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CAT(@0) SPACES ON WHICH A CERTAIN TYPE OF
SINGULARITY IS BOUNDED

TeTsu Toyopa

Abstract

In this paper, we will consider a family % of complete CAT(0) spaces such that the
tangent cone 7C,Y at each point pe Y of each Y e# is isometric to a (finite or
infinite) product of the Euclidean cones Cone(X,) over elements X, of some Gromov-
Hausdorff precompact family {X,} of CAT(1) spaces. Each element of such % is a
space presented by Gromov [4] as an example of a “CAT(0) space with “bounded”
singularities”. We will show that the Izeki-Nayatani invariants of spaces in such a
family are uniformly bounded from above by a constant strictly less than 1.

1. Introduction

In [4], Gromov introduced the term “CAT(0) space with ‘bounded’ singu-
larities”, and remarked that there exist infinite groups which admit no uniform
embeddings into such a space. He used this terminology without providing its
precise definition, but as examples of such spaces, he presented CAT(0) spaces Y
such that the tangent cone 7C,Y at each point p € ¥ is isometric to a (finite or
infinite) product of Euclidean cones Cone(X,) over elements X, of some Gromov-
Hausdorff precompact family {X,} of CAT(l) spaces.

On the other hand, Izeki and Nayatani [5] defined an invariant 6(Y) € [0, 1]
of a complete CAT(0) space Y. And some general results for CAT(0) spaces
whose Izeki-Nayatani invariants are bounded from above were proved by
Izeki, Kondo, and Nayatani ([5], [6], [7], [8], [9]). Group T is said to have
the fixed-point property for a metric space Y, if for any group homomorphism
p: T — Isom(Y) there exists a point pe Y such that p(y)p=p for all yeT.
Izeki, Kondo and Nayatani [7] proved that a certain random group has the fixed-
point property for all elements Y of a family % of CAT(0) spaces whose Izeki-
Nayatani invariants are uniformly bounded from above by a constant strictly less
than 1:

sup{o(Y)| Y e#} < 1.
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Moreover, it is straightforward to see that an expander admits no uniform
embedding into a complete CAT(0) space Y with d(Y) < 1 (see [9]). Combining
this with Gromov’s argument in [4], the existence of infinite groups which admit
no uniform embeddings into a space Y with J(Y) < 1 follows. This seems to
suggest that the Izeki-Nayatani invariant measures a certain type of “‘singularity”
similar to Gromov’s notion.

Although these general results were proved, the computation of the Izeki-
Nayatani invariant is difficult. It is still unclear what kind of CAT(0) spaces
Y or families % of CAT(0) spaces have the boundedness property as above. It
had been even unknown whether there exists a complete CAT(0) space Y with
0(Y) =1 or not, until Kondo [9] showed the existence of CAT(0) spaces with
0 =1 fairly recently.

In this paper, we prove the following theorem.

THEOREM 1.1. Let % be a family of complete CAT(0) spaces such that the
tangent cone TC,Y at each point pe Y on each Y € ¥ is isometric to a (finite
or infinite) product of the Euclidean cones Cone(X,) over elements X, of some
Gromov-Hausdorff precompact family {X,} of complete CAT(1) spaces. Then we
have

sup o(Y) < 1.
Yew

Here, we use the word product of Euclidean cones T, T»,... in the sense of
/*-product of the pointed metric spaces (T1,01),(T,,0,),..., where each O, is
the cone point of 7,,. That is, the product 7 of the cones T, T5,... consists of
all sequences (x;,), such that x, € T,, and >, dy(Op, x,)* < o0, and T is equipped
with the metric function 4 defined by

d(xa y)2 = idn(xna yn)z

n=1

for any x = (x1,x2,...) € T and any y = (y1, y2,...) € T, where d, is the metric
function on 7, for each n. Then, T also has a cone structure with the cone
point O = (0;, 0,,...). And completeness and CAT(0) condition are preserved
by this construction.

Combining Theorem 1.1 with the general results mentioned above, we have
the following corollary.

CoroLLARY 1.2. (i) If Y is a complete CAT(0) space such that the tangent
cone at each point y € Y is isometric to a (finite or infinite) product of Euclidean
cones Cone(X,) over elements X, of some Gromov-Hausdorff precompact family
{X.} of CAT(1) spaces, then there exists infinite groups which admit no uniform
embeddings into Y. (i) There exist infinite groups which has the fixed-point
property for all elements Y in such a family % as in Theorem 1.1.
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Here, (i) has already been remarked in [4]. And (ii) follows from the
general result in [7]. (ii) can be stated in terms of random groups (see [7]).

In the end of this paper, we claim that by the same technique used in the
proof of Theorem 1.1, we can prove a more general statement, which includes
Theorem 1.1 as a special case (Proposition 5.4).

2. Preliminaries on CAT(0) spaces

In this section we recall some basic definitions and facts concerning CAT(0)
spaces. For a detailed exposition, we refer the reader to [1], [2] or [11].

For x>0 let M? denote the simply connected, complete 2-dimensional
Riemannian manifold of constant Gaussian curvature x, and let d,. be its distance
function. Let Dy € (0,00] be the diameter of M2.

Let (Y,dy) be a metric space. A geodesic in Y is an isometric embedding
y of a closed interval [a,b] into Y. A geodesic triangle in Y is a triple A =
(71,72,73) of geodesics v, : [a;,b;] — Y such that

(b)) = pla), 72(ba) = p3(as),  73(b3) = y1(a).

If A has a perimeter less than 2D, : Zle |b; — ai| < 2Dy, then there is a geodesic
triangle

AR = 595,08 it lanbi] — M}

in M2, which has the same side lengths as A. This triangle A* is unique up to
isometry of M2, and we call it the comparison triangle of A\ in M?. Then A is
said to be r-thin if

dy (7,(8),7;(1)) < di(7;°(s), 77 (1))
whenever i, j € {1,2,3} and s€ [a;,b;], and ¢ € [g;, b)].

DEerINITION 2.1. A metric space (Y,d) is called a CAT (k) space, if for any
pair of points p,q € Y with d(p,q) < D, there exists a geodesic from p to ¢, and
any geodesic triangle in Y with perimeter < 2D, is x-thin.

Next, we recall the definition of the Euclidean cone. Let (X,dy) be a
metric space. The cone Cone(X) over X is the quotient of the product
X x[0,00) obtained by identifying all points in X x {0} = X x [0,00). The
point represented by (x,0) is called the cone point of Cone(X) and we will denote
this point by Ocone(y) in this paper. The cone distance dcone(x)(v, w) between
two points v, w € Cone(X) represented by (x,1), (y,s) € X x [0, c0) respectively, is
defined by

deonex)(v,w) = (/12 + 52 — 215 cos(min{z, dy (x, »)}).
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Then (Cone(X), dcone(x)) is a metric space, and we call it the Euclidean cone over
(X,dy). Tt is known that a metric space (X,dy) is a CAT(1) space if and only
ift (Cone(X), dcone(x)) is @ CAT(0) space.

Suppose that Y is a CAT(0) space. Then by the definition of CAT(0)
space, there is a unique geodesic joining any pair of points in Y. So, for any
triple of points (p,q,r) in Y, it makes sense to denote by A(p,q,r) the geodesic
triangle consisting of three geodesics joining each pair of the three points.

Let y:[a,b] = Y, y' :[d,b'] — Y be two geodesics in a CAT(0) space Y
such that

ya)=y'(@)=pe?Y.

We define the angle /,(y,y’) between y, y" as

Lp(py") = Tim  £)((1),9(1"),
t—a,t'—a
where L[(,)(y(t),y(t’)) is the corresponding angle of the comparison triangle of
A(p,y(1),7'(t)) in M = R%. The existence of the limit follows from the defini-
tion of CAT(0) space.

DeriNITION 2.2. Let (Y,dy) be a complete CAT(0) space, and let pe Y.
We denote by (S,Y)° the set of all geodesics y : [a,b] — Y such that y(a) = p.
Then the angle /, defines a pseudometric on (S,Y)°. The space of directions
S,Y at p is the metric completion of the quotient space of (S,Y) where we
identify any x,y € S,Y with /,(x,y) =0. We define the tangent cone TC,Y
of Y at p to be the Euclidean cone Cone(S,Y) over the space of directions
at p.

If (Y,dy) is a complete CAT(0) space and if p € Y, then it can be proved
that the space of directions S,Y at p is a complete CAT(1) space. Hence, the
tangent cone 7C,Y at p is a complete CAT(0) space.

Finally, we recall some basic notions and facts about probability measures
on a metric space (Y,dy). In this paper, we will treat only finitely supported
measures. Measure v on Y is finitely supported if there exists a finite subset
S < Y such that v(Y\S) =0. We call the minimal subset S with such a property
the support of v, and denote it by supp(v). We denote by 2(Y) the set of all
finitely supported probability measures on Y. If supp(v) = {p1,..., .}, then v
can be represented as

(2.1 V= Z t; Dirac,,
i=1

by nonnegative real numbers ¢,...,%, with >.""  t; = 1, where Dirac,, stands for
the Dirac measure at p; € Y. We will also use the notation 2’(Y) to denote the
subset of Z(Y) consisting of all measures whose supports contain at least two
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points. Let Z be a set and let ¢: Y — X be a map. Then for any ve #(Y),
we define the pushforward measure ¢, u on X as

pv(A) = u¢'(4)), AcX

If we write v as in the form (2.1), we can write ¢,v as

¢*V = Z t; Dirac,/,(pi)
i=1

If (Y,dy) is a complete CAT(0) space, and if ve Z(Y), there exists a unique
point bar(v) € ¥ which minimizes the function

i J d(y,2)v(dz)
Y

defined on Y. This point is called the barycenter of v. We refer the reader to
[11] for the existence and uniqueness of barycenter.

3. Hilbert sphere valued maps and an invariant of a CAT(1) space

In this section, we define a certain invariant of complete CAT(1) spaces.
First we set up some notations for Hilbert sphere valued maps on CAT(1)
spaces. Let # be a real Hilbert space, and let ¢ : X — # be a map whose
image is contained in the unit sphere in #. Thus ||#(x)|| =1 for all xe X. Let
weP(X) be a finitely supported probability measure on X. We define the
vector E,[f] € A as

Bldl = | pon(a)
And if the vector E,[¢] is not the zero vector, we denote by E,[4] the unit vector
parallel to E,[¢]:

. 1

E,[¢] = ——-E.[¢].

= i

Then the value ||E,[¢]|| € [0, 1] amounts to a sort of concentration of the pushfor-
ward measure ¢,u around E,[¢] on the unit sphere. By simple calculation, we
have

(3.1) IE, 4] = jX (R, (], $(x) Su(d)

whenever ||E,[¢]|| # 0.

Now we define an invariant of a complete CAT(1) space by using the
notations introduced above. This invariant is designed for estimating the Izeki-
Nayatani invariant of a CAT(0) space, whose definition will be recalled in the
next section.
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DerNITION 3.1. Let (X,dy) be a metric space, and let ue 2(X). We
define 5(u) €10,1] to be

(u) = inf [, 9]
where the infimum is taken over all maps ¢ : X — # to some Hilbert space #
such that
(3.2) [p() =1, L(¢(x),4(»)) < dx(x,)

for any x, y € X. Here and henceforth, we denote the angle between two vectors
v, w in any Hilbert space by / (v, w).

Suppose (X,dy) is a complete CAT(1) space and 7: X — Cone(X) is the
canonical inclusion of X into its Euclidean cone. Then, we define J(X) to be

S(X) = Sup{g(:u) ‘:u € W(X)v bar(l*,u) = OCOne(X)}'

When there is no measure satisfying such a condition, we define §(X) = —oo.

To estimate this invariant in the proceeding sections, we will use the
following fact:

LemMa 3.2. Let (X,dy) be a complete CAT(1) space. For v,w € Cone(X)
represented by (x,t),(y,s) € X x R respectively, we set

(v, w) = ts cos(min{z, dy (x, y)}).
Then for any ve P(Cone(X)) the following two conditions are equivalent:
(i) bar(v) = 0C0ne(X)~
(i) fCOne(X> (Ey,v)v(dv) <0, whenever xe€X and E, is an element of
Cone(X) represented by (x,1).

Proof. For weCone(X) represented by w=(y,s)e X xR, we write

Iw||=s. Fix xeX and let v, be an element of Cone(X) represented by
(x,2) € X x R. Suppose that bar(v) = Ocone(x). Then the function

(33) Fult) = J deone) (v W) 2v(dw)
Cone(X)
_ J (2 4 ||w]]? = 26<Ee, wv(dw),
Cone(X)
defined on [0, 00) must attain its minimum at # = 0. This happens if and only if

Fl(1)=2 (l - JC " (Ex, w>v(a’w)> >0.

for all reR. So (ii) follows.
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Conversely, if (ii) holds, then the function Fy on [0,00) as (3.3) attains
its minimum at =0 for each xe X. And it is easily seen that bar(v) =

OCone(X)- |
In the final section, we will use this lemma in the following form.

COROLLARY 3.3. Let (X,dy) be a complete CAT(1) space, and let 1: X —
Cone(X) be the canonical inclusion. 1If ue P(X) satisfies bar(i.u) = Ocone(x),
then we have

1

#{y e X|dx(xy) <0} < T

for any xe X and any 0 <0 < g In particular, we have

ﬂ({yEXWX(XJ) < g}) < %

Proof. Suppose there is xp € X such that

for all xe X.

1

u({y e X dx(xo,y) < 03) > g o

Then we would have
J cos(min{z, dx (xo, x) })u(dx)
X

= J cos(min{z, dy (xo, x)})u(dx)
{xeX|dx(x,x0) <0}

T j cos(min{7e, dy (o, x)}) ()
X\{xeX|dy(x,x0)<0}

1 1
(1 -
>Cosgxl+cos0+( )X< l+cos0>
=0.
This implies bar(z.u) # Ocone(y) by Lemma 3.2, which is a contradiction. []

4. Izeki-Nayatani invariant

In this section, we recall the definition of the invariant ¢ of a complete
CAT(0) space introduced by Izeki and Nayatani [5]. We will then derive a
relation between ¢ and the invariant § of a complete CAT(1) space defined in the
previous section. More information about the Izeki-Nayatani invariant 6 can be
found in [5], [6], [7], [8] and [10].
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DEerNITION 4.1 ([5]). Let (Y, dy) be a complete CAT(0) space. Recall that
2'(Y) is the subset of 2(Y) consisting of all measures whose supports contain at
least two points. For any ve 2'(Y), we define d(v) to be

505) = int LI $2I”
o Jy 19(p) ] v(dp)

where the infimum is taken over all maps ¢ : supp(v) — # from the support of v
to some Hilbert space # such that

(4.1) I¢(p)|| = d(bar(v), p),

(4.2) l6(p) — ¢(@)|| < d(p,q)

for all p,q € supp(v). Then the Izeki-Nayatani invariant 6(Y) of Y is defined by
(YY) =sup{o(v)|ve 2'(Y)}.

By definition, we have 0 <d(v) <1 and 0 <J(Y) <1. When Y is a Eucli-
dean cone, we define 5(Y,0Oy) €[0,1] to be

o(Y,0y) =sup{é(v)|ve 2'(Y),bar(v) = Oy},
where Oy is the cone point of Y. When there is no measure satisfying such a

condition, we define (Y, Oy) = —oo. The following lemma is shown in [5].

Lemma 4.2 ([5]). Suppose that Y is a complete CAT(0) space, and
ve 2'(Y). Then we have
5(\/) < 5(char(v) Y, OTCbm'(v) y).

In particular, we have

o(Y) <sup{d6(TC,Y,Orc,y)|pe Y}.
The following lemma is a slight generalization of Proposition 6.5 in [5].

Lemma 4.3. Let (Ty,dy),(Tr,d>),(T5,d3),... be complete CAT(0) spaces
which are isometric to Euclidean cones, and let O1,0;,... be their cone points
respectively. Let T be the cone obtained as the product of Ty, T, ... with the cone
point O = (01,0;,,...). Then we have

o(T, 0) = sup o(Ty, 0,).

Proof. The following proof is almost the same argument as in the proof
of Proposition 6.5 in [5]. We however include it for the sake of completeness.
First, the inequality 6(7, O) > sup, o(T,, O,) is obvious. Because we have
the canonical isometric embedding .4, : T, — T for each n, and for each ue
2'(T,) with bar(u) = O,, it is easy to see that bar(.Z,u) = O and d(u) = d( ).
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Let
u= Z t; Dirac,, € 2'(T)
be an arbitrary measure in 2'(T) with bar(u) = O, where vy,...,v, € T and

fyoooyty >0 with 7, 6, =1. Write v; = (v l(l ,.(2),...) and let

m

1, = Zt,- Dirac, ) € 2'(T,), n=12,....
P

Then bar(y,) = O, for each n. Because if we have bar(u,) # O, for some n, it
is easy to show that

J d(w, B)*u(dw) < J d(w, 0)*u(aw),
T T

where Be T is a point in T such that all of its components are the cone points
but bar(y,) for the n-th component, and it contradicts the assumption that
bar(u) = O.

Let ¢ > 0 be an arbitrary positive number. By the definition of §(7T},, O,),
there exists a map ¢, : supp(u,) — #, from the support of y, to some Hilbert
space , with the properties (4.1) and (4.2) with respect to y,, satisfying

Iz, ¢n o)ty (o) ||
(01 (o)

We define a map ¢ : supp(u) — # from the support of u to the Hilbert space
H = DD - to be

p(vi) = (51 (0"), h(017),..), i=1,..m.

Then it is straightforward to see that ¢ satisfies the properties (4.1) and (4.2) with
respect to u. And we have

<o(T,, O,) +&.

|7 d@udo)l® _ S, | 58 (o)
le|¢ ||ﬂdv> S o allg, (o))

DTG s ST O 4 e
np Zl:I l‘zH(]ﬁ ( l(n )” Sl;:p( (T, On) )

Since this holds for an arbitrary &> 0 and an arbitrary pue 2'(T) with
bar(u) = O, we have 6(T, O) < sup, o(T,, O,). O

o) <
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For a CAT(l) space X, we prove the following relation between
0(Cone(X), Ocone(x)) and o(X)

ProPOSITION 4.4. Let (X,dy) be a complete CAT(1) space. Then we have
5(COHC(X)7 OCone(X)) < S(X)
Before proving Proposition 4.4, we establish the following two lemmas.

LemMa 4.5. Let (X,dy) be a complete CAT(1) space. Let

m

V= Z t; Dirac,, € 2'(Cone(X)),
i-1

where v; € Cone(X) for i=1,...,mand t,,...,t, >0 with 3", t; = 1. Suppose
that bar(v) = Ocone(x). If v1 = Ocone(x) and if

Z‘A

/ 1 .

v = Dirac,,
Zl — 1 o

m
i=2

then bar(v') = Ocone(x) and o(v) <d(v').
Proof. The former assertion follows immediately from Lemma 3.2. Let

¢' :supp(v') — # be a map from the support of V' to some Hilbert space #
satisfying (4.1) and (4.2) with respect to v'. Define ¢ : supp(v) — # by

¢(v1) =0,
d(v)) =¢'(v), i=2,....m.

Then ¢ satisfies (4.1) and (4.2) with respect to v. Moreover, an easy compu-
tation shows that

I fconeq) #(0)V(d0)]* Pyl Jconen) #'(0)V (dv)I?
Jeone(x) 1B@IPv(Ad0) ™ Jegneqr 19 (@)1*v'(d)

Hence, by the definition of J, the latter assertion follows. O

LemMmA 4.6. Let (X,dy) be a complete CAT(1) space and let

V= Z t; Diracyy, ) € 2'(Cone(X)),
=1

1
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where [x;,1;] is the point on Cone(X) represented by (x;,r;) € X x [0, 00). Suppose
that o >0, 1€ {1,2,...,m—1}, and

1 m
v = <Z Diracyy, o) + Z t; Diracyy, 1, )
Z + Zz 1+1 - i=l+1

Then bar(v') = Ocone(x) if and only if bar(v) = Ocone(x). Moreover, if bar(v) =
bar(v') = Ocone(x and lf o> 1 (resp. 0 < a< 1), then the inequality 6(v) <do(v')
holds if and only if

! 2 I / 5 ;
(43) o Zi:l tir < Zf:l li <V€Sp o Zr 1 Lir 2 Zi:l t; )
1f

m 7 = m ) m ]
Sttt T il Py i i=1+1

Proof. The equivalence between bar(v) = Ocone(y) and bar(v') = 0C0ne<X>
is an immediate consequence of Lemma 3.2. Assume that bar(v) = bar(v') =
Ocone(x), and fix some real Hilbert space # of dimension > m. Then there is a
natural bljectlon ¢ +— ¢ between the set of all maps from supp(v) to # satisfying
(4.1) and (4.2) with respect to v, and the set of all maps from supp(v’) to #
satisfying (4.1) and (4.2) with respect to v': it is given by

@' [xi,ori] = aglxir], i=1,...,1
¢/[xiari]:¢[xi7ri]a l:l+17am

Let ¢ : supp(v) — # and ¢ : supp(v') — # be the maps satisfying (4.1) and (4.2)
with respect to v and v’ respectively, and corresponding to each other under this
bijection. Let

1

T = I .
I
&Zizl ti+ >t

Then we have
| Scone(x) ' (P)V'(dp) ]I s IS gl v |12 |
Jeone(x) ||¢ PIPVdp) ey till gl ril P + S50 till gl i)
Hence,

(4.4)
[ Jconeey ' )V @P” 1 fconegz) #(2)v(p)|I?

Jeoneo) 18" PV (AP)  [onerxy I1(p)II*v(dp)

3" o] T - L gl - S BL H«ﬁ[xl,rl]nz_
@i allgl il 0 gl ) (S )

i=1
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We also have
(4.5)
m

TZZIV —OCZMWX”F: H - Z ll||¢[xivri”|2

i=l+1

:<1—oc><lz_fiz,~>+a{ (Z )(Zl ) ( ><IZZ >}

y (4.4) and (4.5), the inequality

I Jeone(xy ' (P)V' (dp)I® - I Jcone(x) #(P)V(ep)II?
J'Cone(X) H¢/(p)||2v/(dp) B J‘Cone(X) H¢(p)H2V(dp)

holds if and only if

m / / m
o> 1, a(Zl,)(Zliriz)—(Zl,)(Zliriz)SO
i=l+1 i=1 i=1 i=l+1
m ! / m
0<ac<l, a(Z ti> (Zm?) - <Zti> (Z t,-rf) >0
i=l+1 i=1 i=1 i=1+1

The lemma follows easily from this equivalence and the bijectivity of the
correspondence ¢ « ¢’ Ol

or

Proof of Proposition 4.4. First suppose that ue 2 (Cone(X)), bar(u) =
OCone(x)s and supp(u) = 1(X). Let 1: X — Cone(X) be the canonical inclusion,
and let 7' :1(X) — X be the inverse map. Let¢: X — # be a map from X to
some Hilbert space # satisfying (3.2). Then the restriction ¢ = [¢p o1~ ]|Supp ) of
gpor ! :1(X) — A to supp(u) satisfies (4.1) and (4.2). Moreover we have

I fcone) #(0)u(d0) 1®
Jeone() 1@ a(do)

Hence by the definitions of 6(:;'x) and d(u), we have

S(w) <o(: "' ).

Thus, if we prove the existence of v/ € #(Cone(X)) such that

|‘E1;1ﬂ[¢~m2 =

(4.6) o(v) <o(v)), supp(v') < 1(X)
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for any
y = Z t; Diracyy, ) € 2'(Cone(X))
i-1

with bar(v) = Ocone(x), then the desired assertion follows. Here, we can assume
r;>0 for all ie{l,...,m} by Lemma 4.5. And, if y=r=---=r,, we can
take

m
V= Z t; Diracyy, yj,
=1

and V' satisfies (4.6) because it is straightforward that 6(v) =d(v'). So we can
assume r; = --- =1 <1y < -+ <r, without loss of generality. Then we have

li ! 2 2
Yot ti > oii il Fig Fivl
> — = —.
m t Zm t 2 2 r
i=i+11Li i=l+1 il n 1
Hence, if we set

! Lot " )
Vo = " (Z Diracyy, ;) + Z t; Diracjy,.; |,

r !
—Eizl i + Zi:lﬂ ti \i=l Ti+1 i=l+1
Fit1

then we have

o(vg) = 6(v)
by Lemma 4.6. Repeating this procedure, we finally get

m
v = E s; Diracyy, 1,
i=1

which satisfies 3(v;) > d(v). If we set v/ = 3", 5; Diracy, y, it is easily seen that
o(v') =9d(v1), and the assertion follows. O

5. Proof of the theorem

Recall that the Gromov-Hausdorff precompactness is known to be equivalent
to the uniformly total boundedness. We call the family 2 of metric spaces
uniformly totally bounded if the following two conditions are satisfied:

+ There is a constant D such that diam(X) < D for all X € 4.

+ For any ¢ > 0 there exists N(¢) € N such that each X € 2 contains a subset

Sx . with the following property: the cardinality of Sy , is no greater than
N(e) and X is covered by the union of all ¢-balls whose centers are in Sy ..

By Lemma 4.2, Lemma 4.3 and Proposition 4.4, to prove Theorem 1.1 it

suffices to prove the following proposition.
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ProposiTION 5.1.  Let (X,dx) be a complete CAT(1) space. Assume that
there exist N €N and a subset S = {x;}, = X such that X is covered by the

union of all %—balls whose centers are in S. Then there exists a constant
C(N) < 1, depending only on N, such that

5(X) < C(N).

Remark 5.2. 1t follows from the argument in the proof of Proposition 5.1,

we can take
2 1 [e™/36N 4 ?

as a constant C(N) in the proposition.

Before proving Proposition 5.1, we will recall a well-known construction of a
map from a Hilbert space to the unit sphere in another Hilbert space, and derive
some necessary estimates for them. We follow Dadarlat and Guentner [3] to
explain this construction. Let s be a Hilbert space. Let

Exp(#)=ROA DA QH)D(AHQHQH)D -,
and define Exp : # — Exp(#) by
Exp(() = 1 @C@(ﬁé@é) ® (%C@C@C) ® .
For ¢ >0, define a map G, from # to Exp(#) to be
Gi(¢) = &1 Exp(v/210).
Then simple computation shows that
(5.1) cos £(G/(£), Gi({')) = <Gi(0), Gi(¢)y = e 17T

for all {,{" e #. In particular, ||G,({)|| =1 for all { € #. Hence we can regard
G, as a map from # to the unit sphere in Exp(#).
We need the following estimate to prove Proposition 5.1.

LemMmA 5.3. Let (X,dy) be a metric space, and let F : X — H# be an L-
Lipschitz map (L > 0) to some Hilbert space. Suppose that 0 < tL*> < % Then
the map ¢ = G, o F : X — Exp(o#) satisfies

L(¢(x), $(y)) < min{z, dy(x, y)}
for all x,ye X.

Proof. By (5.1) and L-Lipschitz continuity of F, it is sufficient to show that
(5.2) e )" > cos(min{m, dy(x, )})
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1
for all x,ye X and all 7€ (0,m>. When dy(x, y) = g, (5.2) is obvious. So,
if we put a =tL? and d = dy(x,y), then what we have to show is that

- —log(cos d)

(5.3) < —=3

holds for any ae (0,%] and any d e [O,g). But this is obvious because the
right-hand side of (5.3) is non-decreasing with respect to d. O

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. First we define a map Fg from X to RY by
FS(X) = (dX(xa Xl),dx(x, x2)7 .- 'dX(xa XN))
for xe X. Then Fy is \/N-Lipschitz since

N

1/2
[Fs(x) = Fs(»)|| = {Z(dx(% Xi) = dx(y,xi))z} < VN -dx(x, ).

i=1
On the other hand, by the definition of the subset S, for any x,ye X with
dx(x,y) = g, there exist iy,i; € {1,... N} such that

Vs T
d){(X,‘O,X)Z Za dX(xiovy)S E:
T T
dX(xilay>ZZa dX(xilax)SE'
Hence
(54)  [[Fs(x) = Fs()ll = \/(dx(xsz) —d(xiy, ) + (dx (x;, %) — d(x;,))°
N
T 3V2

for any x, y e X with dy(x,y) > g

We now set ¢ = Gpyo Fs: X — Exp(RN). Then the all values of ¢ are
contained in the unit sphere of Exp(R"), and ¢ satisfies

L(¢(x), 4(y)) < min{zm, dx(x, y)}
for all x, ye X by Lemma 5.3. Moreover (5.1) and (5.4) imply that

(5.5) £(§(x), $(¥)) = arccos(e™™/3N)

for any x, y e X with dy(x, y) > g
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Set n = arccos(e‘”z/ 3N)and let u be an arbitrary measure in 2(X) with
bar(z.4) = Ocone(x), Where 1:X — Cone(X) is the canonical inclusion and
Ocone(x) is the cone point of Cone(X). Then we have

(5.6) ¢*#<B<U, g)) < %

for any point v on the unit sphere in Exp(R"), where
m _ N _ n
B<U,2> = {u e Exp(RY) | |lul| =1, L(v,u) < 2}.

This is because if there exists some vector ¢(xp) contained in B(v,g) N@(X),
then by (5.5) and Corollary 3.3 we have

(5(03)) = Bl
= u(¢™ (B0 )

N
2
(o)<

where B xo,g is the open ball in X centered at x, with radius g In the case
B(v,%) Ng(X) = ¢, (5.6) obviously holds.
By (5.6), we have

J (o, $(x) ) = j (o, (d)
X g

B(v,1/2)

S\B(v,1/2)

<vcta(o(e)) e fi-ou(o(o5))

Slx§+<cosg)x%,

where . is the unit sphere in Exp(R").

Setting v = E,[¢] in the above inequality and using (3.1), we have

SCN;

B0l = | || <Blol o0 uta

2o 2] Je—m2/36N 11
=13 2)737373 2

where
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Thus, by the definition of §(X),

dX)<ch <1

which proves the proposition. O

Finally, we remark that the proof of Proposition 5.1 works for the following
more general statement.

PROPOSITION 5.4. Let 0 < 0 < g O<oa<1and e>0. Let (X,dy) be a

complete CAT(1) space. Assume that there exists a finite subset S = X such that
#{s € S||ldx(x,s) —dx(y,s)| = &} = a#S

whenever x,ye€ X and d(x,y) > 0. Here, #S stands for the cardinality of S.
Then there exists a constant C = C(0,a,¢) <1 such that

5(x) < C.

Proof. We denote the cardinality of S by N. Let Fs be the map from X
to R as in the proof of Proposition 5.1 with respect to our set S. Then Fy is
\/N-Lipschitz and we have

(5.7) |Fs(x) — Fs(y)|| > VaNe

for any x,ye X with dy(x,y)>0. If we set ¢ =GypyoFs: X — Exp(R"),
then all the values of ¢ are contained in the unit sphere of Exp(R"), and ¢
satisfies

L(¢(x),¢(p)) < min{z, dy (x, y)}
for all x,y e X by Lemma 5.3. Moreover (5.1) and (5.7) imply that

(5.8) L(g(x),4(y)) = arccos(e"“”z/z)

for any x,y e X with dy(x,y) > 0.
Now the rest of the proof is done exactly in the same manner as in the proof
of Proposition 5.1, and we have

3(X) < (coue),

1 =1x 71 =+ | cos —arccos(e*""ﬁ'z/z) x (1 —71
Brare = 1+ cos 0 2 1 +cos 0

_ 1 N /e"‘@z/z—l—l>< cos 0 - .
" 1+4cosf 2 1+cos@ =

Acknowledgements. 1 would like to thank Professor S. Nayatani, Professor
K. Fujiwara and Dr. T. Kondo for many helpful discussions.

where




(9]
(10]

(1]

(12]

CAT(0) SPACES 415

REFERENCES

M. R. BRIDSON AND A. HAFFLIGER, Metric spaces of non-positive curvature, Springer-Verlag,
Berlin, Heidelberg, 1999.

D. BuraGo, Y. BuraGO AND S. IvaNov, A course in metric geometry, Graduate studies in
math. 33, AMS, Providence, RI, 2001.

M. DADARLAT AND E. GUENTNER, Constructions preserving Hilbert space uniform embedd-
ability of discrete groups, Trans. Amer. Math. Soc. 355 (2003), 3253-3275.

M. Gromov, Random walks in random groups, Geom. Funct. Anal. 13 (2003), 73-146.

H. Izeki AND S. NAYATANI, Combinatorial harmonic maps and discrete-group actions on
Hadamard spaces, Geom. Dedicata 114 (2005), 147-188.

H. Izexi, T. KonpO AND S. NavaTANI, Fixed-point property of random groups, to appear in
Annals of Global Analysis and Geometry.

H. Izexi, T. KonpO AND S. NAYATANI, in preparation.

T. Konpo, Fixed-point property for CAT(0) spaces, preprint.

T. Konpo, CAT(0) spaces with J = 1, preprint.

P. Pansu, Superrigidité geometrique et applications harmoniques, Séminaires et congrés 18,
Soc. Math. France, Paris, 2008, 375-422.

K. T. SturM, Probability measures on metric spaces of nonpositive curvature, Heat kernels
and analysis on manifolds, graphs, and metric spaces (P. Auscher, T. Coulhon and A.
Grigor’yan, eds.), Contemporary mathematics 338, AMS, 2003, 357-390.

T. Toyopa, Continuity of a certain invariant of a measure on a CAT(0) space, Nihonkai
Math. J. 20 (2009), 89-97.

Tetsu Toyoda

GRADUATE SCHOOL OF MATHEMATICS
NAGOYA UNIVERSITY

CHIKUSA-KU NAGOYA 464-8602

JAPAN

E-mail: tetsu.toyoda@math.nagoya-u.ac.jp



