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CASTELNUOVO–MUMFORD REGULARITY
OF SIMPLICIAL SEMIGROUP RINGS

WITH ISOLATED SINGULARITY

JÜRGEN HERZOG AND TAKAYUKI HIBI

(Communicated by Bernd Ulrich)

Abstract. Let S = K[x1, . . . , xn] be the polynomial ring in n ≥ 2 variables
over a field K and m its graded maximal ideal. Let f1, . . . , fm ∈ S be ho-
mogeneous polynomials of degree d − 1 ≥ 2 generating an m-primary ideal,
and let g1, . . . , gr ∈ S be arbitrary homogeneous polynomials of degree d.
In the present paper it will be proved that the Castelnuovo–Mumford reg-
ularity of the standard graded K-algebra A = K[{fixj}i=1,...,m

j=1,...,n
, g1, . . . , gr]

is at most (d − 2)(n − 1). By virtue of this result, it follows that the reg-
ularity of a simplicial semigroup ring K[C] with isolated singularity is at
most e(K[C])− codim(K[C]), where e(K[C]) is the multiplicity of K[C] and
codim(K[C]) is the codimension of K[C].

Introduction

Castelnuovo–Mumford regularity of graded rings and ideals is one of the most
active research topics in computational commutative algebra and computational
algebraic geometry.

Let S = K[x1, . . . , xn] denote the polynomial ring in n ≥ 2 variables over a field
K, and let M be a finitely generated graded S-module. If

· · · −→ Fj −→ · · · −→ F0 −→M −→ 0

is the graded minimal free S-resolution of M , then the Castelnuovo–Mumford reg-
ularity reg(M) of M is the nonnegative integer reg(M) = max{bj−j : j = 0, 1, . . .},
where bj is the maximal degree of the generators of the graded free S-module Fj .

We are especially interested in the Castelnuovo–Mumford regularity of the stan-
dard graded K-algebra A = S/I, where I is a homogeneous ideal of S. Eisenbud
and Goto conjectured in their paper [3] that if A is an integral domain, then reg(A)
satisfies the inequality

reg(A) ≤ e(A)− codim(A),(1)

where e(A) is the multiplicity of A and codim(A) is the codimension of A. The
Eisenbud–Goto conjecture turns out to be true in several special cases considered
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in algebraic geometry; see [5] and [6]. However, the conjecture is widely open in
general; even in the case that A is an affine semigroup ring.

Let m denote the graded maximal ideal of S. In the present paper, we pay
attention to the Castelnuovo–Mumford regularity of the standard graded K-algebra
A = K[f1, . . . , fm], where I = (f1, . . . , fm) ⊂ S is a homogeneous ideal generated
in degree d such that Ik = mdk for some k > 0. For such a K-algebra A one has
e(A) = dn−1 and codim(A) ≤ ( d+n−1

n−1 )− n.
For a particular class of such K-algebras we can bound the regularity. This is

shown in Theorem 1.1. As a consequence we obtain in Corollary 1.3 that for such
a K-algebra A, one has reg(A) ≤ e(A)− codim(A), if n ≥ 3.

Recently, in Hoa and Stückrad [4] the regularity of simplicial semigroup rings
was studied. Their work strongly stimulates the research to find reasonable classes
of simplicial semigroup rings satisfying inequality (1). As a conclusion of Corol-
lary 1.3 and a simple counting argument, we show in our final Corollary 2.2 that
the Eisenbud–Goto conjecture holds for simplicial semigroup rings with isolated
singularity.

1. Regularity of certain graded rings generated by d-forms

Let K be a field and S = K[x1, . . . , xn] the polynomial ring in n ≥ 2 variables
over K with the graded maximal ideal m = (x1, . . . , xn).

Theorem 1.1. Let f1, . . . , fm ∈ S be homogeneous polynomials of degree d−1 ≥ 2
generating an m-primary ideal, and let g1, . . . , gr ∈ S be arbitrary homogeneous
polynomials of degree d. Then the regularity of the standard graded K-algebra A =
K[{fixj}i=1,...,m

j=1,...,n
, g1, . . . , gr] is at most (d− 2)(n− 1).

Proof. We may assume that K is an infinite field. Let J = (f1, . . . , fm). Then
there exists an ideal L ⊂ J generated by a regular sequence of length n consisting
of elements of degree d− 1. For a finite length graded S-module N we set s(N) =
max{i : Ni 6= 0}. It is known that reg(N) = s(N). Therefore for k it follows that

reg(Jk) = reg(S/Jk) + 1 ≤ reg(S/Lk) + 1 = reg(Lk).

Let L = (`1, . . . , `n). Since L is generated by a regular sequence of length n of
elements of degree d − 1, the resolution of Lk is given by the Eagon–Northcott
complex (see, e.g., [2]) attached to the (d− 1)× (n+ d− 2) matrix

`1 · · · `n 0 · · · 0
0 `1 · · · `n · · · 0
...

. . .
. . .

...
0 · · · 0 `1 · · · `n

 .

It follows immediately from this resolution that reg(Lk) = (d−1)k+(d−2)(n−1).
For the convenience of the reader we give a direct proof of this fact: The ideal

mk = (x1, . . . , xn)k has a K-linear resolution. In particular, the generators in the
last step of the resolution are of degree k+ n− 1. Consider the flat map ϕ : S → S
with ϕ(xi) = `i for i = 1, . . . , n. Then ϕ(mk) = Lk, and so the resolution of Lk

is obtained from that of mk by replacing each xi with `i. This implies that all
the shifts are multiplied by d − 1. Hence the generators in the last step of the
resolution of Lk are of degree (k + n − 1)(d − 1). From this we conclude that
reg(Lk) = (k + n− 1)(d− 1)− (n− 1) = (d− 1)k + (d− 2)(n− 1).
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Let I = Jm. We claim that Ik has a linear resolution if k ≥ (d−2)(n−1). In fact,
Ik = Jkmk = (Jk)≥(d−1)k+k, where for a graded module M we set M≥j =

⊕
i≥jMi.

Recall from [3] (or [1, Theorem 4.3.1]) that

regM = min{ j : M≥j has a linear resolution}.
It follows that Ik has a linear resolution if and only if (d − 1)k + k ≥ reg(Jk). In
particular, Ik has a linear resolution if (d − 1)k + k ≥ (d − 1)k + (d − 2)(n − 1),
namely if k ≥ (d− 2)(n− 1).

Next we notice that an m-primary ideal H generated in one degree, say h, has
a linear resolution if and only if it is a power of m. To see why this is true, we
observe that H has a linear resolution if and only if reg(H) = h. But reg(H) =
s(S/H) + 1 = h if and only if H = mh.

Applied to our situation we conclude that Ik = mdk for k ≥ (d− 2)(n− 1). This
implies that Ak = Sdk for all k ≥ (d − 2)(n − 1). Let A∗ be the integral closure
of A. Then A∗ = S(d), the dth Veronese subring of S, and A∗/A is of finite length
with s(A∗/A) ≤ (d− 2)(n− 1)− 1.

Let n be the graded maximal ideal of A. Local cohomology applied to the exact
sequence

0 −→ A −→ A∗ −→ A∗/A −→ 0
yields that H0

n(A∗/A) = H1
n(A) and Hi

n(A) = Hi
n(A∗) for i > 1. Since A∗ is

Cohen–Macaulay, one also has H i
n(A∗) = 0 for i < d = dim(A) = dim(A∗). Hence

reg(A) = max{reg(A∗), reg(A∗/A) + 1}. Since reg(A∗/A) = s, it follows that

reg(A) = max{reg(A∗), s(A∗/A) + 1} ≤ (d− 2)(n− 1),

since the regularity of the Cohen–Macaulay algebra A∗ is n plus its a-invariant,
and hence at most n− 1, and since n− 1 ≤ (d− 2)(n− 1) because d ≥ 3. �

Theorem 1.1 suggests the following question: Let f1, . . . , fm be homogeneous
polynomials of degree d and suppose that Ak = Sdk for some k. Does this imply
that reg(A) ≤ (d− 2)(n− 1)?

We shall need the following numerical result.

Lemma 1.2. If n ≥ 3 and d ≥ 3, then (d− 2)(n− 1) ≤ dn−1 − (( n+d−1
n−1 )− n).

Proof. Replace n− 1 with n in the required inequality, and what we must prove is
the inequality

(d− 2)n ≤ dn −
((

n+ d
n

)
− (n+ 1)

)
(2)

for n ≥ 2 and d ≥ 3. Inequality (2) is equivalent to the inequality

dn −
(
n+ d
n

)
≥ (d− 2)n− (n+ 1).

Thus we must prove the inequality

dn −
n∏
i=1

(1 +
d

i
) ≥ nd− 3n− 1(3)

for n ≥ 2 and d ≥ 3.
Fix d ≥ 3. By using induction on n ≥ 2 we will prove (3).
If n = 2, then the inequality (3) coincides with (d− 3)(d− 4) ≥ 0.
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Let n ≥ 2 and suppose that the inequality (3) is true. Inequality (3) for n + 1
then follows from the computation below:

dn+1 −
n+1∏
i=1

(1 +
d

i
)

= (dn+1 − dn)− (
n+1∏
i=1

(1 +
d

i
)−

n∏
i=1

(1 +
d

i
)) + dn −

n∏
i=1

(1 +
d

i
)

≥ dn(d− 1)− d

n+ 1

n∏
i=1

(1 +
d

i
) + (nd− 3n− 1)

≥ dn(d− 1)− dn

n+ 1
(1 + d) + (nd− 3n− 1)

= dn((d− 1)− d+ 1
n+ 1

) + (nd− 3n− 1)

≥ dn((d− 1)− d+ 1
2

) + (nd− 3n− 1)

=
dn(d− 3)

2
+ (nd− 3n− 1)

≥ (d− 3) + (nd− 3n− 1)
= (n+ 1)d− 3(n+ 1)− 1.

�

Corollary 1.3. Let A be the K-algebra as defined in Theorem 1.1, and assume
that n ≥ 3. Then

reg(A) ≤ e(A)− codim(A).

Proof. If n ≥ 3, then the assertion follows from Theorem 1.1 together with Lemma
1.2 because e(A) = e(S(d)) = dn−1 and codim(A) ≤

(
n+d−1
n−1

)
− n. �

2. Simplicial semigroup rings with isolated singularity

Let C be a positive affine semigroup of rank n, i.e., the associated group ZC
is isomorphic to Zn and {0} is the only subgroup contained in C. Let G be the
minimal set of generators of C. We say that C is standard graded if there exists
a hyperplane H ⊂ ZC ⊗Z Q such that G ⊂ H . Let P be the convex hull of G
in ZC ⊗Z Q. We say that C is simplicial if P is a simplex. Let v1, . . . , vn be the
vertices of P . After the choice of a basis of ZC, the vertices vi can be identified
with integral vectors. Let

A = (vt1, . . . , v
t
n)

be the n×n matrix whose columns are the transpose of the vertices vi. We denote
by A∗ the adjoint matrix of A. Let δ = det(A). Then δ 6= 0 and A∗A = δEn, where
En is the unit matrix of size n.

Let ϕ : ZC → Zn be the linear map associated with A∗. It then follows that the
simplex P ′ = ϕ(P ) ⊂ Zn has the vertices δεi, where εi denotes the ith standard unit
vector of Qn. Let C′ = ϕ(C) and G′ = ϕ(G). Note that C′ is isomorphic to C and
that G′ is the minimal set of generators of C′ with {δε1, . . . , δεn} ⊂ G′ ⊂ P ′. Let t
be the greatest common divisor of all the components of all the vectors belonging
to G′, and set d = δ/t. Denote by C′′ ⊂ Z the semigroup generated by G′′ = 1

tG
′.
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Then it is clear that the convex hull of G′′ is the simplex with vertices dε1, . . . , dεn,
that C ′′ ∼= C and that [Zn : ZC′′] = d. We call d the index of C. It is in fact
an invariant of C, i.e., does not depend on the particular basis of ZC which was
chosen to define the matrix A. We say that the simplicial semigroup C′′ is standard
embedded.

Theorem 2.1. Let C be a simplicial semigroup of rank n > 1 with index d > 2.
Let K be a field and K[C] the semigroup ring associated with C. Suppose that K[C]
is a K-algebra with isolated singularity. Then

reg(K[C]) ≤ (d− 2)(n− 1).

Proof. Since K[C] ∼= K[C′] we may assume that the embedding of C itself is
standard. Let [n] = {1, . . . , n}. Write xw = xw1

1 · · ·xwnn if w = (w1, . . . , wn) ∈ Zn.
For each 1 ≤ i 6= j ≤ d, we write qji (≥ 1) for the biggest integer satisfying

dεi +
1
qji

(dεj − dεi) ∈ G.

Since the localization

K[C]xdi = K[xdi ,
1
xdi

][{x
w

xdi
}w∈G] = K[xdi ,

1
xdi

][{xw−dεi}w∈G]

is regular if and only if

K[C]xdi = K[xdi ,
1
xdi

][{x
1
q
j
i

(dεj−dεi)
}j∈[n]\{i}],

and since K[C] is a K-algebra with isolated singularity, it follows that, for any
w ∈ G and for any 1 ≤ i ≤ n, there exists 0 ≤ pj ∈ Z, j ∈ [n] \ {i}, such that

w − dεi =
∑

j∈[n]\{i}

pj

qji
(dεj − dεi).

This simple observation yields the crucial result that qji = q`k for all i, j, k, ` with
i 6= j and k 6= `. In fact, in case of 1 ≤ i 6= j ≤ n, since

(dεj +
1
qij

(dεi − dεj))− dεi =
p

qji
(dεj − dεi), 0 ≤ p ∈ Z,

one has qji = qij(q
j
i −p). Thus qij divides qji . Similarly, qji divides qij . Hence qji = qij .

Also, in case of i, k, ` ∈ [n] with i 6= k, k 6= ` and i 6= `, since

dεk − dεi +
1
q`k

(dε` − dεk) =
∑

j∈[n]\{i}

pj

qji
(dεj − dεi), 0 ≤ pj ∈ Z,

one has 1
q`k

= p`
q`i

. Thus q`k divides q`i . Similarly, q`i divides q`k. Hence q`i = q`k.

Let q = qji for all 1 ≤ i 6= j ≤ n. Then 0 < d
q ∈ Z divides each component of any

vector belonging to G. Since the embedding of C is standard, it follows that q = d.
We now conclude that

K[C] = K[{xd−1
i xj}i=1,...,n

j=1,...,n
, g1, . . . , gr],(4)

where g1, . . . , gr are monomials of degree d. Hence we are in the situation of The-
orem 1.1 with fi = xd−1

i for i = 1, . . . , n. �
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The following final result follows partly from Corollary 1.3.

Corollary 2.2. Let K[C] be a simplicial semigroup ring with isolated singularity.
Then

reg(K[C]) ≤ e(K[C])− codim(K[C]).

Proof. Fix a standard embedding of C. Let rankC = n. For n ≥ 3, the assertion
follows from (4) and Corollary 1.3.

Now let n = 2. Then

K[C] = K[{xd−ai1 xai2 }i=0,...,r+1],

with 0 = a0 < 1 = a1 < a2 < · · · < d− 1 = ar < d = ar+1.
Therefore, e(K[C]) = d, and codim(K[C]) = r. Thus we need to show that

reg(K[C]) ≤ d− r, or equivalently, that

K[C]d−r = K[{x(d−r)d−j
1 xj2}j=0,...,(d−r)d].

Set k = d − r, and let X = {j : xkd−j1 xj2 ∈ K[C]d−r}. Since a0 = 0, it follows
that

X = {
r+1∑
i=1

kiai : ki ≥ 0,
r+1∑
i=1

ki ≤ k},

and we have to show that X = {0, . . . , kd}.
For any two integers a ≤ b we set [a, b] = {c ∈ Z : a ≤ c ≤ b}. Fix a number

j ∈ {0, . . . , k}. Then ai + jd ∈ X ∩ [jd, (j + 1)d] for i = 0, . . . , r + 1.
Next we notice that ai + jar+1 + la1 = ai + jd+ l ∈ X for l = 0, . . . , k − 1− j,

and that ai+1 + lar + (j − l)ar+1 = ai+1 + jd− l ∈ X for l = 0, . . . , j. Thus we see
that

[ai + jd, ai + jd+ (k − 1− j)] ∪ [ai+1 + jd− j, ai+1 + jd] ⊂ X.(5)

Since

(ai+1+jd−j)−(ai+jd+(k−1−j)) = (ai+1−ai)−(k−1) ≤ (d−r)−(d−r−1) = 1,

it follows that

[ai + jd, ai+1 + jd] = [ai + jd, ai + jd+ (k − 1− j)] ∪ [ai+1 + jd− j, ai+1 + jd],

so that by (5), [ai+ jd, ai+1 + jd] ∈ X for all i = 0, . . . , r and all j = 0, . . . , k. Since
[0, kd] =

⋃
i=0,...,r
j=0,...,k

[ai + jd, ai+1 + jd], the assertion follows. �
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