CASTELNUOVO-MUMFORD REGULARITY OF SIMPLICIAL SEMIGROUP RINGS WITH ISOLATED SINGULARITY

JÜRGEN HERZOG AND TAKAYUKI HIBI
(Communicated by Bernd Ulrich)

Abstract

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in $n \geq 2$ variables over a field K and \mathfrak{m} its graded maximal ideal. Let $f_{1}, \ldots, f_{m} \in S$ be homogeneous polynomials of degree $d-1 \geq 2$ generating an \mathfrak{m}-primary ideal, and let $g_{1}, \ldots, g_{r} \in S$ be arbitrary homogeneous polynomials of degree d. In the present paper it will be proved that the Castelnuovo-Mumford regularity of the standard graded K-algebra $A=K\left[\left\{f_{i} x_{j}\right\}_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}, g_{1}, \ldots, g_{r}\right]$ is at most $(d-2)(n-1)$. By virtue of this result, it follows that the regularity of a simplicial semigroup ring $K[C]$ with isolated singularity is at most $e(K[C])-\operatorname{codim}(K[C])$, where $e(K[C])$ is the multiplicity of $K[C]$ and $\operatorname{codim}(K[C])$ is the codimension of $K[C]$.

Introduction

Castelnuovo-Mumford regularity of graded rings and ideals is one of the most active research topics in computational commutative algebra and computational algebraic geometry.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring in $n \geq 2$ variables over a field K, and let M be a finitely generated graded S-module. If

$$
\cdots \longrightarrow F_{j} \longrightarrow \cdots \longrightarrow F_{0} \longrightarrow M \longrightarrow 0
$$

is the graded minimal free S-resolution of M, then the Castelnuovo-Mumford regularity $\operatorname{reg}(M)$ of M is the nonnegative integer $\operatorname{reg}(M)=\max \left\{b_{j}-j: j=0,1, \ldots\right\}$, where b_{j} is the maximal degree of the generators of the graded free S-module F_{j}.

We are especially interested in the Castelnuovo-Mumford regularity of the standard graded K-algebra $A=S / I$, where I is a homogeneous ideal of S. Eisenbud and Goto conjectured in their paper [3] that if A is an integral domain, then $\operatorname{reg}(A)$ satisfies the inequality

$$
\begin{equation*}
\operatorname{reg}(A) \leq e(A)-\operatorname{codim}(A) \tag{1}
\end{equation*}
$$

where $e(A)$ is the multiplicity of A and $\operatorname{codim}(A)$ is the codimension of A. The Eisenbud-Goto conjecture turns out to be true in several special cases considered

[^0]in algebraic geometry; see [5] and [6]. However, the conjecture is widely open in general; even in the case that A is an affine semigroup ring.

Let \mathfrak{m} denote the graded maximal ideal of S. In the present paper, we pay attention to the Castelnuovo-Mumford regularity of the standard graded K-algebra $A=K\left[f_{1}, \ldots, f_{m}\right]$, where $I=\left(f_{1}, \ldots, f_{m}\right) \subset S$ is a homogeneous ideal generated in degree d such that $I^{k}=\mathfrak{m}^{d k}$ for some $k>0$. For such a K-algebra A one has $e(A)=d^{n-1}$ and $\operatorname{codim}(A) \leq\binom{ d+n-1}{n-1}-n$.

For a particular class of such K-algebras we can bound the regularity. This is shown in Theorem 1.1 As a consequence we obtain in Corollary 1.3 that for such a K-algebra A, one has $\operatorname{reg}(A) \leq e(A)-\operatorname{codim}(A)$, if $n \geq 3$.

Recently, in Hoa and Stückrad [4] the regularity of simplicial semigroup rings was studied. Their work strongly stimulates the research to find reasonable classes of simplicial semigroup rings satisfying inequality (1). As a conclusion of Corollary 1.3 and a simple counting argument, we show in our final Corollary 2.2 that the Eisenbud-Goto conjecture holds for simplicial semigroup rings with isolated singularity.

1. Regularity of certain graded Rings generated by d-Forms

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring in $n \geq 2$ variables over K with the graded maximal ideal $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$.
Theorem 1.1. Let $f_{1}, \ldots, f_{m} \in S$ be homogeneous polynomials of degree $d-1 \geq 2$ generating an \mathfrak{m}-primary ideal, and let $g_{1}, \ldots, g_{r} \in S$ be arbitrary homogeneous polynomials of degree d. Then the regularity of the standard graded K-algebra $A=$ $K\left[\left\{f_{i} x_{j}\right\}_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}^{\substack{2 \\ j}}, \ldots, g_{r}\right]$ is at most $(d-2)(n-1)$.
Proof. We may assume that K is an infinite field. Let $J=\left(f_{1}, \ldots, f_{m}\right)$. Then there exists an ideal $L \subset J$ generated by a regular sequence of length n consisting of elements of degree $d-1$. For a finite length graded S-module N we set $s(N)=$ $\max \left\{i: N_{i} \neq 0\right\}$. It is known that $\operatorname{reg}(N)=s(N)$. Therefore for k it follows that

$$
\operatorname{reg}\left(J^{k}\right)=\operatorname{reg}\left(S / J^{k}\right)+1 \leq \operatorname{reg}\left(S / L^{k}\right)+1=\operatorname{reg}\left(L^{k}\right)
$$

Let $L=\left(\ell_{1}, \ldots, \ell_{n}\right)$. Since L is generated by a regular sequence of length n of elements of degree $d-1$, the resolution of L^{k} is given by the Eagon-Northcott complex (see, e.g., [2]) attached to the $(d-1) \times(n+d-2)$ matrix

$$
\left(\begin{array}{cccccc}
\ell_{1} & \cdots & \ell_{n} & 0 & \cdots & 0 \\
0 & \ell_{1} & \cdots & \ell_{n} & \cdots & 0 \\
\vdots & & \ddots & & \ddots & \vdots \\
0 & \cdots & 0 & \ell_{1} & \cdots & \ell_{n}
\end{array}\right) .
$$

It follows immediately from this resolution that $\operatorname{reg}\left(L^{k}\right)=(d-1) k+(d-2)(n-1)$.
For the convenience of the reader we give a direct proof of this fact: The ideal $\mathfrak{m}^{k}=\left(x_{1}, \ldots, x_{n}\right)^{k}$ has a K-linear resolution. In particular, the generators in the last step of the resolution are of degree $k+n-1$. Consider the flat map $\varphi: S \rightarrow S$ with $\varphi\left(x_{i}\right)=\ell_{i}$ for $i=1, \ldots, n$. Then $\varphi\left(\mathfrak{m}^{k}\right)=L^{k}$, and so the resolution of L^{k} is obtained from that of \mathfrak{m}^{k} by replacing each x_{i} with ℓ_{i}. This implies that all the shifts are multiplied by $d-1$. Hence the generators in the last step of the resolution of L^{k} are of degree $(k+n-1)(d-1)$. From this we conclude that $\operatorname{reg}\left(L^{k}\right)=(k+n-1)(d-1)-(n-1)=(d-1) k+(d-2)(n-1)$.

Let $I=J \mathfrak{m}$. We claim that I^{k} has a linear resolution if $k \geq(d-2)(n-1)$. In fact, $I^{k}=J^{k} \mathfrak{m}^{k}=\left(J^{k}\right)_{\geq(d-1) k+k}$, where for a graded module M we set $M_{\geq j}=\bigoplus_{i \geq j} M_{i}$. Recall from [3] (or [1, Theorem 4.3.1]) that

$$
\operatorname{reg} M=\min \left\{j: M_{\geq j} \quad \text { has a linear resolution }\right\}
$$

It follows that I^{k} has a linear resolution if and only if $(d-1) k+k \geq \operatorname{reg}\left(J^{k}\right)$. In particular, I^{k} has a linear resolution if $(d-1) k+k \geq(d-1) k+(d-2)(n-1)$, namely if $k \geq(d-2)(n-1)$.

Next we notice that an \mathfrak{m}-primary ideal H generated in one degree, say h, has a linear resolution if and only if it is a power of \mathfrak{m}. To see why this is true, we observe that H has a linear resolution if and only if $\operatorname{reg}(H)=h$. But $\operatorname{reg}(H)=$ $s(S / H)+1=h$ if and only if $H=\mathfrak{m}^{h}$.

Applied to our situation we conclude that $I^{k}=\mathfrak{m}^{d k}$ for $k \geq(d-2)(n-1)$. This implies that $A_{k}=S_{d k}$ for all $k \geq(d-2)(n-1)$. Let A^{*} be the integral closure of A. Then $A^{*}=S^{(d)}$, the d th Veronese subring of S, and A^{*} / A is of finite length with $s\left(A^{*} / A\right) \leq(d-2)(n-1)-1$.

Let \mathfrak{n} be the graded maximal ideal of A. Local cohomology applied to the exact sequence

$$
0 \longrightarrow A \longrightarrow A^{*} \longrightarrow A^{*} / A \longrightarrow 0
$$

yields that $H_{\mathfrak{n}}^{0}\left(A^{*} / A\right)=H_{\mathfrak{n}}^{1}(A)$ and $H_{\mathfrak{n}}^{i}(A)=H_{\mathfrak{n}}^{i}\left(A^{*}\right)$ for $i>1$. Since A^{*} is Cohen-Macaulay, one also has $H_{\mathfrak{n}}^{i}\left(A^{*}\right)=0$ for $i<d=\operatorname{dim}(A)=\operatorname{dim}\left(A^{*}\right)$. Hence $\operatorname{reg}(A)=\max \left\{\operatorname{reg}\left(A^{*}\right), \operatorname{reg}\left(A^{*} / A\right)+1\right\}$. Since $\operatorname{reg}\left(A^{*} / A\right)=s$, it follows that

$$
\operatorname{reg}(A)=\max \left\{\operatorname{reg}\left(A^{*}\right), s\left(A^{*} / A\right)+1\right\} \leq(d-2)(n-1)
$$

since the regularity of the Cohen-Macaulay algebra A^{*} is n plus its a-invariant, and hence at most $n-1$, and since $n-1 \leq(d-2)(n-1)$ because $d \geq 3$.

Theorem 1.1 suggests the following question: Let f_{1}, \ldots, f_{m} be homogeneous polynomials of degree d and suppose that $A_{k}=S_{d k}$ for some k. Does this imply that $\operatorname{reg}(A) \leq(d-2)(n-1)$?

We shall need the following numerical result.
Lemma 1.2. If $n \geq 3$ and $d \geq 3$, then $(d-2)(n-1) \leq d^{n-1}-\left(\binom{n+d-1}{n-1}-n\right)$.
Proof. Replace $n-1$ with n in the required inequality, and what we must prove is the inequality

$$
\begin{equation*}
(d-2) n \leq d^{n}-\left(\binom{n+d}{n}-(n+1)\right) \tag{2}
\end{equation*}
$$

for $n \geq 2$ and $d \geq 3$. Inequality (2) is equivalent to the inequality

$$
d^{n}-\binom{n+d}{n} \geq(d-2) n-(n+1)
$$

Thus we must prove the inequality

$$
\begin{equation*}
d^{n}-\prod_{i=1}^{n}\left(1+\frac{d}{i}\right) \geq n d-3 n-1 \tag{3}
\end{equation*}
$$

for $n \geq 2$ and $d \geq 3$.
Fix $d \geq 3$. By using induction on $n \geq 2$ we will prove (3).
If $n=2$, then the inequality (3) coincides with $(d-3)(d-4) \geq 0$.

Let $n \geq 2$ and suppose that the inequality (3) is true. Inequality (3) for $n+1$ then follows from the computation below:

$$
\begin{aligned}
& d^{n+1}-\prod_{i=1}^{n+1}\left(1+\frac{d}{i}\right) \\
= & \left(d^{n+1}-d^{n}\right)-\left(\prod_{i=1}^{n+1}\left(1+\frac{d}{i}\right)-\prod_{i=1}^{n}\left(1+\frac{d}{i}\right)\right)+d^{n}-\prod_{i=1}^{n}\left(1+\frac{d}{i}\right) \\
\geq & d^{n}(d-1)-\frac{d}{n+1} \prod_{i=1}^{n}\left(1+\frac{d}{i}\right)+(n d-3 n-1) \\
\geq & d^{n}(d-1)-\frac{d^{n}}{n+1}(1+d)+(n d-3 n-1) \\
= & d^{n}\left((d-1)-\frac{d+1}{n+1}\right)+(n d-3 n-1) \\
\geq & d^{n}\left((d-1)-\frac{d+1}{2}\right)+(n d-3 n-1) \\
= & \frac{d^{n}(d-3)}{2}+(n d-3 n-1) \\
\geq & (d-3)+(n d-3 n-1) \\
= & (n+1) d-3(n+1)-1 .
\end{aligned}
$$

Corollary 1.3. Let A be the K-algebra as defined in Theorem 1.1, and assume that $n \geq 3$. Then

$$
\operatorname{reg}(A) \leq e(A)-\operatorname{codim}(A)
$$

Proof. If $n \geq 3$, then the assertion follows from Theorem 1.1 together with Lemma 1.2 because $e(A)=e\left(S^{(d)}\right)=d^{n-1}$ and $\operatorname{codim}(A) \leq\binom{ n+d-1}{n-1}-n$.

2. Simplicial semigroup Rings with isolated singularity

Let C be a positive affine semigroup of rank n, i.e., the associated group $\mathbb{Z} C$ is isomorphic to \mathbb{Z}^{n} and $\{0\}$ is the only subgroup contained in C. Let G be the minimal set of generators of C. We say that C is standard graded if there exists a hyperplane $H \subset \mathbb{Z} C \otimes_{\mathbb{Z}} \mathbb{Q}$ such that $G \subset H$. Let P be the convex hull of G in $\mathbb{Z} C \otimes_{\mathbb{Z}} \mathbb{Q}$. We say that C is simplicial if P is a simplex. Let v_{1}, \ldots, v_{n} be the vertices of P. After the choice of a basis of $\mathbb{Z} C$, the vertices v_{i} can be identified with integral vectors. Let

$$
A=\left(v_{1}^{t}, \ldots, v_{n}^{t}\right)
$$

be the $n \times n$ matrix whose columns are the transpose of the vertices v_{i}. We denote by A^{*} the adjoint matrix of A. Let $\delta=\operatorname{det}(A)$. Then $\delta \neq 0$ and $A^{*} A=\delta E_{n}$, where E_{n} is the unit matrix of size n.

Let $\varphi: \mathbb{Z} C \rightarrow \mathbb{Z}^{n}$ be the linear map associated with A^{*}. It then follows that the simplex $P^{\prime}=\varphi(P) \subset \mathbb{Z}^{n}$ has the vertices $\delta \varepsilon_{i}$, where ε_{i} denotes the i th standard unit vector of \mathbb{Q}^{n}. Let $C^{\prime}=\varphi(C)$ and $G^{\prime}=\varphi(G)$. Note that C^{\prime} is isomorphic to C and that G^{\prime} is the minimal set of generators of C^{\prime} with $\left\{\delta \varepsilon_{1}, \ldots, \delta \varepsilon_{n}\right\} \subset G^{\prime} \subset P^{\prime}$. Let t be the greatest common divisor of all the components of all the vectors belonging to G^{\prime}, and set $d=\delta / t$. Denote by $C^{\prime \prime} \subset \mathbb{Z}$ the semigroup generated by $G^{\prime \prime}=\frac{1}{t} G^{\prime}$.

Then it is clear that the convex hull of $G^{\prime \prime}$ is the simplex with vertices $d \varepsilon_{1}, \ldots, d \varepsilon_{n}$, that $C^{\prime \prime} \cong C$ and that $\left[\mathbb{Z}^{n}: \mathbb{Z} C^{\prime \prime}\right]=d$. We call d the index of C. It is in fact an invariant of C, i.e., does not depend on the particular basis of $\mathbb{Z} C$ which was chosen to define the matrix A. We say that the simplicial semigroup $C^{\prime \prime}$ is standard embedded.

Theorem 2.1. Let C be a simplicial semigroup of rank $n>1$ with index $d>2$. Let K be a field and $K[C]$ the semigroup ring associated with C. Suppose that $K[C]$ is a K-algebra with isolated singularity. Then

$$
\operatorname{reg}(K[C]) \leq(d-2)(n-1)
$$

Proof. Since $K[C] \cong K\left[C^{\prime}\right]$ we may assume that the embedding of C itself is standard. Let $[n]=\{1, \ldots, n\}$. Write $\mathbf{x}^{\mathbf{w}}=x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}$ if $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}^{n}$.

For each $1 \leq i \neq j \leq d$, we write $q_{i}^{j}(\geq 1)$ for the biggest integer satisfying

$$
d \varepsilon_{i}+\frac{1}{q_{i}^{j}}\left(d \varepsilon_{j}-d \varepsilon_{i}\right) \in G
$$

Since the localization

$$
K[C]_{x_{i}^{d}}=K\left[x_{i}^{d}, \frac{1}{x_{i}^{d}}\right]\left[\left\{\frac{\mathbf{x}^{\mathbf{w}}}{x_{i}^{d}}\right\}_{\mathbf{w} \in G}\right]=K\left[x_{i}^{d}, \frac{1}{x_{i}^{d}}\right]\left[\left\{\mathbf{x}^{\mathbf{w}-d \varepsilon_{i}}\right\}_{\mathbf{w} \in G}\right]
$$

is regular if and only if

$$
K[C]_{x_{i}^{d}}=K\left[x_{i}^{d}, \frac{1}{x_{i}^{d}}\right]\left[\left\{\mathbf{x}^{\frac{1}{q_{i}^{j}}\left(d \varepsilon_{j}-d \varepsilon_{i}\right)}\right\}_{j \in[n] \backslash\{i\}}\right],
$$

and since $K[C]$ is a K-algebra with isolated singularity, it follows that, for any $\mathbf{w} \in G$ and for any $1 \leq i \leq n$, there exists $0 \leq p_{j} \in \mathbb{Z}, j \in[n] \backslash\{i\}$, such that

$$
\mathbf{w}-d \varepsilon_{i}=\sum_{j \in[n] \backslash\{i\}} \frac{p_{j}}{q_{i}^{j}}\left(d \varepsilon_{j}-d \varepsilon_{i}\right) .
$$

This simple observation yields the crucial result that $q_{i}^{j}=q_{k}^{\ell}$ for all i, j, k, ℓ with $i \neq j$ and $k \neq \ell$. In fact, in case of $1 \leq i \neq j \leq n$, since

$$
\left(d \varepsilon_{j}+\frac{1}{q_{j}^{i}}\left(d \varepsilon_{i}-d \varepsilon_{j}\right)\right)-d \varepsilon_{i}=\frac{p}{q_{i}^{j}}\left(d \varepsilon_{j}-d \varepsilon_{i}\right), \quad 0 \leq p \in \mathbb{Z}
$$

one has $q_{i}^{j}=q_{j}^{i}\left(q_{i}^{j}-p\right)$. Thus q_{j}^{i} divides q_{i}^{j}. Similarly, q_{i}^{j} divides q_{j}^{i}. Hence $q_{i}^{j}=q_{j}^{i}$. Also, in case of $i, k, \ell \in[n]$ with $i \neq k, k \neq \ell$ and $i \neq \ell$, since

$$
d \varepsilon_{k}-d \varepsilon_{i}+\frac{1}{q_{k}^{\ell}}\left(d \varepsilon_{\ell}-d \varepsilon_{k}\right)=\sum_{j \in[n] \backslash\{i\}} \frac{p_{j}}{q_{i}^{j}}\left(d \varepsilon_{j}-d \varepsilon_{i}\right), \quad 0 \leq p_{j} \in \mathbb{Z},
$$

one has $\frac{1}{q_{k}^{\ell}}=\frac{p_{\ell}}{q_{i}^{\ell}}$. Thus q_{k}^{ℓ} divides q_{i}^{ℓ}. Similarly, q_{i}^{ℓ} divides q_{k}^{ℓ}. Hence $q_{i}^{\ell}=q_{k}^{\ell}$.
Let $q=q_{i}^{j}$ for all $1 \leq i \neq j \leq n$. Then $0<\frac{d}{q} \in \mathbb{Z}$ divides each component of any vector belonging to G. Since the embedding of C is standard, it follows that $q=d$.

We now conclude that

$$
\begin{equation*}
K[C]=K\left[\left\{x_{i}^{d-1} x_{j}\right\}_{\substack{i=1, \ldots, n \\ j=1, \ldots, n}}, g_{1}, \ldots, g_{r}\right] \tag{4}
\end{equation*}
$$

where g_{1}, \ldots, g_{r} are monomials of degree d. Hence we are in the situation of Theorem 1.1 with $f_{i}=x_{i}^{d-1}$ for $i=1, \ldots, n$.

The following final result follows partly from Corollary 1.3
Corollary 2.2. Let $K[C]$ be a simplicial semigroup ring with isolated singularity. Then

$$
\operatorname{reg}(K[C]) \leq e(K[C])-\operatorname{codim}(K[C])
$$

Proof. Fix a standard embedding of C. Let $\operatorname{rank} C=n$. For $n \geq 3$, the assertion follows from (4) and Corollary 1.3 ,

Now let $n=2$. Then

$$
K[C]=K\left[\left\{x_{1}^{d-a_{i}} x_{2}^{a_{i}}\right\}_{i=0, \ldots, r+1}\right]
$$

with $0=a_{0}<1=a_{1}<a_{2}<\cdots<d-1=a_{r}<d=a_{r+1}$.
Therefore, $e(K[C])=d$, and $\operatorname{codim}(K[C])=r$. Thus we need to show that $\operatorname{reg}(K[C]) \leq d-r$, or equivalently, that

$$
K[C]_{d-r}=K\left[\left\{x_{1}^{(d-r) d-j} x_{2}^{j}\right\}_{j=0, \ldots,(d-r) d}\right]
$$

Set $k=d-r$, and let $X=\left\{j: x_{1}^{k d-j} x_{2}^{j} \in K[C]_{d-r}\right\}$. Since $a_{0}=0$, it follows that

$$
X=\left\{\sum_{i=1}^{r+1} k_{i} a_{i}: k_{i} \geq 0, \quad \sum_{i=1}^{r+1} k_{i} \leq k\right\},
$$

and we have to show that $X=\{0, \ldots, k d\}$.
For any two integers $a \leq b$ we set $[a, b]=\{c \in \mathbb{Z}: a \leq c \leq b\}$. Fix a number $j \in\{0, \ldots, k\}$. Then $a_{i}+j d \in X \cap[j d,(j+1) d]$ for $i=0, \ldots, r+1$.

Next we notice that $a_{i}+j a_{r+1}+l a_{1}=a_{i}+j d+l \in X$ for $l=0, \ldots, k-1-j$, and that $a_{i+1}+l a_{r}+(j-l) a_{r+1}=a_{i+1}+j d-l \in X$ for $l=0, \ldots, j$. Thus we see that

$$
\begin{equation*}
\left[a_{i}+j d, a_{i}+j d+(k-1-j)\right] \cup\left[a_{i+1}+j d-j, a_{i+1}+j d\right] \subset X \tag{5}
\end{equation*}
$$

Since
$\left(a_{i+1}+j d-j\right)-\left(a_{i}+j d+(k-1-j)\right)=\left(a_{i+1}-a_{i}\right)-(k-1) \leq(d-r)-(d-r-1)=1$,
it follows that

$$
\left[a_{i}+j d, a_{i+1}+j d\right]=\left[a_{i}+j d, a_{i}+j d+(k-1-j)\right] \cup\left[a_{i+1}+j d-j, a_{i+1}+j d\right]
$$

so that by (5), $\left[a_{i}+j d, a_{i+1}+j d\right] \in X$ for all $i=0, \ldots, r$ and all $j=0, \ldots, k$. Since $[0, k d]=\bigcup_{\substack{i=0, \ldots, r \\ j=0, \ldots, k}}\left[a_{i}+j d, a_{i+1}+j d\right]$, the assertion follows.

References

[1] W. Bruns and J. Herzog, "Cohen-Macaulay rings," Revised Edition, Cambridge University Press, 1996.
[2] W. Bruns and U. Vetter, "Determinantal rings," Lecture Note in Mathematics 1237, SpringerVerlag, 1988. MR 89i:13001
[3] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89 - 133. MR 85f:13023
[4] L.T. Hoa and J. Stückrad, Castelnuovo-Mumford regularity of simplicial toric rings, preprint, 2001.
[5] L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Inv. Math. 72 (1983), 491 - 506. MR 85g:14033
[6] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), 423-429. MR 89d:14007

FB6 Mathematik und Informatik, Universität - GHS - Essen, Postfach 103764, 45117 Essen, Germany

E-mail address: mat300@uni-essen.de
Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: hibi@math.sci.osaka-u.ac.jp

[^0]: Received by the editors April 1, 2002.
 2000 Mathematics Subject Classification. Primary 13D45; Secondary 52A38.
 Key words and phrases. Castelnuovo-Mumford regularity, Eisenbud-Goto conjecture, simplicial semigroup ring, isolated singularity.

