
Castor: Scalable Secure Routing for Ad Hoc Networks

Wojciech Galuba, Panos Papadimitratos, Marcin Poturalski, Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)

firstname.lastname@epfl.ch

Zoran Despotovic, Wolfgang Kellerer
DOCOMO Euro-Labs, Munich, Germany

lastname@docomolab-euro.ch

Abstract—Wireless ad hoc networks are inherently vulnerable,
as any node can disrupt the communication of potentially any
other node in the network. Many solutions to this problem have
been proposed. In this paper, we take a fresh and comprehensive
approach that addresses simultaneously three aspects: security,
scalability and adaptability to changing network conditions. Our
communication protocol, Castor, occupies a unique point in the
design space: It does not use any control messages except simple
packet acknowledgements, and each node makes routing decisions
locally and independently without exchanging any routing state
with other nodes. Its novel design makes Castor resilient to a wide
range of attacks and allows the protocol to scale to large network
sizes and to remain efficient under high mobility. We compare
Castor against four representative protocols from the literature.
Our protocol achieves up to two times higher packet delivery rates,
particularly in large and highly volatile networks, while incurring
no or only limited additional overhead. At the same time, Castor
is able to survive more severe attacks and recovers from them
faster.

I. INTRODUCTION

Ad hoc networks pose a significant security challenge: the
adversary could degrade or even deny communication by
abusing their self-organizing operation. Secure communication
protocols should be able to maintain acceptable data delivery
rates under all feasible attacks. Secure route discovery can
ensure that data are not sent across routes manipulated by the
adversary so that they never lead to the sought destination.
But adversaries could still disrupt communication (e.g., drop
or corrupt packets) once securely discovered routes are being
used.

It is thus necessary, as some protocols surveyed in §II do,
to utilize a secure data transmission protocol on top of secure
route discovery. Secure data transmission protocols correlate
data delivery failures with specific routes or network areas, pos-
sibly controlled by the adversary. Then, they reroute the traffic,
to avoid the adversary and reestablish reliable communication.

This approach was shown to be effective, especially if suffi-
ciently rich connectivity information is available. Simultaneous
use of multiple paths, redundancy in transmissions, and end-
to-end secure feedback allow for quick route convergence [1].
However, because of system constraints, there may not be
enough bandwidth available for multi-path data transmission.
When resources are scarce, the generally applicable solution is
a single-path secure communication protocol: sending data and
feedback across a single path, and switching to another path
once the current one is deemed unreliable.

Would such a solution remain efficient and effective in large
and highly volatile networks, even in the presence of powerful
adversaries? Consider networks that are open, mobile and can
grow in size, with the subset of nodes supporting a given

single-path flow constantly changing: managing the variability,
avoiding the faulty and adversarial nodes, while sustaining
reliable communication is a challenge.

Our Continuously Adapting Secure Topology-Oblivious Rout-
ing (Castor) addresses exactly this problem. Each node keeps
track of the reliability of only its neighbors; none of the local
state is ever exchanged over the network; packet sizes do not
carry routes, thus their lengths do not grow with the network
size; each node operates fully autonomously, making routing
decisions independently of other nodes and without knowing
the network topology beyond its local one-hop connectivity.
These features basically make Castor scalable. Moreover, in-
network routing state allows Castor to rapidly adapt to a
wide range of faults, malicious and benign, even under an
overwhelming adversarial presence. Finally, the minimal ex-
change of information between the nodes implies there is little
need for authenticating it or securing its transmission; this
enables Castor to operate under the simplest, among those in
the literature, trust assumptions.

Our extensive comparative evaluation shows that Castor
outperforms four other protocols (SRP/SSP, Sprout, SEAD, and
trivially the non-secure AODV), with significant advantages: (i)
Castor consistently achieves up to a 40% higher packet delivery
rate without any additional overhead, (ii) it recovers at least
twice as fast as the other protocols, (iii) it is the only one
among the five evaluated here that achieves full recovery from
the wormhole attack without the help of a secure neighbor
discovery protocol. Equally important, Castor maintains its
advantage as the network scales and mobility increases: For
example, in a 400 node network with 80 black-holes and
continuous mobility, Castor achieves, with a mild overhead
increase, a consistent 60% packet delivery rate, double that
of other protocols.

In summary, our main contributions in this paper are: (a)
Castor, a scalable secure communication protocol that is highly
resilient to a wide range of attacks and benign faults, and
(b) an extensive comparative performance evaluation with four
other protocols, under various attacks, mobility and network
size settings. What sets Castor apart is its fundamentally
novel approach, among secure communication protocols, and
its versatility, in spite its simplicity. Castor is the first protocol
to demonstrate robustness against such an large spectrum of
attacks and for a wide range of network scales. Our comprehen-
sive comparative evaluation of secure communication protocols
is also the first of its kind.

In the rest of the paper, we first discuss related work (§II)
and give an overview of Castor. Then, we define the system and
adversary models (§IV) and present in detail the functionality

978-1-4244-5837-0/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

of Castor (§V). We analyze its security (§VI) and evaluate the
performance (§VII) before we conclude.

II. RELATED WORK

Secure ad hoc networking protocols address two main issues:
(a) secure route discovery, to prevent attacks on the dissemi-
nated routing information, and (b) secure data transmission, to
ensure data delivery. Most proposals in the literature consider
the first issue only or assume the second one is addressed by
upper layer protocols; few consider both issues.

Secure route discovery. SRP [2] is an on-demand protocol:
it floods in a controlled manner a route request (RREQ),
with intermediate nodes each appending its identifier. The
destination returns route reply (RREP) packets strictly across
the reverse of the path accumulated in the RREQs. End-
nodes can authenticate each other and their RREQ and RREP
packets; intermediate nodes do not need to authenticate traffic
from end-nodes. Ariadne [3] follows the same principle, but
it authenticates intermediate nodes at the end-nodes. This
increases the trust management complexity and overhead, in
return for stricter identification of the intermediate nodes at
the source. endairA [4] takes essentially the same approach,
utilizing only public key cryptography, and offers increased
resilience to attacks.

SRP, Ariadne, and endairA provide the entire discovered
route (connectivity information) to the source node, and the
same is true for link state protocols such as SLSP [5]. In a dif-
ferent category, implicit route discovery protocols [6] provide
each node with the next hop towards the destination: ARAN
[7] discovers a single route, based on the first-returning RREP
at the source; S-AODV [8] provides security for AODV [9],
authenticating its RREQ, RREP and route error packets; and
SEAD [10] protects distance-vector calculations from distance
decrease, using symmetric key cryptography (whereas ARAN
and S-AODV use digital signatures).

Secure data transmission. SSP [11] is a secure single-path
protocol that relies on an end-to-end security association; it
transmits packets across a route calculated over the connectivity
the underlying route discovery provides (typically, protocols
such as SRP). The destination validates received data and
responds with acknowledgements; if not, the source detects
a packet loss. The route rating is increased each time an
acknowledgement is received, and it is reduced when a timeout
occurs (no ACK); once the rating drops below a threshold,
the route is discarded and the source switches to another one
(invoking a new route discovery if needed). SSP is robust to
any attack (e.g., wormholes, tunnels, other collusion attacks)
that causes a packet to be dropped; if so, the route is discarded.

Sprout [12] is a protocol that source-routes data across a
single path chosen among many alternative ones. These paths
are calculated over the topology view that a secure link state
discovery protocol offers, with nodes broadcasting link state
updates across the network. In order to be resilient against
colluding adversaries that advertise fictitious links, Sprout intro-
duces mechanisms that prevent the pollution of the network link
state view. Routes are generated and utilized probabilistically,
acknowledgements are returned by the destination, and routes

deemed operational are re-used and new alternative ones are
explored. The link-state operation requires that any node can
identify all other nodes at all times. SSP and Sprout are the
two protocols closer to our Castor.

Other related schemes. ODSBR[13] discovers routes reac-
tively, it updates link weights based on their behavior observed
at the sources, and when communication reliability drops below
a threshold, it augments data packets with probes to identify the
wrong-doer. ODSBR requires that the source knows all nodes
in the network. It can maintain reliability across a route above
a threshold unless two or more colluding attackers are part
of the route [12]. Beyond security protocols, reputation and
remuneration-based schemes have been considered [14]. All
these schemes are complex and costly (e.g., requiring a full
trust graph, long observation periods), or they are effective only
against rational adversaries, or they are susceptible to attacks
that incriminate correct nodes. Finally, a note on the so-called
ant-based routing protocols [15], [16], [17] that somewhat
resemble Castor: they do not have an explicit route discovery
phase and ACKs reinforce paths (by analogy to phermone
traces). However, none of them considers security.

Comparison to Castor. In brief, Castor extends over secure
route discovery, as it falls in the category of the comprehensive
solutions that also secure data transmission; e.g., ODSBR, SRP
plus SSP or SMT, and Sprout. Compared to these, it introduces
significant differences. Concisely put: (i) Routes need not be
attached to packets, thus packets do not grow in length with
the network size (and thus route length), (ii) there are no route
discovery control packets, only data and acknowledgements,
(iii) the communication reliability information is kept locally
at each node in the network, not at the source, (iv) Castor does
not seek to identify and exclude attackers, and (v) it relies on
the simplest trust management assumptions (same as those of
the SRP-SSP combination).

III. PROTOCOL DESIGN OVERVIEW

Castor operates as follows: When the source sends a packet,
intermediate nodes forward it until it reaches its destination,
which then responds with an acknowledgement that follows
the reverse path back to the source.

Learning from failures. Nodes locally keep per-flow-and-
next-hop reliability metrics (§V-D), which are updated con-
stantly, based on the arriving acknowledgements indicating
success and the acknowledgement timeouts indicating failure.
These metrics are used to select the most reliable next hop for
each incoming packet. If no reliable next hop exists, or if the
recorded history is insufficient for the node to make a choice,
the packet is locally broadcasted. Each node decides whether
to unicast or broadcast independently (§V-C).

Reliability as a primary metric. Protocols that minimize
the number of hops or the round-trip time, are susceptible to
an attacker advertising shorter routes or setting up wormholes
or tunnels to attract traffic and then drop passing data packets.
To be robust against such attacks, Castor uses reliability as its
primary metric. As the routing is reliability-driven, Castor is
able to detect and react to all causes of packet loss, independent
of their nature, be it benign or adversarial.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

Response time as a secondary metric. For performance
reasons, Castor keeps routes short by giving preference to the
first neighbor responding with an acknowledgment during the
route discovery. However, this neighbor can be routed around
if it turns out to be unreliable.

Emergent secure routes. With every node estimating and
acting on local reliability metrics, Castor is able to locally route
to avoid unreliable neighbors. This results in fast global con-
vergence to reliable routes and efficient continuous adaptation
under mobility.

Local repair. In contrast to some other protocols, adversarial
or benign failures do not cause costly network-wide floods to
search for better routes. Most of the time, Castor has another
reliable next hop to switch to. It resorts to broadcasting only
when it faces severe failures. In most cases, a brief cascade
of local broadcasts reaches a part of the network with reliable
next hops and unicasting resumes.

Secure, isolated routing state. Nodes make routing deci-
sions independently, based only on locally accumulated neigh-
bor reliability metrics. In other words, nodes are oblivious to
any network connectivity information beyond the local neigh-
bors. No routing state is ever exchanged between nodes, which
removes the problem of securing the information exchange.
State locality and minimal control traffic are also key to
Castor’s scalability (§VII-D).

Routing state is stored on a per-flow, not per-destination,
basis. A cryptographic scheme ensures that only the packets
coming from the flow’s source and the acknowledgments
coming from the flow’s destination can influence the routing
state for that flow (§V-B). Despite relying on simple trust
assumptions, these mechanisms provide a strong protection
against routing state pollution by the adversary.

IV. ASSUMPTIONS

A. System Model

We consider a wireless ad hoc network composed of static
or mobile nodes, i.e., computing platforms with wireless
transceivers, with limited communication range. Nodes commu-
nicate directly over the wireless channel with their neighbors.
Nodes assist other nodes with communication across multiple
links (hops). Each node has a unique identity that can be
cryptographically validated if needed. Nodes that conform to
system protocols are correct, and those that deviate from them
are adversarial.

Cryptography. Castor requires that for each pair of end
nodes, a source s and a destination d, that wish to communicate
securely across the network, either s and d share a pre-
established symmetric key Ks,d or s knows the public key Kd

of d. Further, we assume d is able to verify the integrity of
the messages sent by s. We also assume that any two correct
neighboring nodes can establish a shared secret symmetric
key to authenticate their communication. Neighbor-to-neighbor
keys can be established and authenticated in a number of
ways, depending on the system instantiation, e.g., through key
transport or agreement. Authentication can be performed with
the help of local channels, passwords, certificates etc. For
example, a certified public key can serve as the verifiable

unique identity of a node. Moreover, each correct node can
authenticate messages it broadcasts at the data link layer, by
utilizing symmetric-key schemes such as [18].

Neighbor discovery. Neighbors are discovered by a simple
mechanism, such as beaconing. We do not require a secure
neighbor discovery (SND) protocol, which would prevent the
adversary from convincing two non-neighbor nodes that they
are neighbors.

B. Adversary Model

The adversary controls a number of adversarial nodes, which
can be internal or external. The internal nodes are equipped
with the same cryptographic material as the correct nodes.
For example, a compromised but previously correct node can
become an internal adversary. A single adversarial node can
appear as multiple network nodes by utilizing the compromised
identities and cryptographic keys.

An adversarial node can arbitrarily deviate from the protocol
definition. In particular, it can drop, modify, and replay any
message. The adversary is, however, computationally bounded
and cannot break cryptographic primitives. If beneficial, an
adversarial node can abide by the protocol for any period of
time. Adversarial nodes can also act in coordination and mount
collusion attacks. Moreover, adversarial nodes can communi-
cate across large distances using fast out-of-band communica-
tion links (typically used to mount e.g., wormhole and tunnel
attacks) and jam communication.

The objective of the adversary we consider here is denial
of service: to prevent communication or, in other words, to
prevent messages from being delivered. We do not seek to
thwart any adversarial behavior that does not result in packet
loss. In particular, we do not address the problem of preventing
traffic interception, eavesdropping or analysis.

C. Metrics

We focus exclusively on flows between correct source-
destination pairs. The primary performance metric is the packet
delivery rate (PDR). More precisely, we are interested in the
network-layer PDR. We want to capture the raw network
performance in the presence of adversaries, without using any
packet retransmission schemes, either at network or upper
layers. Further, we are interested in the bandwidth utilization
per delivered packet.

V. THE PROTOCOL

A. Message Specification

Castor uses two types of messages: PKTs and ACKs. The
payload packet PKT is a tuple (s, d,H, bk, fk, ek,M): s and
d are the source/destination identfiers; H is the flow identifier
(id); bk is the PKT id; fk is the flow authenticator, used for
verifying that the PKT belongs to flow H; ek is an encrypted
ACK authenticator. Finally, M is the payload, which typically
includes an integrity protection mechanism.

The ACK has only one field ak, an ACK authenticator,
which is used for verifying that the corresponding PKT has
been delivered to the destination.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

B. Cryptographic Mechanisms

To ensure the correct routing state updates, the fields of
the PKTs and ACKs need to satisfy two properties. First, an
ACK ak should only be received by an intermediate node if
the destination has indeed received the corresponding PKT bk.
Second, no node except the source of flow H should be able to
generate a PKT bk that would be verified as belonging to H . We
emphasize that we do not require an intermediate node to verify
that all PKTs originate from some particular source – which is
impossible as in our setup the source does not pre-share keys
with intermediate nodes. Rather, an intermediate node verifies
that all PKTs originate at the same, but arbitrary, source.

There are many cryptographic schemes that can achieve the
desired properties. We present here an overview of an efficient
solution based on Merkle hash trees; for a more detailed
presentation (including the protocol pseudocode), as well as
an alternative public-key scheme we refer the reader to [19].

PKT generation. For each flow that the source s wants
to send to a destination d, the source pre-generates: (i) a
set of random nonces, a1, . . . , aw, the ACK authenticators,
(ii) a corresponding set of PKT ids bk = h(ak), where h
is a cryptographic hash function and (iii) a Merkle hash tree
with h(b1), . . . , h(bw) as leaves. The root of this tree becomes
the flow-id H . The pre-generated values are then used when
sending the k-th PKT (s, d,H, bk, fk = [x1, . . . , xl], ek =
EKsd

(ak),M); ak is encrypted using the key Ksd shared
between s and d. The integers x1, . . . , xl form a sequence of
siblings of the vertices on the tree path from h(bk) up to H .

PKT verification. To verify that a PKT (s, d,H, bk, fk =
[x1, . . . , xl], ek,M) belongs to flow H , an intermediate node
checks whether h(. . . h(h(h(bk)||x1)||x2)|| . . . xl) = H , i.e.,
if h(bk) is a leaf of the Merkle tree with root H . The
h(. . . h(h(bk||x1)||x2)|| . . . xl) is a shorthand notation, in prac-
tice the order of concatenations depends on the position of bk

in the Merkle tree. If the above check is successful, the PKT
is forwarded and bk is stored. Otherwise, the PKT is dropped.
Note that unforgeabilty of bk/fk follows from the hardness of
inverting the hash function h.

PKT verification at destination. In addition to the Merkle
tree test, the destination performs additional verification of the
PKT. First, it checks whether bk = h(DKsd

(ek)). Then, it
checks the integrity of the payload M . If all tests are successful,
d accepts the PKT, and sends the corresponding ACK ak to
the neighbor who delivered the PKT. Otherwise, the PKT is
dropped. Note that only the destination is able to generate a
correct ACK without breaking the encryption of ek or finding
the pre-image of bk under h.

ACK verification. Upon receiving and ACK ak, a node
computes h(ak) and checks whether it corresponds to any
stored bk. If yes, the ACK is accepted and rebroadcasted, and
the routing state of the corresponding flow H is appropriately
updated. Otherwise, the ACK is ignored.

C. PKT Forwarding

Basic forwarding. For every neighbor j = 1 . . . n and for
every encountered flow H , a node i stores a reliability estimator
sH,j ∈ [0, 1]. Consider what happens when i either (1) receives

a PKT, and verifies that it belongs to some flow H (§V-B) or
(2) i is the source of the PKT. First, i attempts to forward the
PKT to the most reliable neighbor, according to the values of
all the reliability estimators for the flow H . If no neighbor is
deemed reliable, the PKT is broadcasted to all the neighbors
in search of more reliable routes. Immediately after the PKT
is sent, i starts a timer TH,bk

that times out after TACK if the
corresponding ACK is not received.

The decision to unicast or broadcast is probabilistic. Let
pmax = maxj=1...n sH,j be the value of the highest reliability
estimator for the flow H among all the neighbors j = 1 . . . n
of i. The probability that the PKT is broadcasted is e−γpmax ,
otherwise it is unicasted to the next hop with the highest
reliability estimator. Ties are broken by choosing uniformly
at random. The γ > 0 parameter allows for controlling the
bandwidth investment in route discovery depending on the
desired packet delivery rates (PDR).

Duplicate PKTs. If a node receives a PKT that it has
received before, this PKT is not forwarded again. However,
if an ACK corresponding to this PKT was received, the node
rebroadcasts the ACK. If an intermediate node receives a PKT
with bk identical to some previously seen PKT, but with a
different payload or encrypted ACK authenticator ek, this PKT
is forwarded further. This is because an intermediate node
cannot tell which of the PKTs with the same authenticator are
incorrect or forged. We explain this in more detail in §VI-B.
The TH,bk

timer is not restarted on PKT duplicates.

D. Updating the Reliability Estimators

Reliability estimators. The reliability estimator sH,j is an
arithmetic average of two reliability estimators sa

H,j and sf
H,j .

Both reliability estimators are exponential averages of packet
delivery rates. More precisely, let αa

H,j be the running average
of successful deliveries and βa

H,j the running average of failed

deliveries; then sa
H,j = αa

H,j

αa
H,j

+βa
H,j

. Upon a failure, the updates

are: αa
H,j ← δαa

H,j and βa
H,j ← δβa

H,j + 1. We denote
this negative update as sa

H,j ↓. Upon success, the reliability
estimator is positively (sa

H,j ↑) updated: αa
H,j ← δαa

H,j + 1
and βa

H,j ← δβa
H,j . Initially, αa

H,j = 0 and βa
H,j = 1. Updating

of sf
H,j is analogous. The 0 < δ < 1 parameter controls how

fast Castor adapts; the lower the value the faster the adaptation.
The sa

H,j estimator is updated more frequently than sf
H,j as

we explain next. The ”a” stands for ”all ACKs” and ”f” stands
for ”first ACK”.

ACK timeout. Consider the case when TH,bk
times out

before the corresponding ACK(ak) is received. The update
of the estimators then depends on whether the corresponding
PKT was broadcasted or unicasted to some neighbor j. In the
former case, no reliability estimators are changed. In the latter
case, both sa

H,j and sf
H,j are decreased.

For simplicity, we are using a TACK timeout that is fixed.
The timeout value should be set based on the delay conditions
in the target network. A dynamically adapting ACK timeout
similar to that of Sprout [12] could also be considered, we
leave it as future work.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

ACK reception. Consider the case when node i receives a
valid ACK(ak) from node j before the TH,bk

timeout. If the
corresponding PKT was unicasted and j was not the next hop,
then the ACK is ignored. Otherwise, both estimators sa

H,j and
sf

H,j are increased, and the ACK is rebroadcasted.
If the PKT was broadcasted, the behavior depends on

whether it is the first ACK that was received, or not. In the
former case, both estimators sa

H,j and sf
H,j are increased, and

the ACK is rebroadcasted. Otherwise, only sa
H,j is increased

and the ACK is not rebroadcasted.
For both broadcasts and unicasts, only one ACK is accepted

per neighbor and PKT id bk, the subsequent ACKs are ignored.
Rationale behind the dual reliability estimators. Keeping

track of the first ACKs with sf
H,j is a performance optimization.

The primary routing metric in Castor is the packet delivery
reliability, but sf

H,j gives preference to lower round-trip routes
that are typically shorter and consume less bandwidth. A similar
method has been used with success in ARAN [7] and SRP
[2]. Whereas, using the second estimator, sa

H,j , to keep track
of all ACKs allows Castor to obtain more routing information
with one broadcasted PKT, leading to faster convergence under
attacks and when exploring routes.

E. Flood Rate-Limiting

To protect the system from Denial-of-Service attacks exploit-
ing the PKT flooding (§VI) Castor uses a PKT broadcast rate-
limiting mechanism. The mechanism takes advantage of the
fact that messages are neighbor-to-neighbor authenticated. For
each neighbor j = 1 . . . k the current allowed broadcast rate
rj is kept. The rates are initially set to one per second. When
the broadcast is successful (i.e., when the ACK is received)
the allowed rate is multiplied σsucc = 2, otherwise it is
multiplied by σfail = 0.5. The rate values are constrained to
the [rmin = 0.1s, rmax = 100s] range. The rj rate limit is
enforced by maintaining a size 3 leaky bucket rate-limiter for
each neighbor [19]. The rate-limiting mechanism affects only
the PKT broadcasts, PKT unicasts and all other messages are
unaffected. We have found that this simple approach provides
a strong defense against the flooding-based DoS attacks. We
confirm that experimentally in §VII-E.

VI. SECURITY ANALYSIS

We first show that Castor is resilient to general attacks
relevant to any routing protocol, and then do the same for
Castor-specific attacks. For presentation clarity, the discussion
in this section assumes a static network. In the evaluation
section (§VII) we demonstrate that Castor’s security properties
also hold under mobility. See the technical report [19] for a
more elaborate version of this section.

A. General Attacks

Packet dropping. An adversarial node drops all (blackhole
attack) or some (grayhole attack) of the packets it is expected
to forward. The fraction of packets a grayhole drops can vary
over time and dropping can be selective, affecting only specific
type of packets.

j’(a)

1 j nj+1 i

PKT

1 j nj+1 i

j’

+ +

+

+

+

(b)

j j

PKT

+

j’ +(c)

1 j nj+1 i

PKT

+

+

(c)

Fig. 1. Dropping attack defence. Reliability estimator increase indicated by
”+”, decrease by ”-”.

Consider a packet flow with id H from some correct source
1 to some correct destination n. Assume that the packets are
forwarded by nodes 1, 2, . . . , n−1, n, and that one of the nodes,
say i, is adversarial (Fig. 1).

If i drops a PKT, n does not receive it and does not respond
with an ACK. Our acknowledgment mechanism guarantees
that n is the only node able to generate an ACK for the
PKT. On PKT loss (Fig. 1(a)) every node j = 1, . . . , i− 1
preceding i on the route times out waiting for the ACK and
decreases its reliability estimator sH,j+1 for the successor
on the route. The more aggressively i drops, the lower the
estimators become. One of the following eventually happens
for some j = 1, . . . , i− 1: j broadcasts the packet to all
of its neighbors (Fig. 1(b)) or the reliability estimator sH,j′

of some neighbor j′ �= j + 1 of j exceeds sH,j+1, and j
forwards subsequent packets to j′ (Fig. 1(c)). In Fig. 1(b), some
neighbors of j succeed in delivering the PKT and responding
with a correct ACK; j increases their reliability estimators and
new routes are established. Eventually, after another packed
drop, j re-routes to j′, away from the source of unreliability.
This is the fundamental mechanism through which Castor
removes lossy nodes from the routes.

The behavior is similar if the adversarial node i forwards
PKTs, but drops ACKs: Nodes j = 1, . . . , i−1 timeout waiting
for the ACK and the same mechanism ensures that i is removed
from the routes. The only difference to the PKT dropping is
that the successors of i on the route receive the ACK and
increase their respective reliability estimators. This is in fact
not undesirable, as the resultant routing state update is correct.

Jamming. Adversarial nodes can prevent communication
within their respective ranges: The attack can be mounted
on the physical layer or the MAC layer, continuously or
intermittently and selectively. Flows ending in the jammed
regions are effectively denied communication. For other flows,
a jammed region appears as a cluster of black- or gray-hole
nodes and Castor is able to route around them.

Wormholes and tunnels. In a tunnel attack, remote adversar-
ial nodes use their fast links to transfer messages out-of-band,
appearing to be neighbors. In the more powerful wormhole
attack, the out-of-band links are used to almost instantly relay,
without any modification, messages received in one location
to another remote location in the network. Thus, every node
at one end of the wormhole believes itself to be a neighbor
of every node at the other end. Route discovery mechanisms

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

optimizing for hop-count or response time (as Castor does) are
attracted by such “shortcuts” and wormholes and tunnels are
likely to become part of many routes. The adversary can take
advantage of this and take control over a large fraction of the
traffic, which can then be maliciously dropped or corrupted.

Castor uses the tunnels and wormholes opportunistically as
long as they allow the traffic to pass through. As soon as
the attacker starts dropping the packets, the PKT-ACK loop is
broken and Castor turns to alternative, more reliable neighbors
for routing, avoiding the lossy tunnels and wormholes. We
demonstrate this property experimentally in §VII-B.

Rushing attack. Even without fast out-of-band links, the
adversarial nodes can attempt to place themselves on the routes.
In a [20], nodes forward broadcasted PKTs as soon as possible
by e.g., obtaining priority on the MAC layer, exploiting its
vulnerabilities. From our perspective, this attack is a weaker
variant of a wormhole/tunnel attack: When the rushing nodes
start dropping, they will be routed around.

Sybil attack. In a Sybil attack, a single adversarial node ap-
pears as multiple nodes to its neighbors, using the cryptographic
material of other compromised nodes. As reliability estimators
are kept on a per-neighbor basis, routing around a Sybil node is
harder: its neighbors have to decrease their reliability estimator
for each of the identities of the Sybil node. The Sybil attack is
not very different from the wormhole attack. In both attacks, the
outcome is identical, a node gains a number of false neighbors.
These can potentially become droppers; and when they do, they
are detected and routed around. In the evaluation (§VII) we
focus on the most severe attack in this class of neighborhood
attacks: the wormhole attack.

B. Castor-Specific Attacks

Importance of flow isolation. Castor maintains reliability
estimators per-flow, not per-destination, and it uses flow au-
thenticators to identify the flows and cryptographically binds
PKTs and ACKs. This ensures that 1) the in-network states
for each of the flows are logically isolated from one another
and 2) only the messages originating at the source or the
destination can influence the flow’s state. Without this, an
attacker could generate false PKT-ACK pairs for any chosen
flow and maliciously modify the routing state on all the nodes
that the false PKTs and ACKs traverse. This could be used to,
for example, prevent PKT delivery to a legitimate destination
by re-routing the traffic to an adversary-controlled node.

Message corruption and forgery. The adversary can at-
tempt to corrupt any field of ACKs or PKTs. If the payload M
is modified, the data integrity verification fails at the destination
and an ACK is not sent back to the source for that packet. Thus,
any node corrupting the payload appears to its neighbors as a
packet dropper, and it is routed around.

Replay attacks. As explained in §V-B, the adversary cannot
successfully forge flow authenticators in PKTs or ACK au-
thenticators. However they can be replayed. Several variants of
replay attacks are possible. The objective is to influence state
corresponding to legitimate active flows and attempt to reroute
the PKTs in order to discard or corrupt them.

First, an adversary who does not modify the replay PKTs
creates correct routing state (at worst redundant). This has no
negative impact on the network performance. The adversary
could, however, modify in every replayed PKT the parts that
intermediate nodes cannot recognize as invalid: EKsd

(ak) and
M . The Castor nodes forward every distinct copy of the PKT
even if the flow authenticators are identical. This ensures the
correct PKT copy will get through even though nodes also
receive the malformed clones.

Considering ACK replays, observe that a given ACK can be
used to increase an estimator at node j for some neighbor k at
most once. Hence, it is not possible to artificially increase an
estimator by repeatedly replaying an ACK from one neighbor to
another. Each correct node also ignores ACKs that correspond
to PKTs it never forwarded. In addition, if a PKT was unicasted
to some neighbor j, the corresponding ACK from any node
other than j is ignored.

Finally, the adversary could, using its fast communication
links, “reenact” a correct flow in some other part of the network.
However, this attack cannot be sustained without delivering the
PKTs to the correct destination in order to obtain the fresh valid
ACKs needed for reenacting the flow, which defeats the purpose
of the attack. See the technical report [19] for more details.

Flooding attack. In Castor, the nodes broadcast the PKTs
whenever no reliable route is known. An adversary could use
the PKT rebroadcasts as an attack amplification device. A high-
rate stream of PKTs could be injected, each PKT belonging
to a distinct new dummy flow. This would trigger a network-
wide flood for each PKT, potentially causing global bandwidth
starvation. All the routing protocols relying on flooding for
route discovery have this vulnerability: an attacker can trigger
floods at a high rate and cause Denial-of-Service. Very few
of the existing protocols address this issue. Castor uses flood
rate-limiting (§V-E) that limits how often a given neighbor can
cause a PKT broadcast. We show experimentally (§VII-E) that
this simple measure gives a high level of protection from the
flooding attacks.

A neighbor is allowed a higher rate when the broadcasts
that it causes are followed by ACKs. An attacker could exploit
this and set up a colluding node in the network that would be
ACKing the bogus PKT stream and thus allowing a higher
attack rate. However, this also means that there would be
enough bandwidth left for some of the benign messages, thus
weakening the attack. In our experiments we found that this
attack variant is much more difficult to perpetrate and it has a
lower impact on performance than the simple non-ACKed PKT
flooding. The rate limiters could be precisely tuned to provide
a very strong defence against the ACKed flooding, but we leave
it for future work.

VII. PERFORMANCE EVALUATION

Our evaluation is carried out using the ProtoPeer
(http://protopeer.net) message passing framework,
with JiST/SWANS (http://jist.ece.cornell.edu/)
employed for MANET modeling. Apart from Castor, we have
implemented three other routing protocols: Sprout, SRP and
SEAD. We use the default-setting implementation of AODV

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

0% 20% 50%
0

0.2

0.4

0.6

0.8

1

fraction of adversaries

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

0% 20% 50%
0

0.2

0.4

0.6

0.8

1

fraction of adversaries

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

Fig. 2. Blackhole attack resilience. We vary the fraction of blackholes in the system without (left)
and with (right) mobility.

0 100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

pa
ck

et
 d

el
iv

er
y

ra
te

Castor
Sprout
SRP
SEAD
AODV

Fig. 3. Blackhole attack resilience. Failure re-
covery time.

from the JiST/SWANS library. The choice of protocols cov-
ers all combinations of on-demand/proactive and distance-
vector/link-state categories. Our Sprout implementation uses
the parameters recommended in [12], with one exception: to
handle mobility, the maximum number of routes stored at a
given time is set to 50. When exceeded, the lowest-ranked route
is removed. The SSP [1] protocol is layered on top of SRP [2].
The experimental setup parameters are summarized in Table I.

We use the random waypoint mobility model (Table I).
Nodes send neighbor discovery beacons every 250ms. A node
is removed from the neighbor set if not heard from for 1s.
Unless otherwise stated, the measurements are averaged over
50 independent runs, 1 hour of simulated time each. Every data
point is a 10-second average. Each of the 50 runs has distinct
node trajectories. The same trajectories are repeated for all the
protocols. We show 90% confidence intervals.

TABLE I
EXPERIMENTAL SETUP

General
plane size 3km by 3km

nodes 100, placed uniformly at random,
10 radio neighbors on average

MAC 802.11b at 1Mbps
number of flows 5, source-destination disjoint

flow rate constant bit rate, 4 packets/s
packet payload size 256 bytes

Random waypoint mobility Castor
min. speed 1 m/s γ 8
max. speed 20 m/s δ 0.8
pause time 0s TACK 500ms

SEAD
periodic route update
interval

5s

SRP Sprout
α, β, δ 0.5 γ 1.25
rthr
s 0 αpdr 0.9

rmax
s 1 αrtt 0.9

A. Dropping Attack

We implement selective blackholes, dropping all data pack-
ets, but allowing control packets (route discovery) through.
For Castor, the attacker drops unicasted PKTs, and forwards
broadcasted PKT to attract more routes. Fig. 2 shows the
achieved PDR, as a function of the fraction of adversarial
nodes. Recall that we look at the network-layer PDR, i.e., there
are no retries to mask the packet loss; accordingly, for SSP we
set RetryMAX = 0.

The AODV and SEAD protocols do not make any end-to-end
checks for packet loss and are unaware of the blackholes. The
performance of the two protocols is thus significantly affected.
Sprout and SRP monitor route reliability, and thus significantly
improve over SEAD and AODV. However, Sprout and SRP
do per-route performance accounting; under high fractions of
attackers, most of the routes contain at least one adversarial
node and both protocols take longer time to converge on
a blackhole-free route. In contrast, Castor keeps reliability
records with higher granularity, per-link instead of per-route,
and can detect and route around the attackers much faster.

Failure recovery time. The benefits of storing reliability
information per-link-per-flow, rather than per-route are clearly
demonstrated in the following experiment (Fig. 3): 20% of the
nodes become blackholes 5 minutes into the simulation. Castor
recovers in under 30s, much faster than SRP or Sprout. Even
after 30 minutes, Sprout and SRP fail to find reliable routes for
some of the flows, which is reflected in the 50-run averages.
AODV and SEAD, not surprisingly, do not recover from the
attack.

Mobility. Although mobility degrades the performance of
all protocols, Castor is the least affected: Nodes observe the
topology changes locally and most of the time they are able to
select an alternative next hop on the spot or perform a local
flood to repair the route. In contrast, the other protocols must
either: (i) wait for the new topology information to propagate
through the network (Sprout and SEAD) or (ii) wait for the on-
demand route (re)discovery to finish (AODV, SRP). In addition,
the newly discovered routes must be “evaluated” (Sprout, SRP)
for the presence of the black holes.

Bandwidth utilization. Bandwidth utilization for the per-
formed experiments is shown in Fig. 4. For a fair comparison,
we consider both the data and the control traffic. Despite the
fact that Castor includes the full 256 byte data payload in the
flooded PKTs, it often responds to changing network conditions
by simple re-routing or limited flooding (§V-C), which results
in amortized bandwidth cost comparable to the other protocols.

The two proactive protocols, Sprout and SEAD, require
additional bandwidth for propagating the network topology
information. Under mobility, even in the benign case, Sprout
uses a substantial amount of bandwidth for link-state updates.

Delay. We have also measured the packet delivery delay

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

0% 20% 50%
0

2000

4000

6000

8000

10000

fraction of adversaries

ba
nd

w
id

th
 p

er
 d

el
iv

er
ed

 P
K

T
 [B

]
Castor Sprout SRP SEAD AODV

0% 20% 50%
0

2000

4000

6000

8000

10000

fraction of adversaries

ba
nd

w
id

th
 p

er
 d

el
iv

er
ed

 P
K

T
 [B

]

Castor Sprout SRP SEAD AODV

Fig. 4. Bandwidth utilization under the blackhole attack. Left: no mobility. Right: mobility. The
experimental setup identical to Fig. 2.

0 100 200 300 400 500 600

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

pa
ck

et
 d

el
iv

er
y

ra
te

Castor
Sprout
SRP
SEAD
AODV

Fig. 5. Wormhole attack resilience. Failure
recovery time.

and observed no significant differences between Castor and the
other protocols. For details, see [19].

Grayhole attacks. We have also evaluated all the protocols
under various variants of grayhole attacks, as well as pure
blackholes dropping all packets. The overall behavior across
all protocols was similar, with the average PDR higher but
recovery time longer. We omit the details here, the complete
set of results is available in the technical report [19].

B. Wormhole Attack

We set up a wormhole with three exit points forming an
equilateral triangle, each pair of points separated by 1000m.
The wormhole is implemented at the radio layer. The wormhole
exit transceivers are the same as in the other nodes. Initially,
the wormhole forwards all the packets. At the 5 minute mark,
the wormhole stops retransmitting any data traffic, but still
keeps retransmitting the control traffic and broadcasted PKTs.
Out of all the evaluated wormhole behaviors, this one had the
most severe impact on the performance of all the protocols.
We measure how the PDR changes in response to the attack
(Fig. 5).

All protocols except Castor fail to recover completely from
the wormhole attack. The reasons are similar as for the
blackhole attack: ADOV and SEAD do not recover as they
continue to route through the lossy wormhole, whereas SRP
and Sprout route around the wormhole but they are slower and
less successful in finding adversary-free routes than Castor.

Note that Sprout has not been designed to defend against
wormhole attacks [12]; instead, its authors recommend relying
on solutions such as TrueLink [21]. We did not simulate Tru-
eLink. Castor recovers from wormholes without any additional
wormhole defense mechanisms and their overhead.

Other attacks. We did not evaluate tunnel, rushing or Sybil
attacks, as from our perspective they are very similar in nature,
though weaker, than the wormhole attack. We also omit replay
attacks; as argued in §VI-B, they are not a significant threat.

C. Performance under Mobility

To test how node mobility influences the protocols’ ability to
detect the adversary, we set the number of blackholes to 20%,
and vary the node pause time in the random waypoint model.
We measure the PDR (Fig. 6).

Castor’s local failure detection and repair can rapidly reroute
the PKTs, when nodes go beyond the radio range or the new

neighbor turns out to be a black hole. Sprout and SRP need
to route more PKTs to determine which routes are reliable
and often this process is slower than the rate of change in
the topology. AODV and SEAD display constant performance,
confirming that it is not the mobility, rather the attack, that
affects them.

D. Scalability

We next measure the performance of the protocols for
different network sizes, keeping node density constant. 20%
of the nodes are blackholes under zero pause time mobility.
The results are shown in Fig. 7.

The routing paths become longer with the increasing net-
work size, thus finding an adversary-free path becomes more
challenging. Longer paths are also more likely to break due
to mobility. Under these conditions Castor still outperforms
the other protocols and maintains a 60% packet delivery rate
on a 6km by 6km plane with 400 mobile nodes and 80
blackholes. With increased size and mobility, Castor resorts to
PKT flooding more often, which the bandwidth measurements
confirm. The bandwidth utilization of the proactive protocols
(SEAD and Sprout) significantly increases. At 400 nodes
Sprout experiences a congestion collapse as the network is over-
flooded with link-state updates.

E. Flooding Attack Resilience

Without the flood rate-limiting (FRL) mechanism (§V-E)
Castor is vulnerable to the flooding attack (§VI-B). In what
follows, we experimentally demonstrate the ability of FRL to
thwart such an attack.

An attacker controls a single node, which starts 200 new
dummy flows per second by broadcasting PKTs, each PKT
containing a new unique flow authenticator. With FRL inactive,
the attack prevents a large fraction of the traffic from passing
through (Fig. 8). With FRL active, however, the nodes quickly
detect and contain the attacker and the attack’s impact is greatly
reduced. Complete recovery may not be possible; in some
cases the source or destination reside in the neighborhood of
the rapidly broadcasting attacker, which effectively prevents
local communication. In a larger network, the routing paths are
longer on average and it is easier for the malicious PKT flood
to disrupt them. However, when FRL is active in the larger
network, the attack is contained to a smaller area relative to
the whole plane size and the performance decrease is smaller.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

3600s 600s 0s
0

0.2

0.4

0.6

0.8

1

pause time

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

Fig. 6. Performance under mobility. 20% of the
nodes are blackholes.

100 200 400
0

0.2

0.4

0.6

0.8

1

network size

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

100 200 400
0

0.5

1

1.5

2
x 10

4

network size

ba
nd

w
id

th
 p

er
 d

el
iv

er
ed

 P
K

T
 [B

]

Castor Sprout SRP SEAD AODV

Fig. 7. Scalability. 20% of the nodes are blackholes.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

time [s]

pa
ck

et
 d

el
iv

er
y

ra
te

100 nodes, FRL on
100 nodes, FRL off
400 nodes, FRL on
400 nodes, FRL off

Fig. 8. Flooding attack resilience.The attack begins at the 120s mark. The
five 4pkt/s flows begin at 60s. The curves are averages over 50 independent
randomly seeded runs.

F. Congestion Control

Unlike other protocols, Castor includes the data payload
in broadcast packets. But still it achieves the same or lower
amortized bandwidth cost (§VII-A). Nonetheless, in our ex-
periments, we observed bandwidth usage spikes during flow
(re)establishment, which in turn may cause excessive ACK
loss and lead to flow failures. This is especially so with high-
rate flows that bring the network closer to saturation. The
solution would be congestion control mechanisms that rate-
limit sources, notably during flow (re)establishment. We leave
this as future work.

VIII. CONCLUSIONS

We have proposed Castor, a novel secure communication
protocol for ad hoc networks. Despite the very simple PKT-
ACK messaging, the protocol is more resilient to attacks
than any previously proposed secure communication protocols,
especially in large and mobile networks, as demonstrated by the
extensive comparative evaluation. All that is achieved relies on
weak, and thus more practical, trust assumptions.

Several interesting open issues remain, among them: How
would Castor interact with a reliable transfer protocol? Can
the PKTs and ACKs be taken advantage of for cross-layer
design? How can we tune the parameters of Castor, notably the
ones controlling the broadcast vs. unicast behavior, to achieve
the right balance between route exploration vs. exploitation?
Could we extend the reliability estimators to measure both loss

and delay? Finally, how do the potential solutions to the above
problems affect the protocol security?

REFERENCES

[1] P. Papadimitratos and Z. J. Haas, “Secure Data Communication in Mobile
Ad Hoc Networks,” IEEE JSAC, vol. 24, no. 2, 2006.

[2] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc
networks,” in SCS CNDS’02.

[3] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on-demand routing
protocol for ad hoc networks,” Wireless Networks, vol. 11, no. 1, 2005.

[4] G. Acs, L. Buttyan, and I. Vajda, “Provably secure on-demand source
routing in mobile ad hoc networks,” IEEE TMC, vol. 5, no. 11, pp. 1533–
1546, 2006.

[5] P. Papadimitratos and Z. Haas, “Secure Link State Routing for Mobile
Ad Hoc Networks,” in Proceedings of the IEEE Workshop on Security
and Assurance in Ad Hoc Networks, 2003.

[6] P. Papadimitratos, Z. Haas, and J. Hubaux, “How to Specify and How
to Prove Correctness of Secure Routing Protocols for MANET,” in IEEE
BROADNETS’06.

[7] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer, “A
secure routing protocol for ad hoc networks,” in IEEE ICNP’02.

[8] M. Zapata, “Secure ad hoc on-demand distance vector routing,” ACM
Mobile Computing and Communications Review, vol. 6, no. 3, 2002.

[9] C. Perkins, E. Belding-Royer, S. Das et al., “Ad hoc on-demand distance
vector (AODV) routing,” RFC 3561, 2003.

[10] Y. Hu, D. Johnson, and A. Perrig, “SEAD: Secure efficient distance vector
routing for mobile wireless ad hoc networks,” Ad Hoc Networks, vol. 1,
no. 1, pp. 175–192, 2003.

[11] P. Papadimitratos and Z. Haas, “Secure message transmission in mobile
ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1, pp. 193–209, 2003.

[12] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Routing amid colluding
attackers,” in IEEE ICNP’07, 2007.

[13] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“Odsbr: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks,” ACM TISSEC, vol. 10, no. 4, 2008.

[14] L. Buttayan and J.-P. Hubaux, Security and Cooperation in Wireless
Networks. Cambridge University Press, 2007.

[15] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control for
communications networks,” Journal of AI Research, vol. 9, no. 2, pp.
317–365, 1998.

[16] S. Marwaha, C. Tham, and D. Srinivasan, “A novel routing protocol using
mobile agents and reactive route discovery for ad hoc wireless networks,”
in ICON’02.

[17] O. Hussein and T. Saadawi, “Ant routing algorithm for mobile ad-hoc
networks (ARAMA),” in IEEE IPCCC’03, pp. 281–290.

[18] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA broadcast
authentication protocol,” RSA CryptoBytes, vol. 5, no. 2, pp. 2–13, 2002.

[19] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic,
and W. Kellerer, “More on castor: the scalable secure routing protocol
for ad-hoc networks,” EPFL, Tech. Rep. LSIR-REPORT-2009-002, 2009.

[20] Y. Hu, A. Perrig, and D. Johnson, “Rushing attacks and defense in
wireless ad hoc network routing protocols,” in ACM WiSe’03.

[21] J. Eriksson, S. Krishnamurthy, and M. Faloutsos, “Truelink: A practical
countermeasure to the wormhole attack in wireless networks,” in IEEE
ICNP’06.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2010 proceedings
This paper was presented as part of the main Technical Program at IEEE INFOCOM 2010.

