
Catalysis-Hub.org: An Open Electronic

Structure Database for Surface Reactions

Kirsten T. Winther†,‡*, Max J. Hoffmann†,‡,

Osman Mamun†,‡, Jacob R. Boes†,‡, Jens K. Nørskov †,‡, §,

Michal Bajdich† and Thomas Bligaard†*

November 15, 2018

† SUNCAT Center for Interface Science and Catalysis, SLAC, National
Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California, 94025,
United States

‡ SUNCAT Center for Interface Science and Catalysis, Department of Chem-
ical Engineering, Stanford University, Stanford, California 94305, United States

§ Department of Physics, Technical University of Denmark, DK-2800, Kgs.
Lyngby, Denmark

*corresponding authors: Kirsten T. Winther (winther@stanford.edu) and
Thomas Bligaard (bligaard@stanford.edu)

Abstract

We present a new open repository for chemical reactions on catalytic

surfaces, available at https://www.catalysis-hub.org. The featured

Surface Reactions database contains more than 100,000 chemical adsorp-

tion and reaction energies obtained from electronic structure calculations,

and is continuously being updated with new datasets. In addition to

providing quantum-mechanical results for a broad range of reactions and

surfaces from different publications, the database features a systematic,

large-scale study of chemical adsorption and hydrogenation on bimetal-

lic alloy surfaces. The database contains reaction specific information,

such as the surface composition and reaction energy for each reaction, as

well as the atomic surface geometries used in the calculations together

with the calculation parameters and output, which are essential for data

reproducibility. Data can be accessed from the web-interface as well as

from a Python API providing direct access from a local workstation. This

enables researchers to efficiently use the data as a basis for further calcu-

lations and to generate surrogate models for accelerating the discovery of

catalytic materials for sustainable energy applications.

Introduction

Electronic structure methods based on density functional theory (DFT) hold
the promise to enable a deeper understanding of reaction mechanisms and reac-
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tivity trends for surface catalyzed chemical and electrochemical processes and
eventually to accelerate discovery of new catalysts.

As computational resources continue to increase, together with improved
access to large-scale supercomputer resources, the rate of electronic structure
calculations performed will also increase, resulting in an accelerated rate of data
generation [1]. This leads us to a new paradigm of data-driven computational
catalysis research where the increasing amount of computational data can be
utilized to train surrogate models to direct and accelerate efforts for the identifi-
cation of improved catalysts. Through collaborative efforts and the development
of open-source databases and software tools the prospect of catalysis knowledge
engines for automated catalyst design and discovery is realistic [2].

In the regime of data-driven research, it is important that data can be ac-
cessed efficiently and selectively so that meaningful subsets can be leveraged
to make new computational insights into catalyst design. Therefore, develop-
ment of advanced approaches for storing and accessing relevant data are criti-
cal. One of the crucial steps towards this goal is the establishment of curated
open access databases [3]. Several open access databases for electronic struc-
ture calculations have emerged in the last decade with great success, such as
the Inorganic Crystal Structure Database (ICSD), Materials Project [4], Open
Quantum Materials Database (OQMD) [5], the Novel Materials Discovery (No-
MaD) repository [6], Automatic Flow for materials discovery (AFLOW) [7] , the
ioChem-BD platform [8] and the Computational Materials Repository (CMR)
[9, 10, 11]. While the databases mentioned above primarily feature calculations
for bulk strucutres, 2D materials and gas phase molecules, the representation of
specialized properties such as catalytic activity introduces additional complex-
ity. A proper representation requires a surface specific database, where reaction
energies, chemical species, surface facets, and surface compositions have been
parsed, by tying together the output of several calculations.

A specialized database for chemical reactions on surfaces was previously
achieved by CatApp [12], where reaction and activation energies for more than
3,000 reactions on primarily closed-packed transition metal surfaces are accessi-
ble from a web browser. However, CatApp does not store the atomic structures
or the detailed computational settings and output of the electronic structure cal-
culations which are important for data reproducibility. Additionally, the atomic
structures are essential for constructing high-quality models of catalytic activity
since the catalytic properties of a surface are determined by the local atomic
structure of the active site for a reaction.

Here, we present a specialized database for reaction and activation ener-
gies for chemical reactions on catalytic surfaces which includes electronic struc-
ture geometries and contains more than 100,000 adsorption and reaction ener-
gies. The database is available from the web platform Catalysis-Hub (https:
//www.catalysis-hub.org) that serves as a framework for sharing data within
the catalysis community and computational tools for theoretical catalysis re-
search. The platform features several other applications (apps) for plotting
results, creating and analyzing catalytic structure calculations, such as setting
up new surface and adsorbate geometries [13] and making machine learning
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Figure 1: Web interface to the Surface Reactions database. a) Searching for
reactions by choosing reactants, products, surface composition and/or facet. b)
Visualizing atomic geometries for a selected reaction.



predictions for adsorption energies [14]. A full description of the platform is be-
yond the scope of this work which will primarily focus on the Surface Reactions
database.

Results

In this section we will cover the functionality of the Surface Reactions database
and give an overview of the database infrastructure and types of data stored.
Also, different approaches for accessing data will be given. The last part of
the section will describe the featured datasets, with focus on a recent study on
surfaces of bimetallic alloys.

The Surface Reactions database

The purpose of the Surface Reactions database is to store adsorption, reac-
tion and reaction barrier energies for processes occurring on catalytic surfaces
obtained from electronic structure calculations. It also serves to make these
results easily available to the public and other researchers for aiding in new
catalytic discoveries. We are focusing on chemical reactions of interest for sus-
tainable energy applications such as conversion of CO2 and synthetic gas to fuels
[15, 16], electrochemical fuel cells [17, 18], and production of fuels and chem-
icals from electrochemical approaches [19]. The catalytic materials of interest
for these applications includes transition metals and alloys, metal-oxides and
oxy-hydroxides, perovskites, layered 2D materials, and metal-chalcogenites.

In order to model heterogeneous catalytic systems from electronic structure
theory researchers often turn to simplified surface slab structures to approximate
catalyst surfaces. Here, the different adsorption and active sites are sampled in
order to generalize the model to more realistic conditions, such as catalytic
nanoparticles [20]. The calculation of a reaction energy typically involves at
least three electronic structure calculations, including the clean surface slab, the
surface with the adsorbed species, and gas phase references of the adsorbate.
Also, prior to calculating adsorption energies, the structure of the surface slab
should be optimized starting from a bulk calculation. Furthermore, additional
calculations are necessary in order to obtain the transition state geometry that
determines the activation barrier for a reaction. We handle this complexity by
storing a collection of processed reaction and activation energies which are linked
to all the atomic geometries involved, including the bulk structure if available.

In the Surface Reactions app at, https://www.catalysis-hub.org/energies,
the user can search for chemical reactions on surfaces by specifying reactants,
products, surface composition, and/or surface facet. The result of the search
will be returned as a list of rows in the browser showing the surface composition,
the chemical equation of the reaction, reaction energy, activation energy (when
present), and user specified adsorption sites. Selecting the geometry symbol to
the left of a given row will expand the result, allowing users to browse the atomic
structures linked to the reaction and see publication info and calculation details.

https://www.catalysis-hub.org/energies
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table layout.



An example of a reaction search is given in Figure 1, showing the results for
reactions on Rhodium containing CH3CHO* on the product side. The atomic
structures can be spatially repeated in the browser for better visualization and
downloaded in a large set of formats including cif, JSON, xyz, VASP POSCAR,
CASTEP Cell, Quantum Espresso input, and other. Additionally, reaction en-
ergies and structures can be browsed publication-wise by using the Publications
button accessible from the front page.

Database infrastructure

An overview of the database infrastructure is shown in Figure 2. The platform
consists of a database server where the data is stored, a web application pro-
gramming interface (API) that handles queries to the database, and a frontend
application which serves the main web page. Data fetching from the backend is
handled by a graph based query language, GraphQL [21], and the Catalysis Hub
(CatHub) software package provides an additional Python API, making the data
accessible from a local workstation. Data is stored in a relational database in-
stance (PostgreSQL) on an Amazon Web Server where it is continuously backed
up. In structured query language (SQL), data is stored in a collection of or-
dered tables, where selections on properties (columns) can be applied to return
a subset of rows and columns from the tables. A schematic overview of the SQL
tables used for the Surface Reactions database is shown in Figure 2. Separate
tables are used to store publications, reactions, and atomic structures (systems),
allowing for one-to-many and many-to-many mappings between these proper-
ties. The Reactions table contains reaction specific info, so that fast queries on
chemical composition of the surface, reaction energy, and adsorption sites can
be performed. Each reaction is linked to the atomic structures involved (such
as adsorbed species, empty slabs, gas phase references, and bulk structure) in
the systems table. Also, both reactions and atomic structures are linked to the
corresponding entry in the publication table.

The atomic structures are stored in ASE database layout. ASE[22] is a
popular software package for setting up and managing atomic structures, with
interfaces to a large set of popular electronic structure codes. The ASE database
is developed specifically for storing atomic structures, computational results and
parameters, making it a natural choice for handling the atomic structures of
reaction intermediates.

The Systems table of the ASE database contains information about the
geometry (such as atomic numbers, positions, and constraints), calculator set-
tings, and the output of the calculation (such as energy, forces, and magnetic
moments). The detailed table layout and data types are provided in Table 2
and 1 in the Methods section.

Data accessibility

In addition to the primary web interface, data can also be accessed directly
from the web API at https://api.catalysis-hub.org/graphql, which uses

https://api.catalysis-hub.org/graphql


the graph based query language GraphQL. Here, queries to the database can be
typed directly into the browser. A detailed description of the database backend
is provided in the methods section.

Furthermore, the CatHub software package provides a convenient interface
to the database. Acting as a Python API, CatHub be used for data fetching
and manipulation directly from a Python script. In practice, this is done by
sending a GraphQL query to the API as a HTTP request, which will return a
JSON dictionary with the selected data. A code snippet with an example of
how to access reaction energies directly from a Python script is shown below,

from cathub.query import get_reactions

reactions = get_reactions(n_results=10,

chemicalComposition=’~Ni’,

reactants=’CO2’

write_db=True)

which will return a JSON dictionary with the data for the first ten reactions
involving carbon dioxide on the reactants side, on surfaces containing Nickel.
The write_db=True option will copy the selected data to a local database file,
including all the atomic structures used in the reactions that can be examined
with the CatHub module and the ASE database. In addition, the CatHub
Command Line Interface (CLI) provides access directly from the terminal.

A wrapper around the ASE database CLI allows users to access the atomic
structures in the database directly from their local terminal. The query below
will select all atomic structures from the database containing both Silver and
Strontium without any restriction on stoichiometric ratio,

cathub ase --args AgSr --gui

where the - -gui option will open the selected atomic structures directly in the
ASE GUI visualizer.

Featured dataset

The Surface reactions database currently contains results from more than 46
publications and datasets, all available at https://www.catalysis-hub.org/

publications, where reactions from publication can be browsed with visual-
ization of atomic geometries. Most of the datasets stem from already published
work and contain a direct link to the publication homepage via the digital ob-
ject identifier (DOI). Also, a collection of soon to be published/just submitted
datasets are made available. Recently featured datasets include studies of syn-
gas to C+ Oxygenates conversion on transition metals [16], oxygen reduction
and hydrogen oxidation on metal-doped 2D materials [18] and a study of sol-
vated protons at the water-metal interface [23]. As a whole, the database con-
tains roughly 700 different chemical reactions, involving more that 150 chemical
species and 3,500 different catalytic material surfaces.

I order to facilitate data exchange and promote publications of the catal-
ysis and surface science communities the database is open to contributions of

https://www.catalysis-hub.org/publications
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Figure 3: The periodic table outlining 5 adsorbate elements and the 37 metals
included in the bimetallic alloys dataset, including six metals from group 13-15,
seventeen transition metals, and Lanthanum. Surface geometry and enumerated
adsorption sites for the three structures are provided in the lower panel, where
top, bridge, and hollow sites are shown in red, white, and green, respectively.

first-principles reaction calculations from the community under https://www.

catalysis-hub.org/upload. Contributions will appear in the Publications
section with its own permanent URL featuring authorship and may contain a
link to a concomitant publication. The data upload process is handled by the
CatHub module, which aides in organizing a given folder of output files into a
structure suitable for uploading. Any self-contained dataset (gas phase refer-
ences, empty slab, adsorbate geometry) of ASE readable DFT output files are
welcome.

Large scale study of bimetallic alloys

The largest dataset features a new high-throughput study of chemical adsorption
and hydrogenation on more than 2000 bimetallic alloy and pure metal surfaces.
This dataset is continuously expanded and updated in a collaborative effort in
the SUNCAT Group∗ and is available online at https://www.catalysis-hub.
org/publications/WintherOpen2018. The data can be accessed with the tools
described in the previous section.

The metallic alloys were constructed by combining 37 selected metals and
transition metals, shown in Fig 3, in the L12 and L10 Strukturbericht designa-
tion, which corresponds to face-centered cubic crystal structures with A3B and
AB stoichiometries, respectively. The 37 pure metals in the A1 (fcc) structure
were also included in addition to the 1,998 bimetallic alloys resulting from all

∗The dataset was generated by Mamun Osman, Jacob R. Boes, and Kirsten Winther at
SUNCAT, SLAC National Accelerator Laboratory
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possible combinations. The metal surfaces were modeled by cleaving three-layer
slabs with a (111) termination for A1 and L12 and a (101) termination for L10,
although this termination is also referred to as the (111) miller index when
cleaved from the cubic bulk unit cell which is not the standard conventional
form [24, 25].

Atomic adsorption of H, C, N, O, and S were studied for all 2,035 metal
surfaces. The number of unique adsorption sites are 4, 9, and 10 for the A1,
L12, and L10 surfaces respectively, shown in Fig 3. This gives a total of 96,015
unique surfaces, adsorbate and site combinations (including the empty slabs),
where roughly 65,000 calculations are completed so far. Also, the adsorption
of the hydrogenated species CH, NH, CH2, NH2, SH, OH and H2O has been
studied for a smaller subset of alloy surfaces, where alloys formed from 16 metals
of particular interest for catalysis has been chosen, with approximately 20,000
calculations completed. The CatGen [13] module of CatKit [26] was used to
generate the slab structures from optimized bulk systems and to systematically
enumerate all high-symmetry adsorption sites.

Examples of calculated adsorption energies are given in Fig. 4, showing ad-
sorption energies for most stable sites for atomic carbon, oxygen, and nitrogen
on the L10 and L12 alloys. In Fig. 4(a) and (b) the adsorption energies are
plotted as a function of metal A and B, that are arranged on an improved Petti-
for scale, [27, 28] with small adjustments for magnetic elements, which ensures
a smooth variation of the adsorption energies with composition. The sampled
surfaces cover an extensive range in adsorption energies, spanning more that 5
eV with strong (low values) adsorption for early transition metal alloys (top left
corner) and weak adsorption (high values) for noble and late metals (lower right
corner). In the case of L10 alloys, the AB and BA structures are identical, such
that the plot in Fig. 4(a) is symmetric across the diagonal. For the L12 alloys,
the A3B composition gives rise to a larger dependence of the A-metal, seen as
smaller horizontal variation of the adsorption energies in Fig. 4(b). We note
that the preferred adsorption sites also show a large variation across the metal
alloy space. Regions with preference towards top, bridge, and three-fold hollow
sites can be identified.

Another approach for visualizing adsorption energy trends is to plot the
adsorption energy of two adsorbates against each other, which often gives rise
to linear scaling relationships for similar surface geometries. Utilizing scaling
relationships is a well established approach in theoretical catalysis to model
and understand catalytic activity and selectivity [29, 30]. In the lower panel
of Fig. 4 the correlation between the adsorption of carbon with (c) oxygen and
(d) nitrogen is shown. Metals containing a partially filled d -band versus a filled
or empty d -band is labeled as d - and non-d metals respectively. All alloys
containing a non-d metal are labeled as non-d alloys. While a close to linear
relationship between the adsorption of C and O can be seen for the d and non-d

pure metals separately, the correlation between the atomic adsorption energies
on the alloys are more complicated, emphasizing the need for more sophisticated
methods for modelling these systems, such as data-driven approaches. We also
note that traditional scaling relations are intended only for the most stable site
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of a given surface while these plots include all kinetically trapped minima in
energy. The script used to plot Fig. 4(c) by fetching the data directly with the
CatHub module is provided in the methods section.

Discussion

We believe that the Surface Reactions database will be of great benefit to the
scientific community and will aid researchers in their search for new materials
for catalysis and sustainable energy applications. By creating a platform for
sharing recent scientific results we are enabling the community to efficiently
build on top of each other’s work with direct access to the computational data
from several channels. To these ends, community contributions are strongly
encouraged.

We wish to ensure that the database has both substantial breadth as well
as depth; i.e. covering a large range of different materials and reactions with a
large collection of results for a particular material and reaction. An increased
diversity of data is accomplished by featuring data from a large number of pub-
lications. This is demonstrated through the many small and focused datasets
which have already been uploaded. This also ensures that the database contains
catalytic materials from recent cutting-edge research which will be further facil-
itated by contributions from a diversity of research groups. Through the data
upload functionality in the CatHub software package this contributing process is
greatly simplified. On the other hand, the generation of surrogate modes, such
as machine learning algorithms, generally require vast amount of systematic gen-
erated data. Therefore, database also contains large computationally-consistent
datasets targeted for machine learning purposes, such as the bimetallic alloys
dataset described in this work.

A concern regarding the breadth and depth of data is how to obtain reliable
reaction energy barriers for a large set of reactions and materials. Since the
energy barriers determine the kinetics (or reaction rate) of a chemical reaction, a
good prediction is important for getting a quantitative measure for the catalytic
activity and selectivity. Due to the high computational cost of determining the
transition state of energy barriers, only a small fraction of the reactions have an
associated energy barrier calculated from DFT. Therefore, our focus has been
on populating the database with a large set of adsorption energies, which are
significantly cheaper to compute and can serve as descriptors to model reaction
energies and barriers[31]. In time, advanced machine learning techniques and
targeted kinetic systems of interest will supply more accurate barrier energetics
to the existing data.

Methods

All computational results available from the Surface Reactions database have
been obtained from electronic structure calculations, using DFT. The detailed



calculator settings vary between datasets.
For the bimetallic alloys dataset, calculations were performed in the Quan-

tum Espresso (QE) electronic structure code [32], using the BEEF-vdw exchange
correlation functional [33], a 500 eV plane-wave cutoff, and a 5,000 eV density
cutoff. Monkhorst-Pack k -point grids of (12, 12, 12) for bulk and (6, 6, 1)
for slab calculations were used, together with 0.15 eV Fermi smearing. Spin-
polarized calculations were performed only for alloys containing Fe, Ni, Co, and
Mn, with an initial guess for the atomic magnetic moments close to the atomic
magnetization of the pure metal in the lowest close-packed (fcc, bcc, or hcp)
structure. For A1 and L12, lattice constants where obtained from bulk alloy
calculations with an equation of state combined with an energy minimization
in QE; however, for L10 structures we used a variable cell optimization in QE
with a high plane wave cutoff (800 eV) and then used the resulting lattice con-
stants as initial guess for the final energy minimization with respect to lattice
constant parameters - i.e., ’a’ and ’c’ - using the Scipy fmin optimizer [34]. Slab
geometries were optimized by fixing the two bottom layers and allowing the
top layer and adsorbates to relax. Due to the large number of calculations,
job submissions were handled with FireWorks [35] and the CatFlow submod-
ule of CatKit, that provides a FireWorks interface to all electronic structures
calculators supported by ASE.

Upon relaxation we found that reconstructions of the metal surfaces, e.g.
horizontal sliding or dissociation of the top layer from the slab, are quite com-
mon. Also, we found that the adsorbates often reorient into sites which differed
from the initial sites. The relaxed geometries were therefore post-processed with
a tailored classification method to label reconstructed surfaces and reclassify the
adsorption sites.

Only non-reconstructed surfaces have been used to generate adsorption en-
ergies, although, as the reconstructed structures are still of interest for model
generation, the atomic structures are still included within the database.

Data structure

The full layout of the SQL tables used for the Surface Reactions database is
given in Table 1 and Table 2, listing the full set of columns for the ASE database
systems table, and the Surface Reactions database specific tables, respectively.
The ASE database was updated in connection to this project in order to utilize
native array and JSONB datatypes for PostgreSQL, where the JSONB datatype
is a binary JSON format that stores user-defined keys and values in a search-
optimized way. This enables faster queries on user defined key-value-pairs. The
ARRAY data type is used to store arrays such as the atomic positions and num-
bers, which ensures that selections on the chemical composition (and potentially
local atomic structure in the vicinity of adsorbates) can be executed directly in
SQL.



column name data type
id integer
uniqueId text
ctime double precision
mtime double precision
username text
numbers integer[ ]
positions double precision[ ][ ]
cell double precision[ ][ ]
pbc integer
initialMagmoms double precision[ ]
initialCharges double precision[ ]
masses double precision[ ]
tags integer[ ]
momenta double precision[ ]
constraints text
calculator text
calculatorParameters jsonb
energy double precision
freeEnergy double precision
forces double precision[ ][ ]
stress double precision[ ]
dipole double precision[ ]
magmoms double precision[ ]
magmom double precision
charges double precision[ ]
keyValuePairs jsonb
data jsonb
natoms integer
fmax double precision
smax double precision
volume double precision
mass double precision
charge double precision

Table 1: PostgreSQL table structure of the systems table of the ASE database,
listing column names and datatypes. Array datatypes are marked with “[ ]” for
a 1D array and “[ ][ ]” for a 2D array. The JSONB datatype saves dictionaries in
a binary format that is fast to process, and allows for fast queries on key value
pairs.



table name column name data type
reactions id integer

chemicalComposition text
surfaceComposition text
facet text
sites jsonb
coverages jsonb
reactants jsonb
products jsonb
reactionEnergy numeric
activationEnergy numeric
dftCode text
dftFunctional text
username text
pubId text
textsearch tsvector

reactionSystems name text
energyCorrection numeric
aseId text
id integer

publications id integer
pubId text
title text
authors jsonb
journal text
volume text
number text
pages text
year smallint
publisher text
doi text
tags jsonb
pubtextsearch tsvector

publicationSystem aseId text
pubId text

Table 2: SQL table structure for the Surface Reactions database specific tables.



GraphiQL Prettify

QUERY VARIABLES

{
  reactions(first: 3, products: "CH3CO", 
    order: "activationEnergy") {
    edges {
      node {
        Equation
        chemicalComposition
        reactionEnergy
      }
    }
  }
}

{
  "data": {
    "reactions": {
      "edges": [
        {
          "node": {
            "Equation": "CH3CHO* + * -> CH3CO* + H*",
            "chemicalComposition": "Rh36",
            "reactionEnergy": -0.586442627391
          }
        },
        {
          "node": {
            "Equation": "CH3CHO* + * -> CH3CO* + H*",
            "chemicalComposition": "Ir36",
            "reactionEnergy": -0.685817585196
          }
        },
        {
          "node": {
            "Equation": "CH3CHO* + * -> CH3CO* + H*",
            "chemicalComposition": "Pt36",
            "reactionEnergy": -0.832361438108
          }
        }
      ]
    }
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 5: Example of a GraphQL query for reactions, executed in the web
interface at https://api.catalysis-hub.org.

Frontend and backend applications

The main web page is served as a frontend application that runs on a Node.js
instance on the Heroku Cloud Application Platform [36]. The frontend source
code is implemented using the React framework, and is available open-source
on GitHub [37]. Atomic structures are visualized in the browser using the
ChemDoodle[38] web component.

Retrieval of data from the database server is managed by a backend ap-
plication, which acts as a web API. In practice, the backend is a collection of
software that runs on a Python framework Heroku. The backend is build with
Flask [39], a microframework for web development in Python, and uses a Python
SQL toolkit, SQLAlchemy[40], for connecting to the database server and han-
dling relations (such as foreign key constraints and many-to-many mappings)
between SQL tables.

Data fetching from the backend to the frontend is handled with GraphQL[21],
which is a graph based query language developed by Facebook as an alternative
to representational state transfer (REST). It provides simple and user friendly
data-fetching, where the request is sent as a string in JSON-like format that
specifies the data to be selected. A JSON object with the same data structure
as the request is returned. The backend can be accessed at https://api.catalysis-
hub.org/graphql, where GraphQL queries can be typed directly into the browser.
An example of such a query is given in Figure 5, where the first three reactions
involving CH3CO on the right hand side (in order of increasing activation en-
ergy) is returned. The structure of the output is the same as the input, and a



join with the publication table is easily performed by adding the publications
field inside reactions. This conveniently enables access to the publication info
for a particular reaction.

As described in the main text, data from the Surface Reactions database can
also be accessed directly from a Python script by using the CatHub module.
The code used for plotting the data shown in Figure 4, is made available as
a tutorial from https://github.com/SUNCAT-Center/CatHub/tree/master/

tutorials/1_bimetallic_alloys.
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