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Abstract: Lung cancer is the most significant cancer that heavily contributes to cancer-related mortal-
ity rate, due to its violent nature and late diagnosis at advanced stages. Early identification of lung
cancer is essential for improving the survival rate. Various imaging modalities, including X-rays
and computed tomography (CT) scans, are employed to diagnose lung cancer. Computer-aided
diagnosis (CAD) models are necessary for minimizing the burden upon radiologists and enhancing
detection efficiency. Currently, computer vision (CV) and deep learning (DL) models are employed
to detect and classify the lung cancer in a precise manner. In this background, the current study
presents a cat swarm optimization-based computer-aided diagnosis model for lung cancer classi-
fication (CSO-CADLCC) model. The proposed CHO-CADLCC technique initially pre-process the
data using the Gabor filtering-based noise removal technique. Furthermore, feature extraction of the
pre-processed images is performed with the help of NASNetLarge model. This model is followed
by the CSO algorithm with weighted extreme learning machine (WELM) model, which is exploited
for lung nodule classification. Finally, the CSO algorithm is utilized for optimal parameter tuning of
the WELM model, resulting in an improved classification performance. The experimental validation
of the proposed CSO-CADLCC technique was conducted against a benchmark dataset, and the
results were assessed under several aspects. The experimental outcomes established the promising
performance of the CSO-CADLCC approach over recent approaches under different measures.

Keywords: computer-aided diagnosis; deep learning; intelligent models; healthcare; cat swarm
optimization; computer vision

1. Introduction

Currently, lung cancer is the leading cause of cancer-related mortality across the globe,
while in underdeveloped and developed countries, it records a low survival rate after
diagnosis [1]. Based on the present statistics, the 5-year survival rate is around 16%; it is
predicted that there will be 12 million cancer-related deaths per year by the end of 2020,
with highest percentage of these being lung cancer-related deaths [2]. When nodules are
diagnosed at an early stage, the survival rate can be enhanced. Lung nodules are abnormally
growing tissues that represent lung cancer. Typically, the nodules are spherical or round in
shape, with a diameter of 30 mm. Medical images are captured using different imaging

Appl. Sci. 2022, 12, 5491. https://doi.org/10.3390/app12115491 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115491
https://doi.org/10.3390/app12115491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5494-5278
https://orcid.org/0000-0002-1688-0669
https://orcid.org/0000-0002-6633-9897
https://orcid.org/0000-0001-8413-0045
https://doi.org/10.3390/app12115491
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115491?type=check_update&version=1


Appl. Sci. 2022, 12, 5491 2 of 16

modalities [3]. Amongst others, computed tomography (CT) is a basic imaging approach
for screening lung nodules, whereas other available approaches are of less significance [4].

The computer-aided detection (CAD) technique assists in early diagnoses of lung
cancer [5]. The primary objective of CAD is to recognize and extract the regions of interest
(ROI) from the images attained using imaging modalities. The segmentation of lung tissue
from chest images during the preprocessing stage is emerging in the CAD scheme, so as
to reduce the searching region for lung nodules [6]. Then, the other essential steps in this
process are the segmentation and detection of lung nodules in the presented searching space.
Finally, the nodules are classified as benign or malignant [7]. In the CAD technique, the final
phase is the main element for diagnosis and recognition of lung nodules from CT. In CAD
systems for diagnosis, a classification module classifies the nodule candidates, recognized
during the preceding phase, into nodules or non-nodules (i.e., based on their anatomic
structure). Further, the CAD scheme for diagnoses (also known as CADx) categorizes the
diagnosed nodules (whether by a radiologist or a computer) into benign or malignant [8].

CAD is a computerized process for pathological diagnoses of malignant tumors, and
it belongs to the class of artificial intelligence (AI). This technique helps in analyzing tumor
lesions through medical image processing technique and other possible biochemical and
physiological methods integrated with calculation and analysis. In the healthcare sector,
AI transforms qualitative subjective image data into quantitative objective image data,
and assists the clinician in increasing the precision of medical decision-making [9]. Deep
learning (DL) is a subdivision of AI which automatically extracts the discriminatory data
features from datasets. With simple extraction method, the performance can be adapted
systematically and easily [10].

Among the available DL models, the convolutional neural network (CNN) model
has shown better performance than other DL architectures. Many machine learning (ML)
models necessitate the investigation of relationship of data with class labels in order to
extract the optimal features for classification. The outcome of the classifier is decided by
the features being chosen. Lung cancer classification using the CNN model provides better
results than other DL models such as auto encoders; as such, many studies have started to
focus on enhancing the CNN model. It has the ability to classify biomedical images with
improved accuracy over handcrafted features such as histogram, shape, texture, and so
on. Numerous ML models, specifically DL models, have been employed for lung cancer
classification. Several ML algorithms, for instance the deep learning algorithm, have been
used to accomplish this task, but without guaranteed accuracy. Therefore, there is still
room for improvement.

In this background, the current research article presents the cat swarm optimization-
based computer-aided diagnosis model for lung cancer classification (CSO-CADLCC)
model. In the proposed CHO-CADLCC technique, first the data undergo pre-processing
using the Gabor filtering-based noise removal process. Moreover, feature extraction of
the pre-processed images is performed using the NASNetLarge model. Furthermore, the
CSO algorithm with weighted extreme learning machine (WELM) model is exploited for
lung nodule classification. Finally, the CSO algorithm is utilized for optimal parameter
tuning of the WELM model, thereby producing improved classification performance. The
experimental validation of the proposed CSO-CADLCC technique was conducted against
a benchmark dataset, and the results were assessed under several aspects.

2. Related Works

Hu et al. [11] developed a CAD method to categorize nodules into benign and malig-
nant ground glass nodules (GGNs), and combined radiomics imaging and deep learning
features to enhance the classification accuracy. On the basis of pretrained U-Net, the pro-
posed method can be utilized as a transfer learning method to construct a deep neural
network (DNN) so as to distinguish benign and malignant GGNs. In the literature [12], a
deep convolution neural network (DCNN)-based fuzzy feature technique was developed
to handle the difficulty of reading lung CT images. Then, the effect of distinct methods
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to identify the lung tumor was investigated by altering feature dimension, depth of the
network, and convolutional kernel size.

Guo et al. [13] presented a lung cancer diagnosis method based on CT scan imaging for
the recognition of the disease. The presented technique employed a consecutive method to
accomplish the outcome. Subsequently, two well-organized classifiers i.e., CNN and feature-
based methods, were employed. Initially, the CNN classification was improved by a recently
developed optimizer named the ‘Harris hawk optimizer’. Ali et al. [14] presented a decision
level fusion method to improve the efficiency of the CAD scheme for the classification
of lung nodules. Firstly, it estimates the accuracy of Support Vector Machine (SVM) and
AdaBoostM2 approaches on deep feature from advanced transferable architecture.

Mastouri et al. [15] presented a novel classifier method termed bilinear CNN (BCNN)
for the classification of lung nodules on CT images. The presented BCNN technique has a
two-stream CNNs (VGG16 and VGG19) for feature extraction, along with an SVM technique
for false positive reduction. A series of experiments was conducted by establishing bilinear
vector feature extraction in three BCNN combinations. Shaffie et al. [16] presented a novel
CAD method for lung cancer analysis in chest CT scans. The presented method removes
two distinct types of features, such as appearance and shape features. In the literature [17],
CAD models that are dependent upon DL techniques were verified for their efficacy in
the automatic recognition and classification of lung cancer. The advanced technique i.e.,
multiple view convolution recurrent neural network (MV-CRecNet) was presented not
only by exploiting shape, size, and cross-slice differences, but also by learning to recognize
lung cancer nodule in CT scan. The multi-view method enabled optimum generalization
and learning of robust features.

3. The Proposed Model

In this study, a new CSO-CADLCC model has been developed for the identification
and classification of lung cancer using CT images. The presented CSO-CADLCC model
comprises of a GF technique to eradicate the noise at preliminary stage. Then, a feature
extraction process is carried out on the pre-processed images using a NASNetLarge model.
Following on, the WELM model receives the feature vectors and classifies the CT images
under distinct classes. In order to fine-tune the parameters involved in WELM model,
a CSO algorithm is utilized. Figure 1 depicts the overall block diagram of the CSO-
CADLCC technique.
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3.1. Image Pre-Processing: GF Technique

GF, a bandpass filter, is effectively employed for different machine vision and image
processing applications [18]. A 2D Gabor function is an oriented complex sinusoidal grating,
modulated by a 2D Gaussian envelope. In a 2D coordinate (a, b) system, GF includes an
imaginary and a real component, as given herewith:

Gδ,θ,ψ,σ,γ(a, b) = exp

(
− a′2 + γ2b′2

2σ2

)
× exp

(
j
(

2π
a′

δ
+ ψ

))
(1)

in which:
a′ = a cos θ + b sin θ (2)

b′ = −a sin θ + b cos θ (3)

Now, δ characterizes the wavelength of sinusoidal factors, and θ signifies the orienta-
tion separation angle of the Gabor kernel. Consider θ in the interval [0◦, 180◦], since the
symmetry makes other directions redundant. ψ denotes the phase offset, σ indicates the
standard derivation of the Gaussian envelope, and ψ = 0 and ψ = π/2 return the real and
imaginary parts of Gabor filter, correspondingly. Variable 0 is defined by 6, and the spatial
frequency bandwidth ‘bw’ is determined as follows.

σ =
δ

pi

√
ln2
2

2bw + 1
2bw − 1

(4)

3.2. Feature Extraction

At this stage, the NASNetLarge model performs a feature extraction process on the
pre-processed images [19]. Generally, a NASNet is a CNN model derived from a scalable
NAS model and reinforcement learning. There is a parent AI named the recurrent neural
network (RNN), or “The Controller”, which examines the performance of the child AI
“Child Network” in CNN. Further, it also regulates the architecture of the “Child Network”.
These changes are accomplished on numerous layers, while regularization approaches,
weights, etc., are utilized to enhance the performance of the “Child Network”. It is trained
on two distinct image sizes to form two kinds of NASNet models, namely NASNetLarge
and NASNetMobile. Each NASNet model holds a fundamental element called a block.
A cell is an arrangement of blocks, and is designed by the concatenation of different
operational blocks. Numerous cells create the NASNet architecture. The controller RNN
enhances the cells with blocks, and is undefined because it is optimized for a selected
dataset. Each block is an operational module, and the operations that can be performed by
a block are given herewith:

• Convolution;
• Max-Pooling;
• Average-Pooling;
• Separable Convolutions; and
• Identity Mapping.

The NASNet-Large approach comprises of encoding as well as decoding units that
are trailed by a classifier layer. The NASNet-Large-decoding network makes use of the
initial 414 layers of the NASNet-Large net, whereas the encoding unit is applied for image
decomposition. An initial set of 414 layers is used, owing to the fact that the final layer
size is closer to input image size. When the final layer is chosen for the feature extraction
process, it can abolish the important structural data about objects, since the final layer
is responsible for classification. The non-availability of pre-trained weights retrains the
network with the help of new data. Here, the pooling layer is not available in the decoding
unit, since it can offer detailed information to the decoding unit. A proper decoding unit
can upsample the input feature map with the help of a max pooling layer. The decoding
unit includes a set of four blocks. Every individual block starts with upsampling that could
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extend the feature map, trailed by convolutional and rectified linear units. Moreover, batch
normalization is employed for every individual map. The initial decoding unit, closer to
the final encoding unit, can produce multi-channel feature amp. The end outcome of the
final decoding layer is passed onto the WELM classification model, which generates a K
channel image of likelihoods, where K indicates the class count.

3.3. Image Classification Using the WELM Model

In this study, the WELM model is exploited for lung nodule classification [20]. An
extreme learning machine (ELM) is employed for the classification of a balanced dataset,
whereas WELM is applied for the classification for imbalanced dataset. The training dataset
has N distinct instances, (xi, zi), i = 1, 2, . . . , N. A single hidden layer (HL) and a neural
network (NN) with L HL nodes are expressed herewith:

L

∑
i=1

βi · 1
(
wi · xj + bi

)
= zj, j = 1, . . . , N (5)

Whereas l() indicates the activation function, wi signifies a single HL input weight, βi
denotes the output weight, and bi denotes single HLs bias, which are described below.

Sβ = T (6)

Here, S denotes the resultant matrix of single HL.

S(w1, . . . , wL, b1, . . . , bL, x1, . . . , xN) =

 l(w1 · x1 + b1) · · · l(wL · x1 + bL)
...

. . .
...

l(w1 · xN + b1) · · · l(wL · xN + bL)


N×L

(7)

Based on the Karush–Kuhn-Tucker concept, the Lagrangian factor is identified in changing
the trained ELM as many problems are being handled. The resultant weight β is evaluated
by the following equation:

β = ST
(

1
C
+ SST

)−1
T (8)

Now, C indicates the regularization coefficient. Henceforth, the output function of
ELM classification is expressed below:

F(x) = s(x)ST(
1
C
+ SST)

−1
T =

 K(x, x1)
...

K(x, xN)


T(

1
C
+ χ

)−1
T (9)

whereas χ represents the kernel matrix that is evaluated, as given below.

χ = SST = s(xi)s
(

xj
)
= K

(
xi, xj

)
(10)

It is obvious that the HL feature maps s(x) denote the independence in classification
outcome of ELM. Figure 2 demonstrates the infrastructure of ELM. The classification
outcome was compared with the kernel function, K(x, y). K(x, y) considers an inner
product process as follows:

K(x, y) = exp
(
−γ‖x− y‖2

)
(11)
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Therefore, the kernel extreme learning machine (KELM) classification efficacy was
distributed as to two parameters, namely the kernel function parameter, γ, and the penalty
parameter, C. The original benefit of ELM is accomplished in WELM by preserving the
weight for distinct instances to handle imbalanced classification problems. It is defined
through the following equation:

F(x) =

 K(x, x1)
...

K(x, xN)


T(

1
C
+ Wχ

)−1
WT, (12)

W = diag (wii), i = 1, 2, . . . , N (13)

Here, W characterizes the weighted matrix. WELM has two weightage models as
given herewith:

wii =
1

#(zi)
, (14)

wii =

{ 0.618
#(zi)

, i f zi > z
1

#(zi)
, otherwise

(15)

Now, #(zi) denotes the count of instances, going to class zi, i = 1, . . . , m. m indicates
the count of classes. z denotes the average of complete instance.

3.4. Parameter Optimization Using the CSO Algorithm

In this final stage, the CSO algorithm is utilized for optimal parameter tuning of
the WELM model, thereby producing an improved classification performance. The CSO
approach is based on two major features of the cats [21], such as resting and hunting.
During the resting skill, the cat spends their time resting, while it remains alert and slowly
move to another position. However, when a target is recognized, the cat captures the target.
Hence, an arithmetical model is designed to resolve difficult optimization problems and is
named after the CSO algorithm. In this algorithm, tracing and seeking modes are defined to
determine the behavior of cats. The working process of this mode are described herewith.
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3.4.1. Seeking Mode

This model defines the resting skill of the cat. Here, a cat moves toward distinct
locations in their searching space; in spite of this, it remains alert. It could be interpreted as
a local search for the solution. The succeeding notation is utilized under this model.

• Seeking Memory Pool (SMP): it defines the number of copies of the cat being replicated.
• Seeking Range of selected dimension (SRD): it represents the variance between newer

and older dimensions of the cat chosen for mutation.
• Count of Dimension to Change (CDC): it signifies the number of dimensions of a cat’s

location, experienced for mutation.

The stages of seeking mode of CSO are shown below.

1. Determine the count of copies (T) of ith cat. Based on the CDC parameter, subtract or
add the SRD value arbitrarily from the existing location of cats, and replace the older
value for each copy.

2. Calculate the fitness for each copy.
3. Select the optimal candidate solution and deploy at the location of ith cat.

3.4.2. Tracing Mode

Tracing mode reflects the hunting skill of the cat. Once the cat hunts the prey, both
the velocity and the position of the cat are upgraded. Hence, a large variance takes
place between newer and older locations of the cat. The velocity (Vd

j ) and position

(Xd
j ) of jth cat in D—dimension space is determined by Xd

j = {X1
j , X2

j , . . . . . . .XD
j }; Vd

j =

{V1
j , V2

j , . . . . . . .VD
j }; whereas d = 1, 2, . . . The optimal location of the cat is denoted by

Xd
best = {X1

best, X2
best, . . . . . . .XD

best}. Both the velocity and position of jth cat is calculated
using the following equation:

Vd
jnew = w ∗Vd

j + c ∗ r ∗
(

Xd
jbest − Xd

j

)
(16)

Whereas w represents a weight factor between 0 and 1, Vd
jnew characterizes the up-

graded velocity of jth cat in dth dimension, c is a user-determined constant, Vd
j signifies

the older velocity of jth cat, Xd
jbest characterizes the optimal location accomplished by jth

cat in dth dimension, r signifies an arbitrary value between [0, 1], and Xd
j represents the

existing location of jth cat in dth dimension, whereas d = 1, 2, . . . D.

Xd
jnew = Xd

j + Vd
j (17)

Now, Xd
j signifies the existing location of jth cat in dth dimension, Vd

j embodies the

velocity of jth cat, and Xd
jnew signifies the upgraded location of jth cat in dth dimension. A

mixture ratio (MR) is utilized to combine seek and trace modes. An MR is developed to
describe the count of cats in seek and trace modes.

The CSO approach resolves an FF to achieve an enhanced classifier performance. It
defines a positive integer for representing the optimum performance of candidate solu-
tions. During this work, the minimal classifier error rate is regarded as FF, as provided
in Equation (18). The optimum solution is a low error rate, and poor outcome gains an
enhanced error rate.

f itness(xi) = Classi f ierErrorRate(xi)=
number o f misclassi f ied samples

Total number o f samples
∗ 100 (18)

4. Experimental Validation

The proposed model was simulated using Python 3.6.5 tool with additional packages,
such as tensorflow (GPU-CUDA Enabled), keras, numpy, pickle, matplotlib, sklearn, pillow,
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and opencv-python. The simulation process was conducted on a PC with configurations,
such as MSI Z370 A-Pro, i5-8600k, NVIDIA TITAN X, 16GB RAM, 250GB SSD, and 1TB
HDD. The parameter settings are given as follows: batch size: 64, number of epochs: 15,
learning rate: 0.05, dropout rate: 0.25, and activation function: rectified linear unit (ReLU).

The experimental validation of the proposed CSO-CADLCC model was conducted
upon a benchmark lung database [22] that comprises a total of 300 images. In total, three
class labels exist in the database, namely normal, benign, and malignant. Some sample
images are depicted in Figure 3. The number of images under each class is 100.
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Figure 3. Sample Images.

Figure 4 demonstrates the confusion matrices generated by the CSO-CADLCC model
on the distinct sizes of training/testing (TR/TS) data. With TR/TS data of 90:10, the pro-
posed CSO-CADLCC model categorized 7 images as normal, 8 images as malignant, and
14 images as benign. Moreover, with TR/TS data of 80:20, the CSO-CADLCC technique
categorized 18 images as normal, 20 images as malignant, and 21 images as benign. Fur-
thermore, with TR/TS data of 70:30, the presented CSO-CADLCC approach categorized
20 images as normal class, 28 images as malignant class, and 39 images as benign. Finally,
with TR/TS data of 60:40, the proposed CSO-CADLCC system categorized 35 images as
normal, 34 images as malignant, and 34 images as benign.
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Table 1 and Figure 5 illustrate a brief overview of lung cancer classification results
produced by the CSO-CADLCC model under distinct classes and TR/TS data. The ex-
perimental outcomes imply that the CSO-CADLCC model accomplished a maximum
performance under all TR/TS data ratios. For instance, with 90:10 TR/TS data ratio, the
proposed CSO-CADLCC model achieved an average accuy, precn, recal , specy, Fscore, and
MCC of 97.78%, 95.83%, 96.30%, 98.55%, 95.82%, and, 94.53% respectively. Moreover, with
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TR/TS data of 80:20, the CSO-CADLCC approach achieved an average accuy, precn, recal ,
specy, Fscore, and MCC of 98.89%, 98.41%, 98.25%, 99.17%, 98.29% and, 97.51%, respectively.

Table 1. Analysis results of the CSO-CADLCC technique under distinct classes and TR/TS data.

Class
Labels Accuracy Precision Recall Specificity F-Score MCC

Training/Testing (90:10)

Normal 96.67 87.50 100.00 95.65 93.33 91.49

Malignant 96.67 100.00 88.89 100.00 94.12 92.11

Benign 100.00 100.00 100.00 100.00 100.00 100.00

Average 97.78 95.83 96.30 98.55 95.82 94.53

Training/Testing (80:20)

Normal 98.33 100.00 94.74 100.00 97.30 96.17

Malignant 98.33 95.24 100.00 97.50 97.56 96.36

Benign 100.00 100.00 100.00 100.00 100.00 100.00

Average 98.89 98.41 98.25 99.17 98.29 97.51

Training/Testing (70:30)

Normal 96.67 100.00 86.96 100.00 93.02 91.23

Malignant 97.78 93.33 100.00 96.77 96.55 95.04

Benign 98.89 97.50 100.00 98.04 98.73 97.77

Average 97.78 96.94 95.65 98.27 96.10 94.68

Training/Testing (60:40)

Normal 89.17 74.47 97.22 85.71 84.34 77.86

Malignant 92.50 87.18 89.47 93.90 88.31 82.81

Benign 90.00 100.00 73.91 100.00 85.00 79.75

Average 90.56 87.22 86.87 93.21 85.88 80.14
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Furthermore, with TR/TS data of 70:30, the proposed CSO-CADLCC approach accom-
plished an average accuy, precn, recal , specy, Fscore, and MCC of 97.78%, 96.94%, 95.65%,
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98.27%, 96.10%, and, 94.68% respectively. In addition, with TR/TS data of 60:40, the pre-
sented CSO-CADLCC technique obtained an average accuy, precn, recal , specy, Fscore, and
MCC of 90.56%, 87.22%, 86.87%, 93.21%, 85.88%, and, 80.14%, respectively.

Figure 6 illustrates a set of training and validation accuracy/loss graphs generated
by the proposed CSO-CADLCC model under distinct TR/TS data. From these figures, it
can be understood that the validation accuracy is higher and the validation loss is lower,
compared to the training accuracy/loss.
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Figure 6. Accuracy and loss analyses results of the CSO-CADLCC technique under distinct TR/TS
data. (a) TA/VA data of 90:10, (b) TL/VL data of 90:10, (c) TA/VA data of 80:20, (d) TL/VL data of
80:20, (e) TA/VA data of 70:30, (f) TL/VL data of 70:30, (g) TA/VA data of 60:40, (h) TL/VL data of
60:40.
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Figure 7 reports the precision–recall curve analysis results accomplished by the CSO-
CADLCC model under distinct TR/TS data. The figures indicate that the proposed CSO-
CADLCC model produced effectual outcomes under distinct TR/TS data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17 
 

Figure 7 reports the precision–recall curve analysis results accomplished by the CSO-

CADLCC model under distinct TR/TS data. The figures indicate that the proposed CSO-

CADLCC model produced effectual outcomes under distinct TR/TS data. 

Table 2 reports extensive lung cancer classification outcomes achieved by the pro-

posed CSO-CADLCC model and other existing models [23,24]. Figure 8 compares the 

𝑎𝑐𝑐𝑢𝑦 values achieved by the CSO-CADLCC model and other recent models. The figure 

indicates that the AlexNet model achieved poor results with low 𝑎𝑐𝑐𝑢𝑦. At the same time, 

the ResNet5-SVM and AlexNet models depicted slightly improved 𝑎𝑐𝑐𝑢𝑦 values. Fur-

thermore, the optimal-DNN, artificial neural network (ANN), multi-class CNN (MC-

CNN), CNN, and visual geometry group (VGG16) models demonstrated reasonable 

𝑎𝑐𝑐𝑢𝑦  values. However, the proposed CSO-CADLCC model outperformed all other 

methods, and achieved a maximum 𝑎𝑐𝑐𝑢𝑦 of 98.89%. 

 

Figure 7. Precision–recall analysis results of the CSO-CADLCC technique under distinct TR/TS data. 

(a) TR/TS data of 90:10, (b) TR/TS data of 80:20, (c) TR/TS data of 70:30, and (d) TR/TS data of 60:40 

Table 2. Comparative analysis between the CSO-CADLCC technique and other recent algorithms. 

Methods Accuracy Precision Recall Specificity F-Score 

Optimal-DNN 97.81 97.73 97.68 97.54 95.15 

Artificial NN 97.17 95.02 95.72 96.29 96.46 

MC-CNN 97.78 95.43 97.72 97.58 95.77 

CNN 97.87 96.92 95.26 96.61 95.73 

ResNet50-SVM 96.30 97.67 96.68 96.54 96.60 

AlexNet 95.50 97.36 97.34 95.83 95.65 

VGG16 97.99 95.30 96.48 97.11 97.26 

CSO-CADLCC  98.89 98.41 98.25 99.17 98.29 

Figure 7. Precision–recall analysis results of the CSO-CADLCC technique under distinct TR/TS data.
(a) TR/TS data of 90:10, (b) TR/TS data of 80:20, (c) TR/TS data of 70:30, and (d) TR/TS data of 60:40.

Table 2 reports extensive lung cancer classification outcomes achieved by the proposed
CSO-CADLCC model and other existing models [23,24]. Figure 8 compares the accuy values
achieved by the CSO-CADLCC model and other recent models. The figure indicates that the
AlexNet model achieved poor results with low accuy. At the same time, the ResNet5-SVM
and AlexNet models depicted slightly improved accuy values. Furthermore, the optimal-
DNN, artificial neural network (ANN), multi-class CNN (MC-CNN), CNN, and visual
geometry group (VGG16) models demonstrated reasonable accuy values. However, the
proposed CSO-CADLCC model outperformed all other methods, and achieved a maximum
accuy of 98.89%.

Figure 9 portrays the comparative analysis results in terms of precn, recal , specy,
and Fscore achieved by the CSO-CADLCC approach against existing methods. The figure
demonstrates that the AlexNet approach achieved the least outcomes, with lesser values
of precn, recal , specy, and Fscore. Moreover, the ResNet5-SVM and AlexNet techniques
demonstrated somewhat enhanced values of precn, recal , specy, and Fscore. Furthermore,
the optimal-DNN, ANN, MC-CNN, CNN, and VGG16 techniques have accomplished
reasonable values of precn, recal , specy, and Fscore. Eventually, the proposed CSO-CADLCC
approach outperformed all other approaches, with maximal precn, recal , specy, and Fscore
values of 98.41%, 98.25%, 99.17%, and 98.29%, respectively.
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Table 2. Comparative analysis between the CSO-CADLCC technique and other recent algorithms.

Methods Accuracy Precision Recall Specificity F-Score

Optimal-DNN 97.81 97.73 97.68 97.54 95.15

Artificial NN 97.17 95.02 95.72 96.29 96.46

MC-CNN 97.78 95.43 97.72 97.58 95.77

CNN 97.87 96.92 95.26 96.61 95.73

ResNet50-SVM 96.30 97.67 96.68 96.54 96.60

AlexNet 95.50 97.36 97.34 95.83 95.65

VGG16 97.99 95.30 96.48 97.11 97.26

CSO-CADLCC 98.89 98.41 98.25 99.17 98.29
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A detailed running time (RT) and training time (TT) analysis was conducted between
the CSO-CADLCC model and recent models, and the results are shown in Table 3 and
Figure 10. The results imply that the optimal DNN model offered a poor performance with
a maximum RT of 10.55 s. At the same time, the ANN, MC-CNN, CNN, and ResNet50-SVM
models obtained slightly decreased RT values of 9.97 s, 9.13 s, 8.66 s, and 7.99 s, respectively.
Moreover, the AlexNet and VGG16 models resulted in reasonable RT values of 5.92 s
and 3.38 s, respectively. However, the proposed CSO-CADLCC model accomplished the
maximum performance by achieving the lowest RT of 1.68 s. At the same time, it can also be
noted that the proposed model underwent the lowest training time of 21.54 min, whereas
the optimal DNN model underwent the maximum training time of 58.45 min.

Table 3. Running time and training time analysis results of the CSO-CADLCC approach with
recent methods.

Methods Running Time (s) Training Time (Min)

Optimal-DNN 10.55 58.45

Artificial NN 9.97 47.24

MC-CNN 9.13 42.07

CNN 8.66 36.24

ResNet50-SVM 7.99 34.89

AlexNet 5.92 29.54

VGG16 3.38 25.48

CSO-CADLCC 1.68 21.54
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Based on the aforementioned results and discussion, it can be inferred that the CSO-
CADLCC methodology achieved the maximum performance in lung cancer classification.

5. Conclusions

In this article, a new CSO-CADLCC model has been developed for the identifica-
tion and classification of lung cancer using CT images. The presented CSO-CADLCC
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model comprises of a GF technique to eradicate the noise at preliminary stage. Then, a
NASNetLarge model is utilized for a feature extraction process on pre-processed images.
Furthermore, a WELM model is exploited for the classification of lung nodules. Finally, a
CSO algorithm is utilized for optimal parameter tuning of the WELM model, which results
in an improved classification performance. The CSO-CADLCC technique was experimen-
tally validated against a benchmark dataset, and the results were assessed under several
aspects. The simulation results indicate that the proposed model achieved a better perfor-
mance over existing approaches under different measures. In the future, deep instance
segmentation models can be employed to improve lung cancer classification performance.
In addition, an ensemble of fusion-based DL models can be applied to enhance the detection
efficiency of the proposed model. Moreover, the proposed model can also be tested on
large scale datasets in the future.
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