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CAT(0) SPACES ON WHICH A CERTAIN TYPE OF

SINGULARITY IS BOUNDED

Tetsu Toyoda

Abstract

In this paper, we will consider a family Y of complete CATð0Þ spaces such that the

tangent cone TCpY at each point p A Y of each Y A Y is isometric to a (finite or

infinite) product of the Euclidean cones ConeðXaÞ over elements Xa of some Gromov-

Hausdor¤ precompact family fXag of CATð1Þ spaces. Each element of such Y is a

space presented by Gromov [4] as an example of a ‘‘CATð0Þ space with ‘‘bounded’’

singularities’’. We will show that the Izeki-Nayatani invariants of spaces in such a

family are uniformly bounded from above by a constant strictly less than 1.

1. Introduction

In [4], Gromov introduced the term ‘‘CATð0Þ space with ‘bounded’ singu-
larities’’, and remarked that there exist infinite groups which admit no uniform
embeddings into such a space. He used this terminology without providing its
precise definition, but as examples of such spaces, he presented CATð0Þ spaces Y
such that the tangent cone TCpY at each point p A Y is isometric to a (finite or
infinite) product of Euclidean cones ConeðXaÞ over elements Xa of some Gromov-
Hausdor¤ precompact family fXag of CATð1Þ spaces.

On the other hand, Izeki and Nayatani [5] defined an invariant dðY Þ A ½0; 1�
of a complete CATð0Þ space Y . And some general results for CATð0Þ spaces
whose Izeki-Nayatani invariants are bounded from above were proved by
Izeki, Kondo, and Nayatani ([5], [6], [7], [8], [9]). Group G is said to have
the fixed-point property for a metric space Y , if for any group homomorphism
r : G ! IsomðY Þ there exists a point p A Y such that rðgÞp ¼ p for all g A G.
Izeki, Kondo and Nayatani [7] proved that a certain random group has the fixed-
point property for all elements Y of a family Y of CATð0Þ spaces whose Izeki-
Nayatani invariants are uniformly bounded from above by a constant strictly less
than 1:

supfdðYÞ jY A Yg < 1:
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Moreover, it is straightforward to see that an expander admits no uniform
embedding into a complete CATð0Þ space Y with dðYÞ < 1 (see [9]). Combining
this with Gromov’s argument in [4], the existence of infinite groups which admit
no uniform embeddings into a space Y with dðY Þ < 1 follows. This seems to
suggest that the Izeki-Nayatani invariant measures a certain type of ‘‘singularity’’
similar to Gromov’s notion.

Although these general results were proved, the computation of the Izeki-
Nayatani invariant is di‰cult. It is still unclear what kind of CATð0Þ spaces
Y or families Y of CATð0Þ spaces have the boundedness property as above. It
had been even unknown whether there exists a complete CATð0Þ space Y with
dðY Þ ¼ 1 or not, until Kondo [9] showed the existence of CATð0Þ spaces with
d ¼ 1 fairly recently.

In this paper, we prove the following theorem.

Theorem 1.1. Let Y be a family of complete CATð0Þ spaces such that the
tangent cone TCpY at each point p A Y on each Y A Y is isometric to a ( finite
or infinite) product of the Euclidean cones ConeðXaÞ over elements Xa of some
Gromov-Hausdor¤ precompact family fXag of complete CATð1Þ spaces. Then we
have

sup
Y AY

dðYÞ < 1:

Here, we use the word product of Euclidean cones T1;T2; . . . in the sense of
l2-product of the pointed metric spaces ðT1;O1Þ; ðT2;O2Þ; . . . , where each On is
the cone point of Tn. That is, the product T of the cones T1;T2; . . . consists of
all sequences ðxnÞn such that xn A Tn and

P
n dnðOn; xnÞ2 < y, and T is equipped

with the metric function d defined by

dðx; yÞ2 ¼
Xy
n¼1

dnðxn; ynÞ2

for any x ¼ ðx1; x2; . . .Þ A T and any y ¼ ðy1; y2; . . .Þ A T , where dn is the metric
function on Tn for each n. Then, T also has a cone structure with the cone
point O ¼ ðO1;O2; . . .Þ. And completeness and CATð0Þ condition are preserved
by this construction.

Combining Theorem 1.1 with the general results mentioned above, we have
the following corollary.

Corollary 1.2. (i) If Y is a complete CATð0Þ space such that the tangent
cone at each point y A Y is isometric to a ( finite or infinite) product of Euclidean
cones ConeðXaÞ over elements Xa of some Gromov-Hausdor¤ precompact family
fXag of CATð1Þ spaces, then there exists infinite groups which admit no uniform
embeddings into Y. (ii) There exist infinite groups which has the fixed-point
property for all elements Y in such a family Y as in Theorem 1.1.
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Here, (i) has already been remarked in [4]. And (ii) follows from the
general result in [7]. (ii) can be stated in terms of random groups (see [7]).

In the end of this paper, we claim that by the same technique used in the
proof of Theorem 1.1, we can prove a more general statement, which includes
Theorem 1.1 as a special case (Proposition 5.4).

2. Preliminaries on CATð0Þ spaces

In this section we recall some basic definitions and facts concerning CATð0Þ
spaces. For a detailed exposition, we refer the reader to [1], [2] or [11].

For k > 0 let M 2
k denote the simply connected, complete 2-dimensional

Riemannian manifold of constant Gaussian curvature k, and let dk be its distance
function. Let Dk A ð0;y� be the diameter of M 2

k .
Let ðY ; dY Þ be a metric space. A geodesic in Y is an isometric embedding

g of a closed interval ½a; b� into Y . A geodesic triangle in Y is a triple s¼
ðg1; g2; g3Þ of geodesics gi : ½ai; bi� ! Y such that

g1ðb1Þ ¼ g2ða2Þ; g2ðb2Þ ¼ g3ða3Þ; g3ðb3Þ ¼ g1ða1Þ:

If s has a perimeter less than 2Dk :
P3

i¼1 jbi � aij < 2Dk, then there is a geodesic
triangle

sk ¼ ðgk1 ; gk2 ; gk3 Þ; gi : ½ai; bi� ! M 2
k

in M 2
k , which has the same side lengths as s. This triangle sk is unique up to

isometry of M 2
k , and we call it the comparison triangle of s in M 2

k . Then s is
said to be k-thin if

dY ðgiðsÞ; gjðtÞÞa dkðgki ðsÞ; gkj ðtÞÞ

whenever i; j A f1; 2; 3g and s A ½ai; bi�, and t A ½aj ; bj�.

Definition 2.1. A metric space ðY ; dÞ is called a CATðkÞ space, if for any
pair of points p; q A Y with dðp; qÞ < Dk there exists a geodesic from p to q, and
any geodesic triangle in Y with perimeter < 2Dk is k-thin.

Next, we recall the definition of the Euclidean cone. Let ðX ; dX Þ be a
metric space. The cone ConeðXÞ over X is the quotient of the product
X � ½0;yÞ obtained by identifying all points in X � f0gHX � ½0;yÞ. The
point represented by ðx; 0Þ is called the cone point of ConeðXÞ and we will denote
this point by OConeðX Þ in this paper. The cone distance dConeðXÞðv;wÞ between
two points v;w A ConeðX Þ represented by ðx; tÞ; ðy; sÞ A X � ½0;yÞ respectively, is
defined by

dConeðX Þðv;wÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2 � 2ts cosðminfp; dX ðx; yÞgÞ

q
:
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Then ðConeðX Þ; dConeðX ÞÞ is a metric space, and we call it the Euclidean cone over
ðX ; dX Þ. It is known that a metric space ðX ; dX Þ is a CATð1Þ space if and only
if ðConeðXÞ; dConeðXÞÞ is a CATð0Þ space.

Suppose that Y is a CATð0Þ space. Then by the definition of CATð0Þ
space, there is a unique geodesic joining any pair of points in Y . So, for any
triple of points ðp; q; rÞ in Y , it makes sense to denote by sðp; q; rÞ the geodesic
triangle consisting of three geodesics joining each pair of the three points.

Let g : ½a; b� ! Y , g 0 : ½a0; b 0� ! Y be two geodesics in a CATð0Þ space Y
such that

gðaÞ ¼ g 0ða 0Þ ¼ p A Y :

We define the angle Jpðg; g 0Þ between g, g 0 as

Jpðg; g 0Þ ¼ lim
t!a; t 0!a 0

J0
pðgðtÞ; gðt 0ÞÞ;

where J0
pðgðtÞ; gðt 0ÞÞ is the corresponding angle of the comparison triangle of

sðp; gðtÞ; g 0ðt 0ÞÞ in M 2
0 ¼ R2. The existence of the limit follows from the defini-

tion of CATð0Þ space.

Definition 2.2. Let ðY ; dY Þ be a complete CATð0Þ space, and let p A Y .
We denote by ðSpYÞ� the set of all geodesics g : ½a; b� ! Y such that gðaÞ ¼ p.
Then the angle Jp defines a pseudometric on ðSpYÞ�. The space of directions
SpY at p is the metric completion of the quotient space of ðSpYÞ where we
identify any x; y A SpY with Jpðx; yÞ ¼ 0. We define the tangent cone TCpY
of Y at p to be the Euclidean cone ConeðSpYÞ over the space of directions
at p.

If ðY ; dY Þ is a complete CATð0Þ space and if p A Y , then it can be proved
that the space of directions SpY at p is a complete CATð1Þ space. Hence, the
tangent cone TCpY at p is a complete CATð0Þ space.

Finally, we recall some basic notions and facts about probability measures
on a metric space ðY ; dY Þ. In this paper, we will treat only finitely supported
measures. Measure n on Y is finitely supported if there exists a finite subset
SHY such that nðYnSÞ ¼ 0. We call the minimal subset S with such a property
the support of n, and denote it by suppðnÞ. We denote by PðYÞ the set of all
finitely supported probability measures on Y . If suppðnÞ ¼ fp1; . . . ; png, then n
can be represented as

n ¼
Xn
i¼1

ti Diracpið2:1Þ

by nonnegative real numbers t1; . . . ; tn with
Pn

i¼1 ti ¼ 1, where Diracpi stands for
the Dirac measure at pi A Y . We will also use the notation P 0ðY Þ to denote the
subset of PðYÞ consisting of all measures whose supports contain at least two
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points. Let Z be a set and let f : Y ! X be a map. Then for any n A PðY Þ,
we define the pushforward measure f�m on X as

f�nðAÞ ¼ mðf�1ðAÞÞ; AHX

If we write n as in the form (2.1), we can write f�n as

f�n ¼
Xn
i¼1

ti DiracfðpiÞ

If ðY ; dY Þ is a complete CATð0Þ space, and if n A PðYÞ, there exists a unique
point barðnÞ A Y which minimizes the function

y 7!
ð
Y

dðy; zÞ2nðdzÞ

defined on Y . This point is called the barycenter of n. We refer the reader to
[11] for the existence and uniqueness of barycenter.

3. Hilbert sphere valued maps and an invariant of a CATð1Þ space

In this section, we define a certain invariant of complete CATð1Þ spaces.
First we set up some notations for Hilbert sphere valued maps on CATð1Þ
spaces. Let H be a real Hilbert space, and let f : X ! H be a map whose
image is contained in the unit sphere in H. Thus kfðxÞk ¼ 1 for all x A X . Let
m A PðX Þ be a finitely supported probability measure on X . We define the
vector Em½f� A H as

Em½f� ¼
ð
X

fðxÞmðdxÞ:

And if the vector Em½f� is not the zero vector, we denote by ~EEm½f� the unit vector
parallel to Em½f�:

~EEm½f� ¼
1

kEm½f�k
Em½f�:

Then the value kEm½f�k A ½0; 1� amounts to a sort of concentration of the pushfor-
ward measure f�m around ~EEm½f� on the unit sphere. By simple calculation, we
have

kEm½f�k ¼
ð
X

h~EEm½f�; fðxÞimðdxÞð3:1Þ

whenever kEm½f�k0 0.
Now we define an invariant of a complete CATð1Þ space by using the

notations introduced above. This invariant is designed for estimating the Izeki-
Nayatani invariant of a CATð0Þ space, whose definition will be recalled in the
next section.
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Definition 3.1. Let ðX ; dX Þ be a metric space, and let m A PðX Þ. We
define ~ddðmÞ A ½0; 1� to be

~ddðmÞ ¼ inf
f
kEm½f�k2;

where the infimum is taken over all maps f : X ! H to some Hilbert space H
such that

kfðxÞk ¼ 1; JðfðxÞ; fðyÞÞa dX ðx; yÞð3:2Þ

for any x; y A X . Here and henceforth, we denote the angle between two vectors
v, w in any Hilbert space by Jðv;wÞ.

Suppose ðX ; dX Þ is a complete CATð1Þ space and i : X ! ConeðX Þ is the

canonical inclusion of X into its Euclidean cone. Then, we define ~ddðXÞ to be

~ddðX Þ ¼ supf~ddðmÞ j m A PðXÞ; barði�mÞ ¼ OConeðX Þg:

When there is no measure satisfying such a condition, we define ~ddðX Þ ¼ �y.

To estimate this invariant in the proceeding sections, we will use the
following fact:

Lemma 3.2. Let ðX ; dX Þ be a complete CATð1Þ space. For v;w A ConeðX Þ
represented by ðx; tÞ; ðy; sÞ A X � R respectively, we set

hv;wi ¼ ts cosðminfp; dX ðx; yÞgÞ:

Then for any n A PðConeðX ÞÞ the following two conditions are equivalent:
(i) barðnÞ ¼ OConeðXÞ.
(ii)

Ð
ConeðX Þ hEx; vinðdvÞa 0, whenever x A X and Ex is an element of

ConeðX Þ represented by ðx; 1Þ.

Proof. For w A ConeðXÞ represented by w ¼ ðy; sÞ A X � R, we write
kwk ¼ s. Fix x A X and let vt be an element of ConeðXÞ represented by
ðx; tÞ A X � R. Suppose that barðnÞ ¼ OConeðX Þ. Then the function

FxðtÞ ¼
ð
ConeðXÞ

dConeðXÞðvt;wÞ2nðdwÞð3:3Þ

¼
ð
ConeðXÞ

ft2 þ kwk2 � 2thEx;wignðdwÞ;

defined on ½0;yÞ must attain its minimum at t ¼ 0. This happens if and only if

F 0
xðtÞ ¼ 2 t�

ð
ConeðXÞ

hEx;winðdwÞ
 !

b 0:

for all t A R. So (ii) follows.
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Conversely, if (ii) holds, then the function Fx on ½0;yÞ as (3.3) attains
its minimum at t ¼ 0 for each x A X . And it is easily seen that barðnÞ ¼
OConeðXÞ. r

In the final section, we will use this lemma in the following form.

Corollary 3.3. Let ðX ; dX Þ be a complete CATð1Þ space, and let i : X !
ConeðXÞ be the canonical inclusion. If m A PðX Þ satisfies barði�mÞ ¼ OConeðXÞ,
then we have

mðfy A X j dX ðx; yÞa ygÞa 1

1þ cos y

for any x A X and any 0a y <
p

2
. In particular, we have

m y A X j dX ðx; yÞa
p

3

� �� �
a

2

3

for all x A X .

Proof. Suppose there is x0 A X such that

mðfy A X j dX ðx0; yÞa ygÞ > 1

1þ cos y
:

Then we would haveð
X

cosðminfp; dX ðx0; xÞgÞmðdxÞ

¼
ð
fx AX jdX ðx;x0Þayg

cosðminfp; dX ðx0; xÞgÞmðdxÞ

þ
ð
Xnfx AX jdX ðx;x0Þayg

cosðminfp; dX ðx0; xÞgÞmðdxÞ

> cos y� 1

1þ cos y
þ ð�1Þ � 1� 1

1þ cos y

� �

¼ 0:

This implies barði�mÞ0OConeðXÞ by Lemma 3.2, which is a contradiction. r

4. Izeki-Nayatani invariant

In this section, we recall the definition of the invariant d of a complete
CATð0Þ space introduced by Izeki and Nayatani [5]. We will then derive a
relation between d and the invariant ~dd of a complete CATð1Þ space defined in the
previous section. More information about the Izeki-Nayatani invariant d can be
found in [5], [6], [7], [8] and [10].
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Definition 4.1 ([5]). Let ðY ; dY Þ be a complete CATð0Þ space. Recall that
P 0ðYÞ is the subset of PðY Þ consisting of all measures whose supports contain at
least two points. For any n A P 0ðYÞ, we define dðnÞ to be

dðnÞ ¼ inf
f

k
Ð
Y
fðpÞnðdpÞk2Ð

Y
kfðpÞk2nðdpÞ

;

where the infimum is taken over all maps f : suppðnÞ ! H from the support of n
to some Hilbert space H such that

kfðpÞk ¼ dðbarðnÞ; pÞ;ð4:1Þ
kfðpÞ � fðqÞka dðp; qÞð4:2Þ

for all p; q A suppðnÞ. Then the Izeki-Nayatani invariant dðYÞ of Y is defined by

dðYÞ ¼ supfdðnÞ j n A P 0ðYÞg:

By definition, we have 0a dðnÞa 1 and 0a dðYÞa 1. When Y is a Eucli-
dean cone, we define dðY ;OY Þ A ½0; 1� to be

dðY ;OY Þ ¼ supfdðnÞ j n A P 0ðY Þ; barðnÞ ¼ OYg;

where OY is the cone point of Y . When there is no measure satisfying such a
condition, we define dðY ;OY Þ ¼ �y. The following lemma is shown in [5].

Lemma 4.2 ([5]). Suppose that Y is a complete CATð0Þ space, and
n A P 0ðY Þ. Then we have

dðnÞa dðTCbarðnÞY ;OTCbarðnÞY Þ:
In particular, we have

dðY Þa supfdðTCpY ;OTCpY Þ j p A Yg:

The following lemma is a slight generalization of Proposition 6.5 in [5].

Lemma 4.3. Let ðT1; d1Þ; ðT2; d2Þ; ðT3; d3Þ; . . . be complete CATð0Þ spaces
which are isometric to Euclidean cones, and let O1;O2; . . . be their cone points
respectively. Let T be the cone obtained as the product of T1;T2; . . . with the cone
point O ¼ ðO1;O2; . . .Þ. Then we have

dðT ;OÞ ¼ sup
n

dðTn;OnÞ:

Proof. The following proof is almost the same argument as in the proof
of Proposition 6.5 in [5]. We however include it for the sake of completeness.

First, the inequality dðT ;OÞb supn dðTn;OnÞ is obvious. Because we have
the canonical isometric embedding In : Tn ! T for each n, and for each m A
P 0ðTnÞ with barðmÞ ¼ On, it is easy to see that barðIn�mÞ ¼ O and dðmÞ ¼ dðIn�mÞ.
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Let

m ¼
Xm
i¼1

ti Diracvi A P 0ðTÞ

be an arbitrary measure in P 0ðTÞ with barðmÞ ¼ O, where v1; . . . ; vm A T and

t1; . . . ; tm > 0 with
Pm

i¼1 ti ¼ 1. Write vi ¼ ðvð1Þi ; v
ð2Þ
i ; . . .Þ and let

mn ¼
Xm
i¼1

ti Dirac
v
ðnÞ
i

A P 0ðTnÞ; n ¼ 1; 2; . . . :

Then barðmnÞ ¼ On for each n. Because if we have barðmnÞ0On for some n, it
is easy to show that ð

T

dðw;BÞ2mðdwÞ <
ð
T

dðw;OÞ2mðdwÞ;

where B A T is a point in T such that all of its components are the cone points
but barðmnÞ for the n-th component, and it contradicts the assumption that
barðmÞ ¼ O.

Let e > 0 be an arbitrary positive number. By the definition of dðTn;OnÞ,
there exists a map fn : suppðmnÞ ! Hn from the support of mn to some Hilbert
space Hn with the properties (4.1) and (4.2) with respect to mn, satisfying

k
Ð
Tn
fnðvÞmnðdvÞk

2Ð
Tn
kfnðvÞk

2mnðdvÞ
a dðTn;OnÞ þ e:

We define a map f : suppðmÞ ! H from the support of m to the Hilbert space
H ¼ H1 lH2 l � � � to be

fðviÞ ¼ ðf1ðv
ð1Þ
i Þ; f2ðv

ð2Þ
i Þ; . . .Þ; i ¼ 1; . . . ;m:

Then it is straightforward to see that f satisfies the properties (4.1) and (4.2) with
respect to m. And we have

dðmÞa
k
Ð
T
fðvÞmðdvÞk2Ð

T
kfðvÞk2mðdvÞ

¼
Py

n¼1 k
Pm

i¼1 tifnðv
ðnÞ
i Þk2Py

n¼1

Pm
i¼1 tikfnðv

ðnÞ
i Þk2

a sup
n

k
Pm

i¼1 tifnðv
ðnÞ
i Þk2Pm

i¼1 tikfnðv
ðnÞ
i Þk2

a sup
n
ðdðTn;OnÞ þ eÞ:

Since this holds for an arbitrary e > 0 and an arbitrary m A P 0ðTÞ with
barðmÞ ¼ O, we have dðT ;OÞa supn dðTn;OnÞ. r
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For a CATð1Þ space X , we prove the following relation between
dðConeðXÞ;OConeðX ÞÞ and ~ddðX Þ

Proposition 4.4. Let ðX ; dX Þ be a complete CATð1Þ space. Then we have

dðConeðX Þ;OConeðXÞÞa ~ddðXÞ:

Before proving Proposition 4.4, we establish the following two lemmas.

Lemma 4.5. Let ðX ; dX Þ be a complete CATð1Þ space. Let

n ¼
Xm
i¼1

ti Diracvi A P 0ðConeðXÞÞ;

where vi A ConeðXÞ for i ¼ 1; . . . ;m and t1; . . . ; tm > 0 with
Pm

i¼1 ti ¼ 1. Suppose
that barðnÞ ¼ OConeðXÞ. If v1 ¼ OConeðX Þ and if

n 0 ¼
Xm
i¼2

ti

1� t1
Diracvi ;

then barðn 0Þ ¼ OConeðX Þ and dðnÞa dðn 0Þ.

Proof. The former assertion follows immediately from Lemma 3.2. Let
f 0 : suppðn 0Þ ! H be a map from the support of n 0 to some Hilbert space H
satisfying (4.1) and (4.2) with respect to n 0. Define f : suppðnÞ ! H by

fðv1Þ ¼ 0;

fðviÞ ¼ f 0ðviÞ; i ¼ 2; . . . ;m:

Then f satisfies (4.1) and (4.2) with respect to n. Moreover, an easy compu-
tation shows that

k
Ð
ConeðX Þ fðvÞnðdvÞk

2Ð
ConeðXÞ kfðvÞk

2nðdvÞ
a

k
Ð
ConeðXÞ f

0ðvÞn 0ðdvÞk2Ð
ConeðX Þ kf

0ðvÞk2n 0ðdvÞ
:

Hence, by the definition of d, the latter assertion follows. r

Lemma 4.6. Let ðX ; dX Þ be a complete CATð1Þ space and let

n ¼
Xm
i¼1

ti Dirac½xi ; ri � A P 0ðConeðX ÞÞ;
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where ½xi; ri� is the point on ConeðX Þ represented by ðxi; riÞ A X � ½0;yÞ. Suppose
that a > 0, l A f1; 2; . . . ;m� 1g, and

n 0 ¼ 1P l
i¼1

ti

a
þ
Pm

i¼lþ1ti

Xl

i¼1

ti

a
Dirac½xi ;ari � þ

Xm
i¼lþ1

ti Dirac½xi ; ri �

 !
:

Then barðn 0Þ ¼ OConeðXÞ if and only if barðnÞ ¼ OConeðXÞ. Moreover, if barðnÞ ¼
barðn 0Þ ¼ OConeðXÞ and if a > 1 (resp. 0 < a < 1), then the inequality dðnÞa dðn 0Þ
holds if and only if

a

P l
i¼1 tir

2
iPm

i¼lþ1 tir
2
i

a

P l
i¼1 tiPm

i¼lþ1 ti
resp: a

P l
i¼1 tir

2
iPm

i¼lþ1 tir
2
i

b

P l
i¼1 tiPm

i¼lþ1 ti

 !
:ð4:3Þ

Proof. The equivalence between barðnÞ ¼ OConeðX Þ and barðn 0Þ ¼ OConeðXÞ
is an immediate consequence of Lemma 3.2. Assume that barðnÞ ¼ barðn 0Þ ¼
OConeðXÞ, and fix some real Hilbert space H of dimensionbm. Then there is a
natural bijection f 7! f 0 between the set of all maps from suppðnÞ to H satisfying
(4.1) and (4.2) with respect to n, and the set of all maps from suppðn 0Þ to H
satisfying (4.1) and (4.2) with respect to n 0: it is given by

f 0½xi; ari� ¼ af½xi; ri�; i ¼ 1; . . . ; l;

f 0½xi; ri� ¼ f½xi; ri�; i ¼ l þ 1; . . . ;m:

Let f : suppðnÞ ! H and f 0 : suppðn 0Þ ! H be the maps satisfying (4.1) and (4.2)
with respect to n and n 0 respectively, and corresponding to each other under this
bijection. Let

T ¼ 1

1

a

P l
i¼1 ti þ

Pm
i¼lþ1 ti

:

Then we have

k
Ð
ConeðX Þ f

0ðpÞn 0ðdpÞk2Ð
ConeðXÞ kf

0ðpÞk2n 0ðdpÞ
¼ T

k
Pm

i¼1 tif½xi; ri�k
2

a
P l

i¼1 tikf½xi; ri�k
2 þ

Pm
i¼lþ1 tikf½xi; ri�k

2
:

Hence,

ð4:4Þ
k
Ð
ConeðX Þ f

0ðpÞn 0ðdpÞk2Ð
ConeðXÞ kf

0ðpÞk2n 0ðdpÞ
�
k
Ð
ConeðXÞ fðpÞnðdpÞk

2Ð
ConeðX Þ kfðpÞk

2
nðdpÞ

¼
Xm
i¼1

tif½xi; ri�
�����

�����
2
T
Pm

i¼1 tir
2
i � a

P l
i¼1 tikf½xi; ri�k

2 �
Pm

i¼lþ1 tikf½xi; ri�k
2

ða
P l

i¼1 tikf½xi; ri�k
2 þ

Pm
i¼lþ1 tikf½xi; ri�k

2Þð
Pm

i¼1 tir
2
i Þ

:
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We also have

(4.5)

T
Xm
i¼1

tir
2
i � a

Xl

i¼1

tikf½xi; ri�k2 �
Xm
i¼lþ1

tikf½xi; ri�k2

¼ 1� a

ð1� aÞð
P l

i¼1 tiÞ þ a

(
a
Xm
i¼lþ1

ti

 ! Xl

i¼1

tir
2
i

 !
�

Xl

i¼1

ti

 ! Xm
i¼lþ1

tir
2
i

 !)
:

By (4.4) and (4.5), the inequality

k
Ð
ConeðX Þ f

0ðpÞn 0ðdpÞk2Ð
ConeðXÞ kf

0ðpÞk2n 0ðdpÞ
b

k
Ð
ConeðX Þ fðpÞnðdpÞk

2Ð
ConeðX Þ kfðpÞk

2nðdpÞ

holds if and only if

ab 1; a
Xm
i¼lþ1

ti

 ! Xl

i¼1

tir
2
i

 !
�

Xl

i¼1

ti

 ! Xm
i¼lþ1

tir
2
i

 !
a 0

or

0 < aa 1; a
Xm
i¼lþ1

ti

 ! Xl

i¼1

tir
2
i

 !
�

Xl

i¼1

ti

 ! Xm
i¼lþ1

tir
2
i

 !
b 0:

The lemma follows easily from this equivalence and the bijectivity of the
correspondence f $ f 0. r

Proof of Proposition 4.4. First suppose that m A PðConeðX ÞÞ, barðmÞ ¼
OConeðXÞ, and suppðmÞH iðXÞ. Let i : X ! ConeðXÞ be the canonical inclusion,

and let i�1 : iðXÞ ! X be the inverse map. Let ~ff : X ! H be a map from X to
some Hilbert space H satisfying (3.2). Then the restriction f ¼ ½ ~ff � i�1�jsuppðmÞ of
~ff � i�1 : iðXÞ ! H to suppðmÞ satisfies (4.1) and (4.2). Moreover we have

kEi�1
� m½ ~ff�k2 ¼

k
Ð
ConeðXÞ fðvÞmðdvÞk

2Ð
ConeðX Þ kfðvÞk

2mðdvÞ
:

Hence by the definitions of ~ddði�1
� mÞ and dðmÞ, we have

dðmÞa ~ddði�1
� mÞ:

Thus, if we prove the existence of n 0 A PðConeðX ÞÞ such that

dðnÞa dðn 0Þ; suppðn 0ÞH iðX Þð4:6Þ
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for any

n ¼
Xm
i¼1

ti Dirac½xi ; ri � A P 0ðConeðX ÞÞ

with barðnÞ ¼ OConeðX Þ, then the desired assertion follows. Here, we can assume
ri > 0 for all i A f1; . . . ;mg by Lemma 4.5. And, if r1 ¼ r2 ¼ � � � ¼ rm, we can
take

n 0 ¼
Xm
i¼1

ti Dirac½xi ;1�;

and n 0 satisfies (4.6) because it is straightforward that dðnÞ ¼ dðn 0Þ. So we can
assume r1 ¼ � � � ¼ rl < rlþ1 a � � �a rm without loss of generality. Then we haveP l

i¼1 tiPm
i¼lþ1 ti

 !� P l
i¼1 tir

2
iPm

i¼lþ1 tir
2
i

 !
b

r2lþ1

r21
b

rlþ1

r1
:

Hence, if we set

n0 ¼
1

r1

rlþ1

P l
i¼1 ti þ

Pm
i¼lþ1 ti

Xl

i¼1

r1ti

rlþ1
Dirac½xi ; rlþ1� þ

Xm
i¼lþ1

ti Dirac½xiri �

 !
;

then we have

dðn0Þb dðnÞ
by Lemma 4.6. Repeating this procedure, we finally get

n1 ¼
Xm
i¼1

si Dirac½xi ; rm�;

which satisfies dðn1Þb dðnÞ. If we set n 0 ¼
Pm

i¼1 si Dirac½xi ;1�; it is easily seen that
dðn 0Þ ¼ dðn1Þ, and the assertion follows. r

5. Proof of the theorem

Recall that the Gromov-Hausdor¤ precompactness is known to be equivalent
to the uniformly total boundedness. We call the family X of metric spaces
uniformly totally bounded if the following two conditions are satisfied:

� There is a constant D such that diamðXÞaD for all X A X.
� For any e > 0 there exists NðeÞ A N such that each X A X contains a subset
SX ; e with the following property: the cardinality of SX ; e is no greater than
NðeÞ and X is covered by the union of all e-balls whose centers are in SX ; e.

By Lemma 4.2, Lemma 4.3 and Proposition 4.4, to prove Theorem 1.1 it
su‰ces to prove the following proposition.
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Proposition 5.1. Let ðX ; dX Þ be a complete CATð1Þ space. Assume that
there exist N A N and a subset S ¼ fxigN

i¼1 HX such that X is covered by the

union of all
p

12
-balls whose centers are in S. Then there exists a constant

CðNÞ < 1, depending only on N, such that

~ddðX Þ < CðNÞ:

Remark 5.2. It follows from the argument in the proof of Proposition 5.1,
we can take

CðNÞ ¼ 2

3
þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�p2=36N þ 1

2

r !2
:

as a constant CðNÞ in the proposition.

Before proving Proposition 5.1, we will recall a well-known construction of a
map from a Hilbert space to the unit sphere in another Hilbert space, and derive
some necessary estimates for them. We follow Dadarlat and Guentner [3] to
explain this construction. Let H be a Hilbert space. Let

ExpðHÞ ¼ RlHl ðHnHÞl ðHnHnHÞl � � � ;
and define Exp : H ! ExpðHÞ by

ExpðzÞ ¼ 1l zl
1ffiffiffiffi
2!

p zn z

� �
l

1ffiffiffiffi
3!

p zn zn z

� �
l � � � :

For t > 0, define a map Gt from H to ExpðHÞ to be

GtðzÞ ¼ e�tkzk2

Expð
ffiffiffiffi
2t

p
zÞ:

Then simple computation shows that

cosJðGtðzÞ;Gtðz 0ÞÞ ¼ hGtðzÞ;Gtðz 0Þi ¼ e�tkz�z 0k2ð5:1Þ

for all z; z 0 A H. In particular, kGtðzÞk ¼ 1 for all z A H. Hence we can regard
Gt as a map from H to the unit sphere in ExpðHÞ.

We need the following estimate to prove Proposition 5.1.

Lemma 5.3. Let ðX ; dX Þ be a metric space, and let F : X ! H be an L-
Lipschitz map ðL > 0Þ to some Hilbert space. Suppose that 0 < tL2 a 1

2 . Then
the map f ¼ Gt � F : X ! ExpðHÞ satisfies

JðfðxÞ; fðyÞÞaminfp; dX ðx; yÞg
for all x; y A X .

Proof. By (5.1) and L-Lipschitz continuity of F , it is su‰cient to show that

e�tL2dX ðx;yÞ2 b cosðminfp; dX ðx; yÞgÞð5:2Þ
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for all x; y A X and all t A 0;
1

2L2

� �
. When dX ðx; yÞb

p

2
, (5.2) is obvious. So,

if we put a ¼ tL2 and d ¼ dX ðx; yÞ, then what we have to show is that

aa
�logðcos dÞ

d 2
ð5:3Þ

holds for any a A 0;
1

2

� �
and any d A 0;

p

2

	 �
. But this is obvious because the

right-hand side of (5.3) is non-decreasing with respect to d. r

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. First we define a map FS from X to RN by

FSðxÞ ¼ ðdX ðx; x1Þ; dX ðx; x2Þ; . . . dX ðx; xNÞÞ
for x A X . Then FS is

ffiffiffiffiffi
N

p
-Lipschitz since

kFSðxÞ � FSðyÞk ¼
XN
i¼1

ðdX ðx; xiÞ � dX ðy; xiÞÞ2
( )1=2

a
ffiffiffiffiffi
N

p
� dX ðx; yÞ:

On the other hand, by the definition of the subset S, for any x; y A X with

dX ðx; yÞb
p

3
, there exist i0; i1 A f1; . . .Ng such that

dX ðxi0 ; xÞb
p

4
; dX ðxi0 ; yÞa

p

12
;

dX ðxi1 ; yÞb
p

4
; dX ðxi1 ; xÞa

p

12
:

Hence

kFSðxÞ � FSðyÞkb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdX ðxi0 ; xÞ � dðxi0 ; yÞÞ

2 þ ðdX ðxi1 ; xÞ � dðxi1 ; yÞÞ
2

q
ð5:4Þ

b
p

3
ffiffiffi
2

p

for any x; y A X with dX ðx; yÞb
p

3
.

We now set f ¼ G1=2N � FS : X ! ExpðRNÞ. Then the all values of f are
contained in the unit sphere of ExpðRNÞ, and f satisfies

JðfðxÞ; fðyÞÞaminfp; dX ðx; yÞg
for all x; y A X by Lemma 5.3. Moreover (5.1) and (5.4) imply that

JðfðxÞ; fðyÞÞb arccosðe�p2=36NÞð5:5Þ

for any x; y A X with dX ðx; yÞb
p

3
.
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Set h ¼ arccosðe�p2=36NÞ, and let m be an arbitrary measure in PðX Þ with
barði�mÞ ¼ OConeðXÞ, where i : X ! ConeðXÞ is the canonical inclusion and
OConeðXÞ is the cone point of ConeðXÞ. Then we have

f�m B v;
h

2

� �� �
a

2

3
ð5:6Þ

for any point v on the unit sphere in ExpðRNÞ, where

B v;
h

2

� �
¼ u A ExpðRNÞ j kuk ¼ 1;Jðv; uÞ < h

2

� �
:

This is because if there exists some vector fðx0Þ contained in B v;
h

2

� �
V fðX Þ,

then by (5.5) and Corollary 3.3 we have

f�m B v;
h

2

� �� �
a f�mðBðfðx0Þ; hÞÞ

¼ mðf�1ðBðfðx0Þ; hÞÞÞ

a m B x0;
p

3

� �� �
a

2

3
;

where B x0;
p

3

� �
is the open ball in X centered at x0 with radius

p

3
. In the case

B v;
h

2

� �
V fðX Þ ¼ f, (5.6) obviously holds.

By (5.6), we haveð
X

hv; fðxÞimðdxÞ ¼
ð
S

hv; uif�mðduÞ

¼
ð
Bðv;h=2Þ

hv; uif�mðduÞ þ
ð
SnBðv;h=2Þ

hv; uif�mðduÞ

a 1� f�m B v;
h

2

� �� �
þ cos

h

2
� 1� f�m B v;

h

2

� �� �� �

a 1� 2

3
þ cos

h

2

� �
� 1

3
;

where S is the unit sphere in ExpðRNÞ.
Setting v ¼ ~EEm½f� in the above inequality and using (3.1), we have

kEm½f�k ¼
ð
X

h~EEm½f�; fðxÞimðdxÞ
����

����a cN ;

where

cN ¼ 1� 2

3
þ cos

h

2

� �
� 1

3
¼ 2

3
þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�p2=36N þ 1

2

r
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Thus, by the definition of ~ddðXÞ,
~ddðXÞa c2N < 1

which proves the proposition. r

Finally, we remark that the proof of Proposition 5.1 works for the following
more general statement.

Proposition 5.4. Let 0 < y <
p

2
, 0 < a < 1 and e > 0. Let ðX ; dX Þ be a

complete CATð1Þ space. Assume that there exists a finite subset SHX such that

afs A S j kdX ðx; sÞ � dX ðy; sÞkb egb aaS

whenever x; y A X and dðx; yÞb y. Here, aS stands for the cardinality of S.
Then there exists a constant C ¼ Cðy; a; eÞ < 1 such that

~ddðX ÞaC:

Proof. We denote the cardinality of S by N. Let FS be the map from X
to RN as in the proof of Proposition 5.1 with respect to our set S. Then FS isffiffiffiffiffi
N

p
-Lipschitz and we have

kFSðxÞ � FSðyÞkb
ffiffiffiffiffiffiffi
aN

p
eð5:7Þ

for any x; y A X with dX ðx; yÞb y. If we set f ¼ G1=2N � FS : X ! ExpðRNÞ,
then all the values of f are contained in the unit sphere of ExpðRNÞ, and f
satisfies

JðfðxÞ; fðyÞÞaminfp; dX ðx; yÞg
for all x; y A X by Lemma 5.3. Moreover (5.1) and (5.7) imply that

JðfðxÞ; fðyÞÞb arccosðe�ae2=2Þð5:8Þ
for any x; y A X with dX ðx; yÞb y.

Now the rest of the proof is done exactly in the same manner as in the proof
of Proposition 5.1, and we have

~ddðX Þa ðcy;a; eÞ2;
where

cy;a; e ¼ 1� 1

1þ cos y
þ cos

arccosðe�ae2=2Þ
2

 !
� 1� 1

1þ cos y

� �

¼ 1

1þ cos y
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�ae2=2 þ 1

2

r
� cos y

1þ cos y
< 1: r
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