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ABSTRACT: Achieving site-selective, switchable C‒H functionalizations of substrates that contain several different types of reac-

tive C‒H bonds is an attractive objective to enable the generation of different products from the same starting materials. Herein, we 

demonstrate the divergent C‒H functionalization of unsymmetrical 2-aryl cyclic 1,3-dicarbonyl compounds that contain two dis-

tinct, non-adjacent sites for initial C‒H functionalization, where product selectivity is achieved through catalyst control. Using a 

palladium‒N-heterocyclic carbene complex as the precatalyst, these substrates undergo oxidative annulation with alkynes to pro-

vide spiroindenes exclusively. In contrast, a ruthenium-based catalyst system gives benzopyrans as the major products. Examples of 

divergent oxidative C‒H alkenylations of the same substrates are also provided. 

INTRODUCTION 

Metal-catalyzed C‒H functionalization reactions are of signif-

icant interest due to their potential to streamline organic syn-

thesis by avoiding the prior preparation of activated substrates 

and reducing the quantity of waste byproducts, thereby making 

syntheses more step- and atom-economic.
1

 One important 

class of these reactions is the oxidative annulation of alkynes 

with substrates containing cleavable C‒H/N‒H, C‒H/O‒H, or 
C‒H/N‒O bonds, which enables the preparation of a diverse 

range of heterocycles.
2,3,4,5,6,7,8,9 

The development of corresponding processes for the syn-

thesis of carbocyclic products would be highly valuable,
10

 and 

in this context, we recently reported the ruthenium-catalyzed 

oxidative annulation of alkynes with 2-aryl cyclic-1,3-

dicarbonyls or their enol tautomers (eq 1).
11

 These reactions 

proceed via sequential C(sp
2)‒H and C(sp3)‒H functionaliza-

tion to give spiroindenes in generally good yields.
12

 In that 

study, only symmetrical 2-aryl cyclic-1,3-dicarbonyl substrates 

were studied, which led to the formation of achiral products.  

Replacement of these substrates with unsymmetrical variants 

would result in chiral spiroindenes, thus providing the possi-

bility of the development of a catalytic enantioselective pro-

cess.  

 

 
 

This prospect led us to consider 3-aryl-4-hydroxyquinolin-

2-ones such as 1a as substrates for oxidative annulation with 

alkynes (Scheme 1). However, these compounds present a 

complication in that two distinct sites for initial enol/enolate-

directed C(sp
2)‒H cleavage are now available; at the 3-aryl 

ring, and at the benzene ring of the quinolin-2-one. C‒H 

Scheme 1. Divergent Oxidative Annulation of 1a with an 

Alkyne 

 
 
 

cleavage at the former site (H
A
) with a metal acetate complex, 

for example, would provide a six-membered metallacycle A, 

which could then react with an alkyne 2 to give spiroindene 3. 

Alternatively, C‒H cleavage at the second site (H
B
) would 

form a five-membered metallacycle B, which could react with 

the alkyne to give benzopyran 4, a process that has been de-

scribed by the group of Satoh and Murai using rhodium catal-

ysis
13

 and by the Ackermann group using ruthenium cataly-

sis.
14

 



 

 

This situation highlights an inherent challenge in C‒H func-

tionalization chemistry resulting from the ubiquity of C‒H 
bonds in organic compounds; how to control site-selectivity 

when more than one type of C‒H bond can potentially under-

go reaction. One solution to this problem is through catalyst 

control. The ability to form one of two possible annulation 

products selectively from the same reactants, simply by vary-

ing the catalyst, falls under the area of catalytic selective syn-

thesis, which has been highlighted by Bode and co-workers in 

a recent review.
15

 Although the area of catalytic C‒H func-

tionalization has witnessed explosive growth, investigations of 

catalyst-controlled divergent C‒H functionalizations of dis-

tinct C‒H bonds are relatively uncommon.
7c,16,17,18,19

 A greater 

understanding of the factors that influence switchable, site-

selective C‒H functionalizations,
20

 including catalyst struc-

ture, would be valuable in increasing the utility of these reac-

tions in more complex settings. In this Article, we describe the 

divergent oxidative annulation of unsymmetrical 2-aryl cyclic 

1,3-dicarbonyl compounds with alkynes. Site-selectivity in the 

initial C‒H functionalization en route to spiroindene or ben-

zopyran products may be achieved by the use of palladium- or 

ruthenium-based catalysts, respectively. Examples of the oxi-

dative C‒H alkenylation of the same substrates are also pro-

vided. 

 

RESULTS AND DISCUSSION 

Evaluation of Precatalysts in the Oxidative Annula-
tion with Alkynes. This study began with an evaluation of 

precatalysts and reaction conditions for the oxidative annula-

tion of the 4-hydroxy-3-phenylquinolin-2-one 1a with diphe-

nylacetylene (2a), using Cu(OAc)2 (2.1 equiv) as the stoichi-

ometric oxidant (Table 1). First, [RuCl2(p-cymene)]2 was 

found to favor the formation of benzopyran 4a in all cases 

(entries 1‒4).14, 21 
Conditions employed in our previous study 

of spiroindene synthesis,
11

 using 2.5 mol % of [RuCl2(p-

cymene)]2 in dioxane at 90 °C for 5 h, gave both possible 

products 3a and 4a in low yields (entry 1). An increase in the 

loading of [RuCl2(p-cymene)]2 to 5 mol % was beneficial, and 

products 3a and 4a were isolated in 13% and 78% yield, re-

spectively (entry 2). Switching the solvent to DMF increased 

the overall yield and the selectivity for 4a (entry 3). Although 

the catalyst loading could be reduced to 2.5 mol %, an in-

crease in temperature to 120 °C was required for reasonable 

conversions, and the isolated yield of 4a was only 66% (entry 

4). [RhCp*Cl2]2 was also a competent precatalyst, and like 

[RuCl2(p-cymene)]2, favored the formation of benzopyran 4a 

(entries 5 and 6).
13

 The best result was obtained using 2.5 mol 

% of [RhCp*Cl2]2 in DMF at 90 °C (entry 6). However, on the 

basis of the lower cost of [RuCl2(p-cymene)]2 compared with 

[RhCp*Cl2]2, the conditions of entry 3 were selected for fur-

ther investigation of the scope of the benzopyran formation 

(see Table 2). 

Next, palladium-based precatalysts were investigated,
7,10

 

and these reactions provided spiroindene 3a as the sole prod-

uct,
21

 with none of benzopyran 4a being detected (Table 1, 

entries 7‒10). The use of Pd(OAc)2 (5 mol %) in DMF gave 

3a in 76% yield after only 1 h at 120 °C (entry 7). The use of 

an N-heterocyclic carbene ligand for palladium 22  provided 

even better results, and 3a was obtained in 86% yield in the 

presence of 5 mol % of the PEPPSI-IPr complex developed by 

Organ and co-workers (entry 8).
23,24,25

 Reduction of the load-

ing of PEPPSI-IPr to 2.5 mol % gave similar results after a 

reaction time of 2 h (entry 9). Although the temperature could 

be lowered to 90 °C, a slightly longer reaction time was 

Table 1. Evaluation of Reaction Conditions for the Oxida-

tive Annulation of 1a with Diphenylacetylene
a
  

 

entry [M] mol % solvent temp 
(°C) 

time 
(h) 

yields (%)b 

3a 4a 
1 [RuCl2(p-cymene)]2 2.5 dioxane 90 5 5 15 

2 [RuCl2(p-cymene)]2 5 dioxane 90 5 13 78 

3 [RuCl2(p-cymene)]2 5 DMF 90 5 8 87 

4 [RuCl2(p-cymene)]2 2.5 DMF 120 5 8 66 

5 [RhCp*Cl2]2 2.5 dioxane 120 5 30 61 

6 [RhCp*Cl2]2 2.5 DMF 120 5 13 79 

7 Pd(OAc)2 5 DMF 120 1 76 0 

8 PEPPSI-IPr 5 DMF 120 1 86 0 

9 PEPPSI-IPr 2.5 DMF 120 2 87 0 

10 PEPPSI-IPr 2.5 DMF 90 3 75 0 

a Reactions were conducted using 0.25 mmol of 1a. b Cited yields 
are of isolated material. 
 
 

required, and 3a was obtained in a slightly lower yield (entry 

10). On the basis of these results, the conditions of entry 9 

were used to investigate the scope of the spiroindene synthe-

sis. 

Palladium- and Ruthenium-Catalyzed Oxidative 
Annulations with Alkynes. Chart 1 presents the results of 

palladium-catalyzed synthesis of spiroindenes from the reac-

tion of various unsymmetrical 2-aryl cyclic 1,3-dicarbonyls 

with a range of alkynes. In addition to diphenylacetylene, 

which provided 3a in 84% yield, substrate 1a underwent oxi-

dative annulation with unsymmetrical alkyl/aryl alkynes (spi-

roindenes 3b and 3c), though 5.0 mol % of PEPPSI-IPr was 

required in these cases for reasonable results, and the yields 

were more modest due to the presence of unreacted 1a. In 

these reactions, initial C‒H functionalization resulted in C‒C 

bond formation at the alkyl-substituted carbon of the alkyne. 

Spiroindene 3b was formed as the sole regioisomer, whereas 

3c was formed as a 93:7 mixture of regioisomers that were 

inseparable by column chromatography.26 
Substitution at the 

phenyl group of the 1,3-dicarbonyl substrate with 4-methoxy 

or 4-carbomethoxy groups was also tolerated (spiroindenes 3d 

and 3e, respectively). The high selectivity of palladium cataly-

sis for spiroindene formation was demonstrated by the reac-

tion of a substrate 1d containing a 3,5-dimethylphenyl group; 



 

 

Chart 1. Palladium-Catalyzed Oxidative Annulations with 

Alkynes
a
  

 

   

3a  R = Ph, 84% 
3b  R = n-Bu, 55%b 

3c  45%, 93:7 rrb,c 3d  R = OMe, 83% 
3e  R = CO2Me, 71% 

   

3f  74% 3g  87% 3h  X = NH, 65%  
3i   X = O, 21%d 

a Reactions were conducted using 0.50 mmol of 1. Unless other-
wise stated, cited yields are of pure, isolated material. b Using 5.0 
mol % of PEPPSI-IPr and 2.0 equiv of the alkyne. c rr = Regioi-
someric ratio as determined by 1H NMR analysis of the unpurified 
reaction mixture. Product was isolated as a 93:7 inseparable mix-

ture of regioisomers. d Product 3i was of ca. 90% purity. 
 
   

despite the increased steric hindrance of C‒H functionaliza-

tion resulting from the m-methyl substituents, this experiment 

provided spiroindene 3f in 74% yield, with none of the alter-

native benzopyran detected in the product mixture. As ex-

pected, substitution at the benzene ring of the quinolin-2-one 

was tolerated (spiroindene 3g). A methyl group on the nitro-

gen atom in the substrate is not necessary; substrate 1f con-

taining a free N‒H bond also underwent oxidative annulation 

to give 3h in 65% yield. However, the reaction of 4-hydroxy-

3-phenylcoumarin (1g) with diphenylacetylene gave a complex 

mixture from which the only product that could be identified 

was spiroindene 3i, which was isolated in only 21% yield and 

in ca. 90% purity. Attempted oxidative annulations of sub-

strate 1a with terminal alkynes such as phenylacetylene, trime-

thylsilylacetylene, or 1-hexyne were unsuccessful, and recov-

ered material consisted of mainly unreacted 1a, along with 

small quantities of byproducts. 

 A more demanding test of the preference for initial C‒C 
bond formation at the alkyl-substituted carbon of the triple 

bond of alkyl/aryl alkynes was provided by the oxidative  

 
 

annulation of 1a with alkyne 2d containing a sterically de-

manding t-butyl group, which was expected to lead to a greater 

quantity of the alternative regioisomer (eq 2). Indeed, the al-

ternative regioisomer 3jb was obtained in 21% yield, though 

spiroindene 3ja was still produced as the major regioisomer 

(69% yield).
21

 Despite the increased steric hindrance resulting 

from alkyne 2d, the overall yield of this reaction (90%) was 

significantly higher than those obtained using other alkyl/aryl 

alkynes (Chart 1, spiroindenes 3b and 3c). The reasons for this 

observation are not clear at the present time. 

Since the PEPPSI-IPr complex gives exclusive preference 

for spiroindene formation from 3-aryl-4-hydroxyquinolin-2-

ones, the oxidative annulation of substrate 5, from which spi-

roindene formation is not possible, was examined. In princi-

ple, 5 could result in the formation of a benzopyran. However, 

reaction of 5 with diphenylacetylene using the PEPPSI-IPr 

complex provided no evidence of benzopyran 6, and recovered 

material consisted of a complex mixture of unidentified prod-

ucts. As expected, the same reaction conducted in the presence 

of [RuCl2(p-cymene)]2 in place of PEPPSI-Pr provided ben-

zopyran 6 in good yield (eq 4).
14

 

 

 
 

The oxidative annulation of various unsymmetrical 2-aryl 

cyclic 1,3-dicarbonyls with a range of alkynes was then con-

ducted using the conditions of Table 1, entry 3 to examine the 

site-selectivity of the ruthenium-based catalyst system in 

greater detail (Table 2). These reactions provided benzopyrans 

4 as the major products in 72‒88% yield, along with small 

quantities of spiroindenes 3.
 
With unsymmetrical aryl/alkyl 

alkynes, the regioselectivity was high (entries 2 and 3).
21 

A 

3,5-dimethylphenyl group in the substrate strongly disfavored 

the formation of the spiroindene 3f, and benzopyran 4f was 

isolated as the sole product in 88% yield (entry 6). A more 

stringent test of the selectivity for benzopyran formation was 

provided by the reaction of substrate 1e containing a methyl 

substituent at the 6-position. As expected, the steric effect of 

this methyl group decreased the site-selectivity of C‒H  



 

 

Table 2. Ruthenium-Catalyzed Oxidative Annulations with 

Alkynes
a
 

 

entry benzopyran spiroindene 

 

  

1 

2 

3 

4a  R = Ph, 88% 

4b  R = Me, 80%, 94:6 rrb 

4c  R = n-Bu, 81%, 93:7 rrb 

3a  R = Ph, 8% 

3k  R = Me, 7% 

3b  R = n-Bu, 2% 

 

  

4 

5 

4d  R = OMe, 86% 
4e  R = CO2Me, 76% 

3d  R = OMe, 6% 

3e  R = CO2Me, 8% 

 

  

6 4f  88% 3f  0% (not detected) 

 

  

7 4g  72% 3g  21% 

 

  

8 

9 

4h  X = NH, 0%c 

4i   X = O, 80% 
3h  X = NH, 0%c 

3i   X = O, 11% 

a Reactions were conducted using 0.50 mmol of 1. Cited yields 
are of pure, isolated material. b rr = Regioisomeric ratio as deter-
mined by 1H NMR analysis of the unpurified reaction mixtures. c 

Reaction conducted at 120 °C for better solubility of 1f. Recov-
ered material was unreacted alkyne and unidentified byproducts. 
 
 

functionalization, and this reaction gave benzopyran 4g and 

spiroindene 3g in 72% and 21% yield, respectively (entry 7). 

Although quinolin-2-one 1f containing a free N‒H bond was 
effective in the palladium-catalyzed formation of spiroindenes 

(Chart 1, product 3h), this substrate was not competent in the 

ruthenium-catalyzed oxidative annulation, and returned unre-

acted alkyne along with a complex mixture of unidentified 

products (entry 8). 27  In contrast, while 4-hydroxy-3-

phenylcoumarin (1g) was poorly effective in the palladium-

catalyzed synthesis of spiroindenes (Chart 1), this compound 

underwent smooth oxidative annulation with diphenylacety-

lene in the presence of [RuCl2(p-cymene)2]/Cu(OAc)2 to give 

benzopyran 4i in 80% yield and spiroindene 3i in 11% yield 

(entry 9). No evidence of oxidative annulation products was 

observed in the reactions of substrate 1a with terminal alkynes 

such as phenylacetylene, trimethylsilylacetylene, or 1-hexyne. 

Deuteration Experiments. Deuteration experiments 

were then conducted to shed further light on these reactions. 

First, substrate 1b was treated with PEPPSI-IPr under the con-

ditions described in Chart 1 but with the omission of the al-

kyne and the inclusion of D2O, for reaction times of 15 min 

and 2 h (Scheme 2A). These experiments led to recovered 

[Dn]-1b in which deuteration occurred exclusively at the 4-

methoxyphenyl group (12% and 55% D, respectively). These 

results indicate that cyclopalladation is reversible in the ab-

sence of an alkyne, and the site of deuterium incorporation is 

consistent with the fact that the oxidative annulations present-

ed in Chart 1 gave spiroindenes exclusively, with no trace of 

benzopyran products detected.  

 

  

Scheme 2. H/D Scrambling Experiments of 1b in the Ab-

sence of an Alkyne 

 

 

 

In contrast, an analogous experiment performed with 

[RuCl2(p-cymene)]2 at 90 °C for 15 min provided recovered 

[Dn]-1b in which appreciable deuteration (16% D) had oc-

curred at the benzene ring of the quinolin-2-one, but had bare-

ly occurred at the 4-methoxyphenyl ring (Scheme 2B). Repeat-

ing this experiment for a longer duration of 2 h increased the 

level of deuterium incorporation at both sites (35% D at the 

benzene ring of the quinolin-2-one, and 15% D at the 4-

methoxyphenyl ring). Again, these results are consistent with 

the results presented in Table 2 where benzopyrans were  



 

 

Scheme 3. Oxidative Annulations of 1b in the Presence of D2O 

 

 
 

obtained as the major products, but where smaller quantities of 

spiroindenes were also formed.  

The reasons behind the site-selectivities exhibited by the 

palladium- and ruthenium-based catalyst systems are not clear 

at the present time. 28  In principle, formation of the five-

membered metallacycle B might be expected to be kinetically 

favored over the six-membered metallacycle A due to its 

smaller ring size (see Scheme 1), and the site-selectivity of the 

ruthenium catalyst system is consistent with this assumption. 

However, an explanation for the reluctance of palladium to 

form metallacycle B will require further investigation.  

Next, oxidative annulations were conducted in the presence 

of D2O (Scheme 3). A reaction of 1b with diphenylacetylene 

using the PEPPSI-IPr precatalyst in 6.5/1 DMF/D2O for 15 

min provided recovered 1b and spiroindene 3d in 42% and 

34% yield, respectively, in which no deuterium incorporation 

was detected in either compound. An analogous experiment 

carried out with [RuCl2(p-cymene)]2 for 5 min gave recovered 

1b in 19% yield, benzopyran 4d in 55% yield, and spiroindene 

3d in 3% yield, in which deuterium incorporation was not 

detected in any of the compounds. The lack of deuterium in-

corporation in these experiments suggests that oxidative annu-

lation is rapid, and that both cyclopalladation and cycloruthe-

nation of 1b are essentially irreversible in the presence of an 

alkyne. 

Palladium- and Ruthenium-Catalyzed Oxidative 
Annulations with Alkenes. To ascertain whether the high 

site-selectivities obtained with palladium- and ruthenium-

based precatalysts are maintained in other classes of oxidative 

C‒H functionalizations, the annulation of 1a with various 

alkenes was studied.
12,29,30 Reaction of 1a with methyl vinyl 

ketone, acrylonitrile, and phenyl vinyl sulfone in the presence 

of Pd(OAc)2 (5 mol %) and Cu(OAc)2 (2.1 equiv) in DMF at 

120 °C provided benzopyrans 7a‒7c, respectively, in 79‒86% 
yield with no trace of other products (Chart 2).

12,29a
 The oxida-

tive annulations of 1a with internal alkenes such as trans-

methyl crotonate and 2-cyclohexenone were also successful to 

provide benzopyrans 7d and 7e, albeit in lower yields (32% 

and 31%, respectively). 

Chart 2. Palladium-Catalyzed Oxidative Annulations with 

Alkenes
a 

 

   
7a  86% 7b  86% 7c  79% 

  

7d  32% 7e  31% 

a Reactions were conducted using 0.50 mmol of 1a. Cited yields 
are of isolated material.  
 

 

Consistent with earlier results (Table 2), ruthenium-

catalyzed oxidative annulations of 1a with terminal alkenes 

led to C‒H functionalization at the benzene ring of the quino-

lin-2-one to provide benzofurans 8a‒8c in 63‒72% yield 

(Chart 3). These reactions were also highly site-selective, and 

in the reactions with methyl vinyl ketone and phenyl vinyl 

sulfone, only trace quantities (<5%) of the alternative ben-

zopyran products were detected in the unpurified reaction  



 

 

Chart 3. Ruthenium-Catalyzed Oxidative Annulations 

with Alkenes
a
 

 

   
8a  63% 8b  65%b 8c  72% 

a Reactions were conducted using 0.50 mmol of 1a. Cited yields 
are of isolated material. b This reaction also provided benzopyran 

7b in 5% isolated yield.  
 

 

mixtures. In the case of acrylonitrile, which provided benzofu-

ran 8b in 65% yield, benzopyran 7b was also isolated in 5% 

yield. In contrast with palladium catalysis (Chart 2), ruthenium 

catalysis was unsuccessful in the attempted oxidative annula-

tions of 1a with internal alkenes such as trans-methyl croto-

nate or 2-cyclohexenone, and no C–H alkenylation products 

were detected in these reactions. 

 
CONCLUSION 

The ability to transform common starting materials into dif-

ferent products in catalytic C‒H functionalization reactions 
simply by altering the catalyst offers a broadly useful tool in 

the late-stage diversification of molecules and the generation 

of compound libraries.
1a

 In this study, the oxidative annulation 

of alkynes and alkenes with unsymmetrical 2-aryl cyclic 1,3-

dicarbonyl compounds containing two distinct, non-adjacent 

sites for C‒H bond functionalization has been achieved with 

high site-selectivity using palladium or ruthenium catalysis. 

Palladium catalysis enables the exclusive functionalization of 

a hydrogen atom five bonds away from the oxygen of the 

enol/enolate directing group in these substrates, leading to 

spiroindenes 3 or benzopyrans 7 from alkynes or electron-

deficient terminal alkenes, respectively. In contrast, ruthenium 

catalysis mainly results in functionalization of a hydrogen 

atom four bonds away from the oxygen of the directing group, 

which produces benzopyrans 4 or benzofurans 8 from alkynes 

or electron-deficient terminal alkenes, respectively. Efforts to 

understand the origins of the differing selectivities exhibited 

by palladium- and ruthenium-based catalysts, along with de-

velopments in switchable, site-selective C‒H functionaliza-

tions of more complex classes of substrates, are topics for 

future study in our laboratory. 
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