

connected to any of the a
i

s, {x, w, a
2

, a
3

, . . . , a
n

} forms an n-claw with root w, which

is contradictory to the hypothesis.

2.3 Asymptotic Behaviour Of Regularity

One question that has been studied by researchers extensively is, for a homogeneous

ideal I in S, whether reg(Is) shows some asymptotic behaviour as s goes to infinity.

The following important result gives some indication about what to expect:

Theorem 2.3.1 (Cutkosky-Herzog-Trung). If I is a homogeneous ideal in S with

maximum degree of generator d(I) then reg(Is) is asymptotically a linear function of

s and there is a number e such that reg(Is)  sd(I) + e for all s � 1.

Similarly:

Theorem 2.3.2 (Kodiyalam). If I is a homogeneous ideal generated in degree d then
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there exists n such that reg(Is) equals to Ps + Q for s � n, where P and Q are two

constants.

Eisenbud and Harris proved a related result in [EH].

Theorem 2.3.3 (Eisenbud-Harris). Let X ✓ Pn be a projective scheme with homo-

geneous coordinate ring S
X

, and let � : X ! Ps be a linear projection whose center

does not meet X, defined by an s+1-dimensional vector space of linear forms V . Let

I ✓ S
X

be the ideal generated by V , and let m be the maximal homogeneous ideal of

S
X

. The maximum of the Castelnuovo-Mumford regularities of the fibers of � over

closed points of Ps is one more than the least ✏ such that, for large t, mt+✏ ✓ I t; the

number t+ ✏ is equal, for large t, to the Castelnuovo-Mumford regularity of I t.

For the definition of the relevant notions a proof of this result see [EH].

These results open up research to find the values of P , Q, and n. The result by

Herzog-Hibi-Zheng regarding edge ideals show that if I is an edge ideal with a linear

minimal free resolution then P = 2, Q = 0, and n = 1. In the following chapters we

shall compute these values for various classes of monomial ideals. Recently similar

work has been done in [BHT].
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Chapter 3

Linear Resolutions Of Powers Of
Edge Ideals

In this chapter we find new upper bounds for the regularity of powers of edge ideals

of some classes of graphs. Our original motivation is the following question, which is

the base case of the Open Problem 1.11(2) in [NP]:

Question 3.0.4. Let I(G) be the edge ideal of the graph G which does not have any

induced four cycle in its complement. If reg(I(G))  3, then is it true that for all

s � 2, I(G)s has a linear minimal free resolution?

Bounds on the regularity of edge ideals have been studied by a number of re-

searchers (see [DHS], [A], [Fr], [HVT1]). For example, Fröberg (see [Fr]) has shown

that, when I(G) is the edge ideal of a graph whose complement does not have any

induced cycle of size greater than or equal to four, then I(G) has a linear minimal

free resolution.

We are interested in finding upper bounds on the regularities of the higher powers

of I(G). Herzog, Hibi and Zheng have shown in [HHZ] that if I(G) is the edge ideal



19

of a graph G which has no induced cycle of length greater than or equal to four in

its complement (that is I(G) has a linear minimal free resolution) then for all s � 2,

I(G)s has a linear minimal free resolution. Fransisco, Hà, and Van-Tuyl have further

shown that if I(G)s has a linear minimal free resolution for some s, then G has no

induced four cycle in its complement (Proposition 1.8 in [NP]). These two results

lead us to study bounds on the regularity of powers of I(G) when G has no induced

four cycle in its complement. Our main result is Theorem 3.3.5 where we prove all

higher powers of edge ideals of a gap free (equivalently, no induced four cycle in com-

plement, as observed in section 2) and cricket free (defined in section 2) graph have

linear minimal free resolutions, that is (to use notation of theorem 2.3.2) in this case

P = 2, Q = 0 and n = 2. More precisely:

Theorem 3.0.5. For any gap free and cricket free graph G and for all s � 2,

reg(I(G)s) = 2s and as a consequence I(G)s has a linear minimal free resolution.

This partially answers Question 3.0.3, as we proved in the previous chapter that

the edge ideals of gap free and cricket free graphs have regularity less than or equal

to 3 (Theorem 2.2.1). As claw free graphs are automatically cricket free, our results

generalize a previous result by E. Nevo (Theorem 1.2 of [N]) that says the edge ideals
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of gap free and claw free graphs have regularity less than or equal to 3 and their

squares have linear minimal free resolutions.

Notation 3.0.6. Let (m : n) stand for ((m) : (n)) for monomials m and n.

In order to prove Theorem 3.3.5, we first show that the minimal monomial gener-

ators of powers of edge ideal I(G) for any finite simple graph G have a specific order

that satisfies some nice properties (Lemma 3.1.11, Theorem 3.1.12). More precisely:

Theorem 3.0.7. For each n � 1 there exists an ordered list L(n) of minimal mono-

mial generators of I(G)n which satisfies the following property:

For all k � 1 and for all j  k, if (L(n)

j

: L(n)

k+1

) is not contained in (I(G)n+1 : L(n)

k+1

)

then there exists i  k, such that (L(n)

i

: L
(n)

k+1

) is generated by a variable and

(L(n)

j

: L(n)

k+1

) ✓ (L(n)

i

: L(n)

k+1

).

Using this ordering we shall prove that reg(I(G)n) is bounded above by the maxi-

mum of reg(I(G)n : e
1

· · · e
n�1

)+2n� 2 for all possible (n� 1)-fold products of edges

e
1

· · · e
n�1

and reg(I(G)n�1) (See Theorem 3.1.13). Next we prove that the ideals
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(I(G)n : e
1

· · · e
n�1

) are quadratic monomial ideals with generators satisfying certain

conditions (See Theorems 3.2.1, 3.2.5, 3.2.7). Finally, by using polarization technique

we get edge ideals corresponding to these quadratic monomial ideals with same regu-

larity (See [K2], Section 3.2 and Exercise 3.15 of [MS] for details) and using Fröberg’s

theorem (See Theorem 1 of [Fro] and Theorem 1.1 of [NP]) get bounds on them. As

a consequence we also get a di↵erent proof of the Herzog, Hibi and Zheng’s theorem

mentioned above (Theorem 2.1.11).

3.1 A Special Order

In this section we show that the minimal monomial generators of powers of edge ideals

can be ordered in a very specific way. This will be immensely helpful. The work of

this section can be found in the section 4 of our paper [B1].

Discussion 3.1.1. Let the set of minimal monomial generators of any ideal J ⇢ S

be denoted by Mingens(J). Let I be an arbitrary edge ideal. Set Mingens(I) =

{L
1

, L
2

, . . . , L
k

}. We give Mingens(I) the following order: L
1

> L
2

> ... > L
k

.

We will put an order on Mingens(In) for all integers n � 2 as follows: For n > 1, we

say M > N for M,N 2 Mingens(In) if there exists an expression La1
1

La2
2

· · ·Lak
k

= M
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such that for all expressions Lb1
1

· · ·Lbk
k

= N , we have (a
1

, . . . , a
k

) >
lex

(b
1

, ..., b
k

).

If (a
1

, ..., a
k

) �
lex

(c
1

, . . . , c
k

) for all (c
1

, . . . , c
k

) such that Lc1
1

· · ·Lck
k

= M then

La1
1

La2
2

· · ·Lak
k

is called a maximal expression of M . Let L(n) be the totally ordered set

of minimal monomial generators of In, ordered in the way discussed above.

Definition 3.1.2. If m
1

is a minimal monomial generator of Ik and m
2

is a minimal

monomial generator of In where n > k, we say m
1

divides m
2

as an edge and use the

notation m
1

|edgem
2

, if there exists m
3

, a minimal monomial generator of In�k with

m
2

= m
1

m
3

.

Example 3.1.3. If I = (ab, bc, ad, bd) then ab|edgeab2d as bd = ab

2
d

ab

is a minimal

monomial generator of I but ab -edge abcd as cd = abcd

ab

is not a minimal monomial

generator of I.

Discussion 3.1.4. We have the following for the list L(n) created above:

1. L(1) = L := {L
1

> . . . > L
k

}

2. For any minimal monomial generator m of In, n � 2, the maximal expression

of m, is an expression of m as a product of n elements of L, m = L
i1Li2 · · ·Lin,

where:
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a. i
1

is the minimum integer such that L
i1 |edgem

b. For all l � 1, i
l+1

is the minimal integer such that L
il+1

|edge m

Li1 ···Lil
. For any edge

cd we say cd is a part of the maximal expression of m if cd = L
ik

for some k.

This expression is unique by the construction.

3. For two minimal monomial generators m
1

,m
2

with maximal expressions m
1

=

L
i1 · · ·Lin and m

2

= L
j1 · · ·Ljn, we have m

1

>
lex

m
2

if for the minimum integer l

such that i
l

6= j
l

, i
l

< j
l

.

4. If L
i

and L
j

are two generators of I with i < j, then we say “L
j

comes after

L
i

” or “L
i

comes before L
j

”.

Example 3.1.5. Let I = (ab, bc, ad, bd). Let L(1) = {ab > bc > ad > bd}. Then

L(2) = {a2b2 > ab2c > a2bd > ab2d > b2c2 > abcd > b2cd > a2d2 > abd2 > b2d2}.

Definition 3.1.6. If L
i

= ab is an edge, that is a minimal monomial generator of I,

and m is a minimal monomial generator of In, n � 2, then we say m belongs to ab,

or m belongs to L
i

, if i is the least integer such that L
i

|edgem.

Example 3.1.7. Let I = (ab, bc, ad, bd) with L = L(1) = {ab > bc > ad > bd}. Then
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abcd belongs to L
2

= bc as ab -edge abcd and bc|edgeabcd and ab2d belongs to L
1

= ab

as ab|edgeab2d.

We record several easy observations that we need in the sequel.

Observation 3.1.8. For two minimal monomial generators m
1

,m
2

, if m
1

belongs to

an edge L
i

and m
2

belongs to another edge L
j

with i < j, then m
1

>
lex

m
2

.

Observation 3.1.9. For two minimal monomial generators m
1

,m
2

of In which both

belong to an edge L
i

, we see that m
1

>
lex

m
2

if and only if m1
Li

>
lex

m2
Li
.

Observation 3.1.10. Suppose m is a minimal monomial generator of In, n � 2, and

gh is an edge which is a part of the maximal expression of m. Write m = ghm0. For

any minimal monomial generator m00 of In�1 such that m00 >
lex

m0, then ghm00 >
lex

m.

Proof. Let L = {L
1

> L
2

> . . . > L
k

}. Let gh = L
j

for some j. Let m00 =

La1
1

La2
2

· · ·Lak
k

be the maximal expression of m00 and m0 = Lb1
1

Lb2
2

· · ·Lbk
k

be the max-

imal expression of m0. As gh is part of the maximal expression of m, the maxi-
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mal expression of m is Lb1
1

· · ·Lbj+1

j

· · ·Lbk
k

. As by assumption (a
1

, . . . , a
j

, . . . a
k

) >
lex

(b
1

, . . . , b
j

, . . . , b
k

), we have (a
1

, . . . , a
j

+ 1, . . . , a
k

) >
lex

(b
1

, . . . , b
j

+ 1, . . . , b
k

). Now

La1
1

· · ·Laj+1

j

· · ·Lak
k

is an expression for ghm00. Hence ghm00 >
lex

ghm0 = m.

The next lemma is the most important technical result of this thesis.

Lemma 3.1.11. For all k � 1 and for all j  k, if (L(n)

j

: L(n)

k+1

) is not contained

in (In+1 : L
(n)

k+1

) and L
(n)

j

belongs to an edge that comes before the edge L
(n)

k+1

be-

longs to, then there exists i  k, such that (L(n)

i

: L(n)

k+1

) is generated by a variable,

(L(n)

j

: L(n)

k+1

) ✓ (L(n)

i

: L(n)

k+1

) and L
(n)

i

belongs to an edge that comes before or equal

to the edge L
(n)

j

belongs to.

Proof. We prove the Lemma by induction on n. We recall that for two monomials

m
1

and m
2

, (m
1

: m
2

) = ( m1
gcd(m1,m2)

). This is going to be used in several places.

If n = 1, (L
j

: L
k+1

) is either (L
j

), in which case (L
j

: L
k+1

) ✓ (I2 : L
k+1

) or it is

generated by a variable in which case we take L
i

= L
j

. Hence the lemma is true for

n = 1.

Suppose the result is true for n � 1. Let L(n)

j

belong to ab, so that L(n)

j

= abM
1
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where M
1

2 L(n�1). By assumption L
(n)

k+1

belongs to an edge which comes after ab in

L. If neither a nor b divide L
(n)

k+1

then (L(n)

j

: L(n)

k+1

) ✓ (ab) ✓ (In+1 : L(n)

k+1

) which is

contrary to our assumption.

Without loss of generality we assume a|L(n)

k+1

. As L(n)

k+1

is a product of edges,there

exists an edge ac with ac|edgeL
k+1

, where ac is a part of the maximal expression of

L
(n)

k+1

. So, L(n)

k+1

= acM
2

for some M
2

2 L(n�1) which is the remaining part of the

maximal expression. Now ab -edge L(n)

k+1

as L(n)

k+1

belongs to an edge that comes after

ab. Hence b 6= c.

If (L(n)

j

: L(n)

k+1

) ✓ (b), then we take L
(n)

i

= abM
2

. Clearly L
(n)

i

belongs to ab or

some edge that comes before ab. Also, (L(n)

i

: L(n)

k+1

) = (abM
2

: acM
2

) = (b). Hence

L
(n)

i

has all the required properties.

If (L(n)

j

: L
(n)

k+1

) is not contained in (b), then there is a variable d such that

bd is an edge and bd|edgeM
2

and bd is a part of maximal expression of M
2

. Let

(L(n)

j

: L
(n)

k+1

) ✓ (f) where f is a variable. If (L(n)

j

: L
(n)

k+1

) = (f) then we take

L
(n)

i

= L
(n)

j

. This has all the required properties.

So let us assume (L(n)

j

: L(n)

k+1

) = (M
1

b : M
2

c) ( (f). Let (L(n)

j

: L(n)

k+1

) = (fm)

where m is a monomial which is not 1. So there is an edge fg such that fg|edgeM
1
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and fg is part of the maximal expression of M
1

. If g - M
2

c then (L(n)

j

: L(n)

k+1

) ✓

(fg) ✓ (In+1 : L(n)

k+1

) which contradicts our assumption. So g|M
2

c.

If g = c then either f = d, that is fcab = bdac or (fcab : bdac) = (f). In the

first case L
k+1

= acM
2

= acbdM2
bd

= fcabM2
bd

. Now bd|edgeM
2

, so ab|edgeL(n)

k+1

which is

a contradiction. In the second case we take L(n)

i

= (fc)(ab)
L

(n)
k+1

bdac

. Clearly L
(n)

i

belongs

to ab or a some edge that comes before ab and (L(n)

i

: L(n)

k+1

) = (f), which contains

(L(n)

j

: L(n)

k+1

). Hence L
(n)

i

has the required properties.

Now let us assume g 6= c. So there is an edge gh such that gh|edgeM
2

, such that

gh is a part of the maximal expression of M
2

. Let M1
fg

= N
1

and M2
gh

= N
2

. As (L(n)

j

:

L
(n)

k+1

) = (fm), fgabN
1

|fmghacN
2

. So abN
1

|hmacN
2

. So (hm) ⇢ (abN
1

: acN
2

). We

observe that (abN
1

: acN
2

) is either (m) or (hm). For if m0|m then abN
1

|hm0acN
2

implies fgabN
1

|fm0ghacN
2

implies fm|fm0 implies m = m0.

If (N
1

ab : N
2

ac) = (m) then (L(n)

j

: L(n)

k+1

) ✓ (m) = (abN
1

: acN
2

). Now both abN
1

and acN
2

are in L(n�1). As abN
1

belongs to ab and acN
2

belongs to some edge which

comes after ab, abN
1

>
lex

acN
2

. By induction either (abN
1

: acN
2

) ✓ (In : acN
2

) or

there exists M
0

in L(n�1), M
0

>
lex

acN
2

, (abN
1

: acN
2

) ✓ (M
0

: acN
2

), (M
0

: acN
2

)

is generated by a variable and M
0

belongs to an edge that comes before or equal to

ab. In the first case (L(n)

j

: L(n)

k+1

) ✓ (abN
1

: acN
2

) ✓ (In : acN
2

) ⇢ (In+1 : ghacN
2

) =
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(In+1 : L(n)

k+1

), which is a contradiction. In the second case write L
(n)

i

= ghM
0

. We

know that L(n)

i

>
lex

L
(n)

k+1

as M
0

belongs to an edge that comes before or equal to ab.

Also (L(n)

i

: L(n)

k+1

) = (M
0

: acN
2

), (L(n)

j

: L(n)

k+1

) ✓ (m) = (abN
1

: acN
2

) ✓ (M
0

: acN
2

)

and (M
0

: acN
2

) is generated by a variable.

Now let us assume (abN
1

: acN
2

) = (hm). As abN
1

>
lex

acN
2

, by induction

either (abN
1

: acN
2

) ✓ (In : acN
2

) or there exists M 0
0

in L(n�1), M 0
0

>
lex

acN
2

,

with (abN
1

: acN
2

) ✓ (M 0
0

: acN
2

), (M 0
0

: acN
2

) is generated by a variable, and M 0
0

belongs to an edge that comes before or equal to ab. In the first case hmacN
2

2 In,

so fmghacN
2

= fgmhacN
2

2 In+1. So (L(n)

j

: L(n)

k+1

) ✓ (In+1 : L(n)

k+1

), which is a

contradiction. In the second case if (M 0
0

: acN
2

) 6= (h) then let L
(n)

i

= ghM 0
0

. As

M 0
0

belongs to an edge that comes before or equal to ab, L(n)

i

>
lex

L
(n)

k+1

. Also (L(n)

i

:

L
(n)

k+1

) = (M 0
0

: acN
2

) which contains (L(n)

j

: L(n)

k+1

) and is generated by a variable. If

(M 0
0

: acN
2

) = (h) we take L
(n)

i

= fgM 0
0

. By same reasoning L
(n)

i

>
lex

L
(n)

k+1

. As L(n)

i

can not be same as L
(n)

k+1

we observe (L(n)

i

: L(n)

k+1

) = (f). So this L
(n)

i

has all the

required properties. This completes the proof.

The next theorem results from the previous lemma and provides a very strong

tool to study the regularity of the powers of the edge ideals. For this theorem we

continue with the notation from the previous lemma.

Theorem 3.1.12. For all k � 1 and for all j  k, if (L(n)

j

: L(n)

k+1

) is not contained in
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(In+1 : L(n)

k+1

) then there exists i  k, such that (L(n)

i

: L(n)

k+1

) is generated by a variable

and (L(n)

j

: L(n)

k+1

) ✓ (L(n)

i

: L(n)

k+1

).

Proof. We have L(n)

j

= mm
1

and L
(n)

k+1

= mm
2

where m 2 Mingens(Ik) and m
1

,m
2

2

Mingens(In�k) with m
1

belongs to an edge that comes strictly before the edge m
2

belongs. We observe (L(n)

j

: L(n)

k+1

) = (m
1

: m
2

) and (In�k+1 : m
2

) ✓ (In+1 : mm
2

).

With these two observations the theorem follows from Lemma 3.1.11. This finishes

the proof.

The next theorem gives us a framework for proving upper bounds of regularity of

powers of edge ideals.

Theorem 3.1.13. For any finite simple graph G and any s � 1, let the set of minimal

monomial generators of I(G)s be {m
1

, . . . ,m
k

}, then

reg(I(G)s+1)  max{reg(I(G)s+1 : m
l

) + 2s, 1  l  k, reg(I(G)s)}

Proof. Minimal monomial generators of I(G)s forms the ordered list L(s) from the

Lemma 3.1.11. So by Lemma 2.1.8,

reg(I(G)s+1)  max{A,B,C}

Where

A = max{reg(I(G)s+1 : L(s)

1

) + 2s}
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B = max{reg(((I(G)s+1, L
(s)

1

, . . . , L
(s)

l

) : L(s)

l+1

) + 2s|1  l  k � 1}

C = reg(I(G)s).

In light of Theorem 3.1.12, ((I(G)s+1, L
(s)

1

, . . . , L
(s)

l

) : L(s)

l+1

) is the same as

((I(G)s+1 : L(s)

l+1

), some variables). So by Lemma 2.1.5

reg((I(G)s+1, L
(s)

1

, . . . , L
(s)

l

) : L(s)

l+1

)  reg((I(G)s+1 : L(s)

l+1

),

and the theorem follows.

As a corollary to the above theorem we get the following important result:

Corollary 3.1.14. If for all s � 1 and for all minimal monomial generator m of

I(G)s, reg(I(G)s+1 : m)  2 and reg(I(G))  4 then for all s � 1, reg(I(G)s+1) =

2s+ 2; as a consequence I(G)s+1 has a linear minimal free resolution.

Proof. We observe that under the condition if reg(I(G)s)  2s+2 then reg(I(G)s+1) 

2s + 2 too. Now reg(I(G))  4 implies reg(I(G)2)  4. By induction assume

reg I(G)k  2k. As 2k < 2k + 2, reg I(G)k  2k + 2. Hence reg I(G)k+1  2k + 2.

This proves the corollary.

3.2 Even-Connection In Simple Graphs

In this section we introduce the notion of even connection. The main goal is to care-

fully analyse the ideal (I(G)s+1 : e
1

· · · e
s

) for an arbitrary s-fold product of edges

(i.e. for i 6= j, e
i

= e
j

is a possibility) and give a combinatorial description. Now any
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s-fold product can be written as product of s edges in various ways. In this section

we fix a presentation and work with respect to that. We first prove that these ideals

are generated in degree two for any graph G.

Theorem 3.2.1. For any graph G and for any s-fold product e
1

· · · e
s

of edges in G

(with the possibility of e
i

being same as e
j

as an edge for i 6= j), the ideal (I(G)s+1 :

e
1

· · · e
s

) is generated by monomials of degree two.

Proof. We prove this using induction on s. For s = 0 the result is clear as (I(G) :

(1)) = I(G), which is generated by monomials of degree two. Now let us assume the

theorem is true till s� 1.

Let m be a minimal monomial generator of (I(G)s+1 : e
1

· · · e
s

). Then e
1

· · · e
s

m

is divisible by an s + 1-fold product of edges. By degree consideration m can not

have degree 1. If m has degree greater than or equal to 3 then again by a degree

consideration for some i, e
i

= pq such that e
1

· · · e
i�1

qe
i+1

· · · e
s

m is divisible by an

s + 1-fold product of edges. Without loss of generality we may assume e
1

= pq and

there is an s+ 1-fold product f
1

· · · f
s+1

such that f
1

· · · f
s+1

|qe
2

· · · e
s

m.

If q|f
1

· · · f
s+1

, without loss of generality we may assume f
1

= p0q. So

p0qf
2

· · · f
s+1

|qe
2

· · · e
s

m. Hence f
2

· · · f
s+1

|e
2

· · · e
s

m. If q does not divide f
1

· · · f
s+1

then f
1

· · · f
s+1

|e
2

· · · e
s

m and hence f
2

· · · f
s+1

|e
2

· · · e
s

m. In both cases m 2 (I(G)s :
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e
2

· · · e
s

).

Now (I(G)s : e
2

· · · e
s

) ⇢ (I(G)s+1 : e
1

· · · e
s

) and m is a minimal monomial

generator of (I(G)s+1 : e
1

· · · e
s

). So m has to be a minimal monomial generator of

(I(G)s : e
2

· · · e
s

). Hence by induction m has degree two, which is a contradiction to

the assumption that m has degree greater than or equal to three. Hence m has to

have degree two.

To analyse the generators of (I(G)s+1 : e
1

· · · e
s

), we introduce the notion of

even-connectedness with respect to s-fold products.

Definition 3.2.2. Two vertices u and v (u may be same as v) are said to be even-

connected with respect to an s-fold product e
1

· · · e
s

if there is a path p
0

p
1

· · · p
2k+1

,

k � 1 in G such that:

1. p
0

= u, p
2k+1

= v.

2. For all 0  l  k � 1, p
2l+1

p
2l+2

= e
i

for some i.

3. For all i,

|{l � 0|p
2l+1

p
2l+2

= e
i

}|  |{j|e
j

= e
i

}|

4. For all 0  r  2k, p
r

p
r+1

is an edge in G.

If these properties are satisfied then p
0

, . . . , p
2k+1

is said to be an even-connection

between u and v with respect to e
1

· · · e
s

.
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Example 3.2.3. Let I(G) = (xy, xu, yv, yw, wz, zv) and e
1

= xy, e
2

= wz then

u, x, y, w, z, v is an even-connection between u and v with respect to e
1

e
2

.

The following observation is an immediate consequence of the definition:

Observation 3.2.4. If u = p
0

, . . . , p
2k+1

= v is an even-connection with respect to

some s-fold product e
1

· · · e
s

, then for any j0 � j � 0, any neighbor x of p
2j+1

and

any neighbor y of p
2j

0
+2

are even connected with respect to e
1

· · · e
s

.

The next theorem also easily follows from the definition.

Theorem 3.2.5. If u = p
0

, . . . , p
2k+1

= v is an even-connection with respect to some

s-fold product e
1

· · · e
s

the uv 2 (I(G)s+1 : e
1

· · · e
s

).

Proof. By condition 2 and 3 of the definition, e
1

· · · e
s

= p
1

· · · p
2k

.e
j1 · · · ejs�k

, for

some {j
1

, j
2

, . . . , j
s�k

} ⇢ {1, . . . , s} and by condition 1 and 4 of definition up
1

· · · p
2k

v

is a k + 1-fold product of edges in G. Hence uve
1

· · · e
s

is an s + 1-fold product of

edges in G and the result follows.

Although we fix a representation for all s-fold product and work with respect to

that representation, it is worth noting that our definition of even-connectedness is

independent of the representation we choose in the following sense:
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Theorem 3.2.6. If f
1

· · · f
s

= e
1

· · · e
s

are two di↵erent representations of same s-fold

product as product of edges and u and v are even-connected with respect to e
1

· · · e
s

,

then u and v are even-connected with respect to f
1

· · · f
s

.

Proof. Let u = p
0

, . . . , p
2k+1

= v be an even-connection between u and v with respect

to e
1

· · · e
s

. We shall construct an even-connection q
0

, . . . , q
2r+1

between u and v with

respect to f
1

· · · f
s

.

Let i be minimal such that p
2i+1

p
2i+2

is not equal to any edge f
1

, . . . , f
s

. Let

q
0

= p
0

, . . . , q
2i+1

= p
2i+1

. We have (up
1

)(p
2

p
3

) · · · (p
2k

v)e
t1 · · · ets�k

= (uv)f
1

· · · f
s

.

Then p
2i+1

(p
2i+2

p
2i+3

) · · · (p
2k

v)e
t1 · · · ets�k

= vf
j1 · · · fjs�i . If v = p

2i+1

we are done.

Otherwise p
2i+1

divides one of the fs; without loss of generality let f
j1 = p

2i+1

q
2i+2

.

If vq
2i+2

is an edge in G, we are done by taking q
2i+3

= v. Otherwise we have

vq
2i+2

f
j2 · · · fs�i

is an s � i-fold product of edges g
1

· · · g
s�i

, where without loss of

generality g
1

= q
2i+2

q
2i+3

and f
j2 = q

2i+3

q
2i+4

. After selecting (without loss of

generality) g
l

= q
2i+2l

q
2i+2l+1

and f
jl+1

= q
2i+2l+1

q
2i+2l+2

, we select q
2i+2l+3

induc-

tively. If vq
2i+2l+2

is an edge in G, we are done by choosing q
2i+2l+3

= v. Other

wise, g
l+1

· · · g
s�i

= vq
2i+2l+2

f
jl+2

· · · f
js�i . If v is connected to q

2i+2l+2k

for some

k in G then we are done by choosing q
2i+2l+2k+1

= v. If not then g
1

· · · g
s�i

=

vg
1

g
2

· · · g
s�i�1

q
2i+2s�2

; but this will force g
s�i

= q
2i+2s�2

v, contradicting the fact

that v is not connected to q
2i+2l+2k

for any k.
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The conditions 1, 2, 4 of the definition are automatically satisfied by our construc-

tion. Condition 3 is satisfied because each q
2i+1

q
2i+2

is f
ri for some integer r

i

and

q
2i+3

q
2i+4

is some f
ri+1 where r

i+1

/2 {r
1

, . . . , r
i

}.

We now observe that all edges of G belong to (I(G)s+1 : e
1

· · · e
s

). If uv, u may be

equal to v, belongs to (I(G)s+1 : e
1

· · · e
s

) and uv is not an edge, then we prove that

u and v has to be even-connected with respect to the s-fold product e
1

· · · e
s

. The

conditions 1, 2, 3, 4 are satisfied by the way of construction.

Theorem 3.2.7. Every generator uv (u may be equal to v) of (I(G)s+1 : e
1

· · · e
s

) is

either an edge of G or even-connected with respect to e
1

· · · e
s

, for s � 1.

Proof. Suppose uv is not an edge and u and v are not even-connected. Now uve
1

· · · e
s

=

f
0

· · · f
s

is an s + 1-fold product of edges, where f
0

= up
0

such that there is an edge

e
i0 = p

0

q
1

, 1  i
0

 s. After selecting f
j

= q
j

p
j

and e
ij = p

j

q
j+1

, 1  i
j

 s and all

i
j

are di↵erent, we select f
j+1

and e
ij+1 inductively. q

j+1

is part of an edge q
j+1

p
j+1

in the s + 1 fold product f
0

· · · f
s

. We choose f
j+1

= q
j+1

p
j+1

. Now as u and v are

not even-connected p
j+1

is not v. So it is part of an edge amongst the remaining e
i

s.

So there exists e
ij+1 = p

j+1

q
j+2

, i
j+1

2 {1, .., s} \ {i
1

, . . . , i
j

}. Now as u and v are not

even-connected, v 6= p
k

for any k. We observe f
0

· · · f
s

= u(p
0

q
1

)(p
1

q
2

) · · · (p
s�1

q
s

)p
s

=

uve
1

· · · e
s

. By construction (p
0

q
1

)(p
1

q
2

) · · · (p
s�1

q
s

) = e
1

· · · e
s

. This forces p
s

= v,

which is a contradiction.
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Example 3.2.8. Let I(G) = (xy, xu, xv, xz, yz, yw). Then (I(G)2 : xy) = I(G) +

(z2, uz, vz, wz, uw, vw). Here z is even-connected to itself and u, v, w with respect to

xy; also u, w and v, w are even-connected with respect to xy.

We observe that (I(G)s+1 : e
1

· · · e
s

) need not be square free as there is a possibility

that some vertex u is even-connected to itself with respect to e
1

· · · e
s

. So we polarize

(I(G)s+1 : e
1

· · · e
s

) to get a square free quadratic monomial ideal (i.e. an edge ideal)

(I(G)s+1 : e
1

· · · e
s

)pol . For details of polarization we refer to [9], Section 3.2 of [MS]

and Exercise 3.15 of [10]. Here we just recall the definition and one theorem which

states a quadratic monomial ideal and its polarization have same regularity.

Definition 3.2.9. For any quadratic monomial ideal I in K[x
1

, . . . , x
n

], Ipol is

a square free quadratic monomial ideal in K[x
1

, . . . , x
n

, x0
1

, . . . , x0
n

] where Ipol =<

x
i

x
j

, x
k

x0
k

|x
i

x
j

2 I, x2

k

2 I >.

The following theorem, which we state without proof is a special case of Proposi-

tion 1.3.4 of [K2], we also refer to section 3.2 and exercise 3.15 of [MS].

Theorem 3.2.10. reg(Ipol ) = reg(I).

Clearly by Theorems 3.2.1, 3.2.5, 3.2.7 and 3.2.10, (I(G)s+1 : e
1

· · · e
s

)pol is an

edge ideal with the same regularity as reg(I(G)s+1 : e
1

· · · e
s

). We describe the graph

associated to this edge ideal in the following Lemma:
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Lemma 3.2.11. (I(G)s+1 : e
1

· · · e
s

)pol is the edge ideal of a new graph G0 which has:

1. All vertices and edges of G.

2. Any two vertices u, v, u 6= v of G that are even-connected with respect to e
1

· · · e
s

are connected by an edge in G0.

3. For every vertex u which is even connected to itself with respect to e
1

· · · e
s

, there

is a new vertex u0 which is connected to u by an edge and not connected to any other

vertex (so uu0 is a whisker).

Proof. By Theorem 3.2.7, every generator uv (u may be equal to v) of (I(G)s+1 :

e
1

· · · e
s

) is either an edge of G or even-connected with respect to e
1

· · · e
s

, for s � 1.

If it is an edge in G, it satisfies condition 1; if it is an even-connection with u 6= v

it satisfies condition 2; if it is an even-connection with u = v, then by definition of

polarization there will be a whisker u0 on u in G0 and hence it will satisfy condition

3. Conversely edges described by the conditions 1,2 and 3 belong to G0 by Theorems

3.2.5 and 3.2.7.

Example 3.2.12. Let G be the following graph:

G: w

zy

x

t s

Then the graph G0 associated to (I(G)2 : xw)pol is the following:
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G0: w

zy

x

t s
y0

3.3 New Results

In this section we give some new bounds on reg(I(G)s) for certain classes of gap free

graphs G. First we prove several lemmas that will be useful to get our main results.

Lemma 3.3.1. Suppose u = p
0

, . . . , p
2k+1

= v is an even-connection between u and v

and z = q
0

, . . . , q
2l+1

= w is an even connection between z and w, both with respect to

e
1

· · · e
s

. If for some i and j, p
2i+1

p
2i+2

and q
2j+1

q
2j+2

has a common vertex in G then

u is even-connected to either z or w with respect to e
1

· · · e
s

and v is even-connected

to either z or w with respect to e
1

· · · e
s

.

Proof. We prove it for u, and the proof for v follows by symmetry. Let i be the

smallest integer such that there is j with the required property. If p
2i+1

= q
2j+1

then u = p
0

, . . . , p
2i+1

= q
2j+1

, q
2j+2

, q
2j+3

, . . . , q
2l+1

= w gives an even-connection

between u and w with respect to e
1

· · · e
s

(conditions 1,2 and 4 are automatically

satisfied and condition 3 is satisfied as i is the smallest integer such that there is

a j). Similar if p
2i+1

= q
2j+2

then u = p
0

, ..., p
2i+1

= q
2j+2

, q
2j+1

, q
2j

, . . . , q
0

= z
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gives an even-connection between u and z with respect to e
1

· · · e
s

; if p
2i+1

is not

same as either q
2j+1

or q
2j+2

and p
2j+2

= q
2j+1

then u = p
0

, . . . , p
2i+1

, p
2j+2

=

q
2j+1

, q
2j+2

, q
2j+1

, q
2j

, . . . , q
0

= z gives an even-connection between u and z with re-

spect to e
1

· · · e
s

; if p
2i+1

is not same as either q
2j+1

or q
2j+2

and p
2j+2

= q
2j+2

then

u = p
0

, . . . , p
2i+1

, p
2j+2

= q
2j+2

, q
2j+1

, q
2j+2

, , . . . , q
2l+1

= w gives an even-connection

between u and w with respect to e
1

· · · e
s

; in each of these cases conditions 1,2 and

4 are satisfied automatically and condition 3 is satisfied as i is the smallest integer

with the property. This covers all the cases.

The next two lemmas are results about gap free graphs:

Lemma 3.3.2. If G is gap free so is the graph G0 associated to (I(G)s+1 : e
1

· · · e
s

)pol ,

for every s-fold product e
1

· · · e
s

.

Proof. There are three possibilities of gap formation in G0 :

1. Between two edges from G.

2. Between two edges that are not edges in G.

3. Between two edges where one of them is an edge in G another is not.

No two edges in G can form a gap in G as G is gap free. So they can’t form an

edge in G0 as in G0 no edge of G is being deleted.
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For the second case suppose uv and zw are even-connected with respect to e
1

· · · e
s

and neither uv nor zw is an edge in G. Without loss of generality we may as-

sume gcd(uv, zw) = 1 as there is no question of gap formation otherwise. Let

u = p
0

, . . . , p
2k+1

= v be an even-connection between u, v with respect to e
1

· · · e
s

and let z = q
0

, . . . , q
2l+1

= w be an even-connection between z, w with respect to

e
1

· · · e
s

. In light of Lemma 3.3.1, we may assume for no i, j, p
i

= q
j

. If u = q
1

then

zu = zq
1

is an edge in G and if z = p
1

then uz = up
1

is an edge in G, so there is

nothing to prove. Otherwise as up
1

and zq
1

are edges in G and G is gap free there

are four possibilities:

a. u is connected to z in G, in which case uv (or uu0 in case u = v) and zw (or zz0 in

case z = w) can’t form a gap, as in that case uz is an edge in G0 too.

b. p
1

is connected to z, in which case z, p
1

, . . . , p
2k+1

= v is an even-connection be-

tween z and v in G so zv is an edge in G0 hence uv (or uu0 if u = v) and zw (or zz0

if z = w) can’t form a gap.

c. p
1

is connected to q
1

, in which case v = p
2k+1

, p
2k

, . . . , p
1

, q
1

, q
2

, . . . , q
2l+1

= w gives

an even-connection between v and w, and vw is an edge in G0.

d. q
1

is connected to u, in which case u, q
1

, . . . , q
2l+1

= w is an even-connection be-

tween u and w in G so uw is an edge in G0 hence uv (or uu0 if u = v) and zw (or zz0

if z = w) can’t form a gap.

In the third case, u, v are even-connected with respect to e
1

· · · e
s

and zw is an
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edge in G and uv is not an edge in G. Like before, we may assume gcd(uv, zw) = 1.

Let u = p
0

, . . . , p
2k+1

= v be an even-connection between u, v with respect to e
1

· · · e
s

.

If z = p
1

then uz = up
1

is an edge in G and if w = p
1

then uw = up
1

is an edge in

G, so there is nothing to prove in these cases. Otherwise as up
1

and zw are edges in

G and G is gap free there are four choices:

a. u is connected to z, in which case uv (or uu0 in case u = v) and zw can’t form a

gap as in that case uz is an edge G0 too.

b. p
1

is connected to z, in which case z, p
1

, . . . , p
2k+1

= v is an even-connection be-

tween z and v in G so zv is an edge in G0 hence uv (or uu0 if u = v) and zw can’t

form a gap.

c. p
1

is connected to w, in which case v = p
2k+1

, p
2k

, . . . , p
1

, w is an even-connection;

hence uv and zw can not form a gap.

d. w is connected to u, in which case uw is an edge in G, hence in G0.

This finishes the proof.

Lemma 3.3.3. Suppose G is gap free. If w
1

, . . . , w
n

is an anticycle in the graph G0

defined by (I(G)s+1 : e
1

· · · e
s

) for some s � 1 and for n � 5, then w
1

, ...., w
n

is an

anticycle in G.

Proof. First of all, whiskers on any vertex can not be part of any anticycle of length

� 5 as they only have degree 1. Observe that it is enough to prove that for all i, j,

w
i

, w
i+j

are never even-connected with respect to e
1

· · · e
s

. Suppose on the contrary
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such i, j exists. Without loss of generality we may choose j to be minimal such

that for some i, w
i

and w
i+j

are even-connected with respect to e
1

· · · e
s

. Observe

that j � 2 as w
i

w
i+1

can’t be connected in an anticycle. Without loss of generality

we may further assume w
1

and w
1+j

are even-connected with respect to e
1

· · · e
s

via

w
1

= p
0

, p
1

, ...., p
2k+1

= w
1+j

. Now observe w
2+j

is not connected to p
1

by an edge in

G as that will force w
1+j

and w
2+j

to be connected in G0 by observation 6.4 leading

to a contradiction. So there exists a smallest l � 0, 2 + j  n� l  n such that w
n�l

is not connected to p
1

by an edge in G. If l = 0, then w
n

is not connected to p
1

by

an edge in G and if l > 0 then w
n�l

is not connected to p
1

by an edge to p
1

in G and

w
n

, w
n�1

, . . . , w
n�l+1

are connected to p
1

by an edge in G

Next, we look at the edge w
2

w
n�l

in G0. If w
2

is connected to p
1

in G then

w
2

, p
1

, . . . , p
2k+1

= w
1+j

will be an even connection that will violate the minimality of

j. If w
2

is connected to p
2

in G then by Observation 3.2.4 w
1

w
2

has to be an edge in

G0, which will contradict the fact w
1

, . . . , w
n

is an anticycle. We observe w
n�l

can’t be

connected to p
1

by selection. If w
n�l

is connected to p
2

and l = 0 then by Observation

3.2.4 w
1

and w
n

have to be connected to each other in G0. If w
n�l

is connected to p
2

and l > 0 then by Observation 3.2.4 w
n�l+1

and w
n�l

have to be connected to each

other in G0. Both cases lead to a contradiction as w
1

, . . . , w
n

is an anticycle, so w
2

and w
n�l

are not connected to each other in G and neither of them are connected to

p
1

or p
2

(and hence w
2

, w
n�l

, p
1

, p
2

are four distinct vertices). As p
1

p
2

is an edge in
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G, w
2

w
n�l

can not be an edge in G; otherwise they will form a gap. So w
2

and w
n�l

are even-connected with respect to e
1

· · · e
s

. Let w
2

= q
0

, . . . , q
2r+1

= w
n�l

be an even

connection between w
2

and w
n�l

with respect to e
1

· · · e
s

.

If for some t
1

, t
2

� 0, p
2t1+1

p
2t1+2

and q
2t2+1

q
2t2+2

are the same edges of G then

by Lemma 3.3.1, w
2

has to be even connected to either w
1

or w
1+j

. The first case

is not possible as w
1

..w
n

is an anticycle and the second case is not possible by the

minimality of j. So for no t
1

, t
2

� 0, p
2t1+1

p
2t1+2

and q
2t2+1

q
2t2+2

are the same edges of

G. So we look at w
n�l

q
2r

and p
1

p
2

. Observe that p
1

is not connected to w
n�l

because

of the selection. If w
n�l

is connected to p
2

and l = 0 then by Observation 6.4 w
1

and

w
n

have to be connected to each other in G0. If w
n�l

is connected to p
2

and l > 0 then

by Observation 3.2.4 w
n�l+1

and w
n�l

have to be connected to each other in G0. Both

cases lead to a contradiction as w
1

, . . . , w
n

is an anticycle. So p
2

is not connected to

w
n�l

in G. If p
1

is connected to q
2r

then w
2

and w
1+j

will be even-connected with

respect to e
1

· · · e
s

violating the minimality of j. If p
2

is connected to q
2r

then w
1

and

w
2

will be even-connected and hence connected in G0.

Hence for no i, j are w
i

and w
i+j

even-connected with respect to e
1

· · · e
s

. So

w
1

, . . . , w
n

is an anticycle in G.

Using this lemma we get the following theorem of Herzog, Hibi and Zheng (The-

orem 1.2 of [NP]) as a corollary:
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Theorem 3.3.4. If I(G) has linear resolution, then for all s � 2, I(G)s has regularity

2s. In other words I(G)s has a linear minimal free resolution.

Proof. As I(G) has a linear resolution, it is gap free and hence the polarizations of all

(I(G)s+1 : e
1

· · · e
s

) are gap free and any anticycle of length � 5 in the polarization

of (I(G)s+1 : e
1

· · · e
s

) is an anticycle of G. But as I(G) has linear resolution G does

not have an any anticycle. Hence reg(I(G)s+1 : e
1

· · · e
s

)pol = 2 for all e
1

· · · e
s

. Hence

we have reg(I(G)s+1) = 2s+ 2.

Next we prove that for any gap free and cricket free graph G, and for all s � 2,

reg(I(G)s) = 2s. This result is our main new result in this paper. This answers

Question 1.1 partially. This also generalizes Nevo’s result (Theorem 1.2 of [12]) that

for any gap free and claw free graph G, reg I(G)2 = 4.

Theorem 3.3.5. For any gap free and cricket free graph G and for all s � 2,

reg(I(G)s) = 2s.

Proof. In light of Theorem 2.1.10, Theorem 3.1.13, Lemma 3.3.3, it is enough to

show the polarization of (I(G)s+1 : e
1

· · · e
s

) does not have any anticycle w
1

....w
n

for

n � 5, s � 1, for every s-fold product e
1

· · · e
s

.

Suppose w
1

, . . . , w
n

, n � 5, is an anticycle in the polarization of (Is+1 : e
1

· · · e
s

)

and e
1

= xy. By Lemma 3.3.3 w
1

, . . . , w
n

is also an anticycle of G. Either w
1

or w
3

is
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a neighbor of x or neighbor of y else w
1

w
3

and e
1

forms a gap in G, a contradiction.

Without loss of generality, we may assume w
1

is a neighbor of x. Now neither w
2

nor

w
n

can be x as they are not connected to w
1

; also neither of them are y as if say y = w
2

then w
n

xyw
1

is an even connection hence w
1

w
n

is an edge in G0, a contradiction to

the assumption on anticycle; similar thing happens if y = w
n

. By Observation 3.2.4

every neighbor of y is connected to every neighbor of x in G0. As neither w
1

w
n

, nor

w
1

w
2

is an edge in G0, neither of w
2

and w
n

are neighbors of y in G. So one of them

has to be neighbor of x, as G is gap free. Again, without loss of generality, we may

assume w
2

is a neighbor of x. Next we consider w
3

w
n

. As w
1

and w
2

are neighbors

of x and neither w
1

w
n

nor w
2

w
3

are edges in G0, by Observation 3.2.4 neither w
3

nor

w
n

can be neighbor of y. Neither w
3

nor w
n

can be x as they are w
2

w
3

and w
1

w
n

are not edges in G0. If w
3

= y, as w
1

w
3

is an edge in G, w
1

, being a neighbor of y,

has to be connected to w
2

, which is a neighbor of x in G0 by Observation 3.2.4. That

will force w
1

w
2

to be an edge in G0, which is a contradiction. Similarly if w
n

= y,

w
3

being a neighbor of y has to be connected to w
2

in G0 leading to a contradiction.

Then either w
3

or w
n

of them has to be a neighbor of x. Without loss of generality we

may assume w
3

is a neighbor of x. Notice that y is not connected to w
1

in G as that

will force w
2

, a neighbor of x to be connected to w
1

in G0 leading to a contradiction.

Hence {y, w
2

, x, w
1

, w
3

} forms a cricket.

Next we prove that for any gap free graph G with reg(I(G)) = r, the reg(I(G)s)

is bounded above by 2s+r�1. But to do that we need a lemma about “longest” con-
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nections. Observe that if G0 is the graph associated to the polarization of (I(G)s+1 :

e
1

· · · e
s

), for some s-fold product, and u,v are even-connected with respect to u =

p
0

, . . . , p
2k+1

= v, then uv is not only an edge in G0 but also an edge in the graph

(G0 � {y
1

, ...y
l

}) for any set of points y
1

, . . . , y
l

as long as u, v /2 {y
1

, . . . , y
l

}. We

further emphasize that some of the p
i

s can also belong to {y
1

, . . . , y
l

} as long as they

are not same as u or v.

Lemma 3.3.6. Let G0 be the graph associated to the polarization of (I(G)s+1 :

e
1

· · · e
s

) for some s-fold product. Let us assume u,v are even-connected with respect

to u = p
0

, . . . , p
2k+1

= v. Suppose for some set of vertices {y
1

, . . . , y
l

} we have u, v /2

{y
1

, . . . , y
l

}. Let us also assume for any other even-connection u0 = p0
0

, . . . , p0
2k

0
+1

= v0

such that u0, v0 /2 {y
1

, . . . , y
l

} we have k0  k. Then (G0 � {y
1

, . . . , y
l

} � st u) is

G00 [ {isolated whisker vertices}, where G00 is a subgraph of G obtained by deleting

vertices.

Proof. For the set of points {y
1

, . . . , y
l

}, uv is an edge in (G0� {y
1

, . . . , y
l

}) such that

u, v /2 {y
1

, . . . , y
l

} are even-connected with respect to e
1

· · · e
s

via u = p
0

, p
1

, p
2

, ..

.., p
2k+1

= v. We also have that k is maximum over all such even-connected edges

in (G0 � {y
1

, . . . , y
l

}). Let u0v0 be any edge in (G0 � {y
1

, . . . , y
l

}) such that u0, v0 /2

{y
1

, . . . , y
l

} and they are even-connected with respect to e
1

· · · e
s

via u0 = x
0

, x
1

, x
2

, . . . , x
2k

0
+1

=

v0. If for any j, j0, p
2j+1

p
2j+2

and x
2j

0
+1

x
2j

0
+2

form the same edge in G then by

Lemma 3.3.1, either u0 or v0 will be not a vertex in (G0 � {y
1

, . . . , y
l

} � st u). Now
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observe, if for any j, j0, p
2j+1

p
2j+2

and x
2j

0
+1

x
2j

0
+2

do not form same edge in G then

either x
1

or x
2

has to be connected to p
1

or p
2

to avoid x
1

x
2

and p
1

p
2

forming

a gap. If any of them (for example x
1

) is connected to p
1

in G that will make

{v0 = x
2k

0
+1

, x
2k

0 , . . . , x
1

, p
1

, . . . , p
2k+1

} a longer connection violating the maximality

of k. A similar thing happens if x
2

is connected to p
1

in G. So either of them has to

be connected to p
2

. If x
1

is connected to p
2

in G then u is connected to v0 in G0 as

u, p
1

, p
2

, x
1

, . . . , x
2k

0
+1

= v0 will be an even-connection. Similarly if x
2

is connected to

p
2

then u is connected to u0 in G0 as u, p
1

, p
2

, x
2

, x
1

, u0 will be an even-connection. In

both the cases either u0 or v0 will not be a vertex in (G0 � {y
1

, . . . , y
l

} � st u). This

proves that any edge in (G0 � {y
1

, . . . , y
l

}� st u) is an edge in G. Hence the Lemma

follows.

Using Lemma 3.3.6 we prove the next theorem which guarantees that the gap

between the regularity of powers of edge ideals of gap free graphs and the regularity

of monomial ideals generated in the same degree and having a linear resolution, can

not be arbitrarily large:

Theorem 3.3.7. For any gap free graph G with reg(I(G)) = r and any s � 2 the

reg(I(G)s) is bounded above by 2s+ r � 1.

Proof. Let G0 be the graph associated to the polarization of (I(G)s+1 : e
1

· · · e
s

). We

have reg(G0)  max{reg(G0 � st x) + 1, reg(G0 � x)}, for each x. We choose u
1

and

v
1

even connected by u
1

= p
0

, . . . , p
2k1+1

= v
1

such that k
1

is maximum. By Lemma
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3.3.6 (G0 � st u
1

) is a subgraph of G obtained by vertex deletion along with some

isolated whisker vertices. As isolated vertices do not a↵ect the regularity of edge

ideal, reg((G0 � st u
1

)  r.

Next we we delete a vertex u
2

from (G0 � u
1

) which is even-connected to another

vertex v
2

via u
2

= q
0

, . . . , q
2k2+1

= v
2

with k
2

maximum. Again by Lemma 6.18

(G0�u
1

� st u
2

) is a subgraph obtained from G�u
1

by deletion of vertices along with

some whisker vertices. Hence reg(G0�u
1

�st u
2

)  r. We keep selecting u
1

, u
2

, ... and

apply Lemma 3.3.6. As we are in a finite set-up, for some l, (G0�u
1

, . . . , u
l

) itself is a

subgraph of G obtained by repeated vertex deletion along with some isolated whisker

vertices and reg(G0)  r + 1. Therefore, by induction the result follows.

3.4 A Worked Out Example

In this section we work out an example with the help of Macaulay 2 to illustrate the

proof of the Theorem 3.3.5. We know that a 5-cycle is a gap free and cricket free

graph. In this example we show that the second and the third power of its edge ideal

have linear resolutions.

Example 3.4.1. Let S = Q[a, b, c, d, e] and I = (ab, bc, cd, de, ea). We calculate the

regularities using Macaulay 2; all other computations are elementary and can be done

by hand . If we take {ab, bc, cd, de, ea} to be the ordered list of generators of I then
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one can check that the ordered set of generators of I2 that satisfies the condition of

Theorem 3.1.12 is

{a2b2, ab2c, abcd, abde, a2be, b2c2, bc2d, bcde, bcea, c2d2, cd2e, cdea, d2e2, de2a, e2a2}

Now one can check, reg(I) = 3

(I2 : ab) = (de, ce, ae, cd, bc, ab), and its regularity is 2.

((I2 + ab)) : bc) = (a, de, cd, bc), and its regularity is 2.

((I2 + ab+ bc) : cd) = (b, de, ae, cd), and its regularity is 2.

((I2 + ab+ bc+ cd) : de) = (c, de, ae, ab), and its regularity is 2.

((I2 + ab+ bc+ cd+ de) : ea) = (d, b, ae), and its regularity is 2.

So we have reg(I2)  max{4, 4, 4, 4, 4, 3} = 4

As I2 is generated in degree 4, this forces that reg(I2) = 4 which proves that it has

linear resolution.

Now we focus into I3. We observe that,

(I3 : a2b2) = (de, ce, ae, cd, bc, ab), and its regularity is 2,

(I3 + a2b2 : ab2c) = (a, de, ce, cd, bc), and its regularity is 2,

(I3 + a2b2 + ab2c : abcd) = (b, e2, de, ce, ae, cd), and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd : abde) = (c, de, ae, ab), and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abde : a2be) = (d, b, ce, ae), and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be : b2c2) = (a, de, cd, bc),

and its regularity is 2,
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(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 : bc2d) = (b, a, de, cd),

and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 + bc2d : bcde) = (c, a, de),

and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 + bc2d+ bcde : bcea) = (d, b, a),

and its regularity is 1,

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 + bccd+ bcde+ bcea : c2d2)

= (b, de, ae, cd), and its regularity is 2.

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 + bc2d+ bcde+ bcea+ c2d2 : cd2e)

= (c, b, de, ae), and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abd+ a2be+ b2c2 +

bc2d+ bcde+ bcea+ c2d2 + cd2e : cdea) = (d, b, ae),and its regularity is 2

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 + bc2d

+ bcde+ bcea+ c2d2 + cd2e+ cdea : d2e2) = (c, de, ae, ab), and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 + bc2d+

bcde+ bcea+ c2d2 + cd2e+ cdea+ d2e2 : de2a) = (d, c, b, ae),

and its regularity is 2,

(I3 + a2b2 + ab2c+ abcd+ abde+ a2be+ b2c2 +

bc2d+ bcde+ bcea+ c2d2 + cd2e+ cdea+ d2e2 + de2a : e2a2) = (d, b, ae),

and its regularity is 2.
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These shows that reg(I3)  max{6, 5, 5} = 6

As I3 is generated in degree six this forces reg(I3) = 6 and as a result I3 has linear

minimal free resolution.
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Chapter 4

Path Ideals

In this chapter we study the regularity of path ideals and find several upper bounds

for them. After their introduction in [CD], path ideals have been studied by vari-

ous researchers (e.g. [AS1], [AS2], [BHK], [KO]). Examples indicate that for various

classes of graphs “small regularity” for edge ideals forces the higher path ideals to have

small regularity. We prove various results of that type in this chapter. Our approach

is similar to that of previous chapter however the situation is somewhat simpler for

path ideals. As we shall see in Section 2 of this chapter, we don’t need any special

ordering of the generators. Of course we prove our result for some particular classes

of path ideals and one way to approach the more general classes is to investigate

whether there exists ordering of minimal generators which “behaves nicely” (in the

spirit of Theorems 3.1.12 and 3.1.13) with respect to short exact sequences.

All along we assume that G is a gap free graph whose t-path ideal is denoted by

I
t

for all t � 3 and whose edge ideal is denoted by I. This chapter mainly consists of

the work done in [B2].
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4.1 3-Path Ideals And 4-Path Ideals

Our main result in this chapter is that for gap free, claw free and whiskered-K
4

free

graphs G, I
t

(G) has a linear minimal free resolution for all t � 3. Before going into

the investigation of I
t

for general t we restrict ourselves to cases t = 3 and 4. We

prove various di↵erent results in these two cases.

We first study I
3

and prove a bound for regularity of I
3

in terms of regularity of

I. The following lemma is the first step toward that result.

Lemma 4.1.1. If e = uv is a generator of I and I
3

6= 0 then (I
3

: e) is generated in

degree one. As a consequence it is a prime ideal generated by variables.

Proof. Let m be a minimal monomial generator of (I
3

: e). So there exists a, b, c 2

V (G) with ab, bc 2 E(G) such that abc|uvm. If {a, b, c} \ {u, v} = ; then abc|m. As

G is gap free one of ua, va, ub, vb is an edge in G. If ua is an edge then ae is a minimal

monomial generator of I
3

. Hence m = a as m is minimal. If ub is an edge then be is

a minimal monomial generator of I
3

and m = b. By symmetry we conclude that m

has degree one in the remaining two cases too.

Now we assume that {a, b, c} \ {u, v} 6= ;. First let us assume u = b. As a 6= c,

v can’t be equal to both a and c. If v 6= a then a|m and ae is a 3-path making

a = m by minimality of m. If u = b and v 6= c then c|m and ce is a 3-path hence

m = c. If u = a, v 6= b then be 2 I
3

and b|m. Hence by similar argument m = b. If
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u = a, v = b then ce 2 I
3

and c|m. Again by similar argument m = c. By symmetry

m is a variable in the other cases too. This completes the proof.

We illustrate this in the case of 5-cycle:

Example 4.1.2. Let S = Q[x
1

, . . . , x
5

] and I = (x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

, x
5

x
1

). We

observe that, I
3

= (x
1

x
2

x
3

, x
2

x
3

x
4

, x
3

x
4

x
5

, x
4

x
5

x
1

, x
5

x
1

x
2

)

(I
3

: x
1

x
2

) = (x
5

, x
3

), (I
3

: x
2

x
3

) = (x
4

, x
1

), (I
3

: x
2

x
4

) = (x
5

, x
2

),

(I
3

: x
4

x
5

) = (x
3

, x
1

), (I
3

: x
5

x
1

) = (x
4

, x
2

).

Next we prove our bound for the regularity of I
3

in terms of the regularity of I.

We note that as a consequence of this Theorem it follows that if I has regularity less

than or equal to 3 then I
3

has a linear minimal free resolution.

Theorem 4.1.3. If I
3

6= 0 and reg(I) = r then reg(I
3

)  max{r, 3}.

Proof. Notice that for any two di↵erent edges e = ab, f = cd with no common ver-

tices, (e : f) = (e). As G is gap free at least one of the vertices of e forms an edge

with a vertex of f . Without loss of generality we can assume ac is an edge. However

we observe that in this case (a) ✓ (I
3

: f).

In case e and f have a common vertex, (e : f) is generated by a variable. So it fol-

lows from the previous lemma that for di↵erent edges e
1

, ..., e
k

, (I
3

, e
1

, ...., e
k�1

) : (e
k

)

is J where J is an ideal generated by some variables.
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In light of these we observe that the result follows due to Theorem 2.1.8.

We continue with the 5-cycle example:

Example 4.1.4. Let S = Q[x
1

, . . . , x
5

] and I = (x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

, x
5

x
1

). Here

I
3

= (x
1

x
2

x
3

, x
2

x
3

x
4

, x
3

x
4

x
5

, x
4

x
5

x
1

, x
5

x
1

x
2

). One can show that (using Macaulay

2 for example) reg(I
3

) = 3. We know that in this case reg(I) = 3. So in this case

reg(I
3

)  max{3, reg(I)}. In particular I
3

has a linear minimal free resolution.

We devote rest of this section to the study of I
4

. We bound reg(I
4

) in terms of

reg(I) in two di↵erent cases. To achieve this, we first prove a useful lemma. This

lemma gives a description of (I
4

: e) where e is an edge in G, in a way similar to

our description of (I2 : e) in terms of even-connections. Like (I2 : e), (I
4

: e) is a

quadratic monomial ideal too. In fact we shall prove that it is a squarefree quadratic

monomial ideal.

Lemma 4.1.5. Let us assume I
4

6= 0. For any edge e = xy, (I
4

: e) is a squarefree

quadratic monomial ideal whose minimal monomial generators are the edges of G

which do not share a common vertex with e and the square free quadratic monomials

uv such that ux and vy are edges in G with {u, v} \ {x, y} = ;.

Proof. Clearly any minimal generator has to have degree at least two. Any edge that

has no vertex in common with e is a generator of (I
4

: e) by the fact that G is gap

free. For any square free quadratic monomials uv such that ux and vy are edges in

G with {u, v} \ {x, y} = ;, uxyv forms a 4-path and hence uv 2 (I
4

: e); uv has to
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be a generator by degree consideration. This proves one containment.

To prove the other, let m be a minimal monomial generator of (I
4

: e). So there is

a 4-path f = abcd with ab, bc, cd edges in G such that f |mxy. Now f is squarefree. If

x|m then clearly f |m
x

e. Then m

x

2 (I
4

: e). This clearly violates the minimality of m.

A similar thing happens if y|m. So we may assume that m is not divisible by x or y.

If m is not divisible by an edge that does not have a common vertex with e then m

is not divisible by any edge (as neither x nor y divides m). Now at least two among

a, b, c, d divide m. If any three of them divide m then m will be divisible by an edge

which is a contradiction. So m is divisible by exactly two of them. As a consequence

xy|abcd. If x = a then y = c otherwise m will be divisible by an edge. In this case

we take u = b and v = d. As uv is a generator of (I
4

: e) by degree consideration

m = uv. Similarly if x = b then y is either c or d otherwise m will be divisible by an

edge. In both cases we take u = a; in the first case we take v = d and in the second

case we take v = c. Again by degree consideration m = uv in bot the cases. The

existence of such u and v in all other cases follows by symmetry. This completes the

proof.

Example 4.1.6. If G is the 5-cycle on x
1

· · · x
5

then

I(G) = (x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

, x
5

x
1

) and

I
4

(G) = (x
1

x
2

x
3

x
4

, x
2

x
3

x
4

x
5

, x
3

x
4

x
5

x
1

, x
4

x
5

x
1

x
2

, x
5

x
1

x
2

x
3

)

We compute (I
4

: e) for x
1

x
2

to illustrate the previous lemma. Note that colon with
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any other edge can be computed simply by symmetry. (I
4

: x
1

x
2

) = (x
4

x
5

, x
3

x
5

, x
3

x
4

),

x
4

x
5

and x
3

x
4

are edges in G who do not share a vertex with x
1

x
2

and x
3

x
5

is a

generator of the second kind namely x
3

is a neighbor of x
2

and x
5

is a neighbor of x
1

.

Notation 4.1.7. As (I
4

: e) is a square free quadratic monomial ideal, it is an edge

ideal and we denote the corresponding graph by G0. Let e be xy, X be the set of all

neighbors of x other than y and Y be the set of all neighbors of y other than x. By

construction, V (G0) is a subset of V (G) NOT containing either x or y and the set

edges of G0, E(G0) consists of two types of elements:

1. Any edge in G that does not contain either x or y.

2. Every squarefree quadratic uv with u 2 X, v 2 Y .

We shall call these second type of generators the new edges.

The next two lemmas show that the induced cycles of length greater than or equal

to four of G0c are also induced cycles of Gc. The first of them is similar to the Lemma

3.3.2.

Lemma 4.1.8. If G0 is the graph associated to (I
4

: e) then G0 is gap free. In

particular (I
4

: e) has a linear presentation.

Proof. We first observe that two edges in G0 can’t form a gap in G0 if both of them

are also edges in G. This holds because by definition of G0 if ab is an edge in G and

both a and b are vertices in G0 then ab is an edge in G0. If ab is an edge in G that
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remains an edge in G0, it cannot form a gap in G0 with any new edge. This holds

due to the following reason: as G is gap free either a or b is neighbor of either x or

y. If a is a neighbor of x then by definition of G0 it is connected to every element

in Y so ab does not form a gap with any new age. The other cases follows by symmetry.

It only remains to show that two new edges also can’t form a gap. If uv and u0v0

are two new edges in G0 with u, u0 neighbor of x in G and v, v0 neighbors of y in G

we observe uv0 is an edge in G0 and hence we conclude no two new edges can form a

gap. This finishes the proof.

The next lemma is similar to Lemma 3.3.3.

Lemma 4.1.9. If G0 is the graph associated to (I
4

: e) then any induced cycle of

length greater than or equal to five in G0c is an induced cycle in Gc.

Proof. We show that if w
1

...w
n

is an induced cycle in G0c with n � 5 then it is an

induced cycle in Gc too. Clearly as V (G0) does not contain x or y none of the variables

w
1

, ..., w
n

can be x or y. Observe that it is enough to prove that for all i, j, w
i

, w
i+j

is

not an edge in E(G0) \E(G). For this, it is enough to prove that there is no i, j, such

that either w
i

2 X and w
i+j

2 Y , or w
i

2 Y and w
i+j

2 X . Suppose on the contrary

such i, j exists. Without loss of generality we may choose j to be minimal with this

property. Observe that j � 2 as w
i

w
i+1

can’t be connected in an anticycle. Without

loss of generality we may further assume w
1

2 X and w
1+j

2 Y . Now observe w
2+j

is
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not connected to x by an edge in G as that will force w
1+j

and w
2+j

to be connected in

G0 leading to a contradiction. So there exists a smallest l � 0, 2+ j  n� l  n such

that w
n�l

is not connected to x by an edge in G. If l = 0, then w
n

is not connected

to x by an edge in G and if l > 0 then w
n�l

is not connected to x by an edge in G

and w
n

, w
n�1

, .., w
n�l+1

are connected to x by edges in G.

Next, we look at the edge w
2

w
n�l

in G0. If w
2

is connected to x in G then as

w
1+j

is connected to y that will violate the minimality of j. If w
2

is connected to

y in G then w
1

w
2

has to be an edge in G0, which will contradict the fact w
1

....w
n

is an anticycle. We observe w
n�l

can not be connected to x by selection. If w
n�l

is

connected to y and l = 0 then w
1

and w
n

have to be connected to each other in G0. If

w
n�l

is connected to y and l > 0 then w
n�l+1

and w
n�l

have to be connected to each

other in G0. Both cases lead to a contradiction as w
1

....w
n

is an anticycle. As xy is

an edge in G, w
2

w
n�l

can not be an edge in G; otherwise they will form a gap. So w
2

and w
n�l

are not connected to each other in G and neither of them are connected to

x or y (w
2

, w
n�l

, x, y are four distinct vertices). So w
2

w
n�l

is not an edge in G0 and

this gives a contradiction. Hence w
1

...w
n

is an induced cycle in Gc.

We now prove our main results about the regularity of 4-path ideals. The first

one is comparable to the Theorem 2.1.11.

Theorem 4.1.10. Let I
4

6= 0. If I has a minimal free resolution which is linear up
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to step p � 2 then so does I
4

. In particular if I has a linear resolution then so does

I
4

.

Proof. Let e be any edge in G and G0 be the graph associated with (I
4

: e). By the

previous lemma and the Theorem 2.1.17, G0c does not have an induced cycle of length

less than p+ 3 that is not a triangle. Hence we conclude that if I has linear minimal

free resolution up to step p so does (I
4

: e).

Next we observe as G is gap free, for any two di↵erent edges e and f in G, who

do not share a common vertex (f : e) = (f) ✓ (I
4

: e). Hence either (f : e) is

generated by a variable or it is contained in (I
4

: e). So for di↵erent edges e
1

, ..., e
k

, e

of G, (I
4

, e
1

, ..., e
k

) : (e) is (I
4

: e)+J where J is an ideal generated by some variables.

Assume that E(G) = {e
1

, ..., e
l

}. Consider the following short exact sequences:

0 �! S

(I
4

: e
1

)
(�2)

.e1�! S

I
4

�! S

(I
4

, e
1

)
�! 0

0 �! S

((I
4

, e
1

) : (e
2

))
(�2)

.e2�! S

(I
4

, e
1

)
�! S

(I
4

, e
1

, e
2

)
�! 0

...

0 �! S

((I
4

, e
1

, ..., e
l�1

) : (e
l

))
(�2)

.el�! S

(I
4

, e
1

, ..., e
l�1

)
�! S

I
�! 0
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In light of the observations made in previous paragraphs, Lemmas 4.1.8, 4.1.9,

2.1.8, 2.1.15 and 2.1.19 and Theorem 2.1.17, if I has linear resolution upto step p

then so does I
4

. Hence the result follows.

Our next theorem is similar to Theorem 3.3.5 for powers of edge ideals.

Theorem 4.1.11. If G is gap free and cricket free then I
4

has a linear minimal free

resolution.

Proof. We observe that since G is gap free, for any two di↵erent edges e and f in G,

who does not share a common vertex (f : e) = (f) ✓ (I
4

: e). Hence either (f : e) is

generated by a variable or it is contained in (I
4

: f). So for di↵erent edges e
1

, ..., e
k

, e

of G, (I
4

, e
1

, ..., e
k

) : (e) is (I
4

: e)+J where J is an ideal generated by some variables.

Hence in light of Lemmas 2.1.8, 2.1.5 and Theorem 2.1.10 it is enough to show that

for every edge e the reg(I
4

: e)  2 that is if G0 is the graph associated with (I
4

: e)

then G0c is chordal.

We know from Lemma 3.4 that G0 is gap free. If w
1

....w
n

is an induced cycle in

G0c with n � 5, then it is also an induced cycle in Gc by Lemma 3.5. Then either

w
1

or w
3

is a neighbor of x or neighbor of y else w
1

w
3

and e forms a gap in G, a

contradiction. Without loss of generality, we may assume w
1

is a neighbor of x. Now

every neighbor of y is connected to every neighbor of x in G0 if they are not same .

As neither w
1

w
n

, nor w
1

w
2

is an edge in G0, neither w
2

nor w
n

are neighbors of y in
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G. So one of them has to be neighbor of x, as G is gap free. Again, without loss of

generality, we may assume w
2

is a neighbor of x. Next we consider w
3

w
n

. As w
1

and

w
2

are neighbors of x and neither w
1

w
n

nor w
2

w
3

are edges in G0, so neither w
3

nor

w
n

can be neighbor of y. Then either w
3

or w
n

has to be a neighbor of x. Without

loss of generality we may assume w
3

is a neighbor of x. Notice that y is not connected

to w
1

in G as that will force w
2

, a neighbor of x, to be connected to w
1

in G0 leading

to a contradiction. Hence {y, w
2

, x, w
1

, w
3

} forms a cricket leading to contradiction.

Hence by Theorem 2.1.10 reg (I
4

: e) = 2 and our result follows from Lemma

2.1.8.

We finish this section by explaining our last theorem by an example.

Example 4.1.12. A five cycle is both gap free and cricket free so by previous theorem

one expects the 4-path ideal to have linear resolution. One can check (by Macaulay

2, for example) that the 4-path ideal has regularity 4; that is, it has a linear minimal

free resolution.

4.2 Main Results

In this section we study general path ideals and prove our main result of this chapter.

Our main result says that all path ideals of a gap free and claw free graph have linear

minimal free resolutions. One observes that this result is similar to our result about
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linear resolutions of powers of gap free and cricket free edge ideals. However in case

of powers of edge ideals we needed a special ordering on the generators to prove our

result. For path ideal case no such order is required.

We first prove two very useful lemmas that will help us to prove our main theorem.

Lemma 4.2.1. Let G be gap free, claw free and whiskered-K
4

free and I
t

6= 0 for

some t � 6. If e 6= f are two generators of I
t

then either (e : f) is generated by a

variable or (e : f) ✓ (I
t+1

: f). We get the same conclusion for all gap free and claw

free graphs for t = 3, 4, 5.

Proof. Assume (e : f) is not generated by a variable. That means m = e

gcd(e,f)

, which

is the generator of (e : f), is a monomial of degree greater than or equal to 2. We

also have for any m0|m with m0 6= m, e does not divide m0f . Let f = x
1

· · · x
t

and

e = y
1

· · · y
t

. First we show that if a is a variable such that a|m and ax
i

is an edge

in G for any i 2 {1, 2, t � 1, t}, then af 2 I
t+1

as G is claw free. This is clear if ax
1

or ax
t

is an edge as in that case ax
1

· · · x
t

or ax
t

· · · x
1

will be in I
t+1

. If ax
2

is an

edge then for ax
2

x
1

x
3

to avoid being a claw either ax
1

or ax
3

or x
1

x
3

is an edge. In

the first case it is again clear. In the second case af 2 I
t+1

as x
1

x
2

ax
3

· · · x
t

forms a

t+ 1 path. In third case ax
2

x
1

x
3

· · · x
t

forms a t+ 1 path. The other cases follow by

symmetry. In all these cases (e : f) ✓ (a) ✓ (I
t+1

: a).

If there is an edge h|m then as G is gap free considering x
1

x
2

and h, we get that

there is a variable a dividing m such that ax
1

or ax
2

is an edge and hence we are
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done by arguments of previous paragraph; also if there exists a variable a dividing m

such that for some i both ax
i

and ax
i+1

are edges in G then x
1

· · · x
i

ax
i+1

· · · x
t

is a

generator of I
t+1

and (e : f) ✓ (a) ✓ (I
t+1

: f).

Now we may assume that neither of the above holds. We have y
1

· · · y
t

|mx
1

· · · x
t

.

If degree of m is ↵ then y
1

· · · y
t

= mx
i1 · · · xit�↵ for some x variables. As ↵ � 2, m is

not divisible by an edge and variables of m are part of a t-path (namely e) we have

two variables a, b dividing m and two indices i, j (with the possibility that i = j) such

that ax
i

and bx
j

are edges.

If a and b both connected to x
i

, for x
i�1

, x
i

, a, b to avoid being a claw we must have

either ax
i�1

or bx
i�1

is an edge in G contradicting the assumption; as no edge divides

m, ab can not be an edge. So we may assume that a and b are not connected to the

same x, in particular we have i 6= j. If t  5 then this forces {i, j}\{1, 2, t�1, t} 6= ;

and we are done by assumption. So let us assume t � 6 and {i, j}\{1, 2, t�1, t} = ;.

Without loss of generality we assume i � j. Also as the graph is claw free, con-

sidering a, x
i

, x
i�1

, x
i+1

we conclude that x
i�1

x
i+1

is an edge. This follows because by

assumption a is not connected to two consecutive edges. Similarly x
j�1

x
j+1

is an edge.

Now consider ax
i

and x
1

x
2

. As G is gap free and by assumption a is not con-
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nected to x
1

or x
2

, we have either x
1

x
i

or x
2

x
i

is an edge. If x
1

x
i

is an edge then

ax
i

x
1

x
2

· · · x
i�1

x
i+1

· · · x
t

forms a t+1 path and a 2 (I
t+1

: f). Hence (e : f) ✓ (I
t+1

:

f). So we may assume that is not the case, so x
2

x
i

is an edge. By symmetry we may

assume x
2

x
j

, x
i

x
t�1

, x
j

x
t�1

are edges and x
1

x
j

, x
i

x
t

, x
j

x
t

are not edges.

As we are in a gap free graph, both a and b are not connected to same x and ab

is not an edge, we have x
i

x
j

is an edge. Otherwise ax
i

and bx
j

will form a gap.

Finally we observe that if x
1

x
t

is an edge then ax
i

x
2

x
3

· · · x
i�1

x
i+1

· · · x
t

x
1

is a t+1

path and a 2 (I
t+1

: f) and hence (e : f) ✓ (I
t+1

: f). So we may assume this is not

the case. If x
1

x
t�1

is an edge, then we consider x
1

x
t�1

x
t

x
i

. This forms a claw. Hence

we may assume x
1

x
t�1

is not an edge. Similarly, x
2

x
t

is not an edge. As we are in a

gap free graph this forces x
2

x
t�1

to be an edge; otherwise x
1

x
2

and x
t�1

x
t

forms a gap.

Now we consider the induced subgraph on {a, b, x
1

, x
2

, x
i

, x
j

, x
t�1

, x
t

}. The set of

edges of this induced subgraph is

{x
1

x
2

, x
t�1

x
t

, ax
i

, bx
j

, x
2

x
i

, x
2

x
j

, x
2

x
t�1

, x
i

x
j

, x
i

x
t�1

, x
j

x
t�1

}.

This forms a whiskered-K
4

, which gives a contradiction.
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We explain this lemma in the next example for a 5-cycle.

Example 4.2.2. Let S = Q[x
1

, . . . , x
n

] and I = (x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

). In this case

we know from previous examples that

I
3

= (x
1

x
2

x
3

, x
2

x
3

x
4

, x
3

x
4

x
5

, x
4

x
5

x
1

, x
5

x
1

x
2

)

and I
4

(G) = (x
1

x
2

x
3

x
4

, x
2

x
3

x
4

x
5

, x
3

x
4

x
5

x
1

, x
4

x
5

x
1

x
2

, x
5

x
1

x
2

x
3

). We know that

a 5-cycle is both gap free and claw free. We observe that

(x
1

x
2

x
3

: x
2

x
3

x
4

) = (x
1

), which is an ideal generated by a variable

(x
1

x
2

x
3

: x
3

x
4

x
5

) = (x
1

x
2

) ✓ (I
4

: x
3

x
4

x
5

), as x
2

x
3

x
4

x
5

is 4-path,

(x
1

x
2

x
3

: x
4

x
5

x
1

) = (x
2

x
3

) ✓ (I
4

: x
4

x
5

x
1

), as x
3

x
4

x
5

x
1

is a 4-path

and (x
1

x
2

x
3

: x
5

x
1

x
2

) = (x
3

), which is an ideal generated by variables.

The other cases follow by symmetry.

Lemma 4.2.3. Let G be gap free, claw free, whiskered K
4

free and I
t+1

6= 0. If f is

a generator of I
t

for any t � 6 then (I
t+1

: f) is generated by variables. If t = 3, 4, 5

then the same conclusion holds for every gap free and claw free graph.

Proof. Let m be a minimal monomial generator of (I
t+1

: f) which is not a variable.

So mf 2 I
t+1

. Hence there is a t + 1 path e such that e|fm. As e is squarefree and

m is minimal, we can assume gcd(f,m) = 1.

Let f = x
1

· · · x
t

and e = y
1

· · · y
t+1

. First observe that if a is a variable such that

a|m and ax
i

is an edge in G for any i 2 {1, 2, t � 1, t}. Then af 2 I
t+1

as G is claw

free. This is clear if ax
1

or ax
t

is an edge as in that case ax
1

· · · x
t

or ax
t

· · · x
1

will
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be in I
t+1

. If ax
2

is an edge then for ax
2

x
1

x
3

to avoid being a claw either ax
1

or

ax
3

or x
1

x
3

is an edge. In first case it is again clear. In the second case af 2 I
t+1

as x
1

x
2

ax
3

· · · x
t

forms a t + 1 path. In third case ax
2

x
1

x
3

· · · x
t

forms a t + 1 path.

The other cases follow by symmetry. In all these cases (m) ✓ (a) ✓ (I
t+1

: f) and by

minimality of m we have m = a

If there is an edge h|m then as G is gap free considering x
1

x
2

and h we get that

there is a variable a dividing m such that ax
1

or ax
2

is an edge. Hence we are

done by arguments of previous paragraph. We also observe that if there exists a

variable a dividing m such that for some i both ax
i

and ax
i+1

are edges in G, then

x
1

· · · x
i

ax
i+1

· · · x
t

is a generator of I
t+1

and (m) ✓ (a) ✓ (I
t+1

: f) and m = a by

minimality.

Now we may assume that neither of the above holds. We have y
1

· · · y
t+1

|mx
1

· · · x
t

.

If degree of m is ↵ then y
1

· · · y
t+1

= mx
i1 · · · xit+1�↵ for some x variables. As ↵ � 2,

m is not divisible by an edge and variables of m are part of a t+1-path (namely e)

we have two variables a, b dividing m and two indices i, j (with the possibility that

i = j). such that ax
i

and bx
j

are edges.

If a and b both connected to x
i

, for x
i�1

, x
i

, a, b to avoid being a claw we must

have either ax
i�1

or bx
i�1

is an edge in G contradicting the assumption; as no edge
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divides m, ab can’t be an edge. So we may assume that a and b are not connected to

same x, in particular we have i 6= j. If t  5 then this forces {i, j}\{1, 2, t�1, t} 6= ;

and we’re done by assumption. So let us assume t � 6 and {i, j}\ {1, 2, t� 1, t} = ;.

As the graph is claw free, considering a, x
i

, x
i�1

, x
i+1

we conclude that x
i�1

x
i+1

are edges. This follows because by assumption a is not connected to two consecutive

edges. Similarly x
j�1

x
j+1

is an edge.

Now consider ax
i

and x
1

x
2

. As G is gap free and by assumption a is not con-

nected to x
1

or x
2

, we have either x
1

x
i

or x
2

x
i

is an edge. If x
1

x
i

is an edge then

ax
i

x
1

x
2

· · · x
i�1

x
i+1

· · · x
t

forms a t+ 1 path and a 2 (I
t+1

: f). Hence m = a. So we

may assume that is not the case, so x
2

x
i

is an edge. By symmetry we may assume

x
2

x
j

, x
i

x
t�1

, x
j

x
t�1

are edges and x
1

x
j

, x
i

x
t

, x
j

x
t

are not edges.

As we are in a gap free graph, both a and b are not connected to same x and ab

is not an edge, we have x
i

x
j

is an edge. Otherwise ax
i

and bx
j

will form a gap.

Finally we observe that if x
1

x
t

is an edge then ax
i

x
2

x
3

· · · x
i�1

x
i+1

· · · x
t

x
1

is a

t + 1 path and a 2 (I
t+1

: f) and hence m = a. So we may assume this is not the

case. If x
1

x
t�1

is an edge, then we consider x
1

x
t�1

x
t

x
i

. This forms a claw. Hence

we may assume x
1

x
t�1

is not an edge. Similarly, x
2

x
t

is not an edge. As we’re in a
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gap free graph this forces x
2

x
t�1

to be an edge; otherwise x
1

x
2

and x
t�1

x
t

forms a gap.

Now we consider the induced sub graph on {a, b, x
1

, x
2

, x
i

, x
j

, x
t�1

x
t

}. The set of

edges of this induced subgraph is

{x
1

x
2

, x
t�1

x
t

, ax
i

, bx
j

, x
2

x
i

, x
2

x
j

, x
2

x
t�1

, x
i

x
j

, x
i

x
t�1

, x
j

x
t�1

}.

This forms a whiskered K
4

, which gives a contradiction.

We continue our illustration via the 5-cycle example.

Example 4.2.4. As before let S = Q[x
1

, . . . , x
n

] and I = (x
1

x
2

, x
2

x
3

, x
3

x
4

, x
4

x
5

). In

this case we know from previous examples that

I
3

= (x
1

x
2

x
3

, x
2

x
3

x
4

, x
3

x
4

x
5

, x
4

x
5

x
1

, x
5

x
1

x
2

) and

I
4

= (x
1

x
2

x
3

x
4

, x
2

x
3

x
4

x
5

, x
3

x
4

x
5

x
1

, x
4

x
5

x
1

x
2

, x
5

x
1

x
2

x
3

). By symmetry it is enough

to compute the colon ideal for one 3-path. We simply observe that

(I
4

: x
1

x
2

x
3

) = (x
4

, x
5

), which is an ideal generated by variables.

The main theorem follows from these two lemmas.

Theorem 4.2.5. If G is gap free and claw free and I
t

6= 0 then I
t

has linear minimal

free resolution for t = 3, 4, 5, 6. If G is gap free, claw free and whiskered K
4

free and

I
t

6= 0 then I
t

has linear minimal free resolution for all t � 3.

Proof. For t = 3 this follows from the Theorem 4.1.3 and the Theorem 2.2.1 as a

claw free graph is automatically cricket free. Let us assume by induction the result
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holds for (t� 1) for some t � 4. If m
1

, ....,m
k

are k di↵erent monomials representing

(t � 1)-paths then by the previous two lemmas ((I
t

,m
1

, ...,m
k�1

) : (m
k

)) is an ideal

generated by variables and hence has regularity 1. The result now follows from the

Lemma 2.1.8.

For the sake of completion we finish this chapter with the following example,

Example 4.2.6. One checks using Macaulay 2, that for a 5-cycle, reg(I
t

) = t for

t = 3, 4, 5.
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Chapter 5

Cohen-Macaulay Bipartite Graphs

The relationship between the combinatorics of a bipartite graph and the homological

algebra of the corresponding edge ideal is known to be very deep and studied exten-

sively by various mathematicians (see for example, [HH], [K1], [K2], [MV], [Vi1]).

Among other nice properties, the bipartite graphs with Cohen-Macaulay edge ide-

als are known to have perfect matching. For this reason people are interested to

find characterizations for the Cohen-Macaulay bipartite graphs. There are di↵er-

ent characterizations of the Cohen-Macaulay bipartite graphs and most of them use

Hall’s Marriage theorem (or one of its equivalent forms like König’s theorem) for their

proofs. Observing these we got curious to know whether one can prove a characteri-

zation without using any of those theorems.

In the first section of this chapter we give an elementary proof of the characteriza-

tion of Cohen-Macaulay bipartite graphs by Herzog and Hibi (see [HH]). It is worth

noticing that our proof of the characterization by Herzog and Hibi does not use any

strong graph theoretic results like the Marriage theorem or König’s theorem. We use

short exact sequences and the fact that a Cohen-Macaulay quotient is unmixed and



72

connected in codimension one.

In the second section we prove a new characterization for Cohen-Macaulay bipar-

tite graphs. For this too, we do not use Hall’s theorem. We use the description of

(I2 : e) by even-connections and Herzog-Hibi’s characterization. It has been brought

to our attention by R. H. Villarreal that Theorem 5.2.3 (which is crucial tool for

proving our characterization) follows from Theorem 2.9 (e) of [MRV] and Corollaries

8 and 9 of [ZN] and both of these works have been done prior to our work.

Many people have tried to characterize the bipartite graphs with related prop-

erties. For example, R. H. Villarreal has characterized unmixed bipartite graphs in

[Vi1]. One natural higher degree generalization of the results in this section will be

characterizing the similar properties for the edge ideals of the t-uniform, t-partite

hypergraphs (see the Sections 1 and 2 of [KM] for relevant definitions) in the similar

way. However this seems to be a much harder problem than the bipartite case, even

for t=3. Even characterizing the unmixed 3-uniform, 3-partite hypergraphs looks

formidable. A more general question will be to characterize all such hypergraphs

whose edge ideals satisfy Serre’s S
i

condition. One important step in our proof is

to show that for the bipartite graphs, unmixed and connected at codimension one is

equivalent to being Cohen-Macaulay. This is of course false in general but whether

this is true for the t-uniform t-partite hypergraphs or some subclasses of them is not

known and investigating that may shed more light into this area. Cohen-Macaulayness

and unmixedness are connected to linear resolutions and linear presentations respec-
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tively via the so-called Alexander duality (see the Section 2 of [DHS] and [ER] for the

definitions and relevant discussions). In light of these it will be interesting to explore

the utility of the techniques that are useful in the study of regularity. We pose all

these in the next question.

Question 5.0.7. 1. Characterize Cohen-Macaulay t-uniform, t-partite hypergraphs

for t � 3.

2. Characterize unmixed t-uniform, t-partite hypergraphs for t � 3.

3. Characterize t-uniform, t-partite hypergraphs whose edge ideals satify Serre’s con-

dition S
i

for t � 3

4. Characterize the t-uniform, t-partite hypergraphs for which unmixed and connected

at codimension one implies Cohen-Macaulay.

Throughout this chapter we assume that G is a connected bipartite graph. We

refer the reader to [W] for the elementary properties of bipartite graphs.

5.1 A New Proof Of The Herzog-Hibi

Characterization

We first state and prove the following theorem, which was originally proved by

Herzog and Hibi in [HH]. We’re grateful to our advisor Professor Craig Huneke for

suggesting the main idea of this proof. For this proof we use the notion of connected

in codimension one.
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Theorem 5.1.1. Let G be a bipartite graph with bipartition {x
1

, ...., x
n

} and {y
1

, ...., y
n

0}.

Then I(G) is Cohen-Macaulay if and only if n = n0 and there exists an enumeration

of x-variables and y-variables with the following three properties:

a. x
i

y
i

2 I(G).

b. x
i

y
j

2 I(G) =) i  j

c. x
i

y
j

2 I(G), x
j

y
k

2 I(G) =) x
i

y
k

2 I(G).

Proof. We first prove the if part.

Consider:

0 ! S

(I(G) : x
1

)
! S

I(G)
! S

(I(G), x
1

)
! 0

Notice that (I(G), x
1

) = (I(G0), x
1

) where G0 is the graph obtained by deleting x
1

and

y
1

from G. Clearly G0 satisfies all the conditions and hence I(G0) is Cohen-Macaulay

of dimension n� 1 by induction. So (I(G), x
1

) is Cohen-Macaulay of dimension n.

Let {y
1

, y
i2 , ...., yik} be the degree one generators of (I(G) : x

1

) for some i
1

, ...., i
k

.

Let x
ijyl 2 I(G). As x

1

y
ij 2 I(G) by the condition c, x

1

y
l

2 I(G) and hence

l 2 {1, i
2

, ...., i
k

}. So (I(G) : x
1

) = (I(G0), y
1

, ...., y
ik
), where G0 is the graph ob-

tained from G by deleting x
1

, y
1

, x
i2 , yi2 , ...., xik

, y
ik
. But by induction I(G0) is Cohen-

Macaulay of dimension n� k. Hence (I(G) : x
1

) is Cohen-Macaulay of dimension n.

So by the Depth Lemma and the fact that the Krull dimension of S

I(G)

is less than

or equal to that of S

(I(G):x1)
, we conclude that I(G) is Cohen Macaulay of dimension n.

To prove the converse we first observe that n = n0 as Cohen-Macaulay implies
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unmixed and both (x
1

, ..., x
n

) and (y
1

, ..., y
n

0) are minimal primes. Next we prove the

existence of conditions a and b by induction. The condition c will follow from the

Cohen-Macaulayness.

First observe that Cohen Macaulay implies unmixed and connected in codimen-

sion 1. Let s ⇢ {1, ...., n}. Define ys = ⇧
i2syi and xs = ⇧

i2sxi

. Given s ⇢ {1, ...., n},

define T
s

= {j|x
j

is not connected to any y
i

, i 2 s}, and let u
s

= ysxTs . Note that

us /2 I(G).

We now consider the ideals (I(G) : us). Using this we prove the existence of an

order of the required type. We actually prove that any y with minimum degree can

serve as y
1

.

Let s = {1, ...., n}. Then (I : us) = (x
1

, ...., x
n

). So ht I = n as I is unmixed.

Clearly (I : us) = (x
j1 , ..., xjt , yl1 , ...., ylt0 ) where x

ji connected to some y in s and y
lk

is connected to any x not connected to any y in s. Hence ht(I : us) = n and t+t0 = n.

Choose y
i

with minimum degree. Without loss of generality we may assume i = 1.

Let x
1

, ..., x
t

be neighbors of y
1

. Then there exist exactly n� t y’s that are connected

to other x’s as x
1

, .., x
t

and these y’s form a prime ideal containing I which is minimal.

After relabelling y
1

, ..., y
t

are only connected to x
1

, ..., x
t

. As t is minimal the induced
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subgraph on x
1

, ..., x
t

, y
1

, ...., y
t

forms a complete bipartite graph.

So if any minimal prime P of I does not contain some x
i

between 1 to t then it has

to contain every y
i

between 1 to t is there. As I is unmixed and connected codimension

one this forces t = 1 and y
1

is only connected to x
1

as otherwise there is no path from

(x
1

, ..., x
n

) to (y
1

, ..., y
n

) in codimension one; this can be seen in the following way:

for any path in codimension one between (x
1

, ...., , x
n

) = P
0

, ......, P
l

= (y
1

, ...., y
n

); let

for some l0 < l, P
0

, ...., P
l

0 contains all of x
1

, ....., x
t

. As ht(P
i

+P
i+1

) =ht(P
i

) + 1 and

the variables x
t+1

, ..., x
n

are onely connected to y
t+1

, ...., y
n

, we observe that the prime

ideals P
0

, ..., P
l

0 do not contain y
1

, ...., y
t

. Now P
l

0
+1

misses atleast one of x
1

, ..., x
t

;

hence it has to contain all y
1

, ...., y
t

. So ht((P
l

0 + P
l

0
+1

) � ht(P
l

0) + t. This gives a

contradiction.

Now consider (I, x
1

). Any minimal prime of (I, x
1

) is a minimal prime of I, so

(I, x
1

) is unmixed. We now show that (I, x
1

) is connected at codimension one. Any

minimal prime of I has to contain either x
1

or y
1

; as it is minimal it can not have both

as y
1

is only connected to x
1

. As I is connected at codimension one, between any

two minimal primes of (I, x
1

) there is a path in codimension one of minimal primes

of I. If any prime appearing in that path has y
1

simply changing it into x
1

we get

a path in condimension one of minimal primes of (I, x
1

). This shows that (I, x
1

) is

connected in codimension one. If G0 is the graph obtained from G by deleting x
1
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then I(G0) is Cohen-Macaulay by induction. So there exists an ordering {x
2

, ...., x
n

}

and {y
2

, ...., y
n

} with the required property. As y
1

is only connected to x
1

the result

follows.

To prove that condition c holds, take x
i

, y
j

and x
j

, y
k

in E(G) such that i, j, k are

distinct. Assume that x
i

y
k

is not an edge. Then there is a minimal prime P that

does not contain either x
i

or y
k

as the ideal generated by all x-variables except x
i

and all y-variables except y
k

is a prime ideal that contains I and does not contain x
i

or y
k

. Now because G is unmixed, height of this prime has to be n. Since x
i

and y
k

are not on P , we get that y
j

and x
j

are both in P . As P contains at least one of x
m

or y
m

for all m, one observes that height of P is strictly bigger than n, which is a

contradiction.

We illustrate this theorem via following example.

Example 5.1.2. Let S = Q[a, b, c, x, y, z] and I = (ax, ay, az, by, bz, cz). Clearly I

is a bipartite edge ideal. Using Macaulay 2 we observe that dimension(S
I

)=3 and

pd(S
I

) = 3. So by the Auslander-Buchbaum theorem depth(S
I

) = 3 and hence S

I

is Cohen-Macaulay. Now observe that we can rename the variables by a = x
1

, b =

x
2

, c = x
3

, x = y
1

, y = y
2

, z = y
3

and this new enumeration has the property pre-

scribed by the theorem.
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5.2 A New Characterization

In this section we prove a new characterization for Cohen-Macaulay bipartite graphs

using the even-connection description of (I2 : e) for an edge e. To do that we first

prove a lemma which describes the nature of (I2 : e) in a bipartite graph.

Lemma 5.2.1. Let G be a bipartite graph with partitions {x
1

, ...., x
k

} and {y
1

, ...., y
l

}

and edge ideal I. For any edge x
i

y
j

in G, (I2 : x
i

y
j

) = I + (x
m

y
n

|x
m

y
j

, x
i

y
n

2 E(G))

Proof. The proof follows from Theorem 3.2.7 and Definition 3.2.2 and the fact that

bipartite graphs do not have any triangles.

We illustrate this with the following example.

Example 5.2.2. Let S = Q[a, b, c, x, y, z] and I = (ax, ay, az, by, bz, cz). Clearly

I is a bipartite edge ideal with bipartition {a, b, c} and {x, y, z}. We observe that

(I2 : ay) = I + (bx), which is exactly what the lemma says.

Our next result leads to our new characterization of Cohen-Macaulay bipartite

graphs. From now on we call two edges e and f disjoint if they share no common

vertices.

Theorem 5.2.3. Let G be a bipartite graph with edge ideal I and size of each partition

n. Then I is Cohen-Macaulay if and only if there exist n pairwise disjoint edges

e
1

, ..., e
n

such that (I2 : e
i

) = I and for any other edge e, (I2 : e) 6= I.
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Proof. If I is Cohen-Macaulay, we have orderings x
1

, ..., x
n

and y
1

, ...., y
n

of the ver-

tices of G which satisfy the conditions of previous theorem. Condition c implies for

all i, I2 : x
i

y
i

= I and conditions a and b implies for i 6= j (I2 : x
i

y
j

) 6= I.

Now suppose there exist e
1

= x
1

y
1

, ...., e
n

= x
n

y
n

with the condition. First we

show that if G
i

is the induced subgraph obtained by deleting x
i

and y
i

then the

edge ideal J
i

related to G
i

is satisfies the condition. Without loss of generality, we

prove this for G
1

. Clearly (J2

1

: e
i

) = J
1

for e
2

, ..., e
n

. Suppose there exists an edge

x
i

y
j

, i 6= j such that (J2

1

: x
i

y
j

) = J
1

. Without loss of generality we may assume

i = 2, j = 3. As (I2 : x
2

y
3

) 6= I and x
1

y
1

is an edge we can conclude that there

exists a minimal generator of (I2 : x
2

y
3

) which is an edge that is either of the form

x
1

y
l

or x
m

y
1

. Again without loss of generality we may assume it is of the form x
1

y
l

as the proof for the other follows simply by interchanging roles of x and y. So x
1

y
3

and x
2

y
l

are edges in G. As (J2

1

: x
2

y
3

) = J
1

we conclude x
3

y
2

is an edge in G. As

(I2 : x
3

y
3

) = I we observe that x
1

y
2

has to be an edge in G. So l 6= 2, 3. Without loss

of generality we may assume l = 4. Now (I2 : x
2

y
2

) = I so x
3

y
4

has to be an edge in

G. Again (I2 : x
3

y
3

) = I hence x
1

y
4

is an edge in G contradicting the assumption.

So we may assume for all i the edge ideal of the graph obtained by deleting x
i

and y
i

satisfies the condition.

Now by induction we may assume the result holds for n � 1. Pick e
i

= x
i

y
i



80

such that y
i

has minimum degree. Let G0 be the induced subgraph on vertices other

than x
i

, y
i

with edge ideal I 0. As I 0 satisfies the condition it is Cohen-Macaulay by

induction. Without loss of generality we may assume i = 1 and ordering that gives

ordering of previous theorem for I 0 is x
2

, ..., x
n

, y
2

, ..., y
n

. As y
2

has degree one in G0 it

can have at most degree 2 in G. If x
1

y
2

is not an edge, due to minimality degree of y
1

is

at most 1. If x
1

y
2

is an edge in G and x
i

y
1

is an edge in G for i > 2, as (I2 : x
1

y
1

) = I,

we have x
i

y
2

is an edge in G and hence in G0 contradicting the assumption. If x
1

y
2

and x
2

y
1

both are edges in G then, x
2

y
1

also satisfies the hypothesis as x
1

has to be

connected to any neighbour of x
2

as x
1

y
2

is an edge and x
2

y
2

satisfies the hypothesis,

leading to contradiction. Hence no x
i

for i > 1 is connected to y
1

. This guarantees

that conditions a and b of Theorem 5.0.8 are satisfied. The condition c is satisfied as

for all i, (I2 : x
i

y
i

) = I.

We illustrate using our previous example which is known to be Cohen-Macaulay.

Example 5.2.4. Let S = Q[a, b, c, x, y, z] and I = (ax, ay, az, by, bz, cz). Clearly

I is a bipartite edge ideal with bipartition {a, b, c} and {x, y, z}. We observe that

(I2 : ax) = (I2 : by) = (I2 : cz) = I

(I2 : ay) = I + (bx), (I2 : az) = (cz, bz, az, cy, by, ay, cx, bx, ax),

(I2 : bz) = I + (cy)

So there are exactly 3 edges e such that (I2 : e) = I

The following theorem is the main result of this section. We give a characterization

of Cohen-Macaulay bipartite edge ideals.
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Theorem 5.2.5. Let G be a bipartite graph with edge ideal I and size of each partition

n. Then I is Cohen-Macaulay if and only if the there exist n pairwise disjoint edges

e
1

, ..., e
n

, such that (I2 : e) is Cohen-Macaulay and for any other edge e, (I2 : e) is

not Cohen-Macaulay.

Proof. To prove the if part, we pick y with minimum degree and call it y
1

and the

corresponding edge e
1

. If degree of y
1

more than one then degree of any other vertex

is more than one; as (I2 : e
1

) is Cohen-Macaulay this will be a contradiction. So y
1

has degree one. Hence (I2 : e
1

) = I and I is Cohen-Macaulay.

For the only if part let e
1

, ..., e
n

be the ordering prescribed by the Herzog-Hibi

characterization. All we need to show J = (I2 : x
i

y
j

) is not Cohen-Macaulay for

i > j. This follows as (J2 : e) = J for e = x
j

y
i

(which is a minimal monomial

generator of J) as well as for e
1

, ..., e
n

. To see this first we show that (J2 : e
k

) = J

for all k. Here at every step we use the description of colon ideal provided by Lemma

5.2.1. If x
l

y
m

is a minimal monomial generator of (J2 : e
k

) which is not in J then

x
l

y
k

and x
k

y
m

are in J . Both of them can not belong to I as from (I2 : e
k

) = I

that will imply x
l

y
m

belongs to I and as a result will belong to J , contradicting the

assumption. Without loss of generality assume x
k

y
m

does not belong to I. Then x
k

y
j

and x
i

y
m

is in I. If x
l

y
k

does not belong to I then x
l

y
j

and x
i

y
k

belong to I. If x
l

y
k

is in I as x
k

y
j

is in I and (I2 : e
k

) = I we have x
l

y
j

is in I. In either case we have

x
l

y
j

and x
i

y
m

belong to I. Hence x
l

y
m

belongs to J contradicting our assumption.
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Next we show that (J2 : x
j

y
i

) = J . Here too we use Lemma 5.2.1 heavily. If x
l

y
k

is a minimal monomial generator of (J2 : x
j

y
i

) which is not in J then x
j

y
k

and x
l

y
i

is in J . As x
j

y
k

is in J it is either in I or y
k

is a neighbor of x
i

in G. If x
j

y
k

is in I

as (I2 : x
j

y
j

) = I we have x
i

y
k

is in I. By symmetry x
l

y
j

is in I. Hence x
l

y
k

is in J

contrary to the assumption. Hence J is not Cohen-Macaulay.

We illustrate this theorem using our previous example which is known to be Cohen-

Macaulay.

Example 5.2.6. Let S = Q[a, b, c, x, y, z] and I = (ax, ay, az, by, bz, cz). Clearly

I is a bipartite edge ideal with bipartition {a, b, c} and {x, y, z}. We observe that

(I2 : ax) = (I2 : by) = (I2 : cz) = I, so all of them are Cohen-Macaulay.

depth(I2 : ay) = depth(I2 : az) = (I2 : bz) = 4, so none of them are Cohen-Macaulay.

So there are exactly 3 edges e such that (I2 : e) is Cohen-Macaulay

The next theorem gives insight into the associated graded ring of a Cohen-Macaulay

bipartite edge ideal. The proof of this theorem uses the description of the colon via

even-connection.

Theorem 5.2.7. Let I be Cohen-Macaulay bipartite edge ideal with ordering e
1

, ...., e
n

.

Then for all i and for all k, (Ik : e
i

) = Ik�1. Hence e
i

s are non zero divisors in the

associated graded ring of I.

Proof. Let e
i

be x
i

y
i

. Let f 2 (Ik : e
i

) ⇢ (Ik�1 : e
i

) be a minimal monomial
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generator of (Ik : e
i

). By induction (Ik�1 : e
i

) = Ik�2. So f = gh
1

....h
k�2

where h
j

s

are minimal monomial generators of I and g any monomial. So e
i

h
1

....h
k�2

g 2 Ik.

As f is a minimal monomial generator, without loss of generality we may assume

g is of degree 2 and e
i

h
1

..h
k�2

g is a minimal monomial generator of Ik. Let g be

x
k

y
l

. If g is an edge we are done. Otherwise by Theorem 3.2.7, x
k

and y
l

are even

connected with respect to e
i

h
1

...h
k�2

. If x
i

y
l

is an edge and for some j,m, p, x
m

y
i

is

an edge and h
j

= x
m

y
p

, then by third condition of Cohen-Macaulayness in Herzog-

Hibi theoremx
m

y
l

is an edge and hence proceeding inductively we show g is an edge.

This observation along with the third condition of Cohen-Macaulayness in Herzog-

Hibi theorem proves that x
k

and y
l

are even connected with respect to h
1

....h
k�2

and

hence we get the result.

We illustrate this theorem using the ideal of our previous example for k = 3, 4.

Example 5.2.8. Let S = Q[a, b, c, x, y, z] and I = (ax, ay, az, by, bz, cz).

One can check using Macaulay 2,

(I3 : ax) = (I3 : by) = (I3 : cz) = I2, (Checking J == I2 returns TRUE in Macaulay

2 for all these ideals)

and, (I4 : ax) = (I4 : by) = (I4 : cz) = I3, (Checking J == I3 returns TRUE in

Macaulay 2 for all these ideals).
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Chapter 6

Some Open Questions

In this chapter we discuss some open questions and further directions of research

related to the topics covered in this thesis. These can be broadly divided into two

groups, questions related to Castelnuovo-Mumford regularity of ideals related to fi-

nite simple graphs and questions related to homological algebra of edge ideals of

even-connections. Many mathematicians have studied the questions of the first type

in recent years and many interesting results have come up. As an example we cite the

recent works of Bayerslan, Hà, and Trung ([BHT]) or that of Hà, Trung, and Trung

(HTT). Although far from getting a complete picture (or even understanding what

that means in this context), our understanding of the connection between the com-

binatorics of the graph and the regularity of powers of edge ideals is getting better.

From the above stated works and also from the work done in this thesis it appears

that one way to better this understanding is to study the related colon ideals. This

leads to questions of a second kind. As we saw earlier even connections contain lot

of information about these ideals. In these works we showed some relation between

even connections and the edge ideal itself; however there are many directions in which
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research can be pursued and hopefully more results about regularity of powers of edge

ideals can be produced. Apart from this connection with regularity, even-connections

provide interesting classes of edge ideals and we know almost nothing about their

algebraic properties, for example primary decomposition, depth, dimension, etc. Re-

search in these directions is expected to provide more results, as well as new questions.

In the subsequent sections we discuss some questions involving these two themes.

6.1 Some Open Questions About Regularity

In this section we mention some open questions about regularity that are related to

this work. We already mentioned in a previous chapter the question by Nevo and

Peeva about regularity three edge ideals. A general version of that question is stated

in [NP], Open Problem 1.11:

Question 6.1.1 (Nevo-Peeva). 1. Is it true that Gc has no induced four cycle if and

only if I(G)s has linear resolutions for large enough s?

2. If Gc has no induced four cycle, is it true that:

reg(I(G)s+1)  max{2s+ 2, reg(I(G)s) + 1}

.
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We know that the first part of this question has a positive answer in some cases.

We prove it for gap free and cricket free graphs in this thesis and it is also known

to be true for chordal graphs. One notes that reg(I(G)s+1) is always less than or

equal to 2s+ 2 as I(G) is generated in degree 2. As we answered a part of this using

even-connection techniques and in [BHT] a similar problem has also been solved using

even-connection, one expects that more research about properties of even-connection

will help to answer this question (more on this in the next section).

Various open problems related to regularity are stated in section 6 of [H]. We

discuss some of those that are closely related to this work. Just like Fröberg’s theorem

classifies all regularity 2 finite simple graphs, it is tempting to try to classify all finite

simple graphs with any given regularity. For various topological reasons this question

is known to be very di�cult. There is no known progress even in the next simplest

case, which is the Problem 6.3 of [H]:

Question 6.1.2 (Hà). Classify all finite simple graphs of regularity 3.

It is interesting to note that in [GR], the authors characterize all regularity 3 bi-

partite graphs.

As we saw in this work, the inequality reg(I)  max{reg(I : x) + 1, reg(I, x)},

for a monomial ideal I and variable x, is ubiquitous in this area. There are many

things that are unknown regarding this inequality. Problem 6.5 of [H] addresses one

of these:
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Question 6.1.3 (Hà). Classify monomial ideals I and variables x such that the above

mentioned inequality is an equality.

In the same direction we ask the following question:

Question 6.1.4. Classify all monomial ideals I and x such that the reg(I)

1. Is Equal to the max{reg(I : x) + 1, reg(I, x)}.

2. Is Equal to the min{reg(I : x) + 1, reg(I, x)}.

3. Is equal to reg(I : x) + 1.

4. Is equal to reg(I, x).

5. Is equal to both (and as a consequence both of them have same value).

6. Strictly greater than reg(I, x)

We also ask:

Question 6.1.5. Classify all monomial ideals I and x such that:

1. reg(I : x) + 1 � reg(I, x).

2. reg(I : x) + 1  reg(I, x).

3.reg(I : x) + 1 > reg(I, x).

4.reg(I : x) + 1 < reg(I, x).

One philosophical point should be made about all of the above three questions. It

is not clear that what we mean by “classify”. One may think of some purely algebraic
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classification or some combinatorial classification. Even in case of combinatorial clas-

sification there can be more than one classification as there can be both hypergraph

and simplicial complex structure associated to them and the relation between these

two is far from being clear. In fact none of these are known in the case of edge ideals

or path ideals where we can ask a more concrete question:

Question 6.1.6. Do the classifications asked in the previous three questions for finite

simple graphs and their edge ideals as well as various path ideals.

We want to mention that a very interesting reduction technique that can be useful

for these questions was explored in Lemma 4.6 of [DHS] which shows that one can

sequentially eliminate some vertices to achieve a subgraph which has some of the

desired properties. We expect that a closer inquiry into this technique might shed

some light to this direction.

As edge ideals are simply the base cases of path ideals one is tempted to ask

similar questions regarding general path ideals too. Comparing to the edge ideals,

much less is known about general path ideals. In fact one does not know the answer

to the following questions, which we partially answer in this thesis:

Question 6.1.7. Let G be a finite simple graph, 1. Is it true that if G is chordal

then every path ideal of G has linear minimal free resolution?

2. Can one classify all finite simple graphs with linear t-path ideals?

3. Is it true that if I
t

(G) has linear resolution then so does I
t+1

(G) for all t?
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We answered this question partially in this thesis by proving that all path ideals of

gap free and claw free graphs have linear minimal free resolutions. Our proof uses the

fact that (I
t

(G) : f) is “very well behaved” for claw free and gap free graphs where

f is a (t � 1)-path. One can hope that further investigation about the properties of

these colons will be helpful for research in this direction.

The main result of [AB] shows that the 4-cycle condition in Question 6.1.1 is

essential. The work done in [Co] shows that the kind of result we’re expecting for edge

ideals fails completely for general monomial ideals. For example, the Examples 3.1,

3.2, and 3.3 show the existence of regularity 3 monomial ideals I, where reg(I2) > 6.

In light of these it is di�cult to expect a generalization of Question 6.1.1 or anything

similar for general classes of monomial ideals. However even for edge ideals the answer

to the following straightforward question seems to be unknown:

Question 6.1.8. For s � 1, is it true that reg(Is+1) � reg(Is) for an edge ideal I?

Finally as the Cohen-Macaulayness of a squarefree monomial ideal is related to

the linear resolution of its Alexander dual (see Definition 2.2 and Theorem 2.7 of

[DHS]), we mention a problem involving the Cohen-Macaulayness of path ideals. A

question which seems to be of interest is the Cohen-Macaulayness of the path ideals

and its relation with the edge ideals. In general neither of them implies the other,

which is explained in the following example:

Example 6.1.9. Let S = K[x, y, z]. If I = (xy, xz) then it is an edge ideal which
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is not Cohen-Macaulay but the corresponding three path ideal J = (xyz) is definitely

Cohen-Macaulay. On the other hand let S 0 = K[x, y, z, w]. If I 0 = (xy, xw, zw)

then it is an edge ideal which is Cohen-Macaulay but the corresponding 3-path ideal

(xyw, xzw) is not Cohen-Macaulay.

However it seems interesting to find classes of graphs where there is a relation

between the two.

Question 6.1.10. For which classes of graphs does Cohen-Macaulayness of edge ide-

als imply Cohen-Macaulayness of path ideals or vice versa?

One way to approach this problem seems to be to understand the relation between

the corresponding minimal vertex covers, which leads to the following open-ended

question about which not much is known:

Question 6.1.11. Can one find classes of G such that there is some nice relation

between primary decompositions of various path ideals?

In the next section we state some questions related to even-connections which,

apart from being interesting in their own right, are expected to shed light on many

questions mentioned in this section.
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6.2 Some Open Questions About Even-Connections

In this final section of this thesis we state some open question regarding even-

connections. For this section we introduce the following notation: let G be a finite

simple graph with edge ideal I, e = e
1

· · · e
s�1

be an (s � 1)-fold product of edges,

G
e

be the corresponding graph after even-connection (defined in chapter 3) and po-

larization and I
e

be the edge ideal of G
e

. In this thesis (also in [AB] and [BHT]) we

see examples where I
e

has “nice properties” for every e. However we don’t know in

general much about the relation between algebra of G and G
e

, so we ask the following

open-ended question:

Question 6.2.1. What is the relation between the Betti numbers of I and I
e

?

Various more specific questions can be asked:

Question 6.2.2. Classify G and e such that reg(I) � reg(I
e

).

Question 6.2.3. What are the relations between dimension, depth, and projective

dimension of I and I
e

?

Other than these general questions one can ask various questions about even-

connections of special classes of graphs. For example, Lemma 5.1 of [BHT] shows

that in the case of cycles the graphs coming from even-connections have some special

properties which helps them to derive a formula for regularity of all powers of edge

ideals of cycles. One can look for other classes of graphs for which similar properties
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hold. In this thesis we saw that for gap free and cricket free graphs G and for all e,

G
e

is chordal. In light of this we ask the following question:

Question 6.2.4. Can one classify all graphs G such that G
e

is chordal for all e?

In [AB] it is proved that G
e

is chordal for all e if G is a regularity 3 bipartite

graphs using the characterization of regularity 3 bipartite graphs found in [GR]. The

work done in [AB] and Macaulay 2 calculations motivate the following questions:

Question 6.2.5. Is it true that if G bipartite and regularity of I is r then reg(I
e

)  r?

Under what condition reg(I
e

) < r?

Question 6.2.6. If G is bipartite with reg(I) = 4, what nice properties do the graphs

G
e

have?

Finally in the chapter on Cohen-Macaulay bipartite graph, we saw that if G is

a Cohen-Macaulay bipartite graph of dimension n, then there are exactly n edges f

such that (I2 : f) is Cohen-Macaulay. In light of this we ask the following:

Question 6.2.7. 1. If G is a bipartite graph such that I satisfies Serre’s S
i

condition

then for how many edges f does (I2 : f) have the same property?

2. Under the same condition as above, for how many edges f does (I2 : f) satisfy
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Serre’s S
j

condition for a fixed j 6= i?

3. Can anything be said regarding the converses of either of the above two?
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